

Uploaded to the VFC Website

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton
Tax ID #27-3820181
CA Incorporation ID #3340400
CA Dept. of Charities ID #: CT-0190794

If Veterans don't help Veterans, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd= s-xclick&hosted button id=WGT2M5UTB9A78

Note

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

Sample ID: B09-199-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

Prep Batch #:

Initial Wgt/Vol:

G9I240378 - 016

09/21/09 10/13/09

9286433 10.16 g

Work Order #....: LLF3L1AQ

Date Received: Analysis Date: Instrument ID:

Analyst ID:

09/25/09 11/03/09

1D5 Sonia Ouni Matrix...:

SOLID

0.98

Dilution Factor: Percent Moisture: 21

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.2	0.40	pg/g
Total TCDD	ND		1.2	0.40	pg/g
1,2,3,7,8-PeCDD	ND		6.2	0.77	pg/g
Total PeCDD	1.7		6.2	0.77	pg/g
1,2,3,4,7,8-HxCDD	ND		6.2	0.65	pg/g
1,2,3,6,7,8-HxCDD	ND		6.2	0.56	pg/g
1,2,3,7,8,9-HxCDD	ND		6.2	0.56	pg/g
Total HxCDD	ND		6.2	0.65	pg/g
1,2,3,4,6,7,8-HpCDD	ND		6.2	0.65	pg/g
Total HpCDD	1.2		6.2	0.65	pg/g
OCDD	16		12	1.4	pg/g
Total TCDF	2.9		1.2	0.39	pg/g
1,2,3,7,8-PeCDF	0.83	JВ	6.2	0.53	pg/g
2,3,4,7,8-PeCDF	0.67	J	6.2	0.54	pg/g
Total PeCDF	4.0		6,2	0.53	pg/g
1,2,3,4,7,8-HxCDF	ND		6.2	0.64	pg/g
1,2,3,6,7,8-HxCDF	ND		6.2	0.57	pg/g
2,3,4,6,7,8-HxCDF	ND		6.2	0.63	pg/g
1,2,3,7,8,9-HxCDF	ND		6.2	0.69	pg/g
Total HxCDF	ND		6.2	0.69	pg/g
1,2,3,4,6,7,8-HpCDF	ОИ		6.2	0.56	pg/g
1,2,3,4,7,8,9-HpCDF	ND		6.2	0.69	pg/g
Total HpCDF	ND		6.2	0.69	pg/g
OCDF	ND		12	1.2	pg/g

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	77	40 - 135
13C-1,2,3,7,8-PeCDD	69	40 - 135
13C-1,2,3,6,7,8-HxCDD	81	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	89	40 - 135
13C-OCDD	83	40 - 135
13C-2,3,7,8-TCDF	78	40 - 135
13C-1,2,3,7,8-PeCDF	78	40 - 135
13C-1,2,3,4,7,8-HxCDF	77	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	89	40 - 135

/30/ TestAmerica West Sacramento

11/20/2009

Sample ID: B09-199-S1

Trace Level Organic Compounds

SW846 8290

Matrix....: SOLID Work Order #....: LLF3L1AQ Lot - Sample #....: G9I240378 - 016 0.98 Date Sampled: 09/21/09 Date Received: 09/25/09 Dilution Factor: 11/03/09 Percent Moisture: 21 Prep Date: 10/13/09 Analysis Date: Instrument ID: 1D5 Prep Batch #: 9286433 Sonia Ouni Initial Wgt/Vol: 10.16 g Analyst ID....:

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level. В
- J

/302 TestAmerica West Sacramento

11/20/2009

Sample ID: B09-199-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G9I240378 - 016

Work Order #....: Date Received:

LLF3L2AQ 09/25/09 Analysis Date: 10/29/09

Matrix....: Dilution Factor: SOLID 0.98

Prep Date: Prep Batch #: 09/21/09 10/21/09 9294334

Instrument ID: Analyst ID: Sonia Ouni

3D5

Percent Moisture: 21

Initial Wgt/Vol: 10.17 g

0.13

JQB

ESTIMATED REPORTING **DETECTION LIMIT UNITS PARAMETER** RESULT LIMIT 2,3,7,8-TCDD ND 1.2 0.036 pg/g Total TCDD ND 1.2 0.036 pg/g 1,2,3,7,8-PeCDD ND 6.2 0.065 pg/g Total PeCDD ND 6.2 0.065 pg/g 6.2 1,2,3,4,7,8-HxCDD ND 0.039 pg/g 1,2,3,6,7,8-HxCDD ND 6.2 0.032 pg/g 1,2,3,7,8,9-HxCDD ND 6.2 0.033 pg/g ND 6.2 0.039 Total HxCDD pg/g 1,2,3,4,6,7,8-HpCDD 0.33 J B 6.2 0.061 pg/g Total HpCDD 0.91 6.2 0.061pg/g OCDD 10 J B 12 0.075 pg/g 2,3,7,8-TCDF 0.13 JQB 1.2 0.033 pg/g Total TCDF 0.29 1.2 0.033 pg/g 1,2,3,7,8-PeCDF ND 6.2 0.029 pg/g 2,3,4,7,8-PcCDF ND 6.2 0.031 pg/g ND 6.2 Total PeCDF 0.033 pg/g 6.2 1,2,3,4,7,8-HxCDF ND 0.023 pg/g 1,2,3,6,7,8-HxCDF ND 6.2 0.021 pg/g 2,3,4,6,7,8-HxCDF 0.023 JQ 6.2 0.022 pg/g ND 6.2 1,2,3,7,8,9-HxCDF 0.025 pg/g **Total HxCDF** 0.023 6.2 0.023 pg/g 0.061 6.2 1,2,3,4,6,7,8-HpCDF JQ 0.025 pg/g 1,2,3,4,7,8,9-HpCDF ND 6.2 0.030 pg/g **Total HpCDF** 0.10 6.2 0.028pg/g

12

0.031

pg/g

OCDF

Sample ID: B09-199-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date:	G9I240378 - 016 09/21/09 10/21/09	Work Order #: Date Received: Analysis Date:	09/25/09 10/29/09	Matrix: Dilution Factor: Percent Moisture:	SOLID 0.98 21
Prep Batch #:	9294334	Instrument ID:	3D5		
Initial Wgt/Vol:	10.17 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	93	40 - 135
13C-1,2,3,7,8-PeCDD	89	40 - 135
13C-1,2,3,6,7,8-HxCDD	98	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	91	40 - 135
13C-OCDD	77	40 - 135
13C-2.3.7.8-TCDF	79	40 - 135
13C-1,2,3,7,8-PeCDF	84	40 - 135
13C-1,2,3,4,7,8-HxCDF	89	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	83	40 - 135

QUALIFIERS
Results and reporting limits have been adjusted for dry weight

- Method blank contamination. The associated method blank contains the target analyte at a reportable level В
- J Estimated Result
- Estimated maximum possible concentration (EMPC). Q

TestAmerica West Sacramento

Sample ID: B09-199-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G91240378 - 016
Date Sampled:	09/21/09
Prep Date:	10/13/09
Prep Batch #:	9286433

9286433 10.16 g

Work Order #....: LLF3L3AQ Date Received: 09/25/09 Analysis Date: 11/03/09

Instrument ID: 5D2 Analyst ID: Sonia Ouni Matrix....: **SOLID** 0.98 Dilution Factor:

21 Percent Moisture:

PARAMETER

Initial Wgt/Vol:

RESULT

REPORTING LIMIT

ESTIMATED DETECTION LIMIT UNITS

2,3,7,8-TCDF

1.4 В

1.2

pg/g

INTERNAL STANDARDS

13C-2,3,7,8-TCDF

PERCENT RECOVERY 78

RECOVERY LIMITS 40 - 135

QUALIFIERS

Results and reporting limits have been adjusted for dry weight

В Method blank contamination. The associated method blank contains the target analyte at a reportable level

TestAmerica West Sacramento

11/20/2009

Sample ID: B09-199-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G9I240378 - 017 09/21/09

10/13/09

Work Order #....: LLF3M1AF Date Received: 09/25/09 11/03/09 Analysis Date: 1D5

Matrix: Dilution Factor: **SOLID**

1 Percent Moisture: 8.3

Prep Date: Prep Batch #: Initial Wgt/Vol:

9286433 10.03 g

Instrument ID: Analyst ID....:

Sonia Ouni

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.35	pg/g
Total TCDD	ND		1.1	0.35	pg/g
1,2,3,7,8-PeCDD	ND		5.4	0.78	pg/g
Total PeCDD	ND		5.4	0.78	pg/g
1,2,3,4,7,8-HxCDD	П		5.4	0.69	pg/g
1,2,3,6,7,8-HxCDD	ND		5.4	0.59	pg/g
1,2,3,7,8,9-HxCDD	ND		5.4	0.59	pg/g
Total HxCDD	ND		5.4	0.69	pg/g
1,2,3,4,6,7,8-HpCDD	ND		5.4	0.77	pg/g
Total HpCDD	1.7		5.4	0.77	pg/g
OCDD	35		11	1.0	pg/g
Total TCDF	2.6		1.1	0.30	pg/g
1,2,3,7,8-PeCDF	1.1	JQB	5.4	0.45	pg/g
2,3,4,7,8-PeCDF	0.52	J	5.4	0.46	pg/g
Total PeCDF	4.4		5.4	0.45	pg/g
1,2,3,4,7,8-HxCDF	ND		5.4	0.55	pg/g
1,2,3,6,7,8-HxCDF	ND		5.4	0.49	pg/g
2,3,4,6,7,8-HxCDF	ND		5.4	0.54	pg/g
1,2,3,7,8,9-HxCDF	ND		5.4	0.59	pg/g
Total HxCDF	ND		5.4	0.59	pg/g
1,2,3,4,6,7,8-HpCDF	0.61	J	5.4	0.56	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.4	0.69	pg/g
Total HpCDF	ND		5.4	0.69	pg/g
OCDF	ND		11	0.94	pg/g

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	80	40 - 135
13C-1,2,3,7,8-PeCDD	71	40 - 135
13C-1,2,3,6,7,8-HxCDD	88	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	87	40 - 135
13C-OCDD	78	40 - 135
13C-1,2,3,7,8-PeCDF	81	40 - 135
13C-1,2,3,4,7,8-HxCDF	86	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	93	40 - 135

TestAmerica West Sacramento

11/20/2009

Sample ID: B09-199-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: G9I240378 - 017 Work Order #: LLF3MIAF Matrix...: **SOLID** Date Sampled: 09/21/09 Date Received: 09/25/09 Dilution Factor: 1 Analysis Date: Prep Date: 10/13/09 11/03/09 Percent Moisture: 8.3 Prep Batch #: 9286433 Instrument ID....: 1D5 Initial Wgt/Vol: 10.03 g Analyst ID: Sonia Ouni

QUALIFIERS

Results and reporting limits have been adjusted for dry weight

- B Method blank contamination The associated method blank contains the target analyte at a reportable level
- J Estimated Result
- Q Estimated maximum possible concentration (EMPC)

11/20/2009

156

TestAmerica West Sacramento (506 of 7876

Sample ID: B09-199-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Initial Wgt/Vol:

G9I240378 - 017

Prep Date: Prep Batch #:

09/21/09 10/21/09

9294334 10.21 g

Work Order #....: LLF3M2AF Date Received:

09/25/09 Analysis Date: 10/29/09

Instrument ID: 3D5 Analyst ID:

Sonia Ouni

Matrix....:

Dilution Factor:

SOLID

0.98

Percent Moisture: 8.3

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.034	pg/g
Total TCDD	ND		1.1	0.034	pg/g
1,2,3,7,8-PeCDD	ND		5.3	0.050	pg/g
Total PeCDD	ND		5.3	0.050	pg/g
1,2,3,4,7,8-HxCDD	ND		5.3	0.033	pg/g
1,2,3,6,7,8-HxCDD	ND		5.3	0.027	pg/g
1,2,3,7,8,9-HxCDD	ND		5.3	0.028	pg/g
Total HxCDD	0.15		5.3	0.029	pg/g
1,2,3,4,6,7,8-HpCDD	0.76	JВ	5,3	0.041	pg/g
Total HpCDD	2.2		5.3	0.041	pg/g
OCDD	38	В	11	0.16	pg/g
2,3,7,8-TCDF	0.15	JВ	1.1	0.034	pg/g
Total TCDF	0.63		1.1	0.034	pg/g
1,2,3,7,8-PeCDF	ND		5.3	0.029	pg/g
2,3,4,7,8-PeCDF	ND		5.3	0.030	pg/g
Total PeCDF	ND		5.3	0.040	pg/g
1,2,3,4,7,8-HxCDF	ND		5.3	0.028	pg/g
1,2,3,6,7,8-HxCDF	ND		5.3	0.025	pg/g
2,3,4,6,7,8-HxCDF	ND		5.3	0.026	pg/g
1,2,3,7,8,9-HxCDF	ND		5.3	0.029	pg/g
Total HxCDF	0.029		5.3	0.027	pg/g
1,2,3,4,6,7,8-HpCDF	0.094	J Q	5.3	0.017	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.3	0.020	pg/g
Total HpCDF	0.15		5.3	0.018	pg/g
OCDF	0.12	1 G R	11	0.029	pg/g

TestAmerica West Sacramento

11/20/2009

Sample ID: B09-199-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G91240378 - 017			Matrix:	SOLID
Date Sampled:	09/21/09	Date Received:	09/25/09	Dilution Factor:	0.98
Prep Date:	10/21/09	Analysis Date:	10/29/09	Percent Moisture:	8.3
Prep Batch #:	9294334	Instrument ID:	3D5		
Initial Wgt/Vol:	10.21 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	95	40 - 135
13C-1,2,3,7,8-PeCDD	91	40 - 135
13C-1,2,3,6,7,8-HxCDD	112	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	95	40 - 135
13C-OCDD	86	40 - 135
13C-2,3,7,8-TCDF	81	40 - 135
13C-1,2,3,7,8-PeCDF	84	40 - 135
13C-1,2,3,4,7,8-HxCDF	98	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	93	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight

- Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

/3*0*9 TestAmerica West Sacramento (

11/20/2009

Sample ID: B09-199-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: G9I240378 - 017 Work Order #: LLF3M3AF Matrix....: Date Sampled: 09/21/09 Date Received: 09/25/09 Prep Date: 10/13/09 Analysis Date: 11/03/09 Prep Batch #: 9286433 Instrument ID: 5D2

Analyst ID: Sonia Ouni Dilution Factor: 1 Percent Moisture: 8.3

PARAMETER

RESULT

REPORTING LIMIT

ESTIMATED DETECTION LIMIT UNITS

2,3,7,8-TCDF

Initial Wgt/Vol:

1.2 В

1.1

pg/g

SOLID

INTERNAL STANDARDS

13C-2,3,7,8-TCDF

PERCENT RECOVERY

78

RECOVERY LIMITS

40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight

10.03 g

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

11/20/2009

Sample ID: B09-198-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date....:

G9I240378 - 020

09/22/09

10/21/09

Prep Batch #: Initial Wgt/Vol:

9294334 10.5 g

Work Order #....: LLF3Q2AQ Date Received:

09/25/09 Analysis Date: 10/29/09

Instrument ID: Analyst 1D....:

3D5 Sonia Ouni Matrix...:

SOLID

0.95 Dilution Factor:

Percent Moisture: 8.1

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	0.030	JQB	1.0	0.026	pg/g
Total TCDD	0.030		1.0	0.026	pg/g
1,2,3,7,8-PeCDD	ND		5.2	0.057	pg/g
Total PcCDD	ND		5.2	0.057	pg/g
1,2,3,4,7,8-HxCDD	ND		5.2	0.027	pg/g
1,2,3,6,7,8-HxCDD	0.036	JQ	5.2	0.022	pg/g
1,2,3,7,8,9-HxCDD	0.079	J Q	5.2	0.023	pg/g
Total HxCDD	0.17		5.2	0.024	pg/g
1,2,3,4,6,7,8-HpCDD	0.56	JВ	5.2	0.043	pg/g
Total HpCDD	1.6		5.2	0.043	pg/g
OCDD	26	В	10	0.12	pg/g
2,3,7,8-TCDF	0.14	JВ	1.0	0.023	pg/g
Total TCDF	0.22		1.0	0.023	pg/g
1,2,3,7,8-PeCDF	ND		5.2	0.031	pg/g
2,3,4,7,8-PeCDF	ND		5.2	0.032	pg/g
Total PeCDF	ND		5.2	0.033	pg/g
1,2,3,4,7,8-HxCDF	0.067	JQ	5.2	0.015	pg/g
1,2,3,6,7,8-HxCDF	0.048	JQ	5.2	0.014	pg/g
2,3,4,6,7,8-HxCDF	0.036	JQ	5.2	0.014	pg/g
1,2,3,7,8,9-HxCDF	0.044	j	5.2	0.016	pg/g
Total HxCDF	0.22		5.2	0.015	pg/g
1,2,3,4,6,7,8-HpCDF	0.14	JQ	5.2	0.026	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.2	0.030	pg/g
Total HpCDF	0.14		5.2	0.028	pg/g
OCDF	0.14	JQB	10	0.040	pg/g

Sample ID: B09-198-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date: Prep Batch #:	G91240378 - 020 09/22/09 10/21/09 9294334	Work Order #: Date Received: Analysis Date: Instrument ID:	09/25/09	Matrix: Dilution Factor: Percent Moisture:	SOLID 0.95 8.1
Initial Wgt/Vol:	10.5 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	86	40 - 135
13C-1,2,3,7,8-PeCDD	83	40 - 135
13C-1,2,3,6,7,8-HxCDD	93	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	84	40 - 135
13C-OCDD	70	40 - 135
13C-2,3,7,8-TCDF	74	40 - 135
13C-1,2,3,7,8-PeCDF	76	40 - 135
13C-1,2,3,4,7,8-HxCDF	85	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	73	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- В Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- j Estimated Result
- Q Estimated maximum possible concentration (EMPC).

13/2 TestAmerica West Sacramento

166

11/20/2009

Sample ID: B09-198-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G9I240378 - 021

Date Received: Analysis Date:

Work Order #....: LLF3R2AF 09/25/09 10/29/09

Matrix....: **Dilution Factor:** **SOLID** 0.94

Prep Date: Prep Batch #: 09/22/09 10/21/09 9294334

Instrument ID:

3D5

Percent Moisture: 11

Initial Wgt/Vol:

10.63 g

Analyst ID....: Sonia Ouni

PARAMETER	RESULT	•	REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.036	pg/g
Total TCDD	ND		1.1	0.036	pg/g
1,2,3,7,8-PeCDD	ND		5.3	0.054	pg/g
Total PeCDD	ND		5,3	0.054	pg/g
1,2,3,4,7,8-HxCDD	ND		5.3	0.039	pg/g
1,2,3,6,7,8-HxCDD	ND		5.3	0.032	pg/g
1,2,3,7,8,9-HxCDD	ND		5.3	0.033	pg/g
Total HxCDD	0.15		5.3	0.034	pg/g
1,2,3,4,6,7,8-HpCDD	0.75	J Q B	5.3	0.048	pg/g
Total HpCDD	2.2		5.3	0.048	pg/g
OCDD	34	В	11	0.22	pg/g
2,3,7,8-TCDF	0.087	JB	1.1	0.036	pg/g
Total TCDF	0.14		1.1	0.036	pg/g
1,2,3,7,8-PeCDF	ND		5.3	0.030	pg/g
2,3,4,7,8-PeCDF	ND		5.3	0.032	pg/g
Total PeCDF	ND		5.3	0.048	pg/g
1,2,3,4,7,8-HxCDF	0.025	J	5.3	0.017	pg/g
1,2,3,6,7,8-HxCDF	ND		5.3	0.016	pg/g
2,3,4,6,7,8-HxCDI ²	ND		5.3	0.016	pg/g
1,2,3,7,8,9-HxCDF	ND		5.3	0.019	pg/g
Total HxCDF	0.13		5.3	0.017	pg/g
1,2,3,4,6,7,8-HpCDF	0.11	J	5.3	0.024	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.3	0.028	pg/g
Total HpCDF	0.29		5.3	0.026	pg/g
OCDF	0.28	JВ	11	0.042	pg/g

Sample ID: B09-198-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date: Prep Batch #:	G91240378 - 021 09/22/09 10/21/09 9294334	Work Order #: Date Received: Analysis Date: Instrument ID:	09/25/09 10/29/09 3D5	Matrix: Dilution Factor: Percent Moisture:	SOLID 0.94 11
Initial Wgt/Vol:	10.63 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	90	40 - 135
13C-1,2,3,7,8-PeCDD	82	40 - 135
13C-1,2,3,6,7,8-HxCDD	91	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	79	40 - 135
13C-OCDD	69	40 - 135
13C-2,3,7,8-TCDF	77	40 - 135
13C-1,2,3,7,8-PeCDF	77	40 - 135
13C-1,2,3,4,7,8-HxCDF	80	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	78	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight

- В Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC)

11/20/2009 513 of 7876

Sample ID: B09-198-S4

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G91240378 - 023

09/22/09

Work Order #....: LLF3V2AQ Date Received: Analysis Date:

09/25/09 10/30/09

Matrix....: Dilution Factor: SOLID

Prep Date: Prep Batch #:

Initial Wgt/Vol:

10/21/09 9294334

10 g

Instrument ID: Analyst ID:

3D5 Sonia Ouni Percent Moisture: 7.9

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.035	pg/g
Total TCDD	ND		1.1	0.035	pg/g
1,2,3,7,8-PeCDD	ND		5.4	0.074	pg/g
Total PeCDD	ND		5.4	0.074	pg/g
1,2,3,4,7,8-HxCDD	0.072	J	5.4	0.040	pg/g
1,2,3,6,7,8-HxCDD	0.076	J	5.4	0.033	pg/g
1,2,3,7,8,9-HxCDD	0.094	J	5.4	0.034	pg/g
Total HxCDD	0.38		5.4	0.035	pg/g
1,2,3,4,6,7,8-HpCDD	1.0	JВ	5.4	0.044	pg/g
Total HpCDD	2.3		5.4	0.044	pg/g
OCDD	35	В	11	0,11	pg/g
2,3,7,8-TCDF	0.18	JВ	1.1	0.030	pg/g
Total TCDF	0.28		1.1	0.030	pg/g
1,2,3,7,8-PeCDF	ND		5.4	0.044	pg/g
2,3,4,7,8-PeCDF	0.965	JQ	5.4	0.046	pg/g
Total PeCDF	0.066		5.4	0.045	pg/g
1,2,3,4,7,8-HxCDF	0.17	J	5.4	0.030	pg/g
1,2,3,6,7,8-HxCDF	0.14	J Q	5.4	0.027	pg/g
2,3,4,6,7,8-HxCDF	0.092	JQ	5.4	0.029	pg/g
1,2,3,7,8,9-HxCDF	ND		5.4	0.032	pg/g
Total HxCDF	0.61		5.4	0.030	pg/g
1,2,3,4,6,7,8-HpCDF	0.30	JQ	5.4	0.039	pg/g
1,2,3,4,7,8,9-HpCDF	0.20	J	5.4	0,046	pg/g
Total HpCDF	0.71		5.4	0.042	pg/g
OCDF	0.48	J B	11	0.041	pg/g

Sample ID: B09-198-S4

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G9I240378 - 023	Work Order #:	LLF3V2AQ	Matrix:	SOLID
Date Sampled:	09/22/09	Date Received:	09/25/09	Dilution Factor:	1
Prep Date:	10/21/09	Analysis Date:	10/30/09	Percent Moisture:	7.9
Prep Batch #:	9294334	Instrument ID:	3D5		
Initial Wet/Vol:	10 ø	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	87	40 - 135
13C-1,2,3,7,8-PeCDD	83	40 - 135
13C-1,2,3,6,7,8-HxCDD	93	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	85	40 - 135
13C-OCDD	85	40 - 135
13C-2,3,7,8-TCDF	79	40 - 135
13C-1,2,3,7,8-PeCDF	80	40 - 135
13C-1,2,3,4,7,8-HxCDF	83	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	78	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- В Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- Estimated Result.
- Estimated maximum possible concentration (EMPC)

TestAmerica West Sacramento

11/20/2009

Sample ID: B09-197-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....:
Date Sampled....:
Prep Date....:

G9I240378 - 024 09/22/09

10/21/09 9294334 Work Order #....:
Date Received....:
Analysis Date....:

LLF3W2AQ 09/25/09 10/29/09 3D5 Matrix....:
Dilution Factor:

SOLID 0.95

Percent Moisture: 5.2

Prep Batch #:
Initial Wgt/Vol:

10.5 g

Instrument ID....:
Analyst ID....:

Sonia Ouni

ESTIMATED REPORTING **PARAMETER** RESULT DETECTION LIMIT UNITS LIMIT 2,3,7,8-TCDD ND 1.0 0.049 pg/g Total TCDD ND 1.0 0.049 pg/g 1,2,3,7,8-PeCDD ND 5.0 0.10 pg/g Total PeCDD ND 5.0 0.10 pg/g 1,2,3,4,7,8-HxCDD ND 5.0 0.040 pg/g 1,2,3,6,7,8-HxCDD ND 5.0 0.033 pg/g 1,2,3,7,8,9-HxCDD ND 5.0 0.034 pg/g **Total HxCDD** 0.13 5.0 0.035 pg/g 1,2,3,4,6,7,8-HpCDD 0.71 JΒ 5.0 0.058 pg/g Total HpCDD 2.1 5.0 0.058 pg/g OCDD 37 В 10 0.25 pg/g 2,3,7,8-TCDF 0.15 JQB 1.0 0.046 pg/g Total TCDF 0.20 1.0 0.046 pg/g 1,2,3,7,8-PeCDF ND 5.0 0.042 pg/g 2,3,4,7,8-PeCDF ND 5.0 0.044 pg/g Total PcCDF ND 5.0 0.057 pg/g ND 5.0 1,2,3,4,7,8-HxCDF 0.031pg/g 1,2,3,6,7,8-HxCDF ND 5.0 0.028 pg/g 2,3,4,6,7,8-HxCDF ND 5.0 0.029 pg/g 1,2,3,7,8,9-HxCDF ND 5,0 0.033 pg/g Total HxCDF ND 5.0 0.033 pg/g 1,2,3,4,6,7,8-HpCDF 0.10 JQ 5.0 0.036pg/g 1,2,3,4,7,8,9-HpCDF ND 5.0 0.042 pg/g **Total HpCDF** 0.10 5.0 0.039 pg/g **OCDF** 0.23 JQB 10 0.057 pg/g

1317

TestAmerica West Sacramento

11/20/2009

66

516 of 7876

G91240378

Sample ID: B09-197-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G91240378 - 024	Work Order #:	LLF3W2AQ	Matrix:	SOLID
Date Sampled:	09/22/09	Date Received:	09/25/09	Dilution Factor:	0.95
Prep Date:	10/21/09	Analysis Date:	10/29/09	Percent Moisture:	5.2
Prep Batch #:	9294334	Instrument ID:	3D5		
Initial Wgt/Vol:	10.5 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	52	40 - 135
13C-1,2,3,7,8-PeCDD	47	40 - 135
13C-1,2,3,6,7,8-HxCDD	54	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	50	40 - 135
13C-OCDD	44	40 - 135
13C-2,3,7,8-TCDF	45	40 - 135
13C-1,2,3,7,8-PeCDF	44	40 - 135
13C-1,2,3,4,7,8-HxCDF	50	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	47	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level
- į Estimated Result
- Q Estimated maximum possible concentration (EMPC)

