

Uploaded to the VFC Website

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton
Tax ID #27-3820181
CA Incorporation ID #3340400
CA Dept. of Charities ID #: CT-0190794

If Veterans don't help Veterans, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=WGT2M5UTB9A78

Note:

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

REFERENCE N

THE UNIVERSITY OF UTAH

FLAMMABILITY RESEARCH CENTER 391 SOUTH CHIPETA WAY RESEARCH PARK POST OFFICE BOX 8089 (801) 581-8431

Major Alvin Young USAFSAM/EK Brooks AFB, TX 78235

Dear Al,

Listed in the enclosed tables are the final pesticide analytical results for the soil samples from the Gulfport, Mississippi and Johnston Island Herbicide Orange storage facilities. These results along with the water sample analysis results discussed below represent completion of the chemical analysis for this contract. A formal final report will be forthcoming to summarize some of our observations of data trends and to augment the first year final report with any analytical procedure changes from last year.

The six enclosed tables contain results from three different types of soil samples for each of the two storage facilities. In Tables 1 and 2 are summarized the results from all the samples taken between July 1977 and August 1979 from Herbicide Orange spill sites at the Gulfport (GP) and Johnston Island (JI) facilities respectively. The sample date code is defined as follows: date code 9 for samples collected 28 July 1977 and 25 August 1977 from GP and JI sites respectively; date code 0 for samples collected in January 1978 from both sites; date code 1 for samples collected 6 November 1978 and 18 October 1978 from GP and JI sites respectively; and a date code of 2 for samples collected 14 June 1979 from a GP site and 8 August from JI sites. Given in Tables 3 and 4 are the results for soil penetration studies done at one GP and two JI sites respectively. The presence of pesticide components is here shown to extend more than 20 centimeters below that soil surface. The analytical results for non-spill sites for GP and JI are listed in Tables 5 and 6 respectively. The samples in these last two tables are primarily water drainage or ocean sediment samples but also include samples from two non-storage site islands in the Johnston Island area and two laboratory blanks. The two laboratory blanks reported were run on Fisher Scientific Co. Washed and Ignited Sea Sand and give some indication of the lower detection limits for the analytical methods. The exact source of these small blank contaminations is uncertain but they appear to possibly come from previous sample carry over. Thus the stated pesticide values for all of the sediment or other low concentration samples represent upper limits of actual contamination.

November 7, 1979

The twelve water samples from the two storage facilities were analyzed for TCDD only. These included five JI samples labelled JI-1/7879 through JI-5/7879 collected on 7 August 1979. The GP water samples consisted of two labelled simply W-1 and W-2 which were collected on 14 June 1979 and five (out of seven) potable water samples collected on 31 July 1979 which were labelled D331Y9, D431Y9, D131Y9, D231Y9 and D531Y9. Each of these samples were extracted by adding sodium chloride to an aliquot of the water to make a five percent salt solution and then extracting with pesticide grade hexane. The hexane extract was then reduced in volume to 50 microliters and analyzed by GC/MS the same as the soil extracts. The two GP samples from 14 June 1979 labelled W-1 and W-2 were analyzed as 100 milliliter (ml) aliquots and were found to contain <25 parts per trillion (1 ppt = 1 X 10⁻⁹ gram/liter) of TCDD. The five JI and the other five GP water samples were each analyzed as 200 ml aliquots and were found to contain <20 ppt of TCDD.

I believe these results fully satisfy the analytical requirements of the FRC on this contract and understand that their receipt will begin procedures for completion of payment to the University of Utah. I am still awaiting contact from Lt. Colonel Falcon concerning disposal of our contaminated wastes and samples. As mentioned earlier, the formal final report on this project will be in preparation during the next month. If you have any suggestions for the final report or any other questions or comments please feel free to contact either myself or Mason Hughes.

Sincerely,

William H. McClennen

Bill McClenson

WHM/mv

Enclosures

cc: B. M. Hughes

TAÉ

SUMMARY OF ANALYTICAL RESULTS FOR HERBICIDE ORANGE, ITS HYDROLYSIS PRODUCTS AND TCDD IN THE JOHNSTON ISLAND STORAGE FACILITIES

µg/9

			IMPUR1	TIES	HYDROLYSI	S PRODUCTS	HERB.	ICIDE ORANG	E COMPONE	NTS		
	Sample Date Code	Site No.	Dichloro- phenol	Trichloro- phenol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD	
	9	01	ND1 ^b	0.4	10.1	10.8	ND1 ND1	ND1	ND2 ND2	ND2 ND2	N/A ^C	•
	ĭ	01	ND1	0.1	3.0	4.0	0.1	0.3	2.2	6.4	N/A	
	9 0 1	02 02 02	5.4 ND1 ND1	0.3 0.8 0.1	12.0 2.8 1.0	18.0 0.7 2.0	NDT 0.2 NDT	0.1 1.8 0.1	ND2 ND2 0.9	ND2 0.5 2.5	N/A N/A N/A	
	9 0 1	03 03 03	ND1 ND1 ND1	ND1 0.7 0.1	0.7 3.3 0.2	7.6 0.6 0.4	ND1 O.1 ND1	ND1 0.3 0.03	ND2 ND2 0.1	ND2 ND2 0.5	N/A N/A	
	9 0	04 04 04	NDI NDI NDI	0.3 1.7 ND1	14.4 5.6 0.2	29.3 0.1 0.4	ND1 0.5 0.2	0.2 1.3 ND1	ND2 ND2 0.1	ND2 ND2 0.5	N/A N/A N/A	
÷	9 0 1 2	05 05 05 05	ND3 ND3 ND3 ND3	93.0 123 34.2 ND2	12600 11800 7930 971	8750 10200 22000 2590	4230 1980 ND3 ND3	12500 13800 1510 ND3	ND3 ≤600 ND3 ND3	ND3 ~600 ND3 ND3	.0330 .0340 .0191 .041	
	9 0 1	06 06 06	ND3 ND3 ND3	63.5 255 136	4720 6050 17600	638 1720 10900	31200 10400 ND3	10300 7630 143	7900 ~15000 1800	30600 32000 11300	<.065 ≤.006 .0076	
3	9 0	07 07 07	ND2 6.8 1.6	32.7 14.1 7.2	1980 1970 944	1250 1670 628	6600 25.2 8.0	6790 197 29.9	520 910 23.2	424 340 121	.0113 .007 .0082	

Summary of Analytical Results for Herbicide Orange, Its Hydrolysis Products and TCDD in the Johnston Island Storage Facilities (Continued)
PAGE TWO

ug/g

		I::PURIT	IES		HYDROLYSIS I	PRODUCTS	HERBI	CIDE ORANG	E COMPONEN	TS	
Sample Date a Code	Site No.	Dichloro- phenol		hloro- enol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD
9 0 1	08 08 08	ND2 ND1 ND1		13.2 2.3 ND1	1520 1.7 0.1	525 2.0 0.2	ND1 ND1 0.1	0.5 0.1	ND3 2.0 0.1	7.8 0.4	N/A N/A
9 0 1 2	09 09 09	ND3 ND3 ND3 ND3		205 181 111 149	1370 7800 15700 15500	1390 5790 11500 15600	22100 21400 14700 2240	19100 - 21100 12300 4440	5140 9000 3900 3480	3170 5000 2430 2970	.0417 .022 .0286 .053
9 0 . 1 2	10 10 10 10	ND3 ND3 ND3 ND3		460 477 456 136	42600 31100 38700 21200	45600 46600 61000 26400	24600