11/20/2009 517 of 7876

TestAmerica West Sacramento

Sample ID: B09-197-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G91240378 - 025

09/22/09

Prep Date: Prep Batch #: Initial Wgt/Vol:

9294334

10/21/09

10.23 g

Work Order #....: LLF3X2AF Date Received:

09/25/09 10/29/09

Analysis Date: Instrument ID: 3D5

Matrix...: Dilution Factor: **SOLID**

0.98

Percent Moisture: 13

Analyst ID: Sonia Ouni

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.040	pg/g
Total TCDD	ND		1.1	0.040	pg/g
1,2,3,7,8-PeCDD	ND		5.6	0.074	pg/g
Total PeCDD	ND		5.6	0.074	pg/g
1,2,3,4,7,8-HxCDD	0.046	J	5.6	0.042	pg/g
1,2,3,6,7,8-HxCDD	ND		5.6	0.034	pg/g
1,2,3,7,8,9-HxCDD	0.040	J Q	5.6	0.035	pg/g
Total HxCDD	0.28		5.6	0.037	pg/g
1,2,3,4,6,7,8-HpCDD	0.74	JQB	5.6	0.060	pg/g
Total HpCDD	2.2		5.6	0.060	pg/g
OCDD	40	В	11	0.18	pg/g
2,3,7,8-TCDF	0.087	JQB	1.1	0.041	pg/g
Total TCDF	0.14		1.1	0.041	pg/g
1,2,3,7,8-PeCDF	ND		5.6	0.043	pg/g
2,3,4,7,8-PeCDF	ND		5.6	0.045	pg/g
Total PeCDF	ND		5.6	0.046	pg/g
1,2,3,4,7,8-HxCDF	ND		5.6	0.024	pg/g
1,2,3,6,7,8-HxCDF	0.029	J	5.6	0.022	pg/g
2,3,4,6,7,8-HxCDF	ND		5.6	0.023	pg/g
1,2,3,7,8,9-HxCDF	ND		5.6	0.026	pg/g
Total HxCDF	0.060		5.6	0.024	pg/g
1,2,3,4,6,7,8-HpCDF	0.090	JQ	5.6	0.025	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.6	0.029	pg/g
Total HpCDF	0.13		5.6	0.027	pg/g
OCDF	0.18	J B	11	0.039	pg/g

Sample ID: B09-197-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date:	G91240378 - 025 09/22/09 10/21/09	Work Order #: Date Received: Analysis Date:	09/25/09 10/29/09	Matrix,: Dilution Factor: Percent Moisture:	SOLID 0.98 13
Prep Batch #:	9294334	Instrument ID:	3D5		
Initial Wgt/Vol:	10.23 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	66	40 - 135
13C-1,2,3,7,8-PeCDD	64	40 - 135
13C-1,2,3,6,7,8-HxCDD	66	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	62	40 - 135
13C-OCDD	56	40 - 135
13C-2,3,7,8-TCDF	57	40 - 135
13C-1,2,3,7,8-PeCDF	59	40 - 135
13C-1,2,3,4,7,8-HxCDF	63	40 ~ 135
13C-1,2,3,4,6,7,8-HpCDF	61	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

11/20/2009 TestAmerica West Sacramento 519 of 7876

Sample ID: B09-196-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date:

G9I240378 - 027 09/22/09 10/21/09

Work Order #....: LLF312AQ Date Received: Analysis Date:

09/25/09 11/09/09

Matrix...: SOLID 4.78 Dilution Factor: Percent Moisture: 9.0

Prep Batch #: Initial Wgt/Vol: 9294334 10.45 g

Instrument ID....: Analyst ID....:

1D5 Sonia Ouni

PARAMETER	RESULT	г	REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		5.4	1,1	pg/g
Total TCDD	ND		5.3	1.1	pg/g
1,2,3,7,8-PeCDD	ND		26	1.6	pg/g
Total PeCDD	ND		26	1.6	pg/g
1,2,3,4,7,8-HxCDD	ND		26	1.1	pg/g
1,2,3,6,7,8-HxCDD	ND		26	0.94	pg/g
1,2,3,7,8,9-HxCDD	ND		26	0.95	pg/g
Total HxCDD	ND		26	1.1	pg/g
1,2,3,4,6,7,8-HpCDD	4.1	QЈВ	26	1.6	pg/g
Total HpCDD	7.8		26	1.6	pg/g
OCDD	68	В	53	2.9	pg/g
Total TCDF	1.5		5.3	0.55	pg/g
1,2,3,7,8-PeCDF	ND		26	1.0	pg/g
2,3,4,7,8-PeCDF	ND		26	1.0	pg/g
Total PeCDF	13		26	1.0	pg/g
1,2,3,4,7,8-HxCDF	ND		26	1.1	pg/g
1,2,3,6,7,8-HxCDF	ND		26	0.96	pg/g
2,3,4,6,7,8-HxCDF	ND		26	1.1	pg/g
1,2,3,7,8,9-HxCDF	ND		26	1.2	pg/g
Total HxCDF	1.7		26	1.1	pg/g
,2,3,4,6,7,8-HpCDF	ND		26	1.5	pg/g
,2,3,4,7,8,9-HpCDF	ND		26	1.8	pg/g
Total HpCDF	3.9		26	1.6	pg/g
OCDF	5.2	JQB	53	3.5	pg/g

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	88	40 - 135
13C-1,2,3,7,8-PeCDD	77	40 - 135
13C-1,2,3,6,7,8-HxCDD	95	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	89	40 - 135
13C-OCDD	64	40 - 135
13C-2,3,7,8-TCDF	104	40 - 135
13C-1,2,3,7,8-PeCDF	90	40 - 135
13C-1,2,3,4,7,8-HxCDF	103	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	86	40 - 135

1321

TestAmerica West Sacramento

11/20/2009

520 of 7876

G9i240378

Sample ID: B09-196-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: G91240378 - 027 Work Order #: LLF312AQ Matrix...: **SOLID** Date Sampled: 09/22/09 Date Received: 09/25/09 Dilution Factor: 4.78 Prep Date: 10/21/09 Analysis Date: 11/09/09 9.0 Percent Moisture: Prep Batch #: 9294334 Instrument ID: 1D5 Initial Wgt/Vol: 10.45 g Analyst ID: Sonia Ouni

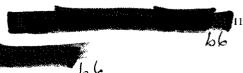
QUALIFIERSResults and reporting limits have been adjusted for dry weight

- Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result
- Q Estimated maximum possible concentration (EMPC)

TestAmerica West Sacramento (

Sample ID: B09-196-S1

Trace Level Organic Compounds


SW846 8290

Lot - Sample #: Date Sampled: Prep Date: Prep Batch #: Initial Wgt/Vol:	G91240378 - 027 09/22/09 10/21/09 9294334 10.45 g	Date Anal _l Instr	k Order #: Received: ysis Date: ument ID: yst ID:	LLF313AQ 09/25/09 10/31/09 8D2 Sonia Ouni	Matrix: Dilution Factor: Percent Moisture:	SOLID 0.95 9.0
PARAMETER	RESUI	т		PORTING MIT	ESTIMATED DETECTION LIM	IIT UNITS
2,3,7,8-TCDF	1.3	В	1.1		0.23	pg/g
INTERNAL STANE	PARDS		PERCENT RECOVER	Y	RECOVE LIMITS	RY
13C-2,3,7,8-TCDF			93		40 - 135	

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

TestAmerica West Sacramento

Sample ID: B09-196-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G9I240378 - 028 09/22/09

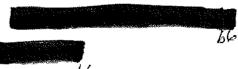
Work Order #....: Date Received: Analysis Date:

LLF322AF 09/25/09 10/29/09

Matrix....: **SOLID Dilution Factor:** 0.97 Percent Moisture:

Prep Date: Prep Batch #: Initial Wgt/Vol:

10/21/09 9294334 10.27 g


Instrument ID: Analyst ID:

3D5

Sonia Ouni

REPORTING **ESTIMATED PARAMETER** RESULT **DETECTION LIMIT UNITS** LIMIT 2,3,7,8-TCDD ND 1.1 0.026 pg/g Total TCDD ND 1.1 0.026 pg/g 1,2,3,7,8-PeCDD ND 5.3 0.042 pg/g Total PeCDD ND 5.3 0.042 pg/g 1.2.3.4.7.8-HxCDD ND 5.3 0.020 pg/g 1,2,3,6,7,8-HxCDD ND 5.3 0.016 pg/g 1,2,3,7,8,9-HxCDD 0.032 JQ 5.3 0.017 pg/g Total HxCDD 0.095 5.3 0.018 pg/g 1,2,3,4,6,7,8-HpCDD 0.36 JQB 5.3 0.039 pg/g Total HpCDD 1.2 5.3 0.039 pg/g OCDD В 27 11 0.12 pg/g 2,3,7,8-TCDF 0.080 JΒ 1.1 0.041 pg/g **Total TCDF** 1.0 1.1 0.041 pg/g 1,2,3,7,8-PeCDF ND 5.3 0.027 pg/g 2,3,4,7,8-PeCDF ND 5.3 0.028 pg/g Total PeCDF ND 5.3 0.042 pg/g 1,2,3,4,7,8-HxCDF ND 5.3 0.011 pg/g 1,2,3,6,7,8-HxCDF 0.012 JQ 5.3 0.010 pg/g 2,3,4,6.7,8-HxCDF ND 5.3 0.011 pg/g 1.2,3,7,8,9-HxCDF ND 5.3 0.012 pg/g Total HxCDF 0.012 5.3 0.011 pg/g 1,2,3,4,6,7,8-HpCDF ND 5.3 0.027 pg/g 1,2,3,4,7,8,9-HpCDF ND 5.3 0.032 pg/g Total HpCDF 0.054 5.3 0.030 pg/g **OCDF** 0.035JQB 11 0.032pg/g

TestAmerica West Sacramento

11/20/2009

Sample ID: B09-196-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date:	G91240378 - 028 09/22/09 10/21/09	Work Order #: Date Received: Analysis Date:	LLF322AF 09/25/09 10/29/09	Matrix: Dilution Factor: Percent Moisture:	SOLID 0.97 8.4
Prep Batch #: Initial Wgt/Vol:	9294334 10.27 g	Instrument ID: Analyst ID:	3D5 Sonia Ouni	rercent Moisture:	0.4

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	90	40 - 135
13C-1,2,3,7,8-PeCDD	88	40 - 135
13C-1,2,3,6,7,8-HxCDD	82	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	75	40 - 135
13C-OCDD	57	40 - 135
13C-2,3,7,8-TCDF	83	40 - 135
13C-1,2,3,7,8-PeCDF	83	40 - 135
13C-1,2,3,4,7,8-HxCDF	83	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	68	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level
- J
- Q Estimated maximum possible concentration (EMPC).

11/20/2009

G9i240378

Sample ID: B09-192-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled: Prep Date:

Prep Batch #:

Initial Wgt/Vol:

G91240378 - 031 09/22/09

10/21/09 9294334

10.01 g

Work Order #....: Date Received: Analysis Date:

LLH9T2AF 09/25/09 10/29/09

3D5

Instrument ID: Analyst ID....:

Sonia Ouni

Matrix...: SOLID

Dilution Factor: Percent Moisture: 6.9

ESTIMATED REPORTING DETECTION LIMIT UNITS RESULT **PARAMETER** LIMIT 1.1 0.0312,3,7,8-TCDD ND pg/g 0.031 ND 1.1 pg/g Total TCDD 0.051 5.4 pg/g 1,2,3,7,8-PeCDD ND ND 5.4 0.051 pg/g Total PeCDD 0.032 ND 5.4 pg/g 1,2,3,4,7,8-HxCDD 5.4 0.026 pg/g 1,2,3,6,7,8-HxCDD ND 1,2,3,7,8,9-HxCDD 0.083 J 5.4 0.027 pg/g 0.083 5.4 0.029 pg/g Total HxCDD 0.66 JВ 5.4 0.025 pg/g 1,2,3,4,6,7,8-HpCDD 5.4 pg/g 1.8 0.025 Total HpCDD pg/g 25 В 11 0.078 OCDD JQB pg/g 0.070 1.1 0.033 2,3,7,8-TCDF 1.1 0.033 pg/g 0.070 **Total TCDF** 5.4 0.027 pg/g 1,2,3,7,8-PeCDF ND 2,3,4,7,8-PeCDF ND 5.4 0.028 pg/g ND 5.4 0.055 pg/g Total PeCDF 5.4 0.014 pg/g ND 1,2,3,4,7,8-HxCDF 0.012 ND 5,4 pg/g 1,2,3,6,7,8-HxCDF 5.4 0.013 pg/g ND 2,3,4,6,7,8-HxCDF 5.4 0.015 pg/g 1,2,3,7,8,9-HxCDF ND 0.047 5.4 0.013 pg/g **Total HxCDF** 5.4 0.071 0.018 pg/g 1,2,3,4,6,7,8-HpCDF J 5.4 0.021 1,2,3,4,7,8,9-HpCDF ИD pg/g Total HpCDF 0.17 5.4 0.019 pg/g 11 pg/g OCDF 0.13 JQB 0.026

> 1326 TestAmerica West Sacramento

Sample ID: B09-192-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled: Prep Date:	G9I240378 - 031 09/22/09 10/21/09	Work Order #: Date Received: Analysis Date:	LLH9T2AF 09/25/09 10/29/09	Matrix: Dilution Factor: Percent Moisture:	SOLID 1 6.9
Prep Batch #:	9294334	Instrument ID:	3D5		
Initial Wgt/Vol:	10.01 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
INTERNAL STANDARDS		
13C-2,3,7,8-TCDD	95	40 - 135
13C-1,2,3,7,8-PcCDD	90	40 - 135
13C-1,2,3,6,7,8-HxCDD	96	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	100	40 - 135
13C-OCDD	81	40 - 135
13C-2,3,7,8-TCDF	82	40 - 135
13C-1,2,3,7,8-PeCDF	84	40 - 135
13C-1,2,3,4,7,8-HxCDF	96	40 - 135
13C-1.2.3.4.6.7.8-HpCDF	88	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level
- J Estimated Result
- Estimated maximum possible concentration (EMPC) Q

TestAmerica West Sacramento

11/20/2009

Sample ID: B09-192-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

G9I240378 - 032

Date Received:

Work Order #: LLJAAIAF 09/25/09

Matrix....: Dilution Factor: **SOLID** 0.95

Prep Date:

09/22/09 10/19/09

Analysis Date:

10/28/09

Percent Moisture: 14

Prep Batch #:

9292309

Instrument ID:

4D5

Initial Wgt/Vol:

10.56 g

Analyst ID: Susan X. Yan

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.035	pg/g
Total TCDD	ND		1.1	0.035	pg/g
1,2,3,7,8-PeCDD	ND		5.5	0.072	pg/g
Total PeCDD	ND		5.5	0.072	pg/g
1,2,3,4,7,8-HxCDD	ND		5.5	0.073	pg/g
1,2,3,6,7,8-HxCDD	0.071	JQ	5.5	0.062	pg/g
1,2,3,7,8,9-HxCDD	ND		5.5	0.062	pg/g
Total HxCDD	0.28		5.5	0.065	pg/g
1,2,3,4,6,7,8-HpCDD	0.78	J B	5.5	0.094	pg/g
Total HpCDD	1.7		5.5	0.094	pg/g
OCDD	14	В	11	0.14	pg/g
2,3,7,8-TCDF	0.18	J Q	1.1	0.051	pg/g
Total TCDF	0.31		1.1	0.051	pg/g
1,2,3,7,8-PeCDF	0.18	J Q	5.5	0.073	pg/g
2,3,4,7,8-PeCDF	0.089	J	5.5	0.076	pg/g
Total PeCDF	0.27		5.5	0.075	pg/g
1,2,3,4,7,8-HxCDF	0.23	JQB	5.5	0.11	pg/g
1,2,3,6,7,8-HxCDF	ND		5.5	0.10	pg/g
2,3,4,6,7,8-HxCDF	ND		5.5	0.11	pg/g
1,2,3,7,8,9-HxCDF	ND		5.5	0.12	pg/g
Total HxCDF	0.23		5.5	0.11	pg/g
1,2,3,4,6,7,8-HpCDF	0.15	J Q B	5.5	0.15	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.5	0.18	pg/g
Total HpCDF	0.41		5.5	0.17	pg/g
OCDF	0.48	JQB	11	0.10	pg/g

Sample ID: B09-192-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled:	G9I240378 - 032 09/22/09	Work Order #: Date Received:		Matrix: Dilution Factor:	SOLID 0.95
Prep Date:	10/19/09	Analysis Date:	10/28/09	Percent Moisture:	
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wet/Vol:	10.56 g	Analyst ID:	Susan X Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	69	40 - 135
13C-1,2,3,7,8-PeCDD	61	40 - 135
13C-1,2,3,6,7,8-HxCDD	66	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	60	40 - 135
13C-OCDD	61	40 - 135
13C-2,3,7,8-TCDF	65	40 - 135
13C-1,2,3,7,8-PeCDF	58	40 - 135
13C-1,2,3,4,7,8-HxCDF	58	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	56	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result
- Q Estimated maximum possible concentration (EMPC).

1329 11/20/2009 TestAmerica West Sacramento (528 of 7876

Sample ID: B09-193-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

G91240378 - 034

09/22/09

Prep Batch #: Initial Wgt/Vol: 9292309

10/19/09

10.06 g

Work Order #....: LLJA21AQ Date Received:

Analysis Date: 4D5

Instrument ID:

Analyst ID:

09/25/09 10/28/09

Susan X. Yan

Matrix....:

SOLID

0.99

Dilution Factor: Percent Moisture: 7.7

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2.3,7,8-TCDD	ND		1.1	0.021	pg/g
Total TCDD	ND		1.1	0.039	pg/g
1,2,3,7,8-PeCDD	ND		5.4	0.043	pg/g
Total PeCDD	ND		5.4	0.043	pg/g
1,2,3,4,7,8-HxCDD	ND		5.4	0.088	pg/g
1,2,3,6,7,8-HxCDD	0.12	J	5.4	0.074	pg/g
1,2,3,7,8,9-HxCDD	ND		5.4	0.074	pg/g
Total HxCDD	0.56		5.4	0.078	pg/g
1,2,3,4,6,7,8-HpCDD	1.3	JQВ	5.4	0.13	pg/g
Total HpCDD	3.2		5.4	0.13	pg/g
OCDD	33	В	11	0.18	pg/g
2,3,7,8-TCDF	0.19	J	1.1	0.062	pg/g
Total TCDF	0.33		1.1	0.062	pg/g
1,2,3,7,8-PeCDF	0.15	J	5.4	0.065	pg/g
2,3,4,7,8-PeCDF	ND		5.4	0.068	pg/g
Total PeCDF	0.15		5.4	0.066	pg/g
1,2,3,4,7,8-HxCDF	0.23	JВ	5.4	0.085	pg/g
1,2,3,6,7,8-HxCDF	ND		5.4	0.079	pg/g
2,3,4,6,7,8-HxCDF	ND		5.4	0.083	pg/g
1,2,3,7,8,9-HxCDF	ND		5.4	0.093	pg/g
Total HxCDF	0.76		5.4	0.085	pg/g
1,2,3,4,6,7,8-HpCDF	0.63	JQB	5.4	0.16	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.4	0.19	pg/g
Total HpCDF	1.8		5.4	0.17	pg/g
OCDF	1.0	J B	11	0.13	pg/g

Sample ID: B09-193-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G91240378 - 034	Work Order #:	LLJA21AQ	Matrix:	SOLID
Date Sampled:	09/22/09	Date Received:	09/25/09	Dilution Factor:	0.99
Prep Date:	10/19/09	Analysis Date:	10/28/09	Percent Moisture:	7.7
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wgt/Vol:	10.06 g	Analyst ID:	Susan X. Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	77	40 - 135
13C-1,2,3,7,8-PeCDD	73	40 - 135
13C-1,2,3,6,7,8-HxCDD	74	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	67	40 - 135
13C-OCDD	65	40 - 135
13C-2,3,7,8-TCDF	74	40 - 135
13C-1,2,3,7,8-PeCDF	67	40 - 135
13C-1,2,3,4,7,8-HxCDF	67	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	57	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight

- Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

11/20/2009 530 of 7876

Sample ID: B09-193-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

Prep Batch #:

Initial Wgt/Vol:

G91240378 - 035

09/22/09 10/19/09

9292309 10.4 g

Date Received:

Work Order #: LLJCF1AF 09/25/09

Analysis Date: 10/28/09 Instrument ID....: 4D5

Matrix....:

SOLID

0.96 Dilution Factor: Percent Moisture: 12

Analyst ID: Susan X. Yan

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.097	pg/g
Total TCDD	ND		1.1	0.097	pg/g
1,2,3,7,8-PeCDD	ND		5.4	0.12	pg/g
Total PeCDD	ND		5.4	0.12	pg∕g
1,2,3,4,7,8-HxCDD	ND		5.4	0.25	pg/g
1,2,3,6,7,8-HxCDD	ND		5.4	0.21	pg/g
1,2,3,7,8,9~HxCDD	ND		5.4	0.21	pg/g
Total HxCDD	ND		5.4	0.25	pg/g
1,2,3,4,6,7,8-HpCDD	0.75	J Q B	5.4	0.49	pg/g
Total HpCDD	2.6		5.4	0.49	pg/g
OCDD	25	В	11	0.91	pg/g
2,3,7,8-TCDF	0.34	J	1.1	0.069	pg/g
Total TCDF	0.57		1.1	0.069	pg/g
1,2,3,7,8-PeCDF	0.33	JQ	5.4	0.083	pg/g
2,3,4,7,8-PeCDF	ND		5.4	0.086	pg/g
Total PeCDF	0.46		5.4	0.085	pg/g
1,2,3,4,7,8-HxCDF	0.43	JQB	5.4	0.25	pg/g
1,2,3,6,7,8-HxCDF	ND		5.4	0.23	pg/g
2,3,4,6,7,8-HxCDF	ND		5.4	0.25	pg/g
1.2,3,7.8,9-HxCDF	NĐ		5.4	0.28	pg/g
Total HxCDF	0.43		5.4	0.25	pg/g
1,2,3,4,6,7,8-HpCDF	0.45	JQB	5.4	0.42	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.4	0.51	pg/g
Total HpCDF	0.45		5.4	0.44	pg/g
OCDF	0.91	J Q B	11	0.56	pg/g

Sample ID: B09-193-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled:	G91240378 - 035 09/22/09	Work Order #: Date Received:	LLJCF1AF 09/25/09	Matrix: Dilution Factor:	SOLID 0.96
Prep Date:	10/19/09	Analysis Date:	10/28/09	Percent Moisture:	12
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wot/Vol:	104 σ	Analyst ID ·	Sucan X Van		

INTERNAL STANDARDS	PERCEN RECOVI		RECOVERY LIMITS	
13C-2,3,7,8-TCDD	50	· · · · · · · · · · · · · · · · · · ·	40 - 135	
13C-1,2,3,7,8-PeCDD	38	*	40 - 135	
13C-1,2,3,6,7,8-HxCDD	37	*	40 - 135	
13C-1,2,3,4,6,7,8-HpCDD	27	*	40 - 135	
13C-OCDD	22	*	40 - 135	
13C-2,3,7,8-TCDF	50		40 - 135	
13C-1,2,3,7,8-PeCDF	38	*	40 - 135	
13C-1,2,3,4,7,8-HxCDF	32	*	40 - 135	
13C-1.2.3.4.6.7.8-HpCDF	24	*	40 - 135	

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Surrogate recovery is outside stated control limits
- В Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- j Estimated Result.
- Q Estimated maximum possible concentration (EMPC)

11/20/2009 532 of 7876

TestAmerica West Sacramento

Sample ID: B09-193-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

Prep Batch #:

Initial Wgt/Vol:

G9I240378 - 035

09/22/09

11/10/09 9314490

10.6 g

Work Order #....: LLJCF2AF Date Received:

09/25/09 11/16/09

Analysis Date: Instrument ID....: 1D5

Analyst ID:

Sonia Ouni

Dilution Factor: Percent Moisture: 12

SOLID

0.94

Matrix....:

PARAMETER	RESULT	n.	REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.15	pg/g
Total TCDD	ND		1.1	0.15	pg/g
1,2,3,7,8-PeCDD	ND		5.3	0.30	pg/g
Total PeCDD	ND		5.3	0.30	pg/g
1,2,3,4,7,8-HxCDD	ND		5.3	0.30	pg/g
1,2,3,6,7,8-HxCDD	ND		5.3	0.26	pg/g
1,2,3,7,8,9-HxCDD	0.26	JQ	5.3	0.26	pg/g
Total HxCDD	0.26		5.3	0.26	pg/g
1,2,3,4,6,7,8-HpCDD	0.95	ЈВ	5.3	0.32	pg/g
Total HpCDD	2.1		5.3	0.32	pg/g
OCDD	36	В	11	0.66	pg/g
2,3,7,8-TCDF	0.15	JQB	1.1	0.085	pg/g
Total TCDF	0.15		1.1	0.085	pg/g
1,2,3,7,8-PeCDF	0.29	JВ	5.3	0.16	pg/g
2,3,4,7,8-PeCDF	0.20	JQB	5.3	0.17	pg/g
Total PeCDF	0.49		5.3	0.16	pg/g
1,2,3,4,7,8-HxCDF	ND		5.3	0.23	pg/g
1,2,3,6,7,8-HxCDF	0.22	J Q	5.3	0.20	pg/g
2,3,4,6,7,8-HxCDF	ND		5.3	0.22	pg/g
1,2,3,7,8,9-HxCDF	0.26	J Q	5.3	0.25	pg/g
Total HxCDF	0.49		5.3	0.22	pg/g
1,2,3,4,6,7,8-HpCDF	0.37	J B	5.3	0.19	pg/g
1,2,3,4,7,8,9-HpCDF	0.29	JQB	5.3	0.23	pg/g
Total HpCDF	0.66		5.3	0.21	pg/g
OCDF	0.75	J B	11	0.36	pg/g

Sample ID: B09-193-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G9I240378 - 035	Work Order #:	LLJCF2AF	Matrix:	SOLID
Date Sampled:	09/22/09	Date Received:	09/25/09	Dilution Factor:	0.94
Prep Date:	11/10/09	Analysis Date:	11/16/09	Percent Moisture:	12
Prep Batch #:	9314490	Instrument ID:	1D5		
Initial Wgt/Vol:	10.6 g	Analyst ID:	Sonia Ouni		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS	
13C-2,3,7,8-TCDD	85	40 - 135	
13C-1,2,3,7,8-PeCDD	77	40 - 135	
13C-1,2,3,6,7,8-HxCDD	95	40 - 135	
13C-1,2,3,4,6,7,8-HpCDD	87	40 - 135	
13C-OCDD	80	40 - 135	
13C-2,3,7,8-TCDF	92	40 - 135	
13C-1,2,3,7,8-PeCDF	86	40 - 135	
13C-1,2,3,4,7,8-HxCDF	91	40 - 135	
13C-1,2,3,4,6,7,8-HpCDF	96	40 - 135	

QUALIFIERS

Results and reporting limits have been adjusted for dry weight

- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated Result.
- Q Estimated maximum possible concentration (EMPC).

Sample ID: B09-194-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled: Prep Date:

G91240378 - 038

09/22/09 10/19/09

9292309

Analysis Date: Instrument ID....: 4D5

Work Order #: LLJCN1AQ 09/25/09 10/28/09

Matrix....: Dilution Factor:

SOLID

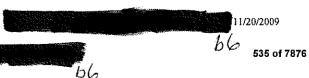
0.93

Percent Moisture: 8.8

Initial Wgt/Vel:

Prep Batch #:

10.73 g


Analyst ID....:

Date Received:

Susan X. Yan

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.0	0.0041	pg/g
Total TCDD	ND		1.0	0.0041	pg/g
1,2,3,7,8-PeCDD	ND		5.1	0.0098	pg/g
Total PcCDD	0.13		5.1	0.0098	pg/g
1,2,3,4,7,8-HxCDD	0.065	J Q	5.1	0.034	pg/g
1,2,3,6,7,8-HxCDD	0.049	J	5.1	0.028	pg/g
1,2,3,7,8,9-HxCDD	0.041	JQB	5.1	0.028	pg/g
Total HxCDD	0.51		5.1	0.030	pg/g
1,2,3,4,6,7,8-HpCDD	0.93	ЈВ	5.1	0.16	pg/g
Total HpCDD	2.2		5.1	0.16	pg/g
OCDD	36	В	10	0.25	pg/g
2,3,7,8-TCDF	0.17	J Q	1.0	0.029	pg/g
Total TCDF	0.30		1.0	0.029	pg/g
1,2,3,7,8-PcCDF	ND		5.1	0.053	pg/g
2,3,4,7,8-PeCDF	ND		5.1	0.056	pg/g
Total PeCDF	ND		5.1	0.056	pg/g
1,2,3,4,7,8-HxCDF	0.17	J Q B	5.1	0.068	pg/g
1,2,3,6,7,8-HxCDF	ND		5.1	0.063	pg/g
2,3,4,6,7,8-HxCDF	ND		5.1	0.067	pg/g
1,2,3,7,8,9-HxCDF	ND		5. I	0.074	pg/g
Total HxCDF	0.17		5.1	0.068	pg/g
1,2,3,4,6,7,8-HpCDF	0.13	JQB	5. 1	0.11	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.1	0.14	pg/g
Total HpCDF	0.13		5.1	0.12	pg/g
OCDF	0.40	JВ	10	0.16	pg/g

TestAmerica West Sacramento

Sample ID: B09-194-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled:	G9I240378 - 038 09/22/09	Work Order #: Date Received:	LLJCN1AQ 09/25/09	Matrix: Dilution Factor:	SOLID 0.93
Prep Date:	10/19/09	Analysis Datc:	10/28/09	Percent Moisture:	8.8
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wgt/Vol:	10.73 g	Analyst ID:	Susan X. Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	80	40 - 135
13C-1,2,3,7,8-PeCDD	70	40 - 135
13C-1,2,3,6,7,8-HxCDD	77	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	68	40 - 135
13C-OCDD	61	40 - 135
13C-2,3,7,8-TCDF	72	40 - 135
13C-1,2,3,7,8-PeCDF	65	40 - 135
13C-1,2,3,4,7,8-HxCDF	67	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	61	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level
- J Estimated Result
- Q Estimated maximum possible concentration (EMPC)

Sample ID: B09-194-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

Prep Batch #:

Initial Wgt/Vol:

09/22/09

10/19/09 9292309

10.27 g

G9I240378 - 039

Work Order #....: LLJCR1AF Date Received: Analysis Date:

09/25/09 10/28/09

Instrument ID: 4D5

Analyst ID....:

Susan X. Yan

Matrix....:

SOLID

0.97 Dilution Factor:

Percent Moisture: 9.4

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	0.074	J Q	1.1	0.0039	pg/g
Total TCDD	0.074		1.1	0.0039	pg/g
1,2,3,7,8-PeCDD	0.089	J	5.4	0.014	pg/g
Total PeCDD	0.45		5.4	0.014	pg/g
1,2,3,4,7,8-HxCDD	0.29	JQ	5.4	0.038	pg/g
1,2,3,6,7,8-HxCDD	1.1	J	5.4	0.032	pg/g
1,2,3,7,8,9-HxCDD	0.86	J B	5.4	0.032	pg/g
Total HxCDD	6.5		5.4	0.034	pg/g
1,2,3,4,6,7,8-HpCDD	38	В	5.4	0.26	pg/g
Total HpCDD	74		5.4	0.26	pg/g
OCDD	440	В	11	0.40	pg/g
2,3,7,8~TCDF	0.12	J Q	1.1	0.031	pg/g
Total TCDF	0.35		1.1	0.031	pg/g
1,2,3,7,8-PeCDF	0.12	J Q	5.4	0.068	pg/g
2,3,4,7,8-PeCDF	0.12	J	5.4	0.071	pg/g
Total PeCDF	1.5		5.4	0.069	pg/g
1,2,3,4,7,8-HxCDF	1.3	1B	5.4	0.11	pg/g
1,2,3,6,7,8-HxCDF	0.57	JB	5.4	0.11	pg/g
2,3,4,6,7,8-HxCDF	0.22	J Q	5.4	0.11	pg/g
1,2,3,7,8,9-HxCDF	ND		5.4	0.13	pg/g
Total HxCDF	25		5.4	0.11	pg/g
1,2,3,4,6,7,8-HpCDF	19	В	5.4	0.24	pg/g
1,2,3,4,7,8,9-HpCDF	1.3	J	5.4	0.28	pg/g
Total HpCDF	80	e.	5.4	0.26	pg/g
OCDF	57	В	11	0.23	pg/g

/338' TestAmerica West Sacramento

Sample ID: B09-194-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled:	G91240378 - 039 09/22/09	Work Order #: Date Received:	LLJCR1AF 09/25/09	Matrix: Dilution Factor:	SOLID 0.97
Prep Date:	10/19/09	Analysis Date:	10/28/09	Percent Moisture:	9.4
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wot/Vol:	10 27 σ	Analyst ID:	Susan X Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	81	40 - 135
13C-1,2,3,7,8-PeCDD	73	40 - 135
13C-1,2,3,6,7,8-HxCDD	83	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	78	40 - 135
13C-OCDD	74	40 - 135
13C-2,3,7,8-TCDF	75	40 - 135
13C-1,2,3,7,8-PeCDF	69	40 - 135
13C-1,2,3,4,7,8-HxCDF	69	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	70	40 - 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- В Method blank contamination The associated method blank contains the target analyte at a reportable level
- J Estimated Result
- Q Estimated maximum possible concentration (EMPC)

Sample ID: B09-195-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

09/22/09

10/19/09 9292309

Prep Batch #: Initial Wgt/Vol:

10 g

G9I240378 - 042

Work Order #: LLJDG1AQ

Date Received: 09/25/09 Analysis Date:

10/28/09 Instrument ID: 4D5

Analyst ID....:

Susan X. Yan

Matrix...: **SOLID**

Dilution Factor: 1

Percent Moisture: 8.0

PARAMETER	RESULT		REPORTING LIMIT	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.036	pg/g
Total TCDD	ND		1.1	0.036	pg/g
1,2,3,7,8-PeCDD	ND		5.4	0.0083	pg/g
Total PeCDD	ND		5.4	0.0081	pg/g
1,2,3,4,7,8-HxCDD	0.015	JQ	5.4	0.0053	pg/g
1,2,3,6,7,8-HxCDD	0.011	JQ	5.4	0.0045	pg/g
1,2,3,7,8,9-HxCDD	0.037	J Q B	5.4	0.0046	pg/g
Total HxCDD	0.36		5.4	0.0048	pg/g
1,2,3,4,6,7,8-HpCDD	0.63	J B	5.4	0.14	pg/g
Total HpCDD	1.7		5.4	0.14	pg/g
OCDD	25	В	11	0.17	pg/g
2,3,7,8-TCDF	0.13	JQ	1.1	0.0028	pg/g
Total TCDF	0.13		1.1	0.0028	pg/g
1,2,3,7,8-PeCDF	0.066	JQ	5.4	0.044	pg/g
2,3,4,7,8-PeCDF	ND		5.4	0.046	pg/g
Total PeCDF	0.11		5.4	0.045	pg/g
1,2,3,4,7,8-HxCDF	0.10	JQB	5.4	0.072	pg/g
1,2,3,6,7,8-HxCDF	ND		5.4	0.067	pg/g
2,3,4,6,7,8-HxCDF	ND		5.4	0.071	pg/g
1,2,3,7,8,9-HxCDF	ND		5.4	0.079	pg/g
Total HxCDF	0.10		5.4	0.072	pg/g
1,2,3,4,6,7,8-HpCDF	0.15	J Q B	5.4	0.12	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.4	0.14	pg/g
Total HpCDF	0.29		5.4	0.13	pg/g
OCDF	0.23	JQB	11	0.099	pg/g

1340 TestAmerica West Sacramento (

Sample ID: B09-195-S1

Trace Level Organic Compounds

SW846 8290

Lot - Sample #:	G9I240378 - 042	Work Order #:	LLJDG1AQ	Matrix:	SOLID
Date Sampled:	09/22/09	Date Received:	09/25/09	Dilution Factor:	1
Prep Date:	10/19/09	Analysis Date:	10/28/09	Percent Moisture:	8.0
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wgt/Vol:	10 g	Analyst ID:	Susan X. Yan		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	80	40 - 135
13C-1,2,3,7,8-PeCDD	71	40 - 135
13C-1,2,3,6,7,8-HxCDD	68	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	67	40 - 135
13C-OCDD	64	40 - 135
13C-2,3,7,8-TCDF	75	40 - 135
13C-1,2,3,7,8-PeCDF	69	40 - 135
13C-1,2,3,4,7,8-HxCDF	70	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	60	40 ~ 135

QUALIFIERSResults and reporting limits have been adjusted for dry weight.

- Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- j
- Estimated maximum possible concentration (EMPC). Q

1341 TestAmerica West Sacramento

11/20/2009

540 of 7876

Sample ID: B09-195-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #....: Date Sampled:

Prep Date:

Prep Batch #:

G9I240378 - 043

09/22/09 10/19/09

9292309 10.6 g

Work Order #....: LLJDH1AF Date Received: Analysis Date:

Analyst ID:

09/25/09 10/28/09

4D5

REPORTING

Instrument ID: Susan X. Yan **Dilution Factor:**

ESTIMATED

Matrix....:

SOLID 0.94

Percent Moisture: 12

Initial Wgt/Vol:

PARAMETER	RESULT		LIMIT	DETECTION LIMIT	UNITS
2,3,7,8-TCDD	ND		1.1	0.023	pg/g
Total TCDD	ND		1.1	0.023	pg/g
1,2,3,7,8-PeCDD	0.018	J Q	5.3	0.0080	pg/g
Total PeCDD	0.078		5.3	0.0080	pg/g
1,2,3,4,7,8-HxCDD	ND		5.3	0.035	pg/g
1,2,3,6,7,8-HxCDD	ND		5.3	0.029	pg/g
1,2,3,7,8,9-HxCDD	ND		5.3	0.034	pg/g
Total HxCDD	0.16		5.3	0.035	pg/g
1,2,3,4,6,7,8-HpCDD	0.76	JB	5.3	0.11	pg/g
Total HpCDD	1.5		5.3	0.11	pg/g
OCDD	14	В	11	0.16	pg/g
2,3,7,8-TCDF	0.090	JQ	1.1	0.0031	pg/g
Total TCDF	0.16		1.1	0.0031	pg/g
1,2,3,7,8-PeCDF	ND		5.3	0.051	pg/g
2,3,4,7,8-PeCDF	ND		5.3	0.053	pg/g
Total PeCDF	ND		5.3	0.053	pg/g
1,2,3,4,7,8-HxCDF	0.089	J Q B	5.3	0.056	pg/g
1,2,3,6,7,8-HxCDF	ND		5.3	0.052	pg/g
2,3,4,6,7,8-HxCDF	ND		5.3	0.054	pg/g
1,2,3,7,8,9-HxCDF	ND		5.3	0.061	pg/g
Total HxCDF	0.35		5.3	0.055	pg/g
1,2,3,4,6,7,8-HpCDF	0.25	J Q B	5.3	0.11	pg/g
1,2,3,4,7,8,9-HpCDF	ND		5.3	0.13	pg/g
Total HpCDF	1.1		5.3	0.12	pg/g
OCDF	1,1	JВ	11	0.065	pg/g

1342

TestAmerica West Sacramento

11/20/2009

541 of 7876

Sample ID: B09-195-S2

Trace Level Organic Compounds

SW846 8290

Lot - Sample #: Date Sampled:	G9I240378 - 043 09/22/09	Work Order #: Date Received:	LLJDH1AF 09/25/09	Matrix:	SOLID
Prep Date:	10/19/09	Analysis Date:	10/28/09	Dilution Factor: Percent Moisture:	0.94 12
Prep Batch #:	9292309	Instrument ID:	4D5		
Initial Wet/Vol:	10.6 e	Analyst ID:	Susan X Van		

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	75	40 - 135
13C-1,2,3,7,8-PeCDD	68	40 - 135
13C-1,2,3,6,7,8-HxCDD	76	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	67	40 - 135
13C-OCDD	65	40 - 135
13C-2,3,7,8-TCDF	72	40 - 135
13C-1,2,3,7,8-PeCDF	64	40 - 135
13C-1,2,3,4,7,8-HxCDF	66	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	61	40 - 135

QUALIFIERS

Results and reporting limits have been adjusted for dry weight

1343

mento .

B Method blank contamination The associated method blank contains the target analyte at a reportable level.

J Estimated Result

Q Estimated maximum possible concentration (EMPC)

EXECUTIVE SUMMARY SITE ASSESSMENTS OF HM/POL SITES BEQ HILL, LAND FARM, BUILDINGS 565 AND BUILDING 326 CAMP CARROLL, KOREA

1. PURPOSE. The purpose of the Environmental Site Assessment (ESA) was to determine if chemicals have been released at the sites of concern that could pose a threat to human health. The scope of this ESA does not include precise determination of the extent of contamination, should it exist. The soil pathway was the focus of the ESAs at the BEQ Hill, the Land Farm, Building 565, and Building 326 of Camp Carroll.

2. SUMMARY OF FINDINGS.

BEQ Hill: Based on the result of geophysical survey and subsurface investigation, the size of the waste burial cell is approximately 25 meters long, 14 meters wide and 6 meters deep. Soil boring and geophysical survey work conducted at the site indicate that the waste cell consists of a mixture of soil backfill and waste material, with an estimated volume of 2,100 cubic meters, of which approximately 1,000 cubic meters consists of waste material and contaminated soil. Laboratory analysis detected several volatile organic compounds (VOCs) in site soils. The predominant VOC detected was tetrachloroethane, a solvent-related chemical. The detected VOC concentrations do not exceed U.S. Environmental Protection Agency (EPA) comprehensive environmental response, compensation, and liability act (CERCLA) preliminary remediation goals (PRGs) for residential soil. A few pesticide, metal, and dioxin/furan compounds also were detected in site soils. None of the detected concentrations exceeds EPA PRGs for residential soil. Several of the solvent-related VOCs do exceed the EPA guidance values for threat of soil contamination to ground water. These solvent-related VOCs were detected in a site ground-water monitoring well. Preliminary findings indicate that contamination from the waste buried at the site has been released to the underlying ground water. Site ground-water contamination could pose a threat to human health, because ground-water supply wells are used for Camp Carroll's potable water supply.

Land Farm Site: Laboratory analysis detected VOCs in site soils. Most of the detected VOCs were solvent-related chemicals. The detected VOC concentrations did not exceed EPA PRGs for residential soil. VOC contamination was detected as deep as 6 to 8 meters below ground surface. A few pesticide, metal, and dioxin/furan compounds also were detected in site soils. Of the detected chemicals, arsenic was detected in one soil sample at a concentration greater than its PRG for residential soil. Solvent-related VOCs were detected in several soil samples at levels that exceed EPA PRGs for soil concentrations threatening ground-water contamination. Arsenic was also detected in one soil sample at a concentration greater than the EPA guidance level for protection of ground water.

Building 565 Site: VOCs were the only chemicals detected by analyses of the site soils. Six petroleum-related compounds and one solvent-related compound were detected in site soil samples. One solvent-related compound, PCE, was detected in a site soil sample at a

concentration greater than the EPA guidance level for protection of ground water.

Building 326 Site: The Building 326 site was assessed for the presence of fuel-related contamination. Field and laboratory analyses identified high levels of fuel contamination behind Building 326 in the subsurface. Fuel contamination is primarily diesel and gasoline, and to a lesser extent JP-8. Total petroleum hydrocarbon concentrations were detected as high as 16,000 mg/kg for diesel-range and 4,400 mg/kg for gasoline-range hydrocarbons. Elevated levels of benzene, toluene, ethylbenzene, and xylenes (BTEX) were also detected in subsurface soils. Benzene was detected in several soil samples at concentrations greater than its EPA residential PRG. Site conditions indicate high levels of fuel-related contamination of which the extent appears to be substantial, but has not been fully characterized.

3. RECOMMENDATIONS.

BEQ Hill site: Construct five ground-water monitoring wells in the vicinity of the BEQ Hill site, analyze water samples for VOCs and pesticides, and evaluate if the concentrations in the ground water pose a threat to human health. After ground-water assessment determine if corrective actions are required for site soils based on the need to be more protective than the EPA residential PRGs or to remove source contamination to the underlying ground water. For future planning, the estimated volume of contaminated material that would be excavated and disposed of off site is estimated to be 1,000 cubic meters.

Land Farm: Drill at least 25 additional borings at the site and analyze soil-boring samples for VOCs, pesticides and arsenic. Construct five ground-water monitoring wells in the vicinity of the Land Farm site, analyze water samples for VOCs, pesticides, and arsenic and evaluate if concentrations in the ground water pose a threat to human health. After ground-water assessment and additional soil sampling, determine if corrective actions are required for site soils based on the need to be more protective than the EPA residential PRGs or to remove source contamination to the underlying ground water.

Building 565: Construct four ground-water monitoring wells in the vicinity of the Building 565 site and analyze water samples for VOCs. Evaluate if contaminants present in site soil have actually leached into the ground water, and if so whether the levels pose a threat to human health. After ground-water assessment determine if corrective actions are required for site soils based on the need to be more protective than the EPA residential PRGs or to remove source contamination to the underlying ground water. For future planning, the estimated volume of soil that may require excavation for offsite disposal is 1,800 cubic meters.

Building 326: Drill at least 25 additional soil borings at the site and analyze soil-boring samples for petroleum hydrocarbon contamination to determine extent of subsurface contamination. Construct four ground-water monitoring wells around Building 326 and analyze water samples for BTEX. Volume of contaminated soil that will require removal cannot be determined at this time due to insufficient information regarding the extent of contamination.

Luvironmental Site Assessment at BEQ Hill, Land Farm, Blug 326, and Blug S65 Sites, Comp Cacroll
US Army Corps of Engineers, Far East District
Dec 2004

Table 15. I-TEQs for Dioxins/Furans Detected in Soils Collected at the Land Farm

Borehol ID	e Sample II	Int	mple erval m)		Analytical Method	International-89 Toxicity Equivalent	PRG‡ (ng/kg)
		fron	1 10			Quantity†	
B04-180	B04-186-1			5/17/2004	SW8290	0.506	3.89
	B04-186-2	3.0	4.8	5/17/2004	SW8290	0.628	3.89
	B04-186-3	6.0	8.4	5/17/2004	SW8290	0.512	3.89
	B04-186-4	3.0	4.8	5/17/2004	SW8290	0.504	3.89
B04-187	B04-187-1		2.4	5/17/2004	SW8290	0.596	3.89
	B04-187-2	3.0	4.8	5/17/2004	SW8290	0.608	3.89
	B04-187-3		8.4	5/17/2004	SW8290	0.572	3.89
B04-188	B04-188-1	0.0	2.4	5/17/2004	SW8290	0.523	3.89
	B04-188-2	3.0	4.8	5/17/2004	SW8290	0.625	3,89
	B04-188-3	6.0	7.8	5/17/2004	SW8290	0.527	3,89
B04-189	1304-189-1	0.0	2.4	5/18/2004	SW8290	0.502	3.89
	В04-189-2	3.0	4.8	5/18/2004	SW8290	0.962	3.89
	B04-189-3	6.0	7.2	5/18/2004	SW8290	0.489	3.89
	B04-189-4	3.0	4.8	5/18/2004	SW8290	0.687	3.89
B04-190	B04-190-1	0.0	2.4	5/18/2004	SW8290	0.541	3.89
	B04-190-2	3.0	4.8	5/18/2004	SW8290	0.536	3.89
	B04-190-3	6.0	7.8	5/18/2004	SW8290	0.651	3.89
B04-191	B04-191-1	0.0	2.4	5/18/2004	SW8290	0.605	3.89
	B04-191-2	3.0	4.8	5/18/2004	SW8290	0,535	3.89
	B04-191-3	6.0	7.8	5/18/2004	SW8290	0.482	3.89

PRG - US EPA Preliminary Remediation Goal, Residential Soil (Superfund Program)

^{† 1-}TEQ value calculated using International-89 Toxicity Equivalent Factors based on 2,3,7,8-TCDD

[‡] PRG value for 2,3,7,8-TCDD

2004 Samsung Report

was detected in 5 soil samples at concentrations ranging from 0.00947 mg/kg to 0.0146 mg/kg.

The USEPA Region 9 PRG for arsenic (calculated for a cancer endpoint) of 1.6 mg/kg was exceeded in 64 soil samples, The non-cancer endpoint arsenic PRG of 260 mg/kg was not exceeded in the samples analyzed. Other detected metals in Area D soil samples did not exceed USEPA Region 9 PRGs.

4.1.2.1.9 Dioxins

Six surface soil sample and twenty-one subsurface soil samples were analyzed for dioxins in accordance with Method 8290. The method analytical results are summarized in Table 4-2. Dioxin detections are summarized on Table 4-8.

A review of the laboratory results indicates that dioxins were detected in five surface soil samples and eighteen subsurface soil samples. The greatest measured dioxin constituent concentration was 388 pg/g OCDD (Sample CC040SS01). The approximate locations of detected dioxins within Area D are depicted on Figure 4-13.

The USEPA has established a PRG of 1.6E-05 mg/kg (0.016 pg/g) for the dioxin 2,3,7,8-TCDD. A total TCDD concentration of 0.461 pg/g was reported for sample CC027BS02, however the 2,3,7,8-TCDD concentration was less than the laboratory method detection limit. Total TCDD concentrations were less than the laboratory method detection limit in the remaining soil samples analyzed.

4.1.2.2 Groundwater Sample Results

Area D groundwater sample results for each laboratory analytical method are presented in this section.

4.1.2.2.1 Total Petroleum Hydrocarbons (TPH)

Selected groundwater samples obtained from Area 41 were analyzed for TPH-G and TPH-D&O in accordance with EPA Methods 8015 and 8020B. Nine groundwater samples were analyzed for TPH-G and TPH-D&O. The TPH method analytical results are summarized in Table 4-2. TPH detections are summarized on Table 4-9.

19

20

21 22 23 24

25 26

27 28

29 30 31 32

33 34

35

36 37 38

39 40 41

42

48 49 **50**

51

52

47

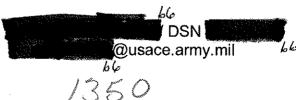
Executive Summary

The US Army Corps of Engineers, Far East District (FED) conducted a Remedial Investigation/Feasibility Study (RI/FS) at the Land Farm and Area D (LF-Area D) of Camp Carroll during February 2009 to March 2010. The RI at the site was conducted to better delineate the lateral extent of subsurface soil and groundwater contamination and the levels of chemicals of potential concern of the LF-Area D. The FS was also conducted to evaluate potential remedial alternatives for the site investigated.

All soil samples submitted to the analytical laboratory were analyzed for Total Petroleum Hydrocarbon (TPH), volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs). metals, polychlorinated biphenyl (PCB), organochlorinated pesticides (OC-Pesticides) and Dioxin-Furan. Groundwater samples were collected from groundwater monitoring wells as well as the supply wells, and analyzed for VOCs and/or OC-Pesticides.

The analytical data collected during this RI was used to prepare an environmental hazard evaluation (EHE) for the site sampled, which determined whether the contamination present at the site poses a significant long-term or "chronic" threat to human health and the environment. The hazard analysis utilized an Environmental Screening Levels (ESLs) that were based upon published United States Environmental Protection Agency (US EPA) toxicity factors (Guam EPA, 2008).

A total of four chemicals from the subsurface soil exceeded the Tier 1 ESLs for future unrestricted land use: tetrachloroethlyene (PCE), toluene, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyltrichloroethane (DDT). The toluene concentration exceeded the Tier II screening level too. A total of ten groundwater samples were identified "exceeding" Tier I ESLs and nine of those exceeded the Tier II screening level for "drinking water for human toxicity". There are exposure pathways to the known receptors (potentially all installation personnel) whoever uses the groundwater within the installation. Assuming that the site is going to be under construction such as trenching and foundation excavation, the site worker could be directly exposed to the subsurface soil contamination.


It is recommended that the suspected waste buried at the site be removed to prevent further leaching chemicals to the groundwater system. And groundwater should be adequately treated prior to uptaking from the supply wells or before distributing to the buildings. After removal of buried waste and contaminated soil, a periodic monitoring of groundwater quality and subsurface is recommended to evaluate the environmental condition of the site whether change of the concentration level, natural attenuation and contaminant degradation are occurring.

Borehole ID	Sample ID	Sample interval (m)	Method	International-89 Toxicity Equivalent Quantity*
B09-192	SI	0~2	. SW8290	0.050972
	S2	2~4	SW8290	0.10939
B09-193	S1	0~2	SW8290	0.088955
	S2	2~4	SW8290	0.32696
B09-194	S1	0-2	SW8290	0.053555
	S2	2-4	SW8290	0.074065
B09-195	S1	0~2	SW8290	0.0600195
	S2	2~4	SW8290	0.0575675
B09-196	SI	0~2	SW8290	1.9045
	S2	2~4	SW8290	0.044716
B09-197	S1	0-2	SW8290	0.0855335
	S2	2~4	SW8290	0.0735295
B09-198	SI	0~2	SW8290	0.051275
	S2	2~4	SW8290	0.058031
309-199	S1	0~2	SW8290	0.061283
	S2	2~4	SW8290	0.0562345
309-200	S1	0~2	SW8290	0.077417
	S2	2~4	SW8290	0.057267
309-201	S1	0~2	SW8290	0.0575452
	S2	2~4	SW8290	0.051621
309-220	SI	0~2	SW8290	0.052821
	S2	2~4	SW8290	0.04320945
309-221	SI	0~2	SW8290	0.132052
	S2	2~4	SW8290	0.0236826
109-222	SI	0~2	SW8290	0.0745945
	S2	2~4	SW8290	0.052043
I-TEQ value calculate	ed using Internationa	d-89 Toxicity Equivalen	Factors base	d on 2.3.7.8-TCDD

Coversheet for Dioxin Raw Data

CEPOF-DD 24 May 11

- 1. Purpose. Data related to dioxin levels on Camp Carroll taken from U.S. Army Corps of Engineers studies is provided for dissemination.
- 2. Measurements.
 - a. Amounts specified in picograms per gram or 1x10⁻¹² g / g.
 - b. Estimated detection limit (EDL) is the minimum level detectable.
 - c. Estimated maximum possible concentration (EMPC) is the same as
 - d. Reporting limit is the minimum level considered by the testing laboratory to be reportable data.
 - e. The presence of 2,3,7,8-TCDD does not necessarily indicate the presence of Agent Orange, as 2,3,7,8-TCDD was used in other legal herbicides in the 1970s.
- 3. The enclosed pages contain the following data related to dioxin:
 - a. Enclosure 1. Raw data from Site Assessments of HM/POL Sites BEQ Hill, Land Farm, Buildings 565 and Building 326, Camp Carroll, Korea, 13 December 2004.
 - i. Agent Orange 2,3,7,8-TCDD not detected in any sample.
 - b. Enclosure 2. Raw data from Camp Carroll Area D and Area 41 Site Investigation, Camp Carroll, Korea, July 2004.
 - Herbicide dioxin 2,3,7,8-TCDD was detected at low levels in one sample in Area 41. More information is required from Paradigm Analytical Laboratories, Inc to determine basis for reporting limit.
 - c. Enclosure 3. Raw data from Remedial Investigation/Feasibility Study at Land Farm and Area D of Camp Carroll, Korea, March 2011.
 - i. Herbicide dioxin 2,3,7,8-TCDD was detected at low levels in three samples in Area D. Concentration was higher than estimated detection limit but lower than reporting limit. More information is required from TestAmerica West Sacramento (the same to determine the basis for the reporting limit.
- 3. Far East District will follow up with testing laboratories to determine basis for reportable limit.
- 4. The U.S. Army Corps of Engineers has no other information related to dioxin levels on Camp Carroll.

Matrix	ed S		2	BS	BS	BS	BS	BS	BS	BS	SS	BS	BS	BS	BSD	380	S	7 5	2					2	SS	S G	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS
Δ	or Area 41		4	4.1	41	41	41	41	41	41	14	41	41	<u> </u>	┪	┢	╁						 	⁴	41	4	14	41	41	41	41	-	ļ	ļ	<u> </u>	4	_	4	╁	+	41	41
Malathion /		- 	_					+		_		-		1			- -	7		 - 0))		 	-		- ,	-		-	,	+					-		-		1		-
VOC	90000 00000		,		-		-		τ			1		1	1	-		8	۵ () v		•				1																1
Dioxin 9200	0620						Ţ				1				-	-		7		1			Ţ.,	-					-												-	
RCRA 8	6020 & 7471		,		-	ļ	-				7-		ļ		-	-		8	8	,			ŀ	- -				-	-	_	-	1	1		1		-		,			
Herbicides	5			- -		ļ	+		-			-		, -	-	1		80	g	, -			-	- -	-			-	-		-		+		-		-					-
PCBs	}		,	- -	-	,	-		-		_		-		- -			8	9				-		-			-	-		-	-			-		-				1	
Pesticides 8081A			,	-	-	*	-	,	-		-		-			-		8	9				,	-				-	-	-		-	-		-		-		*		1	
200C 8232				<u> </u>	-	 	1	,			~		-		-	-		8	9		-		-	-				,	_	1	- -	7			-		-		-		-	
	8015B		,	-	-	-	-	,	-	,	-		-	1	-	-		8	9				,	_				-	,		- -	-	-		-		-		-			
8015/	8020B		,			-	-	,	-		ļ	_		- -		-		8	9	-			-					1	- -		- ,			,	-		-					_
Laboratory Batch ID		1033224	113100	1031902	1033224	1033224	10001302	1033197	2081501	1033224	1032224	1033224	1032224	1033224	1031902	1129/4	114073						1033224	1031902	1033197	1033224		113100	1033224	1033197	1033224	1033197	1031902	1033224	1031902	1033197	1031902	1033224	1031902	1033224	1032224	1033224
] [] []		ပ	α	6) a		ם כ	٥	ه د	n (ء د	2	٥ ر		LI L	-						Ω	80	O	O		٥	2 0	ء د	3 6	٥	n	ه د	ם מ	ن ا د	٥	٥	m	O	<u>α</u>	ပ
Collected		6/5/2003	4/10/2003	4/4/2003	6/5/2003	4/4/2003	6/4/2003	4/4/2003	4/4/2003	6/5/ZUU3	6/12/2003	4/42/2003	4/12/2003 8/5/2003	0/3/2003	4/4/2003	4/4/2003	0/4/2003						6/5/2003	4/4/2003	6/4/2003	6/5/2003		4/10/2003	6/3/2003	6/4/2003	0007/00	4/4/2003	4/4/2003 6/17/0000	0/5/2003	4/4/2003	0/4/2003	4/4/2003	6/5/2003	4/4/2003	6/5/2003	4/12/2003	6/5/2003
) D		CC054BS01	CC054BS01 (CC007BS01)	CC060BS01	CC060BS01	CC061BS01	CC061BS01	CC065BS01	00000000	CCOGGBCO3	CC000BS01	CCOGGEOGG	CCOGGGGGG	CC164BC04	CC101BC01	000010001	וחפפוסכיי	lotal BS Area 41	Primary	Dupes	QA Dupes		CC051SS01	CC052SS01	CC052SS01	CC054SS01	CC054SS01	CC0013001	CC0333301	CC0303301	0001000	CC0385501	CC3003301	CC0003501	000013301	00000000	CC3625503	CC3023501	CCJ65SS01	CCJ65SS04	CCJeessor	inesaarna.
Sed.		15	2	11	╫	+	0	┿	+	+	+	_ ("	+	┿	╁	1 2							3		Н			╁	+ \$, t	. 7	╀	╁		╁	0 1	╅	n c	» o	+	+	2

Matrix Type	ű	300	300	200	200	2000	700	7				0/4/	2 2	200	200	2 .	+				Ye.	5			4				æ)				BS	BS	BS	BS	BS	BS	BS	BS
Area D or Area 41	14	44	7	7.4	1 4	14.	4	7				47	;	 	=	f	- -				1	7			43				41					٥	۵	Δ	۵	O	Δ	۵	Ω
Malatrion 8141	-	-		-	-		- CX	0 5	2 ,	- (y	1	-	- -	-	-		r c	0 0	>	86	2 6	-	3	4	4	0	0	27	23	-	3			-				-		-
8260B							200 SEC. 120		-	> 0	2	,	-	-	-	- -	r %	r	0 0	,	o	1	-	-	4	4	0	0	23	F	-	1		-		-		-		-	
8290 8290	-							1 5	r C	0 0)	-		-	-	0	3 6	1 0	c))	8	9	-	L	2	2	0	0	10	8		-	Ì	-				-	Ì	-	
Metals 6020 & 7471	,-		_		,	-	7.0	2 %	2 .	-	7	1	-	-		V	7	U	0		24	6	2	8	4	4	0	0	28	23	2	3		,-		-		-			
8151	-	-			-	-	13	10	2 5		J		1			7	4	C	Ô		24	16	2	6	4	Ф	0	0	25	20	2	3				-		_		-	
8082	-	-	-		-	-	7.	13		- (-	-	-	-	4	4	ŀ	0		23	18	2	3	4	4	0	0	27	22	2	3			1	-				-	
8081A			_		-		16	13		-6		L	-	-	-	7	4	0	0		24	19	2	3	4	4	0	0	28	23	2	3						-			
8270		-	_		-		9)	13		2		F	,	-	F	7	4	0	o		24	19	2	3	4	4	0	0	- 28	23	2	3	,	-	1	-		-	,		
& O 8015B	1	1	,		-		16	13	•	2		-	-	Ψ.	,	4	4	0	0		24	19	2	3	4	4	0	0	- 28	23	2	3	ţ	_	,	-	,		,	-	
8015/ 8020B	1	1	Į		-		14		5	2		-		1	-	7	4	0	0		22	17	2	3	4	4	0	0	- 26	24	2	3	,	-	1	1	-	-	,	-	
Batch ID	1033224	1033224	112983	114073	112983	114073						1033211	1033200	1033211	1033211																		443400	1035075	1033073	1001020	1033073	1031820	1033073	1031620	0700001
List	۵	۵	Ш	ц.	ш	L.						A	A	A	Α																		α	٥	۵	4	ه د	a (ם	۵ (3
Collected	6/5/2003	6/5/2003	4/5/2003	6/4/2003	4/5/2003	6/4/2003						6/5/2003	6/4/2003	6/5/2003	6/5/2003						s Area 41				les Area 41				Area 41				4/40/2003	5/07/00/3	4/2/2003	5/07/00/03	47272003	4/2/2003	41212003	5/27/2003	0/21/2003
	CC067SS01	CC157SS01	CC256SS01	CC256SS01	CC259SS01	CC259SS01	Total SS Area 41	Primary	Dupes	QA Dupes		CC353WS01	CC354WS01	CC366WS01	CCM14WS01	Total WS Area 41	Primary	Dupes	QA Dupes		Total Soil Samples Area 41	Primary	Dupes	QA Dupes	Iotal Water Samples Area 41	Primary	Dupes	OA Dupes	Total All Samples Area 41	Primary	Dupes	OA Dupes	CC001BS01	CC001BS01	CCD06BS01	CC006RS04	COORBOO	CC0000502	CC300BS01	CCOTOBOOT	100001000
Seg	2	2	┥	┪	2		Ī					+	\dashv	+	2	1				_	Ĭ.		1	1	-				Ĭ	1	1		-	,	+	╀	+	┿-	4) (c	-

Table 4-1 Summary of Samples Collected

Matrix	Туре		3	Sec	200	200	200	2	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS
Area D	or Area 41	,	اد	ماد	ء د	ם ב	ء د	اد			۵	Δ	Δ	۵	٥	Ω	۵	٥	O	Ω	۵	Δ	۵	Ω	۵	۵	Ω	۵	۵	۵	۵	۵	۵	Ω	Ω	Ω	۵	۵	۵	۵	۵	۵	۵
u	814. -		ļ	-	,	-	*	-		~		-		-		τ		1		τ-		1		1		1	ļ						,		۲		- -		-	-	-	۲	1
NOC.	82608			V	- *	- 4	V	- ,		-	-	-	-	-	-	-	-	7 -	,	1	1	1	-		1			1		Ţ		-	1	1	1	Ψ.		-		-	1	1	-
Dioxin	8290 8290	٠	-					*	-				1		_		1		1		1				 -					-				1		-		-		-			
RCRA 8	Metals 6020 & 7471		~		-	-	-	,	-		-		-		-		*		1		τ-		-		-			1		-		_		1		-		1		1	1	1	τ-
Herbicides	0 <u>0</u>		-	-		-	-	,	-	ļ	-		-		-		-		+		-		_		-			-		-		~		-		-		1					
PCBs	2000	*	-	-	-	-	-	,	-				-	,	-		-		_		-		-		-			1		-				-		·		~		,,	Ţ	1	1
Pesticides	<u>K</u>			~		-		Į.	-	*	-	ļ			-	ļ			-		٧		-					7		~		-				-		-		-	-	-	-
3VOC	2770	-		ŀ		F		-		,		1,		,		,	-	1			-		-	1				1		-		-	1	-		-		-		-	-	-	
PH-6 PH-U	8015B	,		-		-		-	-	Ţ	-	,	-[,		,	-	,	-		-	ŀ	-	,	-		ļ	-		-		-	1	-		-				-	-	-	-
		,		-		-		-		*		,	-	,	-	,	-	,	-	,	-	,	-	,			ļ	-	,	-	,	-	ļ		ļ	-		-			-	-	-
Laboratory Ratch ID) } }	1031820	1033073	1031851	1033164	1031851	1033164	1031851	1033164	1031851	1031031	1033104	1001001	1033104	1031031	1033197	7/8/8/1	1033164	2/81501	1033164	1031972	1033164	1031620	1033105	1031820	1033105	1033105	1031902	1033197	1031902	1033197	1031031	1033164	1031851	1033164	1032133	1033105	1032133	1033105	1033197	1033197	1033197	1033197
3 <u>*</u>		8	C	m	O	m	o	8	C	0 00	٥) a) a		ם כ		٥ د		ي ر		ی د	۵ (ه د	٥	٥	ار	20	، د	<u>a</u> (ه د		ی د	200	، د	٥	ا د	n	ပ	ا			2
		4/2/2003	5/27/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/3/2003	5000/6/8	4/3/2003	8/4/2002	4/9/2003	2007/6/4	6/3/2003	4/3/2003	5/3/2003 4/0/0005	4/9/2003	0/3/2003	4/2/2003	2/20/2003	4/2/2003	5/30/2003	3/30/2003	4/4/Z003	0/4/ZUUG	4/4/Z003	4/9/2003	4/3/2006	0/3/2003	4/3/2003	6/3/ZUUS	4/15/2003	5/30/2003	4/13/2003	5/30/2003	6/4/2003	6/4/2003	6/4/2003	6/4/2003
(d)		CC010BS02	CC010BS02	CC017BS01	CC017BS01	CC017BS02	CC017BS02	CC017BS03	CC017BS03	CC018BS01	CC018BS01	CC018BS02	CCOTRRSO	CCO22BSO	CCOSSESO	CCOZZEBSO	000000000000000000000000000000000000000	CC024BS0	200740000	CC024BS02	CC024B503	CCCCAFECUS	CCOZOBOO	COOSEBOOS	CCOZOBBOO2	CC026BS02-1	CC0220002-2	CC0278501	CC0278501	CC027Bc02	CC028BC03	0002000	CCCCSopool	CCCZOBSCZ	CCUZGBSUZ	10001000	CCU3/BSU1	CCU3/BSU2	CC037BS02	CC03/BS03	CC03/BS04	CC03/8800	CC03/BS0E
g 8		10	7	9	11	9	12	17	13	4	٠ ٢	7,5	7 2	2 2	10	1 5	. 0	ی د	, ;	2 0	2 6	220	3 4	24	t, a	0 0	,	- -	ۍ د	7 13	200	1	1 2	44	0	- ;	<u>o</u> (7 ;	<u>5</u>	2 ;	<u>+</u>	0 9	٥

Table 4-1 Summary of Samples Collected

×	98 F	Т	Т	1	T	_	1	1.	J	T	T-	J.	T <u>-</u>	T	T	I =	1 -	1-	I -		I	. I issue		S 32	() () ()	ð.	Г	т-	т-	т-	г			_	Γ.		_	ι	_		_
Matrix Type	2	2 6	2 0	2 2	3 6	2 2	88	3 2			200	BSD	BSD	BSD	BSD	BSO	BSC	BSO	BSC	BSO	BSO	29					SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS
Area D or Area 41	٥	عاد	ء اد	ماد	ם כ	ם כ	C	ماد	عاد	عاد	ء اد		۵	۵	Δ	۵	Ω	Ω	Ω	٥	۵	٥					۵	۵	۵	۵	Q	Ω	۵	۵	a	D	D	۵	Q	D	Ω
Malathion 8141	•	-	-	-	-	-	-	-	-			1	-		_		-		 -	~		39	31	5	3						1		1			-		1		1	
2008 8260B	,	-		-		-		-	-	-	-	-	1	-		*		-			-	49	40	9	3																
8290		-	-	-		-		-								ļ						21	13				,					1					,				
Metals 6020 & 7471	-	-				1		_			-		1	1		,		,			1	37	30	4	3		٦			,		7-		,			~-		γ		-
nerocues 8151			-			-		-			1			1		τ		7 -			1	31	25	3	3		1			1		1		1			-		Ψ-		,
8082	-			-		-		-					Ţ	Ţ		-		1			1	37	30	4	3		۳.			-		-		-					-		,
80 8270 8081A 80 8270 8081A				-		~		-			1		-	-		-		,			γ	37	30	4	3		1	-		٠				~-					-		-
8270	-	-		-		-		+			_		-	-		-		-				37	30	4	3		1			-				٠			-		-		-
& O 8015B	۲.,	-		+		1		1			۳-		,, _	1		-[1			1	37	30	4	3		1			-		-			-	ļ			,-	,	-
8015/ 8020B	-	-		-		1		1			1		-	-				,			.	37	30	4	3		1			_		,-		-		,			-	,	
Batch ID	1033197	1032164	1033105	1032180	1033105	113100	1033197	1031851	1033164	1033197	1031851	1033164	1033197	113100	1033197	112915	114073	112974	114073	114050	112915						1031820	1031851	1033073	1031820	1033164	1031820	1033073	1031820	1031851	1033073	1031820	1033164	1031820	1033073	1031820
] Ist	۵	8	U	В	ပ	В	ပ	В	ပ	ပ	മ	ပ	۱	n	ن ا		<u> </u>	ш	u l	ш	ш						മ	œ	O i	a	ي اد	n	טונ	20 (٥	اد		ماد	n	اد	۵
Collected	6/4/2003	4/15/2003	5/30/2003	4/16/2003	5/30/2003	4/10/2003	6/4/2003	4/3/2003	6/3/2003	6/4/2003	4/3/2003	6/3/2003	6/4/2003	4/10/2003	6/4/2003	4/3/2003	6/4/2003	4/4/2003	6/4/2003	6/3/2003	4/3/2003						4/2/2003	4/2/2003	5/27/2003	4/2/2003	5/3/2003	4/2/2003	5/2//2002	4/2/2003	4/2/2003	3/21/2005	4/2/2003	6/3/2003	4/2/2003	3/27/2003	4/Z/ZUUS
	CC037BS07	CC038BS01	CC038BS01	CC040BS01	CC040BS01	CC080BS01	CC080BS01	CC118BS02	CC118BS02	CC127BS01	CC128BS01	CC128BS01	CC13/BS06	CC180BS01	CC180BS01	CCZZZBSUI	CCZZZBSU1	CCZZ/BSU1	CCZZ/BSU1	CC228BS01	CCZZ8BSUZ	iotal BS Area D	Frimary	Dupes	OA Dupes		CC001SS01	CC0018S01	CC0018S01	CC0035501	CC0035501	00048801	00045501	CC0005501	CC4008501	CC0005303	0000000	CC00/8501	10000000	CC0005501	10000000
sed.	18	1	17	Н	12	\dashv	9	\dashv	17	\dashv	23	\dashv	+	2	, (+	-	7	4 (ر ا						8	-	- 5	<u>,</u>	╁	+	٦ 	+	43	+	, ,	\ \ \	+	╁	-

Table 4-1 Summary of Samples Collected

Matrix Type		8	S	3	200	88	ß	3	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SSD																
Area D or	Area 41	C	ماد	ء د	ם	ם מ	ם	ا د			۵	٥	٥	٥		۵	٥	۵	۵	۵	۵	۵		۵	۵	۵	۵	Ω	۵			Δ	۵	Ω	۵	۵	۵	۵	۵	۵	Ω	۵	۵
Malathion 8141		,	-	,	-	,	-	,	-			-		-				-		-		-		-		-		,		-		-		-		-		1		-		-	
VOC 8260B																																											
200m 8290																																									1		
ang diberhasi	6020 & 7471		-		,	-	,	-	,	-		,	-	,	-	Ţ	-	,	-	,	-	ļ			-				-	ļ		,			-				1		1		_
nerbicides 8151				-	-		1	-	7	_		,	-	·	-		-	-	-	,	-	,			+		1		,	ļ		,		,	,		-		-		-		
8082			-	-	-		-		*	-		1	-	,		,	-	,	-	,	-	,		,	-	,		,		,		,		,	-				-		-		γ
8081A			-		-		-		-	-		-		,	-	\ \		\\		,		,	-			,	-			,	-	,	-	,	-				-				1
8270			_		-		-		,	-		-		~	-	+		\		*	-	,	1	,	-	,	1	,	-	,	1	-	1	,	-	,	-		-		~		1
8 0	8015B		,		-		-		٦	•		-	-	1	-		-	-		,	-			*	_	,	-	,	-		-	-	-	,		,		,	-		-		,
8015/	8020B 		-		-		-			,	-	\ -		-		,	-	~	-	,		,	-		-	7	-	7	-	~	-	-	-	\	-	,	-	,	-		_		
Batch ID		1033073	1031820	1033073	1031820	1033073	1031851	1033164	1031820	1031851	1033073	1031851	1033164	1031851	1033164	1031820	1033073	1031820	103340E	1034820	1033406	1033103	1033107	103187	1031020	1033073	103 1020 103340E	1033103	1031020	1033103	1033105	1031851	1033105	1033103	1031031	1033073	1031851	1033105	1031851	1033105	1032180	1033105	1031820
List		၁	8	O	m	ပ	m	ပ	m	8	O	0	C	8	C	0 00	Ċ	2	C) a	C) a	ı C) a	,	2 0) a	3 () (I	C	<u>_</u>	c) α	3 (ם כ	۵ (ء د	a	اد	n	اد	n
Collected		5/27/2003	4/2/2003	5/27/2003	4/2/2003	5/27/2003	4/3/2003	6/3/2003	4/2/2003	4/2/2003	5/27/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/2/2003	5/27/2003	4/2/2003	5/30/2003	4/2/2003	5/30/2003	4/3/2003	6/4/2003	4/2/2003	5/07/2/2003	47272003	5/30/2008	47777003	5/30/2003	4/3/2003	5/30/2003	4/3/2003	5/30/2003	4/3/2003	500012002	4/3/2002	4/3/2003	3/30/2003	4/3/2003	5/30/2003	4/16/2003	5/30/2003	4/2/2003
		CC009SS01	CC010SS01	CC010SS01	CC013SS01	CC013SS01	CC014SS01	CC014SS01	CC015SS01	CC015SS01	CC015SS01	CC017SS01	CC017SS01	CC018SS01	CC018SS01	CC019SS01	CC019SS01	CC020SS01	CC020SS01	CC021SS01	CC0218801	CC0228501	CC022SS04	CC023SS01	00038804	CC025801	CC025SS01	0005000	CC026SS01	CC029SS01	CC029SS01	CC030SS01	CC030SS01	CO315S01	CC0318801	CO0315501	00000000	CC0323301	CC0393501	CC0355501	CC0405501	0000000	UC 1033301
Seq.		12	1	4	8	5	17	ဗ	1,	4	9	2	6	13	14	15	6	╫	╂┈	┿	╁	╀	╀	21	╁	, 5	18	╬	┿	╁	13	· ∞	1	- 0	, 4	2 5	4 4	2 6	3 5	2	+	<u>-</u> -ļ-	2

Matrix	Type	200	200	SSD	SSI	SSD	SSD	SSD	SSO	088	000	300	300	3 6	300	70					WC	2 0/4		2 3	2 3	O O	2 0/4	200	O W.W	0	,				126				×)			134	
Area D	or Area 41	C	اد	ء اد	ב	Δ	۵	Q	۵		٦	c	2	ם כ	ם כ						د	٥	2	عاد	2	٥	٥	ם כ		0					0				٢	2			c	1
Malathion	8141	-	-			-		,				-		4	- 00	300	07	3	3		-	-	- -	- -	- -	-	-		-	6	7	-			- 1/2	25	8	9	6	7			8	3
	90978 90978														U	0		n	0		-		-	- -	-	-				6	7				49	40	9	8	6	,			58	47
Dioxin	0678		,	-							,-				ď	7	,		.				-		-			-	,	7 m	2	-	-		27	23	2	2	4	6	-	,	31	25
RCRA 8	Metals 6020 & 7471			-					•••		_		-		35	ac	3	۵,	င		-	+	-	-	-	-	-	-	-	6	7		-		69	99	7	9	6	2			78	63
Herbicides				-		,	1		γ		-		-		æ	20	02	0	3		-	-			-	-		-	,	6	7	•	1		63	51	9	9	5	7	-	1	72	58
PCBs	7000		-			,	-		-		-		-		33	36	3		3		-			-	-	-	-	-	-	6	7	F	1		- 69	99	7	9	6	7	ļ	1	78	63
Pesticides	<u>C</u> 3		,	-		,	-		-		-		-		33	7.6	i		3		-	-		-	-	-	-	-	-	6		Ţ			70	25		9	6	7	ŀ	۳	- 29	64
2VC 2775	3	l	,	-	T	1	-		-		-		-		32	96	c		3		-	-	,	_	-	ļ	-	-	-	6	7	1	1		69	- 56	7	9	6	7	-	F	78	63
202	8015B		~			Ţ	-	Ī	-		-		-		32	26	ř	> 0	2		ļ	-	-	,	-	-	-	-	.	6		L	Ţ		69	- 56	7	9	6	7	1	1	78	63
2017 17.50 17.50	8020B					-	-	Ì	-		,-		,		32	26	3	0	?		-	_	-	_	-	-	_	-	-	6	7	30 00 A			69	- 26	7	9	6	7	-	-	82	63
Laboratory Batch ID		1033164	1031820	1031851	1033164	1031851	1001001	1033104	112899	114050	112899	114050	112915	114050							1033071	1033105	1033071	1033166	1033071	1033105	1033166	1033166	114050															
3 ₹		ပ	В	Ш	c) "		ر ا د	n i	L.	Ш	F	Ξ	ш				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			A	A	A	∢	∢	4	A	٨	A															
Collected		6/3/2003	4/2/2003	4/2/2003	6/3/2003	4/3/2003	6/3/2003	0/3/2003	4/2/2003	6/3/2003	4/2/2003	6/3/2003	4/3/2003	6/3/2003							5/29/2003	5/30/2003	5/29/2003	6/3/2003	5/29/2003	5/30/2003	6/3/2003	6/3/2003	6/3/2003					Ĺ	Areau				es Area D				Area D	
oaii De iD		CC103SS01	CC107SS01	CC107SS01	CC107SS01	CC114SS01	CC114SS01	100000000000000000000000000000000000000	CC2033301	CCZ03SS01	CC207SS01	CC207SS01	CC214SS01	CC214SS01	Total SS Area D	Primary	Dupes	- C V C	Sadoc vo		CC001WS01	CC012WS01	CC024WS01	CC037WS01	CC038WS01	CC039WS01	CCM23WS01	CC137WS01	CC237WS01	Total WS Area D	Primary	Dupes	OA Dupes		I Utali Soll Samples Area U	Primary	Oupes	QA Dupes	Total Water Samples Area D	Primary	Dupes	OA Dupes	Total All Samples Area D	Primary
8 8		7	6	3	000	200	2 0	,	7	-	-	2	-	3						1	-	7	3	-	4	~	က	~	5														- T	

Sample ID Date COC Laboratory TPH-G TPH-D SVOC Pesticides Collected List Batch ID 8015/ & O 8270 8081A 8020B 8015B 8015B 8015B 8081A	List Batch ID 8015/ & O 8270 8020B 8015B	Laboratory IPH-G IPH-D SVOC Batch ID 8015/ & O 8270 8020B 8015B	Laborationy IPH-G IPH-D SVOC Batch ID 8015/ & O 8270 8020B 8015B	7PH-D SVOC & 0 8270 8015B	8270 8270	**************************************	Pesticides 8081A	355	PCBs 8082	Herbicides 8151	RCRA 8 Metals 6020 & 7471	ا لا ق	VOC 8260B	VOC Malathion 8260B 8141	Area D or Area 41	Matrix Type
6 0	D	D	D	D				٥	0	,	S	9		တ		
7 7	7	7	7	7	-		7	7	7	7	7	3	4	7		
Total BS Area 41 and Area D 45 45	45				45		3	45	45	:: 0E-30	45	25	7.3	87	7.07	7.7
36 36	36	36	36	36			38	36	36	31	36	21	46	37	8	
					- 2	1.	5	5	2	7	5	2	7	5		
04.Dupes 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1 2.4.7.1					4	1.00	4	4	4	4	4	2	4	4		
Total SS Area 41 and Area D	46				48	1.5	48	49	47	45	48	10	-	48	4180	83
Primary 37 39					39	13.5	39	40	38	36	39	8		39		3
					4	100	4	4	4	4	4	.	0	4		
					2	14.5	5	- 5	2	2	5	500 5 00	0	5		
S Area 41 and Area D	91	91	91		- 63	1.5	- 63	94	- 35	84	- 93	35	58	94	418D	160
					75		75	92	74		75	59	47	76		
					6		6	6	6	8	6	3	7	6		
6	6	6	6		တ		6	6	6	6	6	.3	4	6		
lotal Water Samples Area 41 and Area D 13 13	13	13	13		13	100	13	13	13	13	13	9	13	13	4180	12
Comment of the commen					11	100	11	11	111	1	11	4	1,1	1		
sadng:					1.0	100	्री	5 S. S. M. S.					,			
OADuces (care and care						333	1			\ \frac{1}{2}			,	-		
Total All Samples Area 41 and Area D	104	104			106	900	106	107	105	- 62	106	4.1	Z	107	418D	175
Primary 84 86					98		86	87	85	78	98	33	58	87		
0,0					10		9	10	10	6	10	4	8	10		
QA Dupes 10 10					?		10	10	010	7.8.7.4 0 1.8.7.8.7	10	7	z	10		

4-42

Table 4-2 Summary of Laboratory Results: All Samples

																				_																		
Matrix Type	RS	3 8	0 0	200	BS S	S S	BS S	BS	BS	BS	BS	BS	BSD	BSQ	BSO	13				SS	SS	SS	SS	O O	SS	SS												
Area D or Area 41	14	-	†	ŧ -	4.1	41	4	4	41	41	41	41	41	14	14	41				41	41	41	41	-	4	14	41	41	41	41	41	14	41	41	14	41	41	41
Malathion 8141	S		<u>.</u> .	2 5	2 2	S	g	2	па	QN	กล	ON	na	na	2	0	0	U	0	S	na	S	Q	o c	2	2	2	S	B	S	g	S	па	S	na	ND	na	QN
VOC 8260B	12	Tag	1 12	֓֞֞֝֟֓֓֓֓֟֟֓֓֓֓֓֟֟֓֓֓֓֟֟֓֓֓֓֓֟֟֓֓֓֓֟֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟	2	2	DET	БП	па	N D	na	DET	QN	DET	na	2	4	0		EE	na	na	E E	a	2 2	БП	Вã	Па	па	na	БП	na	na	na	na	na	na	2
Dioxin 8290	E	80	2 2	2 6	2	E .	En	g	DET	na	В	2	DET	Q.	па	2		•	0	DET	па	na	па	2	DET	g	па	na	na	na	па	na	na	na	na	ā	DET	na
RCRA 8 Metals 6020 & 7471	e ^C	냽		į	DET	па	DET	E E	DET	na	DET	па	DET	DET	Па	8	9			DET	DET	20	ВП	17.0	DET	ET	DET	DET	DET	na	DET	na	DET	na	DET	БГ	DET	na
Herbicides 8151	22	CZ	S	eu	QN	na	QN	na	na	ON	na	<u>Q</u>	<u>Q</u>	Q	na	0	0	0	0	QN	Q	na	па	Q	QN	na	QN	na	QN	na	ΔN	na	QN	na	na	na	na	QN
PCBs 8082	na	2	9	na	S	na	QN	па	S	па	2	па	2	2	na	0	0	0	0	2	S	na	па	2	2	ΩN	ΩN	QN	ND	Ω	2	g	S	na	na	Ē	2	ra
Pesticides 8081A	na	DET		na	DET	па	DET	na	DET	па	QN	na	DET	DET	na	7	2			DET	ND	na	na	DET	DET	DET	DET	DET	DET	na	DET	na	DET	na	DET	na	DET	na
8270	na	£	2	g	ΩN	па	2	ğ	2	g.	2	na	2	2	Lia Lia	0	0	0	0	QN	ΩN	na	na	QN QN	S	ND	2	2	2	БП	2	na	2	g	DET	ББ	DET	na
TPH-D & O 8015B	na	QN	Q	па	ND	na	DET	па	DET	gu!	2	e i	2	2	g	2	2	0	0	QN	Q	пa	na	DET	DET	DET	Q	S	2	na B	Ð	БП	9	БП	DET	na	DET	na
IPH-G 8015/ 8020B	na	QN	2	æ	QN	na	QN	B	E .	9	g :	2	2	2	rg	٥	0	0	0	 2	2	па	па	ВG	Q	2	2	9	9	E.	2	па	2	па	Бā	БĒ	g i	N N
Labo Bat	1033224	113100	1031902	1033224	1031902	1033197	1031902	1033224	1032224	1033224	1032224	1033224	1031902	1129/4	114073	Detects	Detects	Detects	Detects	1033224	1031902	1033197	1033224	113100	1033224	1033197	1033224	1033197	1031902	1033224	1031902	1033197	1031902	1033224	1031902	1033224	1032224	1033224
List	ပ	മ	æ	ပ	8	ပ	<u>а</u>	υ l	m	ي اد	م	ء د	ם נ	ЦL	_					 ۵	<u>m</u>	ပ	o	മ	a					ار	m (ارد	n	اد	n	اد	מ	ر اد
	6/5/2003	4/10/2003	4/4/2003	6/5/2003	4/4/2003	6/4/2003	4/4/2003	6/5/2003	4/12/2003	6/5/2003	6/12/2003	0/3/2003	4/4/2003	4/4/2003	0/4/2003					6/5/2003	4/4/2003	6/4/2003	6/5/2003	4/10/2003	6/5/2003	6/4/2003	6/5/2003	6/4/2003	4/4/2003	6/5/2003	4/4/2003	6/4/2003	4/4/2003	6/5/2003	4/4/2003	6/5/2003	4/12/2003 6/17/2002	6/5/2003
Sample Deep	CC054BS01	CC354BS01 (CC307BS01)	CC060BS01	CC060BS01	CC061BS01	CC061BS01	CC065BS01	CCU65BS01	CCU66BS01	CCOGGGGGG	20000000	CC0000000	001010001	CC2010501	10001020	lotal 65 Area 41	Humary	Dupes	OA Dupes	CC351SS01	CC352SS01	CC352SS01	CC354SS01	CC054SS01 (CC007SS01)	CC355SS01	CC356SS01	CC357SS01	CC359SS01	CCJeossor	CCJeusson	CC361SS01	CCJOISSUI	CCUezssur	CCU62SSU1	CC0658801	CC0665501	CC0665501	וחפפפפחו
Se Can	15		11	7	D.	1	\dashv	_	7 7	= -	5 5	<u> 4</u> 0	٥	7						8	-	+	4	4		_	┥	┰	+	╅	+	+	+	+	000	╁	+	2

Table 4-2 Summary of Laboratory Results: All Samples

Matrix Type	SS	S	C	SSO	000	3 6		77					WS	MS/	WS	S/M	2 2	h	X 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, e	5			ς.	-			ć	38				o C	2 6	3 6	3 6	2 6	3 6	3 6	S & S
Area D or Area 41	41	41	4.1	4.1	41	÷	4	14					41	41	41	4	7.7					1				7.4	ř			Ĭ	14				c	י כ	ء د	,		3 6		
Malathion 8141	2	S	82	9	2	2	٤	٩	0	0	0		QN	S	2	9	2000	0	2 C	0		G	, c	, c	0	c) c	,	9	0	3 0	-	₽	0	g	2 2	5 2	2	2 2	<u> </u>		2 9
VOC 8260B	па	E	na	па	E	2 8	<u> </u>	٦,	0	0	0		DET	DET	DET	DET	4	7		C		2	4	c		4	ľ	i e) (o c	0	7		140		É	2	בַּוֹלַ) g
Dioxin 8290	DET	Б	ng E	na	en	6	2	.	4	0	0		DET	Па	DET	БП	2		10	0	N 100 M	9	5	,	0	6	10	c) c	٥	0 1	,	-	0	S		2 %	2	THC		DET	la La
RCRA 8 Metals 6020 & 7471	DET	DET	DET	na	DET	č	2 0	2	13		2		DET	DET	DET	DET	4	7	U	0		24	19	2	9	4	4	c	,	, 80	200	3 0	7	2	DET	2	DET	2	DET	2	Ē	na
Herbicides 8151	QN	<u>S</u>	S	Па	S	e c	2	5 0	o l	0	0		ON	DN	ON	Q	0	0	C	0		0	0	0	0	0	C	0		, c	o		5 (7	QN N	62	Q	e	22	2	S	Bu
PCBs 8082	DN	S	S	na	S	2	C (1)) (7	٥	0		QN	Q	2	Q	0	0	0	0		0	0	0	0	0	0	0	٩	,	, (o c	5 0	P	9	E	Q	E	2	2	2	E
Pesticides 8081A	DET	DET	DET	na	DET	Па	7	Ç	2].	1	2		S	Q	2	ON	0	0	0	0		22	17	2	3	0	0	0	c	CC.	12.	c	ų (?	DET	La La	QN	na	2	eu		na
8270 8270	ΩN	QN	DET	na	2	8	C.	,	۱,]	-		S	9	S	2	0	0	0	0		3	2	0	1	0	0	0	0	6		ı	,		Q	g	DET	na	2	E	2	na u
1 P.H-U & O 8015B	ΩN	N	DET	na	ND	na	9	u		Ð,	_		2	DET	2	2			0	0		8		0	1		-	0	0	6	8	o	,		S	Вã	£	na	2	na	£	na
1PH-G 8015/ 8020B	QN	g	DET	22	g	na		U	2	٥.	-		2	DET	DET	2	2	2	0	0		1	0	0	1	2	- 2	0	0	က	6	٥	, ,	-	2	E	2	na	S	29	S	па
Laboratory Batch ID	1033224	1033224	112983	114073	112983	114073	Detects	Defents	Defecto	Detects	Detects		1033211	1033200	1033211	1033211	Detects	Detects	Defects	Detects		Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detecte	2	113100	1033073	1031820	1033073	1031820	1033073	1031820	1033073
5 +	۵		Ш	ш	ш	ш.						ŀ	٨.	۸.	∢ .	<																			8	၁	В	ပ	8	၁	8	၁
Collected	6/5/2003	6/5/2003	4/5/2003	6/4/2003	4/5/2003	6/4/2003						00000	6/5/2003	6/4/2003	6/5/2003	6/5/2003	,					es Area 41				ples Area 4				s Area 41					4/10/2003	5/27/2003	4/2/2003	5/27/2003	4/2/2003	5/27/2003	4/2/2003	5/27/2003
	CC067SS01	CC157SS01	CC256SS01	CC256SS01	CC259SS01	CC259SS01	Total SS Area 41	Primar/	Dimee	Sound VC	sadna va	20078000	CCUSSWSU1	CC054WS01	CCUGONASUI	CCM14WSU1	Total WS Area 41	Primary	Dupes	OA Dupes		Total Soil Samples Area 41	Primary	Dupes	OA Dupes	Total Water Semples Area 4	Primary	Dupes	OA Dupes	Total All Samples	Primary	Dupes	OA Dimes		CC001BS01	CC001BS01	CC006BS01	CC006BS01	CC006BS02	CC006BS02	CC010BS01	CC010BS01
Sec 1	2	2	-	2	7							1,	╅	╅	_	7	197																		Н	\dashv	-			15	2	\dashv

Table 4-2 Summary of Laboratory Results: All Samples

gg regues again	3	Į.,				·	·					_	_	_	_			_	_			····	,	,	Ţ		········	,				,				,	,		,	
Matrix Type	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS
Area D or Area 41	۵	O	Q	٥	a	۵		۵	۵	۵	۵	۵	۵	۵	۵	۵	Ω	Δ	۵	۵	۵		۵	Q	۵	D	Q	Ω	۵	۵	۵	O	۵	۵	Ω	۵	Δ	۵	Ω	۵
Malathion 8141	na	QN	na	ON	na	8	БП	2	па	g	na	QN	na	QN	Па	QN	na	QN	na	QN	na	Q	na	QN	ON	ξ.	Q	22	£	na	Q	na	QN	na	QN	na	Ð	S	Ð	Q.
VOC 8260B	na	na	DET	DET	Q	9	DET	£	2	S	QN	ND	ND	QN	S	Q	DET	DET	DET	DET	QN	na	QN	na	กล	2	na na	2	na	g	g	QN	QN	DET	na	g	na	DET	DET	DET
Dioxin 8290	DET	na	na	na	กล	na	DET	Па	na	na	DET	na	DET	na	DET	na	DET	na	DET	na	กล	na	DET	na	na	па	па	PET	na	па	na	DET	ā	DET	na	DET	na	DET	na	na
KCRA 8 Metals 6020 & 7471	±∃q	па	E	na	DET	na	DET	na	DET	na	DET	g	DET	ББ	DET	na	DET	na	DET	na	ᇤ	na	DET	na	na	DET	gu	DET	2	DET	БП	DET	22	DET	na	DET	na	DET	DET	DET
Herbicides 8151	Q	па	Q	na	Q	na	QN	na	ND	na	Q	na	2	na	Q.	na	Q	na	Q	na	2	na	S	na	na	Q	na	2	eu!	2	па	O Q	na	2	na	O.	na	na	па	na
PCBS 8082	S	2	2	ë	2	па	QN	Ωã	Q	па	9	na Br	9	g	2	2	2	ß	9	ह्य	2	g	2	Ē	瓦	9	22	2	22	2	멸	2	छ	2	22	2	23	Q	2	2
Pesticides 8081A	ND ND	g !	2	па	DET	na	Q	na	DET	па	DET	na	2	na na	2	na	2	na	Ω Q	na	Q	па	2	па	ВП	Q	eu ;	2	eu l		na	DET	na	DET	па	Q	na	DET	DET	2 2
8270 8270	2	g :	2	gu.	Q	па	S	na	2	gu	윋	LJa	2	g		2	2	па	2	na	9	E	위	E E	na I	2	er :	2	e E	2	g.	2	g.	2	na	2	na E	DET	2	2 2
& O 8015B	2	an i	2	g !	2	БП	2	па		gu	PET	na i	2	g	H.	E .	2	an i	2	g .	2	g	2	EE	<u>و</u>	2	<u>و</u> 2	2	e S	2	<u>e</u>	2	па	2	БП	2	g	2	2	2 2
o .≂ m	2	ē į		g (2	na	9	па	2	E :	2	E .	2	g (2	2	2	na i	2	g i	2	<u>e</u> !	2	E	g (2	e C	2	2 2	2	E .	2	g :	2	па	2	g	NET NET	2	DET No
Batch ID	1031820	1033073	1031801	1033164	1031851	1033164	1031851	1033164	1031851	1033164	1031851	1033164	1031851	1033197	1031972	1033164	10319/2	1033164	1031972	1033164	1031820	1033105	1031820	1033105	1033105	1031902	1033197	1031902	1033197	1031031	1033104	1031851	1033164	1032133	1033105	1032133	1033105	1033197	1033197	1033197
) (<u> </u>) ၁		וכ	ام	ان	m	O (n	٥		ء د	ם מ	ء ر	n	اد		ا د	200	ט נ	n	اد	200	5	ء د	٥	ه د	٥	ם		ء اد	م	י כ	20	اد	ומ	ال	1		ے د
Collected	4/2/2003	5/27/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/3/2003	0/3/2003	4/3/2003	0/4/2003	4/9/2003	0/3/2003	4/8/2003	0/3/2003	4/9/2003	6/3/2003	4/2/2003	5/30/2003	4/2/2003	5/30/2003	5/30/2003	4/4/2003	4/4/2003	6/4/2003	4/3/2003	6/3/2003	4/2/2003	4/3/2003	0/3/2003	4/13/2003	5/30/2003	4/13/2003	5/30/2003	6/4/2003	6/4/2003	6/4/2003
	CC310BS02	CC310BS02	00017000	CC317BS01	CC317BS02	CCJ1/BS02	CCJ1/BS03	CC017BS03	CCJ18BS01	CCJ18BS01	CC0168502	2000 1000 000	CC322BC04	CC024BS04	CC324BS01	CC0246501	CC324BS02	CC024BS02	CC024BS03	CC024BS03	CC020B501	CCOZOBOOL	CC0260502	CCCCGBBCCC-I	7-7050B20Z-Z	CC027BS01	COOTECO	COOZIBOOZ	CC02RS01	CC028BC07	00000000	CCOZOBOOZ	CC020502	CC03/8501	CC03/8501	CC03/BS02	CC03/BS02	CC03/BS03	CC03/BS04	CC037BS06
Sed:	<u>و</u> ر	- «	1	1		7,	-+	133	4	2 4	0 4		+	۰, ۲	- 0	╀	4	2 0	ر د	3 6	+	0 6	- 1	-	» -	┿	, ,	1 2	22	┿	+	+	7	- 6	٥	+	2 5	╅	+	16

Table 4-2 Summary of Laboratory Results: All Samples

Матіх Туре	ď	3 %	3 2	S S	S S	2 2	3 %	300	RSD CSD	BSD CSB	BSD	BSD	BSD	BSD	BSD	BSO	BSO	BSO	BSO	BSO	BSQ	49					00	3 0	SS	500	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS
Area D or Area 41	_		٥	, c					,			۵	<u> </u>	6				۵	T		٥	0					- -				۵	۵			6			۵		- -	6
Malathion 8141	Ş	2 2	CZ	na	9	2	S	2 2	Q	2	па	2	2	e E	2	g	9	ла	Ð	Q	па	0	0	0	0		2	2 2	2	g	9	g	2	E	Ba	2	na	QV	E L	2	Eg.
VOC 8260B	S	2	2	2	na	DET	E	2	2	E	Q	9	DET	DET	na	2	па	2	na	na	2	17	15	2	ı		8	2 2	E E	g	na	g	ē	БП	e e	Ba	na En	na	na	na	БП
Dioxin 8290	EC.	DET	Ba	DET	na	2	Ba	DET	na	па	ВП	na	na	na	na	QN	na	na	na	na	Бa	18	17		0		DET	122	E E	БП	ם	DET	na	na	BI	па	DET	na	na	na	ē
RCRA 8 Metals 6020 & 7471	DET	DET	lan.	DET	na	DET	na	DET	na	E E	DET	กล	DET	DET	na	DET	กล	DET	na	na	DET	37	30	4	3		DET	E	Ba	DET	na	DET	па	DET	na	Вã	PET	na	DET	na	DET
Herbicides 8151	Па	QN	па	QN	na	SD	na	2	na	na	DN	na	na	QN	na	Q.	na	QN	na	na	Q	0	0	0	0		QN	Bu	na	<u>N</u>	na	ON	na	QN	na	na	Q	na	ΩN	na	QN
PCBs 8082	S	S	na	Q.	na	Ð	n E	S	па	na	ΩN	na	S	2	na	2	па	2	na	па	2	0	0	0	0		Q	Ē	Па	QN	na	g	ria	2	na	Ē	Q	na	QN	na	Q
Pesticides 8081A	g	DET	Па	QN	na	DET	Па	DET	na	na	DET	na	DET	DET	na	DET	па	9	na	na	OE	18	12	4	2		DET	DET	na	DET	na	Q	na	DET	na	na	DET	na	DET	na	DET
8270 8270	QN	QN	na	S	na	QN	na	QN	na	na	2	ng L	Q.	2	па		g	2	gu	<u>г</u>	2	2	2	0	0		Ω	na	na	S	g	2	na	2	- Bu	<u>2</u>	£	Па	2	ŋa	2
TPH-D & O 8015B	ND	Q	na	Q.	na	Ω	па	DET	na	<u> E</u>	윈	Па	2	2	na I	2	g	2	na	g :	2	4	8	П	0		QN	na	138	2	E !	2	па	па	2	na B	2	<u> </u>	2	na	2
1PH-G 8015/ 8020B	ΩN	Q	na	2	g	g	na	9	na	Па	2	<u></u>	2	2	EL.	2	E !	2	BE .	e C	2	2	2	0	0		QN	па	na	2	E :	2	en i	2	Ва	па	2	па	2	E E	2
Laboratory Batch ID	1033197	1032164	1033105	1032180	1033105	113100	1033197	1031851	1033164	1033197	1031851	1033164	1033197	113100	1033197	CL 671	14073	4/671	14073	14000	14313 Detect	Defects	Detects	Detects	Detects		1031820	1031851	1033073	1031820	1033164	1031820	1033073	1031820	1031851	1033073	1031820	1033164	1031820	1033073	1031820
S ts	വ	മ	O	m	<u>ن</u>	ന	ပ	മ	O	ان	n	ا د	2 0	n (ן כ	u		u L	LU	L U	1						_	7	十	+	+	+	ا د	\dagger	+	-		+	+	ט מ	-
Collected	6/4/2003	4/15/2003	5/30/2003	4/16/2003	5/30/2003	4/10/2003	6/4/2003	4/3/2003	6/3/2003	6/4/2003	4/3/2003	0/3/2003	4/40/2003	#/ 10/2003 6/4/2003	4/2/2003	4/3/2003	4/4/0000	6/4/2003	8/3/2003	4/3/2003	202						4/2/2003	4/2/2003	5/27/2003	4/2/2003	6/3/2003	#/Z/Z003	5/2//2003	4/2/2003	4/2/2003	5/27/2003	4/2/2003	6/3/2003	4/2/2003	5/21/2003	4/2/2003
	CC037BS07	CC038BS01	CC038BS01	CC040BS01	CCU40BS01	CC080BS01	CC080BS01	CC118BS02	CC118BS02	CC12/BS01	CC128BSU1	CC120B301	CC13/B300	CC 180BS01	CC100B301	CC222BS01	CC227BC04	CC227BS04	CC228RS04	CC228BS02	Total RS Area D	Dimond	Tillially	Sedno C	CA Dupes		CC301SS01	CC3018S01	CC3018S01	CC3038801	CCJ03SS01	000000000000000000000000000000000000000	CC3045501	00000000	CC0065501	CC0003301	00001000	CC0078801	CC0005501	CC0000001	CC0089901
g 8	18	- ;	2	~ {	١,	7	٥ ;	-+	+	4 6	3 4	2 +	+	, ,	+	1,	-	ļ,	14	- m						1	m	-	- 5	+	-	4 ~	7 5	<u>,</u>	4.0	2	1 (74) ;	-	-

Table 4-2 Summary of Laboratory Results: All Samples

Matrix Type	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SSD															
Area D or Area 41		٥	۵	٥	_				۵	۵	۵	۵	۵	Ω		۵	۵		_	۵	۵	٥	Ω	۵	Ω	Q	O	۵	۵	۵	٥	۵	۵	٥	Q	Q		۵	٥	۵	Ω
Malathion 8141	S	na	QN	na	9	Па	2	na	Πa	Q	ББ	9	na	Q	na	QN	na	S	ВП	S	na	QN	na	QN	na	Q.	na	Q	na	2	na	S	na	QN	กล	9	na	2	na	Ω	na
VOC 8260B	na	па	na	ē	БП	na E	БП	na	٦a	na	na	na	па	na	na	па	па	БП	na	na	na	na	na	na	na	па	na	па	па	na	g	па	g	па	па	g	g	na na	Bu	na	na
Dioxin 8290	na	na	Па	па	na	E E	БП	133	па	na	กล	na	na	na	ā	na	na	ē	na	na	na	па	пa	па	БП	па	па	na	na	na	g	g	па	na	na	пa	na	ē	DET	na	na
RCRA 8 Metals 6020 & 7471	na	DET	na	DET	na	DET	па	DET	na	na	DET	na	DET	na	DET	na	DET	na	DET	กล	DET	na	DET	Па	DET	na	DET	na	DET	g E	DET	гg	DET	па	DET	na	DET	เมล	DET	na	DET
Herbicides 8151	na	ON	na	ND	na	ND	na	QN	na	na	ND	па	ND	na	ON	na	Q.	na	QN	na	Q	กล	Q	na	S	na	S	na	2	eu !	Q	na	Q	na	ΩN	na	QN	na	ON	na	ND D
PCBs 8082	na	2	па	Ω	па	ND	na	QN	na	na	9	na	윋	па	Q	na	2	na	S	na	£	па	2	БĒ	2	па	2	ВП	2	en i	2	eu!	2	g	2	<u>e</u>	Q	na	Q Q	na	2
Pesticides 8081A	Па	DET	na	DET	na	DET	па	DET	na	na	DET	na	DET	па	DET	na	DET	na	Q	na	DET	па	Q	na	DET	na	2	na	DET	na Fire	DEI	na		na	DET	na	DET	па	DET	<u>г</u>	DET
8270 8270	na	2	na	S	na	2	В	Q.	Ва	æ	2	па	2	E E	2	па	2	па	2	g.	2	E .	2	е !	2	E !		<u>g</u> (2	g C	2	E C	1	2	2	na	2	na	2	па	2
1PH-D & O 8015B	na	2	na	Q.	na	DET	na	g	па	na	Q	na	DET	gu ,	2	g	Q N	ā	2	na	2	na	2	e !	2	en :	2	e 5	2 1	E 2	2	g (2	па	2	па	2	па	DET	па	2
1 P.HG 8015/ 8020B	na	2	E	2	na	2	Па	na	2	па	2	eu :	2	Ba.	2	na	2	g	2	г <u>е</u>	2	g :	2	g L	2	E C	2	g	2 8	<u> </u>	2	2 Z	2	E :	2	E :	9	ш	윋	g .	₽
Laboratory Batch ID	1033073	1031820	1033073	1031820	1033073	1031851	1033164	1031820	1031851	1033073	1031851	1033164	1031851	1033164	1031820	1033073	1031820	1033105	1031820	1033105	1031851	1033197	1031820	1033073	1031820	1033105	1031820	1033105	1031631	1033103	1031031	1033103	1031031	1033073	1031851	1033105	1031851	1033105	1032180	1033105	103182U
5 4	O	n	اد	n	ပ	В	ပ	m	m	ပ	20 0	טו	n	ي ر	2	ی ا	מ	C) (Ω (ی د	n	ی ر	ם	ם כ	n (ه د	n	٥ ر	٥	ם כ	ם (ם כ		ا د	n c	ار	9	ان	a l	٥	n
Collected	5/27/2003	4/2/2003	5/2//2003	4/2/2003	5/27/2003	4/3/2003	6/3/2003	4/2/2003	4/2/2003	5/27/2003	4/3/2003	6/3/2003	4/3/2003	6/3/2003	4/2/20U3	5/27/2003	4/2/2003	5/30/2003	4/2/2003	5/30/2003	4/3/2003	4/2/2003	4/2/2003	3/21/2003	4/2/2003	3/30/2003 4 /2/2003	#/Z/ZUU3	4/3/2/003	5/30/2003	4/3/2003	5/30/2003	4/3/2003	E/07/0003	3/21/2003	4/3/2003	5/50/2003	4/3/2003	5/30/2003	4/16/2003	5/30/2003	4/2/2003
oaii Deeno	CC009SS01	CC0105501	CCOTOSSOT	CC0135501	CC0135501	CC014SS01	CC014SS01	CC015SS01	CCCHSSSCH	CC0195501	CC01/8301	CC0178801	CC0185501	CC0185501	CCUISSSUI	CCUISSON	CC020201	CCUZUSSO1	CCUZISSO1	CC0238801	CCC22001	00022300	CC0235501	CC0255501	CC0255501	CC0253301	CC0260501	CC020301	CC029SS01	CC030S01	0000000	00000000	000310001	200010001	CC332500	0000000	CC3358501	CC3358501	CC340SS01	CC340SS01	CC1000001
g g	75	-	4 (۱۰	î,	۲ (n]	Ę,	4 (2 4	ი 🤅	5 5	5 %	4 4	<u>،</u>	» (÷		-+-	77	+	-	٦.	+	+-				+-	- 65	2 ∝	+	- 0	١.,	2 5	1	م ج	7		+	= {	-1

4-47

Table 4-2 Summary of Laboratory Results: All Samples

Matrix Type	CS.S.	SSD	SD	SSD	SSD	SSD	SSO	l Q	SSO	SSO	SSO	SSO	29			2000		Ţ	ပ္ခု	ળ	S/N	s)	တ	SW.	2018	OS M	ďα		T		126	3	T		α			I	FC.	5
		t	t	t	T	†	t	╁	╁┈	t	t		200					†	1	1	\dagger	+	\dagger	\dagger	T	T							1		ł		+		ł	
Area Dor Area										۵	۵	٥	Ω					ľ							عاد)			٥	1			١)			٩	١_
Malathion 8141	2	пап	na	S	na	9	na En	2	na	S	na	2	0	C			2	9	2			2	2	2 2		2	U	o	l	0	C	c	, c	٥	c	c	9		,	
VOC 8260B	БП	na	na	na	กล	กล	na	na	БП	na	na	eu	0	U	C	C	2	1			DEL		DET	בו בו	J L	DET	6	7	-	V	17	15	,	0	σ	,	,		. 36	22
Dioxin 8290	Па	DET	na	na	na	па	па	БП	2	na	na	na	2	4	,	c	2	;	22	2	J. C	DE I	na I	E 2	Z C	2	2	2	0	0	23	24	6	0	ć	- 6	ı	0	35	33
McRA 8 Metals 6020 &	밀	DET	na	na	DET	na	DET	Па	DET	na	DET	na	32	26	l C	6	X	FILL	i i					בו בי	DET	DET	6	1		-	69	56	7	9	6	_			82	83
Herbiodes 8151	na	Па	QN	па	QN	na	QN	na	QN	па	Q	na	0	0	0	-		2	Š					2 2	Q	QV	0	0	0	0	0	0	0	0	G	0	c	C	c	0
PC68 8082	na	QN	na	na	ON	па	Q	na	g	na	2	еc	0	0	o	6		CZ	2 5	2 2	2 2	2 2	2 2	2 2	2	2	0	0	0	0	0	0	0	0	0	0	C	0	o	0
resucides 8081A	na	DET	na	na	DET	na	DET	Па	DET	na	DET	na	29	23	ဗ	3		CN	DET	7 1	בַּ		Tage	S	2	DET	4	3	0	1	47	35	7	2	4	3	0	+	51	38
8270 8270	na	9	БП	Па	S	па	9	Па	9	Па	2	g	0	0	0	0	ľ	Ş	S S	2 2	2 2			2	S	DET	2	1	0		2	2	0	0	2	-	0	-	Þ	က
& O 8015B	กล	g	В	па	DET	na	9	g	2	g !		ng E	4	3		0		CZ	S	בּיב				12	DET	DET	9	4			8	9	2	0	9	4	-		14	0
8015/ 8020B	па	2	g	g	2	na	2	па	2	E !	2	na L	0	0	0	0		S	S	THE C	PFT	Ę		2	DET	DET	2	3	1	1	2	2	0	0	2	8		1	7	5
4(0)(0)(50) (004(56)	1033164	1031820	1031851	1033164	1031851	1033164	112899	114050	112899	114050	112915	060411	Detects	Detects	Detects	Detects		1033071	1033105	1033071	1033166	1033071	1033105	1033166	1033166	114050	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects	Detects
		<u>ا</u>	+	┪	+	+	+	+	+	_	+	+						⋖	+	t	\dagger	╁	+	╁	Ą	\dashv														
Collected	6/3/2003	4/2/2003	4/2/2003	6/3/2003	4/3/2003	6/3/2003	4/2/2003	6/3/2003	4/2/2003	6/3/2003	4/3/2003 8/3/2003	0)3/2003						5/29/2003	5/30/2003	5/29/2003	6/3/2003	5/29/2003	5/30/2003	6/3/2003	6/3/2003	6/3/2003					3 Area D				les Area D				Area D	
	CC103SS01	CC107SS01	CC1078501	CC10/SS01	CC1145SU1	CC1145501	4	CCZ035501	+	CC20/5501	CC2148801	100011700	Total So Artea D	Frimary	Dupes	QA Dupes		CC001WS01	CC012WS01	H	╀	 _	╀	<u> </u>	Н	- 1	lotal WS Area D	Primary	Dupes	OA Dupes	lotal Soil Samples Area D	Primary	Dupes	OA Dupes	Total Water Semples Area D	Primary	Dupes	OA Dupes	Total All Samples Area D	Primary
Sed	~ (5 6	7	┿	+	+	7	+	\top	4-	1							<u> </u>	7	3	H	4	H	3		2	*** .													

-48

Table 4-2 Summary of Laboratory Results: All Samples

Date Collected L	COC Laboratory List Batch ID		TPH-G 8015/ 8020B	TPH-D & O 8015B	SVOC 8270	SVOC Pesticides 8270 8081A	PCBs 8082	Herbicides 8151	RCRA 8 Metals 6020 & 7471	Dioxin 8290	VOC 8260B	Malathion 8141	Area D or Area 41	Matrix Type
	Dete	ects	1	3	0	7	0	0	8	2	3	0		
	8	Detects				9	0	0	7	0	1	0		
1	Dete	ects	2	9	2	25	0	**************************************	45	20	- 66	C	7100	7.2
	Detects	ects	2	2	2	17	0	0	36	12	10) c	180	11
	Dete	ects	0	70 10 10 10 10 10 10 10 10 10 10 10 10 10	0	5	0	0	2	2	2) c		
	Det	Detects	0	0	0	3	0	0	4	C	-	, -		
	Detects	ects	-	10	၉	44	0	0	48	6	· c		418.0	22
	Det	Detects	0	8	2	35	0	0	39	8) c	, c	3	3
	Dete	ects	0		0	4	0	0	4	,	O) C		
	Det	Detects		18 18 18 18 18 18 18 18 18 18 18 18 18 1	7.00	5	0	0	5	0	0	, c		
	Dete	ects	3	16	2	69	0	0	93	29	22	C	4180	160
	Det	Detects	2	13	4	52	0	0	75	26	19	, 0		3
	Dete	ects	0	2	0	6	0	0	6	3	2	0		
	Det	Detects	1		2012	8	0	0	6	0	, L	0		
	Dete	ects	1	7.	2	4	0	0	13	4	13	C	4120	12
	Det	Detects	5	5		3	0	0	;	4		C		4
	Det	Detects	1		0	0	0	0	\ \frac{1}{2}	0		C		
	Detec	ects	1				0	0	•	0	-	0		
	Det	Detects	10	23	7	73	0	0	106	33	35	6	4120	12
	Det	Detects	1	18	2	55	0	0	98	30	30			
	Det	Detects	1	3	0	6	0	0	10	3	3	0		
	Det	Detects	7	2	7	6	0	0	10	U	٥	C		

Table 4-3 Summary of TPH Detections: Soil

		Gasoline Range	Diesel Range	Residual Range
Sample ID	Area		_	T :
		(mg/kg)	(mg/kg)	(mg/kg)
CC054SS01	Area 41	ND	41.4	78.8
CC055SS01	Area 41	ND	51.9	ND
CC056SS01	Area 41	ND	185	ND
CC065BS01	Area 41	ND	69.5	24.5
CC065SS01	Area 41	na	420	126
CC066BS01	Area 41	ND	50.9	ND
CC066SS01	Area 41	ND	1840	ND
CC256SS01	Area 41	34.5	421	37.5
CC014SS01	Area D	ND	ND	28
CC018BS01	Area D	ND	45.7	49.3
CC018BS02	Area D	ND	25.1	33.8
CC018SS01	Area D	ND	62.6	45.9
CC024BS01	Area D	ND	ND	23.8
CC037BS03	Area D	121	ND	ND
CC037BS05	Area D	5.51	ND	ND
CC040SS01	Area D	ND	36.7	ND
CC114SS01	Area D	ND	ND	199
CC118BS02	Area D	ND	ND	29.7

Notes:

mg/kg = milligrams per kilogram

ND = not detected

na = not analyzed

Table 4-4 Summary of VOC Detections: Soil

Sample ID	CC054BS01	CC060BS01	CC065BS01	CC066BS02	CC261BS01	CC001BS01	CCOORRSON
Laboratory ID	11310001	1031902011	1031902009	1033224012	11297402	11310001	1031820017
	Area 41	Area 41	Area 41	Area 41	Area 41	Area D	Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(mg/kg)
1,2,3-Trichlorobenzene	ON	ΩN	Q	ND	S	ND	0.0347
2-Chlorotoluene	ND	QN	QN	QN	Q	QN	CN CN
4-Chlorotoluene	ND	QN	Q.	S	2	QN	GN CN
Chlorobenzene	S	S	QN	S	QN	CZ	S
cis-1,2-Dichloroethene	ND	Q	QN	S	QN	CZ	0.0476
Tetrachloroethene	0.012	0.327	0.502	0.123	0.0207	QN	0.0175
Toluene	0.0875	QN	Q	QN.	CN	0.0146	
Trichloroethene	Q	QN	Q	QN	S	ON	0.0050
						2	0.0202
Notes:							-
mg/kg = milligrams per kilogram	logram						
ND = not detected					7774450		7777004
na = not analyzed)					

Table 4-4 Summary of VOC Detections: Soil

Sample ID	CC017BS01	'BS01	CC017BS03	CC024BS02	1BS02	CCOS	CC024RS03	CC037BC04
Laboratory ID	1031851006	1033164011	1031851011	1031972002	1033164019	1031972003	1033164020	1032133001
	Area D	Area D	Area D	Area D	Area D	Area D	┸	Area D
Analyfe	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/kg)	(ma/ka)	(ma/ka)
1,2,3-Trichlorobenzene	ND	ND	Q	QN	QN	QN	CN	(SUB)
2-Chlorotoluene	Q N	ND	Q	QN	S	QN	2	G N
4-Chlorotoluene	NO.	ND	QN	Q	S	Q	Q	CN
Chlorobenzene	ND	ND	0.061	QZ	S	QN	Ç	Q C
cis-1,2-Dichloroethene	ND	ND	QN	0.204	0.14	QN	0.0565	7000
Tetrachloroethene	0.0644	0.0328	Q	2	QN	QV	CN	0.076
Toluene	QN	Q	2	S	QN	CN	S	0.073
Trichloroethene	0.0656	Q	S	QN N	0.0606	0.0491	0.048	CIA CIA
							0.00	2
Notes:				110000000000000000000000000000000000000				
mg/kg = milligrams per kil								***************************************
ND = not detected								
na = not analyzed				o d korker				

Table 4-4 Summary of VOC Detections: Soil

Sample ID	Sample ID CC037BS03	CC037BS04	CC037BS05	CC037BS06	CC080BS01	CC137RS06	CC180RS01
Laboratory ID	0 1033197013	1033197014	1033197015		11310001	1033197017	11310001
	Area D	Area D	Area D	Area D	Area D	Area D	Area
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)
1,2,3-Trichlorobenzene	QN	ΩN	2	2	QN	CN	CN
2-Chlorotoluene	0.528	ON	Q	QN	QN	9	CZ
4-Chlorotoluene	1.93	ΩN	9	Q	ND	2	QN
Chlorobenzene	Q.	QN	2	QN	QN	S	CN
cis-1,2-Dichloroethene	ND	0.0504	0.128	QV	9	S	
Tetrachloroethene	2	NO.	0.0925	0.345	Q	0.228	Ç Z
Toluene	245	0.16	3.02	0.0854	0.0129	0.0582	0.00501
Trichloroethene	S	0.047	0.165	0.0513	QN	0.0344	CN
							2
Notes:					-		A PARTICULAR TO THE PARTICULAR
mg/kg = milligrams per kil							
ND = not detected					Western.		
na = not analyzed							

4-53

Table 4-5 Summary ov SVOC Detections: Soil

	CC065SS01	CC066SS01	CC256SS01	CC006BS01	CC037BS03
	Area 41	Area 41	Area 41		Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)
2-Methylnaphthalene	S	0.779	0.174	GN	ND ND
2-Methylphenol (o-Cresol)	S	2	N	9 9	0 974
3&4-Methylphenol (p&m-Cresol)	S	ND	2	2	5
Benzo(a)Anthracene	0.406	S	S	2	Š
Benzo[a]pyrene	0.64	S	2	2 2	S
Benzo[b]Fluoranthene	2.08	S	2		2
Benzo[g,h,i]perylene	0.516	S	Q	S	? S
bis(2-Ethylhexyl)phthalate	Q	N	2	0.281	2
Chrysene	0.848	N N	2	Q.	<u> </u>
Fluoranthene	0.965	N	2	2	2
Indeno[1,2,3-c,d] pyrene	0.502	S	2	S	2 2
Phenanthrene	0.509	8	0.172	S	2
Pyrene	1.28	2	2	Q Q) S
)	_

Notes:

mg/kg = milligrams per kilogram ND = not detected na = not analyzed

Table 4-6 Summary of Pesticide Detections; Soil

Sample ID	CC051SS01	Sample ID CC051SS01 CC054BS01	CC054SS01	CC055SS01	CC056SS01	CC057SS01	CC059SS01	CC060BS01	CC060SS01
atory IC	Laboratory ID 1033224003	11310005	11310004	1033224004	1033197012	1033224001	1033197011	1031902011	1031902010
	Area 41	Area 41	Area 41	Area 41	Area 41	Area 41	Area 41	Area 41	Area 41
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
	0.352	QN	5.57	0.29	0.0289	0.00553	QN	CN	3.51
	2	2	2.65	2	2	QN	CZ	S	; <u>c</u>
	0.328	0.00801	20.4	9	0.12	0.00286	2.9	0.621	9 9
	S	2	0.0154	9	2	QN) C	. ZN	? <u>c</u>
	9	2	Q	2	2	Q	S) S	2 2
	2	2	0.00479	QN	Q	2	Q Z	i Z) C
	Q Q	2	0.000572	Q	Q	2	S	Ş	2 5
	Q	Q.	0.501	Q.	S	2	2) S) 2 2
	2	QN	0.0844	S	QN	QN	2	2) <u>S</u>
	2	Q Q	2	2	QN QN	QN	2	2) <u>S</u>
Endosulfan sulfate	2	Q Q	0.146	2	Q.	QN.	2	2	Ş
	O N	Ñ	0.0369	2	N ON	QN.	2	Q) S
Endrin aldehyde	<u>Q</u>	Q	ΩN	QN	2	Q.	2	2	2
	2	2	0.121	9	2	2	Q	e e) E
gamma-BHC (Lindane)	2	Q	0.0023	S	QN	2	S	e E	2 5
gamma-Chlordane	Q Q	Q	2	9	Q	2	S		2 2
	Q	2	2	2	Q	9	Z Z	2	2 5
Heptachlor epoxide	Q N	Q N	2	Q	2	2	9	2 2	2 5
	QN	QN	9	Q	Q	2	2	S	2 2

Notes:

mg/kg = milligrams per kilogram ND = not detected

na = not analyzed

Table 4-6 Summary of Pesticide Detections: Soil

	CC061BS01	Sample ID CC061BS01 CC061SS01	CC062SS01	CC065BS01	CC065SS01	CC066BS01	CC066SS01	CC067SS01	CC1570001
Laboratory ID 1031902005	1031902005	1031902004	1031902007	1031902009	1031902008	1032224002	1032224001	1033224005	1033224002
	Area 4′	Area 41	Area 41	Area 41	Area 41	Area 41	Area 41	Area 41	Aros 44
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(04/00)	/mc///
4,4'-DDD	2	ΩN	21.7	0.00402	216	0.00286	0.633	(SV/S)	(IIIIQ/RQ)
4,4'-DDE	0.0122	0.015	S	0.00754	S		2	2 2	0.0073
4,4'-DDT	0.0122	0.014	43	0.0356	218	0 0 1 1 1	1 35	0.245	0.00277
Aldrin	2	2	Ω N	Q	S S		S S	Z CZ	0.0136 N
alpha-BHC	S	Q	2	Q	2	2	2	2 2	2 5
beta-BHC	Q	QN	9	ΩN	2	2	S	2 2	2 5
delta-BHC	Q N	2	Q	2	2	2	Š	2 2	2 5
Dieldrin	2	Q Z	2	Q Z	2	2	<u> </u>	2 2	2 2
Endosulfan I	2	S	S	QN	Ω Z	2	S	2 2	2 2
Endosulfan II	2	Q	Q.	S	Q	2) <u>S</u>	2 2	2 5
Endosulfan sulfate	2	Q.	2	2	Q	2	2	2 2	ב ב
Endrin	2	2	2	Q.	8	2	2	2 2	9 5
Endrin aldehyde	QN	2	2	Q	2	2	2) <u>C</u>	2 2
Endrin ketone	QN	2	2	2	2	2	Ş) <u>C</u>	2 2
gamma-BHC (Lindane)	2	2	2	QN ON	2	S	Ž	2 2	
gamma-Chlordane	2	2	Q.	QN	2	S	: S		2 2
Heptachlor	9	2	S	Q	9	2) S	2 2
Heptachlor epoxide	2	2	S	2	Q	2	S) E	2 2
Methoxychlor	N	ND	QN	Ω	2	2	2	<u> </u>	2 2

Notes:

mg/kg = milligrams | ND = not detected na = not analyzed

4-56

Table 4-6 Summary of Pesticide Detections: Soil

Sample ID	Sample ID CC161BS01 CC256SS01	CC256SS01	CC259SS01	CC261BS01	CC001BS01	CC001SS01	18801	CC003SS01	CC0068804
Laboratory ID 1031902006	1031902006	11298301	11298302	11297402	11310001	1031820003	1031851001	1031820012	1031820014
	Area 41	Area 41	Area 41	Area 41	Area D	Area D	Area D	Area D	Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/kg)	(ma/ka)	(ma/ka)
4,4'-DDD	QN	0.265	0.3	0.0133	0.00358	QN	QN	(S) (S)	(SV)
4,4'-DDE	0.00773	960.0	0.219	0.0187	0.00207	0.00295	0.00347) S	2 2
4,4'-DDT	0.00685	0.718	3.54	Ω	0.00546	0.0155	0.0221	4	0.827
Aldrin	Q	0.000729	2	QN	ND	2	2	2	S S
alpha-BHC	2	0.000804	2	S	Q	2	2	2	2
beta-BHC	2	0.00372	0.00318	S	N	QN	2	2	£
delta-BHC	2	Q.	0.000856	S	S	Q.	Q	2) <u>S</u>
Dieldrin	2	0.016	0.0228	S	N	QN	Q	2	2
Endosulfan I	2	0.00578	Q	Š	<u>N</u>	Q.	S	2	
Endosulfan II	2	0.00152	0.00207	Š	9	ND	QN	Q	
Endosulfan sulfate	9	S	Q Q	2	2	NO	Q	QX	2
Endrin	9	Q Z	2	2	S	Q.	S	Q	2
Endrin aldehyde	9	0.00288	2	S	9	2	2	8	2
Endrin ketone	2	2	0.00293	QN	9	2	2	2	2
gamma-BHC (Lindane)	2	0.000895	0.0039	0.000939	0.000744	2	2	S	Q N
gamma-Chlordane	2	2	2	ON	9	2	2	Q N	Q
Heptachlor	2	0.00348	2	Q	Q	2	9	ΩN	Q.
Heptachlor epoxide	2	0.0105	2	Q	2	2	2	Q N	QN
Methoxychlor	Q	0.00663	ΩN	ON	Ñ	9	Q.	2	QN

1372

mg/kg = milligrams | ND = not detected na = not analyzed

4-57

Table 4-6 Summary of Pesticide Detections: Soil

Page Page		Sample ID	Sample ID CC007SS01 CC008SS01	CC008SS01	CC009SS01	CC010BS01	CC010SS01	CC013SS01	CC014SS01	CC015SS01	CC017BS02
Analyte (mg/kg) (mg/kg) <t< td=""><th></th><td>Laboratory ID</td><td></td><td>1031820006</td><td>1031820007</td><td>1031820005</td><td>1031820001</td><td>1031820008</td><td>1031851017</td><td>1031820011</td><td>1031851010</td></t<>		Laboratory ID		1031820006	1031820007	1031820005	1031820001	1031820008	1031851017	1031820011	1031851010
Analyte (mg/kg) (mg/kg) <t< td=""><th></th><td></td><td>Area D</td><td>Area D</td><td>Area D</td><td>Area D</td><td>Area D</td><td>Area D</td><td>Area D</td><td>Area D</td><td>Area D</td></t<>			Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D
4,4-DDD ND ND ND ND AD 4,4-DDE 0.00401 ND ND ND ND ND 4,4-DDE 0.00401 ND ND ND ND ND 4,4-DDE 0.00401 ND ND ND ND ND Addrin ND ND ND ND ND ND ND Addrin ND ND ND ND ND ND ND ND Bedrain ND ND ND ND ND ND ND ND <th></th> <td>Analyte</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(ma/ka)</td> <td>(ma/ka)</td> <td>(ma/ka)</td> <td>(ma/ka)</td>		Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
4,4-DDE 0.00401 ND ND ND ND 4,4-DDT 0.019 0.0166 0.0206 0.502 0.0116 0.0268 0.0465 0.193 Addrin ND ND ND ND ND ND ND Addrin ND ND ND ND ND ND ND ND Addrin ND		4,4'-DDD	Q.	QN	QN	0.258	ND	QN	Q	CN	(SV)S
4,4*-DDT 0.019 0.0166 0.0206 0.502 0.0116 0.0268 0.0465 0.193 Addrin ND ND ND ND ND ND ND alpha-BHC ND ND ND ND ND ND ND beta-BHC ND ND ND ND ND ND ND beta-BHC ND ND ND ND ND ND ND Dieldrin ND ND ND ND ND ND ND Endosulfan II ND ND ND ND ND ND ND Endosulfan II ND ND ND ND ND ND ND ND Endosulfan II ND ND ND ND ND ND ND ND Endrin aldehyde ND ND ND ND ND ND ND Gamma-Chlordane ND ND		4,4'-DDE	0.00401	2	Q.	Ω	2	2			2 2
Aldrin ND ND ND ND ND alpha-BHC ND ND ND ND ND ND beta-BHC ND ND ND ND ND ND ND delta-BHC ND ND ND ND ND ND ND ND Dieldrin ND <		4,4'-DDT	0.019	0.0166	0.0206	0.502	0.0116	0.0268	0.0465	0 193	0 0 144
alpha-BHC ND ND ND ND ND beta-BHC ND ND ND ND ND ND beta-BHC ND ND ND ND ND ND delta-BHC ND ND ND ND ND ND Dieldrin ND ND ND ND ND ND Endosulfan I ND ND ND ND ND ND Endosulfan I ND ND ND ND ND ND Endosulfan II ND ND ND ND ND ND Endosulfan II ND ND ND ND ND ND Endosulfan II ND ND ND ND ND ND Endrin ND ND ND ND ND ND ND Endrin ND ND ND ND ND ND ND Ga		Aldrin	2	2	2	2	Q	2	2		
beta-BHC ND <		alpha-BHC	2	Q	9	S N	8	9	2	2	e C
delta-BHC ND		beta-BHC	2	2	2	S	8	2	2	S	2 2
Dieldrin ND <		delta-BHC	Q	2	2	Q	Q	2	Q	S) C
Endosulfan I ND		Dieldrin	2	Q	2	Q.	2	2	2	Ē	Ž
Endosulfan II ND		Endosulfan i	Q	Q	2	Q.	Q	2	2) <u>C</u>
Endrin Endrin aldehyde ND		Endosulfan II	2	Q	2	ΩN	Q	Q	2) S
Endrin ND ND <th< td=""><th></th><td>Endosulfan sulfate</td><td>9</td><td>2</td><td>2</td><td>QN N</td><td>Q</td><td>2</td><td>2</td><td>2</td><td>2</td></th<>		Endosulfan sulfate	9	2	2	QN N	Q	2	2	2	2
Endrin aldehyde ND		Endrin	2	Q	2	Q	OZ	2	2	S	Ž
Endrin ketone ND		Endrin aldehyde	2	2	2	Q	S	S	2	2	9 9
gamma-BHC (Lindane) ND		Endrin ketone	2	Q	2	N Q	2	2	2	2) E
gamma-Chlordane ND	1	**********	9	2	2	N Q	Q	S	2	2	2
Heptachlor ND			2	Q.	2	S	2	Q	2	2	2
Heptachlor epoxide ND	4	Heptachlor	2	2	2	Q N	2	S	ΩN	Q Z	2
Methoxychlor ND ND ND ND ND ND ND ND		Heptachlor epoxide	2	2	2	Ω Z	윤	2	2	Ş	2
) }	Methoxychlor	Q	QN	ND	OZ	9	Q.	Q	2	2

Notes: mg/kg = milligrams | ND = not detected na = not analyzed

4-58

Table 4-6 Summary of Pesticide Detections: Soil

Sample ID	Sample ID CC017SS01 CC018BS01	CC018BS01	CC018BS02	CC018SS01	CC019SS01	CC020SS01	CC022SS01	CC024BS01	CC025SS01
Laboratory ID 1031851005	1031851005	1031851014	1031851015	1031851013	1031820015	1031820019	1031851019	1031972001	1031820020
	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)
4,4'-DDD	Q	ΩN	QN	S	Q	S	QN	0.00338	QN
4,4'-DDE	Ω N	QN	2	2	9	Q	Q	QN	: <u>S</u>
4,4'-DDT	0.163	0.778	0.00324	0.0404	0.0301	0.0392	0.00761	S	0.0539
Aldrin	Ω	2	2	2	S	QN QN	QN	Q Z	CZ
alpha-BHC	Ö	QN	2	2	8	9	Q	S	2
beta-BHC	2	9	2	2	Q	Q	Q	2	2
delta-BHC	9	2	9	2	9	9	Š	2	2
Dieldrin	2	2	9	S	Q.	2	2	2	2 2
Endosulfan I	Q.	Q.	9	Q.	Q.	Q N	2	2	
Endosulfan II	Q	Q	Q Z	Q.	S	2	2	2) <u>S</u>
Endosulfan sulfate	Q.	Q	2	Q.	S	Q N	2	2) <u>C</u>
Endrin	9	Q	2	Q	2	Q.	S	2) <u>S</u>
Endrin aldehyde	Q	2	2	Q Z	2	2	2	2	Z Z
Endrin ketone	2	QN	2	8	2	Q.	2	2	Ē
gamma-BHC (Lindane)	2	2	0.00206	9	2	Q	2		2
gamma-Chlordane	Q	2	2	S	2	2	2	0.00333	2
Heptachlor	2	<u>Q</u>	QN	S	2	2	Q	S	2
Heptachlor epoxide	2	9	Q.	2	2	9	2	2	E
Methoxychlor	QN	ND	QN	QN	Q.	9	2	2	2
						7	1) -

Notes: ma/ka = mill

1374

mg/kg = milligrams | ND = not detected na = not analyzed

4-59

Table 4-6 Summary of Pesticide Detections: Soil

Sample ID	Sample ID CC028BS01 CC028BS02	CC028BS02	CC029SS01	CC030SS01	CC031SS01	CC032SS01	CC035SS01	CC037BS01	CC037BS03
Laboratory ID	1031851022	1031851024	1031851007	1031851008	1031851009	1031851012	1031851020	1032133001	1033197013
	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
4,4'-DDD	QN	0.0108	Q	QN	S	Q	0.028	0.0248	0.516
4,4'-DDE	2	2	2	Q	Q	Ω	2	S) C
4,4'-DDT	0.445	0.00411	0.159	14.5	5.52	0.145	0.122	0.0289	0.0557
Aldrin	2	2	Q	Q	S	Q	2	S	S CZ
alpha-BHC	9	2	2	OZ Z	Q.	Q	2) S	2 2
beta-BHC	Q	QN	S	Ω	Q	Q	2	<u> </u>	2
delta-BHC	2	Q.	2	Ω N	Q	Q	S	2	2 2
Dieldrin	2	Q	Q	S	Q N	2	2	2	2 2
Endosulfan I	2	9	2	Q	2	2	S	2	2 2
Endosulfan II	S	9	S	S	2	2	2	S	2 2
Endosulfan sulfate	S	9	9	Q.	2	2	2) S	2 5
Endrin	Q.	Q	S	Q.	Ω N	Q N	2	S	<u> </u>
Endrin aldehyde	Q	Q	Ω Z	Q	Q	2	Q	S	e e
Endrin ketone	QN O	Q.	2	QN	Q	2	2	S	e e
gamma-BHC (Lindane)	Q	0.00896	2	2	Q	2	0.0391	S	S
gamma-Chlordane	2	2	2	Q	2	2	QN	S	2
Heptachlor	Q	2	2	Q	QN	2	2	S	<u> </u>
Heptachlor epoxide	2	2	2	<u>Q</u>	Q	Ω Z	ON C	S) <u>C</u>
Methoxychlor	ND	Q.	ND	S	2	2	2	2	

1375

mg/kg = milligrams | ND = not detected na = not analyzed

4-60

Table 4-6 Summary of Pesticide Detections: Soil

Sample ID	Sample ID CC037BS04 CC038BS01	CC038BS01	CC040SS01	CC080BS01	CC103SS01	CC107SS01	CC114SS01	CC118BS02	CC128BS01
Laboratory ID	1033197014	1032164001	1032180001	11310002	1031820013	1031820009	1031851018	1031851016	1031851023
	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(ma/ka)
4,4'-DDD	9	2	QN	0.0086	S	QN	QN	ND) ON
4,4'-DDE	2	2	Q	0.00681	2	Q.	QN	2	2
4,4'-DDT	0.0174	0.00272	29.3	0.0349	4.	0.0286	0.0127	0.00465	0.773
Aldrin	9	2	Q N	Q	QN N	QN	QN	QN	S
alpha-BHC	2	2	2	2	9	QN	QN	Q	2
beta-BHC	2	2	2	QN QN	9	QN	QN	CZ	 E
delta-BHC	2	2	Q	ND	2	QN	2	S	<u> </u>
Dieldrin	2	2	2	ND	Q	QN	2	2) E
Endosulfan I	Q.	2	Ω Z	9	Q	QN	2	2	2
Endosulfan II	Q.	Q	2	9	Q.	Q N	2	2	2
Endosulfan sulfate	Q	ND	Q	Q.	QN	2	Q N	2	2
Endrin	2	QN	Q	Q	2	2	2	2	9 5
Endrin aldehyde	2	9	Q.	Q	2	Q	Q.	Q	S
Endrin ketone	2	2	2	QN	Q.	Q	2	2	S
gamma-BHC (Lindane)	2	2	<u>Q</u>	ΩN	Q	QN	2	0.0024	9 5
gamma-Chlordane	2	S	Q.	Q	Q.	Q	2	QN	S
Heptachlor	2	2	QN ON	S	Q.	QN	2	2	2
Heptachlor epoxide	Q	Q	9	2	ON O	S	2	Q N	2
Methoxychlor	ΩN	ΩΩ	ND	ND	Q N	Q.	Ω	QN	2

Notes:
mg/kg = milligrams |
ND = not detected
na = not analyzed

4-61

Table 4-6 Summary of Pesticide Detections: Soil

Sample ID	CC137BS06	CC180BS01	CC203SS01	CC207SS01	CC214SS01	CC222BS01	CC228BS02
Laboratory ID	1033197017	11310003	11289902	11289901	11291501	11291502	11291503
	Area D	Area D	Area D	Area D	Area D	Area D	Area D
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)
4,4'-DDD	S	0.00749	0.0679	QN	Q	ND	0.0129
4.4'-DDE	S	0.00459	0.0482	0.00357	Q.	Q	0.00129
4.4'-DDT	0.00806	0.0228	1.25	0.0205	0.00401	S	0.00698
Adrin	Q	Q.	Ω	QN	2	Q	0.000882
aipha-BHC	Q	Q	0.000687	2	2	0.00165	2
beta-BHC	2	<u>Q</u>	0.00252	2	2	0.00159	2
delta-BHC	9	QN	0.00193	QN	2	Q	Ê
Dieldrin	9	Q.	0.00511	S	2	2	2
Endosulfan I	S	QN	2	QN	2	2	É
Endosulfan II	2	9	0.00146	9	Q	2	2
Endosulfan sulfate	Q	Q	Q	S	2	2	2
Endrin	2	S	ΩN	8	2	2	2
Endrin aldehyde	2	2	Q.	S	2	Q	2
Endrin ketone	2	2	Ω	2	2	Q	Q
gamma-BHC (Lindane)	2	0.000681	0.0359	2	Q.	0.00322	0.00562
gamma-Chlordane	2	Q.	Ω N	2	QN QN	Q	2
Heptachior	Ω	Q.	Q.	2	QN	N ON	QN
Heptachlor epoxide	2	Q	Q N	2	Ö	QN.	Q
Methoxychior	ΩZ	ND	ND	ND	2	2	2

mg/kg = milligrams | ND = not detected

Table 4-7 Summary of Metals Detections: Soil

		Arsenic	Barium	Cadmium	Chromium	Lloca	Colorium	Cib	Thtoms::
Sample ID	Area	(mg/kg)	(mg/kg)	(mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Silver	Mercury (mg/kg)
CC051SS01	Area 41	8.24	79.4	(mg/kg) ND	21.7	31.7	(mg/kg) ND	(mg/kg) ND	(mg/kg) ND
CC052SS01	Area 41	ND	54.3	ND	5.19	8.67	ND	ND	ND
CC054BS01	Area 41	1.04	72.8	ND	5.53	6.31	ND	0.014	ND
CC054SS01	Area 41	2.86	83.7	0.586	11.7	23.9	0.388	0.014	0.0105
CC055SS01	Area 41	2.46	80.7	ND	10.2	13.8	ND	ND	ND
CC056SS01	Area 41	2.34	91.7	ND	13.3	8.52	ND	ND	ND
CC057SS01	Area 41	ND	61.3	ND	5.41	8.87	ND	ND	ND
CC059SS01	Area 41	2.77	81.2	ND	8.05	11	ND	ND	ND
CC060BS01	Area 41	ND	235	ND	66.7	6.85	ND	ND	ND
CC060SS01	Area 41	1.43	67.3	ND	8.82	13.5	ND	ND	ND
CC061BS01	Area 41	ND	37.4	ND	2.97	5.55	ND	ND	ND
CC061SS01	Area 41	ND	89.4	ND	6.99	8.97	ND	ND	ND
CC062SS01	Area 41	ND	64.5	ND	4.64	6.56	ND	ND	ND
CC065BS01	Area 41	ND	61.9	ND	4.63	8.27	ND	ND	ND
CC065SS01	Area 41	4.28	62.8	ND	24.5	38	ND	ND	ND
CC066BS01	Area 41	ND	190	ND	79.9	3.56	ND	ND	ND
CC066BS02	Area 41	ND	112	ND	12.1	8.93	ND	ND	ND
CC066SS01	Area 41	2.15	69.4	ND	6.37	13.8	ND	ND	ND
CC067SS01	Area 41	3.38	58.6	ND	13.1	14.8	ND	ND	ND
CC157SS01	Area 41	ND	62.2	ND	6.37	10.7	ND	ND	ND
CC161BS01	Area 41	ND	40	ND	4.21	6.93	ND	ND	ND
CC256SS01	Area 41	1.64	85.8	ND	15.2	9.24	0.444	0.0302	0.00617
CC259SS01	Area 41	2.63	64.5	0.0328	5.66	12.4	ND	0.0317	0.00835
CC261BS01	Area 41	0.756	38.5	ND	2.21	5.89	ND	0.00866	0.0128
CC001BS01	Area D	0.916	107	ND	3.07	3.57	0.385	0.0335	0.00954
CC001SS01	Area D	12.9	134	1.08	2.52	25.2	ND	0.183	ND
CC003SS01	Area D	4.65	90.4	0.292	3.46	13.9	ND	ND	ND
CC004SS01	Area D	8.28	161	1.08	1.65	20.9	ND	0.144	ND
CC006BS01	Area D	2.96	76.7	0.396	4.08	9.86	ND	ND	ND
CC006BS02	Area D	9.46	91.1	0.386	5.15	17.1	ND	ND	ND
CC006SS01	Area D	6.4	102	0.673	3.34	23.7	ND	ND	ND
CC007SS01	Area D	9.62	101	0.875	2.27	24.5	ND	0.133	ND
CC008SS01	Area D	5.37	111	0.5	3.47	12.6	ND	ND	ND
CC009SS01	Area D	5.06	108	0.418	3.96	14.5	ND	ND	ND
CC010BS01	Area D	9.46	76.3	0.331	5.45	24.4	ND	ND	ND
CC010BS02 CC010SS01	Area D	3.31	151	ND	ND 0.04	23.1	ND	ND	ND
1 1	Area D	11.6	108	0.601	2.91	20.9	ND	0.12	ND
CC0148801	Area D	4.99	103	0.36	3.09	14.6	ND	ND	ND
CC014SS01 CC015SS01	Area D	3.99	106	ND	4.99	16.9	ND	ND	ND
	Area D Area D	6.07 1.25	124 71	0.633	3.04	16.9	ND	ND	ND
ł I	Area D	6.25	99.4	ND	5.22	11.6	ND	ND	ND
1	Area D	5.72	83.5	0.622 ND	3.09	20.6	ND	ND	ND
1 1	Area D	8.21	126	0.647	9.48	23	ND	ND	ND
! I	Area D	7.41	96.7	0.647	2.7 5.72	21,1 28,2	ND	ND	ND
i i	Area D	5.81	80.2	ND ND	5.72	10.2	ND ND	ND ND	ND ND
1	Area D	9.97	95.1	1.07	3.73	29.5	ND	0.472	ND
1	Area D	5.36	111	0.276	4.16	11.1	ND	ND	ND ND
	Area D	7.5	108	0.369	3.87	23.2	ND	ND	ND
20020001		1.0	100	0.008	0.07	۷۵.۷	UIV	ואט	ND

Table 4-7
Summary of Metals Detections: Soil

		Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	Mercury
Sample ID	Area	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CC021SS01	Area D	4.64	147	0.627	2.75	9.62	ND	ND	ND
CC022BS01	Area D	4.88	61	ND	5.48	20.4	ND	ND	ND
CC022SS01	Area D	5.36	133	0.748	3.29	15.4	ND	0.109	ND
CC023SS01	Area D	14.2	184	2.87	1.4	28.7	ND	0.312	ND
CC024BS01	Area D	13.8	91.8	0.473	6.45	39	ND	ND	ND
CC024BS02	Area D	5.33	98.1	ND	13.4	20.1	ND	ND	ND
CC024BS03	Area D	ND	70.1	ND	4.89	8.62	ND	ND	ND
CC025SS01	Area D	6	91.7	0.297	3.77	13.1	ND	ND	ND
CC026BS01	Area D	4.64	112	0.627	3.74	15.2	ND	ND	ND
CC026BS02	Area D	11.6	78	0.569	2.82	28.6	ND	ND	ND
CC026SS01	Area D	20.7	114	1.54	1.91	52	ND	0.252	ND
CC027BS01	Area D	2.3	67.4	ND	5.72	8.71	ND	ND	ND
CC027BS02	Area D	ND	58.3	ND	5.39	12.4	ND	ND	ND
CC028BS01	Area D	19.9	129	0.431	5.65	15.2	ND	ND	ND
CC028BS02	Area D	3.74	95.4	ND	3.6	12.3	ND	ND	ND
CC029SS01	Area D	2.5	146	ND	4.39	13.2	ND	ND	ND
CC030SS01	Area D	6.44	106	0.523	5.09	19.2	ND	ND	ND
CC031SS01	Area D	6.69	120	0.549	4.11	32.8	ND	ND	ND
CC032SS01	Area D	4.09	143	0.537	3.55	18.7	ND	ND	ND
CC035SS01	Area D	5.32	99.7	0.388	4.24	13.5	ND	ND	ND
CC037BS01	Area D	2.88	75.4	ND	4.37	9.31	ND	ND	ND
CC037BS02	Area D	2.7	94.2	ND	4.61	14.6	ND	ND	ND
CC037BS03	Area D	ND	119	ND	4.68	7.47	ND	ND	ND
CC037BS04	Area D	5.06	211	ND	4.73	8.51	ND	ND	ND
CC037BS05	Area D	2.09	123	ND	3.92	7.34	ND	ND	ND
CC037BS06	Area D	8.7	84.9	0.556	10	30.3	ND	ND	ND
CC037BS07	Area D	2.84	102	ND	4.93	8.91	ND	ND	ND
CC038BS01	Area D	2.91	85.2	ND	5.45	11.6	ND	ND	ND
CC040BS01	Area D	6	63.5	ND	15.6	20.8	ND	ND	ND
CC040SS01 CC080BS01	Area D	4.31	82.3	0.282	4.42	14.7	ND	ND	ND
	Area D	4.08	81.8	0.298	2.77	13.5	ND	0.0569	ND
	Area D Area D	5.37 7.2	106 95.9	0.423	4.26	21.6	ND	ND	ND
	Area D	4.73		0.784	2.1	20	ND	ND	ND
	Area D	1.43	90.4	0.22 ND	5.27 5.57	18.7 10.6	ND ND	ND ND	ND I
1	Area D	5	133	0.351	6.48	16.1	ND ND	ND ND	ND ND
	Area D	9.63	85.8	0.927	9.44	47.6	ND ND	ND	ND ND
	Area D	12.1	107	0.403	7.05	48.3	ND	0.0686	ND
1	Area D	6.21	94.4	0.403	3.05	18.5	ND	0.0569	0.012
	Area D	7.52	112	0.836	2.34	20.5	ND	0.0369	0.012 ND
i i	Area D	4.15	108	0.347	3.13	13.2	ND	0.0498	ND
1	Area D	3.91	84.6	0.188	4.35	13.6	ND	0.0285	0.0137
	Area D	4.23	87.2	ND	7.92	13	ND	0.0263	0.00947
i i	Area D	5.42	98.4	0.318	2.79	16.1	ND	0.0389	0.00347

mg/kg = milligrams per kilogram

ND = not detected

Sample ID		CC055SS01	CC066BS01	CC066SS01	CC067SS01	CC161BS01	CC001SS01	CC004SS01	COORRED
Lab ID	1033224003	1033224004	1032224002	1032224001	1033224005	1031902006	103182003	103182002	103182017
Location	Area 41	Area D	Area D	Area D					
Unit	(bg/g)	(b/6d)	(bg/g)	(b/6d)	(b/bd)	(ba/a)	(b/bd)	(μα)	(חמ/מ)
2,3,7,8-TCDD	2	9	g	EMPC=0.244	QN	S	S C N	ND ND	(PS/S)
1,2,3,7,8-PeCDD	EMPC=0.268	2	9	EMPC=0.253	S	Ź	2	2 2	2 2
1,2,3,4,7,8-HxCDD	EMPC=0.559	2	2	EMPC=0.278	S	e C	2 5	2 2	2 2
1,2,3,6,7,8-HxCDD	1.74	2	2	0.594	Ş	ž	2 €	2 2	2 2
1,2,3,7,8,9-HxCDD	Ţ:	2	2	EMPC=0.467	2 2	<u> </u>	2 €	2 2	2 2
1,2,3,4,6,7,8-HpCDD	54.5	1.1	0.378	11.6	0.865	9090	7090	200	MD 0
OCDD	793	40	4.15	11	30.2	51.7	26.1	18.7	0.027 30 F
2,3,7,8-TCDF	EMPC=0.318	2	2	0.235	Q	0.107	Š	<u> </u>	CIN CIN
1,2,3,7,8-PeCDF	0.493	2	2	0.131	EMPC=0.119	2	S	2	2 5
2,3,4,7,8-PeCDF	0.25	2	2	0.278	0.0956	S	S	É	2 5
1,2,3,4,7,8-HxCDF	0.766	2	g	0.393	EMPC=0,110	2	9	2	2 5
1,2,3,6,7,8-HxCDF	EMPC=0.555	2	2	EMPC=0.341	0.119	2	2	0.0522	2 2
2,3,4,5,6,7-HxCDF	0.584	2	2	0.414	Q	2	9	CZ	2
1,2,3,7,8,9-HxCDF	2	2	2	9	S	2	2	2	2 2
1,2,3,4,6,7,8-HpCDF	10.5	0.312	2	4.53	0.336	EMPC=0.118	EMPC=0,0883	0.106	0.0988
1,2,3,4,7,8,9-HpCDF	0.859	2	2	0.382	Q	2	Q	S	S CN
OCDF	23.1	1.08	Q.	11.3	EMPC=0.559	S	EMPC=0.136	2	2
Total TCDDs	2	8	QV	Q	S	S	Q	QN	CN
Total PecDDs	0.557	2	9	0.223	2	2	2	2	Ž
Iotal HxCDDs	7.62	9	9	0.594	9	2	2	Q	Ë
Total HpCDDs	97.7	2.52	0.737	21.1	2	3.01	1.44	4.1	0.627
S Total ICDFs	2.6	9	9	0.64	Q	0.186	S	2	QN
O lotal Pecurs	4.55	9	Q	2.4	0.0956	2	2	2	2
lotal HXCDFs	11.8	2	2	7.14	0.224	9	2	0.0522	2
lotal HpCDFs	28.2	0.312	QN	13	0.732	S	2	0.106	0.186
TEF TEQ (ND = 0)	2.04	0.0556	0.00793	0.596	0.102	0.0717	0.0322	0.0289	0.0458
EF EQ (ND = 1/2)	2.34	0.584	0.436	0.825	0.492	0.362	0.331	0.293	0.323

Notes:
pg/g = picograms per gram
ND = not detected
na = not analyzed

Table 4-8 Summary of Dioxin Detections: Soil

Sample ID	_	CC010ES01	CC010BS02	CC017BS03	CC018BS02	CC022BS01	CC024BS01	CC024BS02	CC024BS03
Lab ID	103182004	103182005	103182010	1031851011	1031851015	1031851021	1031972001	1031972002	1031972003
Location	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D
Unit	(6/6c)	(5/6d)	(ba/a)	(b/6d)	(b/6d)	(b/bd)	(ba/ba)	(b/ba)	(חמי(מ)
2,3,7,8-TCDD	2	QN	QN	2	S	QN	CN	ND	ND ON
1,2,3,7,8-PeCDD	2	EMPC=0.0761	2	9	2	9	2	S	2 2
1,2,3,4,7,8-HxCDD	2	2	9	2	2	2	S	S	2 9
1,2,3,6,7,8-HxCDD	EMPC=0.145	EMPC=0.142	9	2	2	2	<u> </u>	2	2 9
1,2,3,7,8,9-HxCDD	EMPC=0.137	0.0921	2	EMPC=0.137	2	EMPC=0.144	2	9 5	2 2
1,2,3,4,6,7,8-HpCDD	1.54	2.45	0.199	0.69	0.432	1.16	0.596	EMPC=0.506	9
OCDD	35.5	47.4	10.8	21.8	27.8	59.9	31.3	12.3	2.26
2,3,7,8-1CDF	2	0.108	EMPC=0.0728	EMPC=0.208	0.125	0.112	S	2	2
1,2,3,7,8-PeCDF	2	2	2	0.0903		EMPC=0.0919		2	2
2,3,4,7,8-PeCDF	EMPC=0.0767	0.0741	g	EMPC=0.109		0.0671		2	2
1,2,3,4,7,8-HxCDF	0.0808	EMPC=0.0721	2			2		2	S
1,2,3,6,7,8-HxCDF	EMPC=0.0828	EMPC=0.0621	2	0.0811	0.1	0.107	2	2	2
2,3,4,5,6,7-HxCDF	EMPC=0.0929	EMP	2		2	2	9	2	2
1,2,3,7,8,9-HxCDF	2	2	2		2	2	S	2	2
1,2,3,4,6,7,8-HpCDF	0.519	0.897	2		0.118	2	0.14	9	2
1,2,3,4,7,8,9-HpCDF	Q	2	2	2	2	2	2	2	2
OCDF	0.62	1.44	QN		ND	2	S	S	2
	2	2	Q		Q	QN	QN	S	QN
lotal PecDDs	2	2	9		2	8	9	S	2
lotal HxCDDs	0.343	0.0921	2		2	9	9	Q	Q
lotal HpCDDs	1.54	5.11	0.199		1.08	3.23	1.54	0.736	2
Total ICDFs	0.0747	0.108	2	1.66	0.125	0.112	QN	1.49	QQ
Total Pecurs	0.331	0.0741	2	0.366	0.089	0.0671	S	S	2
lotal HXCDFs	0.685	0.451	2	0.153	0.1	0.107	9	Q	2
Iotal HpCDFs	0.519	2.04	ND	0.162	0.118	ON	0.14	Q	2
ITEF TEQ (ND = 0)	0.0648	0.139	0.0128	0.0504	0.0602	0.127	0.0387	0.0123	0.00226
HEF IEQ (ND = $1/2$)	6.331	0.335	0.309	0.333	0.34	0.371	0.319	0.336	0.346

Notes:
pg/g = picograms per gra
ND = not detected
na = not analyzed

Table 4-8 Summary of Dioxin Detections: Soil

Sample ID	CC026BS02	CC027BS02	CC028BS02	CC037BS01	CC037BS02	CC037BS03	CC038BS01	CC107SS01	CC118BS02
Lab ID	103182023	1031902002	1031851024	1032133001	1032133002	1033197013	103216401	103182009	1031851016
Location	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D	Area D
Unit	(6/6d)	(b/gd)	(bg/g)	(6/6d)	(b/bd)	(ba/a)	(b/bd)	(b/bd)	(0/04)
2,3,7,8-TCDD	Q	Q	QN	Q	S	S	GN	ON.	(SEA)
,2,3,7,8-PeCDD	0.13	2	EMPC=0.0997	2	2	2	2	2	2 5
,2,3,4,7,8-HxCDD	0.174	2	EMPC=0.104	2	2	2	2	£	2 5
,2,3,6,7,8-HxCDD	0.186	0.125	S	2	2	EMPC=0.396	2	E	2 5
,2,3,7,8,9-HxCDD	0.18	608.0	2	2	2	2	2	E	2 5
1,2,3,4,6,7,8-HpCDD	0.792	3.69	0.935	0.38	0.257	7.27	2.23	0.978	0.438
ocpo	39.4	82.5	32.3	15.1	69.9	110	85.9	34.3	26.3
2,3,7,8-TCDF	0.0871	0.16	EMPC=0.121	0.0665	2	EMPC=0.218	呈	2	2
1,2,3,7,8-PeCDF	EMFC=0.178	EMPC=0.0790	9	2	9	2	EMC=0.0540		FMPC=0 0997
2,3,4,7,8-PeCDF	0.162	0.02	2	2	2	0.192	EMPC=0.0620	0870	CN
1,2,3,4,7,8-HxCDF	0.152	2	2	g	Q	EMPC=0.242	2		2
1,2,3,6,7,8-HxCDF	0.154	2	Q	EMPC=0.0475	Q	0.175	EMPC=0.0760	EMPC=0.141	EMPC=0 0788
2,3,4,5,6,7-HxCDF	0.154	2	2	g	2	2	2	2	<u> </u>
1,2,3,7,8,9-HxCDF	0.14	2	2	2	S	Ŷ	2	2	2
1,2,3,4,6,7,8-HpCDF	EMPC=0.221	0.169	0.223	0.0931	2	1.89	0.24	EMPC=0.298	0.123
1,2,3,4,7,8,9-HpCDF	EMPC=0.134	9	2	9	Q	R	2	2	2
OCDF	EMPC=0.296	0.318	EMPC=0.469	0.173	ND	14.1	0.646	EMPC=0.777	2
Total TCDDs	9	0.461	QN	QN	QN	Q	Q	QN	CN
Total PeCDDs	2.13	9	Q	2	9	2	2	Q	2
Total HxCDDs	0.541	3.08	2	9	9	0.308	0.082	9	Q
Total HpCDDs	0.792	9.45	2.08	0.883	0.537	13.4	6.79	2.34	1.08
Total TCDFs	0.227	0.912	9	0.0665	QN	9	R	Q	Q
Total PeCDFs	0.162	0.151	0.106	0.0418	9	0.477	0.386	2	2
Total HxCDFs	9.0	0.149	0.384	0.0589	9	2.94	0.162	0.468	2
Total HpCDFs	ND	0.395	0.223	0.0931	ND	7.86	0.24	Q	0.123
TEF TEQ (ND = 0)	0.316	0.216	0.0439	ł	•	0.329	0.111	0.0441	0.0319
TEF TEQ (ND = 1/2)	0.376	0.422	0.337	ı	1	0.706	0.388	0.343	0.351

1382-

pg/g = picograms per gra ND = not detected na = not analyzed

Table 4-9
Summary of TPH Detections: Groundwater

		Gasoline Range	Diesel Range
Sample ID	Area	(mg/L)	(mg/L)
CC054WS01	Area 41	2.39	1.8
CC066WS01	Area 41	0.308	ND
CC024WS01	Area D	0.559	0.309
CC037WS01	Area D	1.35	0.397
CC038WS01	Area D	ND	0.365
CC039WS01	Area D	1.63	0.666
CC137WS01	Area D	1.34	0.424
CC237WS01	Area D	1.19	0.229

mg/L = milligrams per liter

ND = not detected

Table 4-10 Summary of VOC Detections: Groundwater

Sample ID	CC053WS01	CC054WS01	CC066WS01	CCM14WS01	CC001WS01	CC012WS01	CC024WS01	CC037MS04
Location	n Area 41	Area 41		Area 41	Area D	Area D	Area D	Area D
Unit	t (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1,1,1,2-Tetrachloroethane	QN	0.00468	QN	CZ	S	CZ	Q	9
1,1,2,2-Tetrachloroethane	2	0.00831	0.00602) <u>C</u>	0.00138	2 2	2 2	2 2
1,1,2-Trichloroethane	Q	0.00104	Q	2	S	2 2	2 5	2 5
1,1-Dichloroethane	Q	Q	QN	2	S	0.0161	0.00724	2 5
1,1-Dichloroethene	Q	Ω	Q	2	2	0.00362	0.002 ON	0.01
1,2,4-Trimethylbenzene	Q	S	QN	2	2	2	2	
1,3,5-Trimethylbenzene	Q	2	Q	S	Q	2	2	S
1,4-Dichlorobenzene	2	Q Z	2	2	Q	S	0.00135	2
2-Chlorotoluene	2 :	ΩN	2	2	2	Q	2	0.00711
4-Cniorotoluene	9 :	<u>Q</u>	2	2	S	8	S	0.00177
Acetone	<u>Q</u> :	2	2	Q	2	9	Q	S
Benzene	2 :	0.00137	2	S S	Q	0.00162	0.00486	0.00691
Carbon disumde	2 :	Ω	2	2	2	Q	2	2
Chicago	2 :	Q	2	2	2	Q	0.0121	0.00275
Chlorethane	2 :	Q.	2	2	2	Q	2	2
	2 :	0.01	0.00166	2	2	2	0.00616	0.00109
CIS-1, Z-Dicnioroethene	2 :	0.0305	2	0.00444	Q	0.00966	0.386	1.32
Etnylbenzene	2 9	<u>Q</u> :	2	2	Q	<u>Q</u>	Q.	QN N
	2	<u>Q</u>	2	2	2	2	Q	QN
Metnylene chloride	Q :	2	2	Q	2	9	Q	QN ON
Naphinalene	Q !	<u>Q</u>	2	2	Q.	Q	2	Q.
ii-Propyibenzene	2 :	Q !	2	2	2	Ω	2	2
o-Aylene	2 !	2	2	2	2	Q.	2	S
r & Ivi -Aylene Totooti	Q (2	2	2	2	2	2	2
Tetrachioroethene	0.192	· ·	0.504	0.0926	0.00888	0.0044	0.423	0.35
	2 !	0.00692	0.00192	2	2	0.00292	2	0.357
u ans-1,2-Dichloroethene	2 :	Q :	2	2	2	<u>Q</u>	0.00106	Q N
Trickle	ON S	2	2	2	2	2	2	Q
Inchloroethene Vind obloaide	0.0247	0.171	0.325	0.0126	0.00283	2	0.361	0.949
viriyi chioride	NO	QN	ND	ND	ND	0.00163	0.00409	0.043

mg/L = milligrams per liter ND = not detected

Table 4-10 Summary of VOC Detections: Groundwater

Г			
CCO37WSO	Area D	(/bu/	(1)(8)(1)
CC024WS01	Area D	(//ww/	(I
CC012WS01	Area D	(ma/L)	
CC001WS01	Area D	(ma/L)	· ·
CCM14WS01	Area 41	(mg/L)	- •
CC066WS01	Area 41	(mg/L)	
CC054WS01	Area 41	(mg/L)	
Sample ID	Area 41	(mg/L)	
Sample ID	Location	Unit	
			na = not analyzed

1385

Table 4-10 Summary of VOC Detections: Groundwater

Sample ID	CC038WS01	CC039WS01	CC137WS01	CC237WS01	CCM23WS01
Location	Area D				
Unit	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Analyte					
1,1,1,2-Tetrachloroethane	2	2	ΩN	QN Q	QN
1,1,2,2-Tetrachloroethane	Q	2	2	9	Q
1,1,2-Trichloroethane	2	2	2	9	Q
1,1-Dichloroethane	Q	0.00278	0.0108	0.0131	QN
1,1-Dichloroethene	Q	2	0.0116	0.0124	Q
1,2,4-Trimethylbenzene	2	0.0174	Q	Q	QN
1,3,5-Trimethylbenzene	9	0.00546	2	2	Q.
1,4-Dichlorobenzene	2	0.00145	Q	2	Q
2-Chlorotoluene	Q	0.0028	0.00742	0.00967	<u>Q</u>
4-Chlorotoluene	2	0.00191	0.00175	0.00207	Q Q
Acetone	2	2	2	0.00285	2
Benzene	2	0.014	0.00692	0.00693	QN
Carbon disulfide	2	2	2	0.000873	Ω
Chlorobenzene	2	0.0418	0.00269	0.00294	Ω
Chloroethane	2	2	2	0.000571	2
Chloroform	2	0.0015	0.00103	0.000898	2
cis-1,2-Dichloroethene	2	0.122	1.21	1.67	0.0105
Ethylbenzene	2	0.0028	2	2	2
Isopropylbenzene (Cumene)	<u>Q</u>	0.00134	2	2	Q
Methylene chloride	2	2	2	0.00115	Q.
Naphthalene	Q	0.0169	2	Q N	Q
n-Propyibenzene	Q	0.00251	2	g	S
o-Xylene	S	0.0022	2	Q	N
P & M -Xylene	2	0.00301	Q	S	QN
Tetrachloroethene	0.0247	0.203	0.343	0.427	0.00107
Toluene	2	0.686	0.43	0.408	0.00374
trans-1,2-Dichloroethene	2	9	0.0398	0.0376	0.00344
Trichlorethene	Ω N	9	2	4.	Q
Trichloroethene	0.00107	0.0754	0.941	Q.	0.00186
Vinyl chloride	ΩN	0.0153	0.0453	0.0379	Q

mg/L = milligrams per liter ND = not detected

4-72

Table 4-10 Summary of VOC Detections: Groundwater

Sample	Sample ID CC038WS01		CC039WS01	CC137WS01 CC237WS01	CC237WS01	CCM23WS01
Location	ion Area D	ō.	Area D	Area D	Area D	Area D
	Jnit (mg/	(L)	(mg/L)	(mg/L)	(mg/L)	(ma/L)
na = not analyzed			•		·	•

Table 4-13 Summary of Metals Detections: Groundwater

		Arsenic	Barium	Chromium	Lead	Selenium	Silver	Mercury
Sample ID	Area	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CC053WS01	Area 41	ND	16.7	ND	ND	ND	ND	ND
CC054WS01	Area 41	ND	204	10.5	ND	ND	ND	ND
CC066WS01	Area 41	ND	124	80.6	ND	ND	ND	ND
CCM14WS01	Area 41	ND	94.5	9.58	ND	ND	ND	ND
CC001WS01	Area D	ND	106	ND	ND	ND	ND	ND
CC012WS01	Area D	ND	90.2	7.32	ND	ND	ND	0.808
CC024WS01	Area D	ND	153	7.3	ND	ND	ND	ND
CC037WS01	Area D	ND	100	11.6	ND	ND	ND	ND
CC038WS01	Area D	ND	12.3	ND	ND	ND	ND	ND
CC039WS01	Area D	24.2	126	ND	ND	ND	ND	ND
CC137WS01	Area D	ND	100	11.2	ND	ND	ND	ND
CC237WS01	Area D	0.000379	0.101	0.00434	0.000176	0.00224	0.000356	0.000243
CCM23WS01	Area D	ND	161	ND	ND	ND	ND	0.536

mg/L = milligrams per liter

ND = not detected

4-74

Table 4-14 Summary of Dioxin Detections: Groundwater

Sample ID	CC053WS01	CC066WS01	CC024WS01	CC037WS01
Lab ID	1033211001	1033211003	1033071003	1033166001
Location	Area 41	Area 41	Area D	Area D
Unit	(ng/L)	(ng/L)	(ng/L)	(ng/L)
2,3,7,8-TCDD	9	9	Q	S
1,2,3,7,8-PeCDD	EMPC=0.00212	0.00276	0.00181	2
1,2,3,4,7.8-HxCDD	S	EMPC=0.00235	9	2
1,2,3,6,7.8-HxCDD	2	0.00259	Q	2
1,2,3,7,8.9-HxCDD	9	EMPC=0.00298	Q	2
1,2,3,4,6.7,8-HpCDD	2	2	9	2
OCDD	9	2	EMPC=0.00715	0.0119
2,3,7,8-TCDF	2	2	8	Q
1,2,3,7,8-PeCDF	0.00349	0.00333	EMPC=0.00124	2
2,3,4,7,8-PeCDF	2	0.00306	2	EMPC=0.00354
1,2,3,4,7;8-HxCDF	2	ᄝ	0.00065	S
1,2,3,6,7,8-HxCDF	EMPC=0.00226	EMPC=0.00253	EMPC=0.000827	2
2,3,4,5,6,7-HxCDF	2	9	2	2
1,2,3,7,8,9-HxCDF	2	EMPC=0.00324	S	2
1,2,3,4,6,7,8-HpCDF	EMPC=0.00228	0.00282	S	2
1,2,3,4,7,8,9-HpCDF	Q	Q	2	2
OCDF	ND	ND	Q	9
Total TCDDs	QN	Q	ON	S
Total PeCDDs	2	0.00276	0.00181	2
Total HxCDDs	2	0.00259	2	2
Total HpCDDs	Q	Q	Q	2
Total TCDFs	9	S	Q	8
Total PeCDFs	0.011	0.00639	2	2
Total HxCDFs	9	2	0.00065	2
Tctal HpCDFs	ON	0.00282	N	Q
ITEF TEQ (ND = 0)	0.000174	0.00336	0.00097	0.0000119
	0.00648	0.00742	0.0038	0.00538

ng/L = nanograms per liter ND = not detected

DEPARTMENT OF THE ARMY

FAR EAST DISTRICT, CORPS OF ENGINEERS
UNIT #15546
APO AP 96205-5546

CEPOF-ED-GE

FFB 1 1 2008

MEMORANDUM FOR Environmental Division, DPW, Camp Carroll, USA Garrison Daegu IMKO-ADP-PWE (Mr. UNIT #15748, APO AP 96260-5748

SUBJECT: Environmental Site Assessment in Support of Land Farm Construction, Camp Carroll, Korea (G&E 07-053E/E08-11).

- 1. Enclosed is the report for the subject project. The Geotechnical and Environmental Engineering Branch of the U.S Army Corps of Engineers, Far East District (FED) conducted the Environmental Site Assessment (ESA) at the subject site during 8 ~ 12 October 2007. The project tasks included soil borings, soil sampling for laboratory analyses, and volume estimation of the contaminated soil that exceeds the Environmental Protection Agency (EPA) Preliminary Remedial Goals (PRG) Region IX criteria for residential area.
- 2. This ESA collected soil samples and analyzed for metals, volatile organic compounds (VOCs), and organochlorinated (OC) pesticides. Chemicals that exceed the EPA PRG criteria mostly appear at the northern half of the land farm bed #1 and the monitoring well M07-221. Following chemicals are exceeding the EPA PRG Region IX criteria for residential area: chromium, arsenic, trichloroethylene (TCE), 1,2,4-Trichlorobenzene and tetrachloroethylene (PCE), DDD, DDT, DDE, Endrin and gamma-chlorodane.

3. Applying the EPA PRG Region IX criteria for residential to the project site, the total volume of soil that appears above the EPA PRG criteria was estimated as 2820 cubic meters. Technical questions regarding this ESA may be addressed to Dr.

Encls

b 6
Cmer, Engineering Division

CF:

Environmental Office, DPW-Daegu, IMKOM-KOREA, Unit #15746, APO AP 96218-5746 (Attn: Mr.

56

1392

DEPARTMENT OF THE ARMY

FAR EAST DISTRICT, CORPS OF ENGINEERS UNIT #15546 APO AP 96205-5546

CEPOF-ED-GE

FEB 1 1 2008

MEMORANDUM FOR Environmental Division, DPW, Camp Carroll, USA Garrison Daegu IMKO-ADP-PWE (Mr. UNIT #15748, APO AP 96260-5748

SUBJECT: Environmental Site Assessment in Support of Land Farm Construction, Camp Carroll, Korea (G&E 07-053E/E08-11).

- 1. Enclosed is the report for the subject project. The Geotechnical and Environmental Engineering Branch of the U.S Army Corps of Engineers, Far East District (FED) conducted the Environmental Site Assessment (ESA) at the subject site during 8 ~ 12 October 2007. The project tasks included soil borings, soil sampling for laboratory analyses, and volume estimation of the contaminated soil that exceeds the Environmental Protection Agency (EPA) Preliminary Remedial Goals (PRG) Region IX criteria for residential area.
- 2. This ESA collected soil samples and analyzed for metals, volatile organic compounds (VOCs), and organochlorinated (OC) pesticides. Chemicals that exceed the EPA PRG criteria mostly appear at the northern half of the land farm bed #1 and around the monitoring well M07-221. Following chemicals are exceeding the EPA PRG Region IX criteria for residential area: chromium, arsenic, trichloroethylene (TCE), 1,2,4- Trichlorobenzene and tetrachloroethylene (PCE), DDD, DDT, DDE, Endrin and gamma-chlorodane.

3. Applying the EPA PRG Region IX criteria for residential, the total volume of soil that appear above the EPA PRG criteria was estimated as 2820 cubic meters. Technical questions regarding this ESA may be addressed to Dr.

blo

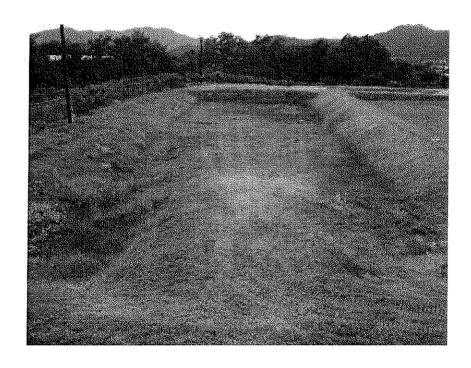
Encls

Cmei, Engineering Division

1393

Dr. CEPOF-ED-GE
Mr. CEPOF-ED-GE
Mr. CEPOF-ED-GE
Mr. CEPOF-ED-GE
Mr. CEPOF-ED-GE
Mr. CEPOF-ED-G
FILE: Ms. CEPOF-ED

CEPOF-ED-GE



US Army Corps of Engineers Far East District[®]

Draft Report

For

Environmental Site Assessment In Support of Land Farm Construction Camp Carroll, Korea (G&E 07-053E/E08-11)

January 2008

Environmental Section Geotechnical & Environmental Engineering Branch Engineering Division, FED

Table 4-11 Summary of SVOC Detections: Groundwater

Sample ID	CC039WS01	CC237WS01a	CC237WS01b
Location	Area D	Area D	Area D
Unit	(mg/L)	(mg/L)	(mg/L)
Analyte			
1,4-Dichlorobenzene	ND	0.118	ND
2-Methylnaphthalene	0.02	0.222	0.204
2-Methylphenol (o-Cresol)	ND	0.85	1.53
3&4-Methylphenol (p&m-Cresol)	ND	ND	0.251
Acenaphthene	ND	0.0631	ND
Benzyl alcohol	ND	0.166	0.43
Butylbenzylphthalate	ND	0.21	ND
Diethylphthalate	ND	1.59	1.7
Fluoranthene	ND	0.539	0.163
Napthalene	ND	0.526	0.525
Phenol	ND	0.291	ND

mg/L = milligrams per liter

ND = not detected

Table 4-12 Summary of Pesticide Detections: Groundwater

Sample ID	CC012WS01	CC024WS01	CC039WS01	CC237WS01
Location	Area D	Area D	Area D	Area D
Unit	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Analyte				
alpha-BHC	ND	0.453	0.0693	0.000111
alpha-Chlordane	ND	0.05	ND	ND
beta-BHC	ND	0.85	0.414	ND
delta-BHC	0.0663	1.63	0.92	ND
Dieldrin	ND	ND	ND	0.0000145
gamma-BHC (Lindane)	0.114	8.76	0.362	ND
Heptachlor	ND	ND	ND	0.0000537

mg/L = milligrams per liter

ND = not detected

Executive summary

Environmental Site Assessment In Support of Land Farm Construction Camp Carroll, Korea (G&E 07-053E/E08-11)

1. Purpose.

The purpose of this environmental site assessment (ESA) is to determine the horizontal and vertical extent of the suspected contamination within the land farm bed #1 of Camp Carroll. The scope of work for this ESA included subsurface soil sampling, chemical analysis and a volume estimation of contaminated soil within the area of concern in order to excavate the contaminated soil prior to constructing the full designed treatment bed.

2. Summary of Findings.

Chemicals that exceeded the Environmental Protection Agency (EPA) Primarily Remediation Goal (PRG) Region IX criteria for residential areas were identified from soil samples collected at the land farm bed 1 and around the holding pond during this ESA. The summary of findings that exceeds the EPA PRG Region IX criteria is illustrated in the figure 8 in this document.

Among the target metals analyzed, the concentrations of chromium and arsenic were the only ones to exceed the EPA criteria. Chromium concentration above the EPA criteria appears limited at the top soil layer. Arsenic concentration above the EPA criteria appeared close to the surface of the soil sample and again at 6 to 8.4 m bgs.

Among the volatile organic compounds (VOCs) analyzed, the concentrations of trichloroethylene (TCE), 1,2,4- Trichlorobenzene and tetrachloroethylene (PCE) exceeded the EPA criteria. The VOCs exceeding the EPA criteria mostly appeared in the northern half of the bed and around the holding pond.

Pesticides such as DDD, DDT, DDE, Endrin and gamma-chlorodane exceeding the EPA criteria were identified in the northern half of the land farm bed #1.

3. Conclusion.

The volume of contaminated soil in the land farm bed #1 of Camp Carroll that exceeds the EPA PRG Region IX criteria was estimated. The areas above the PRG criteria mostly appear the northern half of the land farm bed #1 and around the monitoring well M07-221.

- For the northern half of the land farm bed #1:
 30 meter X 17 meter X 4 meter (deep) = 2,040 cubic meter
- 2) For the holding pond area: 10 meter X 13 meter X 6 meter (deep) = 780 cubic meter
- 3) Total volume of soil that appear above the EPA PRG criteria = 2,820 cubic meters.

Table of Contents

1. AUTHORITY	1
2. BACKGROUND OF THE ESA	
2.1. Purpose and Scope of Work	1
3. SUBSURFACE INVESTIGATION	3
3.1. RATIONALE OF SUBSURFACE INVESTIGATION	
4. CHEMICAL TEST RESULTS.	5
4.1. LABORATORY ANALYSIS AND COMPARISON CRITERIA. 4.2. OC PESTICIDES (BY EPA METHOD 8081A)	12 12
5. CONTAMINATION STATUS OF THE CAMP CARROLL LAND FARM	18
5.1. SUMMARY OF CHEMICAL TEST RESULTS	

Appendix 1. Report of Groundwater Monitoring Well Installation at Land Farm of Camp Carroll in 2007.

List of Tables

TABLE 1. SUMMARY OF SOIL SAMPLING RESULTS.	5
TABLE 2. CHEMICAL TEST RESULT FOR THE LAND FARM SOIL SAMPLES.	6
TABLE 2 (CONTINUED)	
TABLE 2 (CONTINUED)	
TABLE 2 (CONTINUED).	
Table 2 (Continued)	
TABLE 2 (CONTINUED).	
List of Figures	
FIGURE 1. LAYOUT OF THE CAMP CARROLL LAND FARM AND THE EXISTING	
BOREHOLE/MONITORING LOCATIONS	2
FIGURE 2. CURRENT BOREHOLE LOCATIONS WITH THE 2005 BOREHOLES AND 2007 MO	NITORING
WELLS	4
FIGURE 3. DDT/DDD/DDE DISTRIBUTION AT THE LAND FARM BED#1 OF CAMP CARR	OLL 13
FIGURE 4. ARSENIC DISTRIBUTION AT THE LAND FARM BED#1 OF CAMP CARROLL	14
FIGURE 5. CHROMIUM DISTRIBUTION AT THE LAND FARM BED#1 OF CAMP CARROLL	15
FIGURE 6. TETRACHLOROEHENE (PCE) DISTRIBUTION AT THE LAND FARM BED#1 OF C	AMP
CARROLL.	16
FIGURE 7. TRICHLOROETHENE (TCE) DISTRIBUTION AT THE LAND FARM BED#1 OF CA	MP
CARROLL.	
FIGURE 8. SUMMARIZED PRESENTATION USING IN VOLUME ESTIMATION OF CONTAMIN	ATED SOIL

Environmental Site Assessment In Support of Land Farm Construction at Camp Carroll, Korea

1. AUTHORITY

The US Army Corps of Engineers, Far East District (FED) has been tasked by the United States Army Garrison (USAG) Taegu, Directorate of Public Works (DPW), US Forces Korea (USFK) to perform an Environmental Site Assessment (ESA) at the land farm of Camp Carroll, Republic of Korea.

2. BACKGROUND OF THE ESA

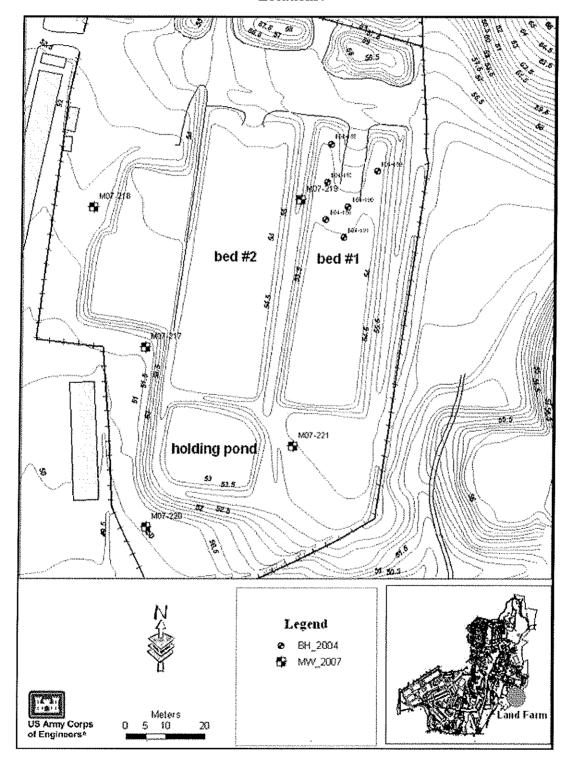
2.1. Purpose and Scope of Work

The purpose of the ESA is to determine the horizontal and vertical extent of the suspected contamination within the land farm bed #1 of Camp Carroll (Figure 1). The scope of work for this ESA includes subsurface soil sampling, chemical analysis and a volume estimation of contaminated soil within the area of concern in order to excavate the contaminated soil prior to constructing the full designed treatment bed.

2.2. Location of Land Farm

The land farm at Camp Carroll is located south of the Small Arms Firing Range and along the lower half of the eastern boundary of the Camp. The land farm consists of three engineered units. Two of the units are treatment beds, referred to as Bed #1 (East Bed) and Bed #2 (West Bed) and the third is a water retention pond. Bed #2 is the existing treatment bed and currently treating contaminated soil. The dimensions of each treatment bed, which are bounded by berms, are approximately 70 meters by 30 meters. The dimensions of the water retention pond are approximately 30 meters by 20 meters. The total land farm site is approximately 9,100 square meters.

2.3. Investigation History


DPW environmental personnel of Camp Carroll suspect that contaminated soils and materials from Area #41 were disposed of in the area now occupied by the land farm. Their suspicions are based on the fact that contaminated soil and waste materials, such as 1-gallon cans were uncovered during excavation and construction of Bed #1 in 1995. The land farm is also located very close to Area D which is identified as a landfill where hazardous waste from Area #41 was disposed of between the years of 1977 and 1982, but reportedly removed between 1982 and 1983.

In 2004 FED conducted an Environmental Assessment (EA) for 4 sites at Camp Carroll including the land farm area. The EA identified solvent-related VOCs, a few pesticides, metal and dioxin/furan compounds from the subsurface soils of the land farm.

In 2007 FED conducted soil/groundwater sampling and analyses from the land farm, and installed five monitoring wells at the land farm facility. Laboratory analyses identified the

subsurface contamination as having solvent-related VOCs exceeding EPA Region IX Preliminary Remediation Goals (PRGs), organochlorinated pesticides and some metals.

Figure 1. Layout of the Camp Carroll Land Farm and the Existing Borehole/Monitoring Locations.

3. SUBSURFACE INVESTIGATION

3.1. Rationale of Subsurface Investigation

A total of 21 soil borings were drilled for this ESA during 8~12 October 2007. Fifteen borings were placed on the Bed #1 and six borings were placed around the groundwater monitoring well M07-221 where high levels (exceeding PRG) of subsurface contamination such as VOCs and pesticides were reported from the previous investigation in 2007.

Rationale for borehole locations at Bed #1 was based on the results from the investigations in 2004 and 2007 that identified chemicals of concern above EPA Region IX PRG levels. To provide an areal coverage, the proposed boreholes were designed as a grid net of approximately 8 m by 6 m within the bed. Boreholes were located to provide as much spatial distribution information as possible within the scope of the project, while maintaining a sufficient density for assessment purposes. Figure 2 shows the borehole locations together with the existing boreholes and monitoring wells.

3.2. Subsurface Soil Sampling

Subsurface soil samples were collected utilizing a BEC GeoProbe Model 6600 Modified Direct Push & Air Percussion track-mounted drill rig. The GeoProbe minimized cuttings and created a smaller diameter borehole that was easily grouted/filled after all subsurface soil samples were collected. Using the soil-probing machine, continuous soil cores were collected from the surface to the target depth. Subsurface soil sample cores were collected by advancing an open barrel sampler with a plastic sample liner (3.7 cm inner diameter) through the sample interval equivalent to the barrel length or less (normally about 0.9 m). After the barrel sampler was pushed to the desired depth interval, the sampler was extracted from the hole and the plastic liner, containing the soil sample, was removed from the barrel sampler.

The discrete soil sample required for chemical analyses (e.g., metals and pesticides) was collected from the desired depth by retrieving it from the appropriate interval of the removed plastic liner. Retrieved soil samples from an approximate 2 meter horizon were put into a ziplock bag and thoroughly mixed. After mixing, composite soil samples were collected in a laboratory provided, clean glass jar for chemical analyses such as pesticide and metal. The VOC soil sample was not a composite sample. VOC samples were collected using a 5-gram Terra Core sampler from one or two spots in the soil column before mixing, and before putting samples into the 4-oz jar with methanol. A Soil column sample from 0 to 0.5 meter was not taken for VOC analysis since it was considered to be surface soils for this project. All samples were immediately preserved in the ice-packed sample cooler.

Table 1 summarizes the soil sampling results of each investigation and parameters analyzed. All the investigation was conducted down to 4 m below ground surface (bgs) at the bed #1, and the investigation depth around M07-221 was approximately 2 meter deeper to cover the elevation difference between the bed #1 and the monitoring well M07-221.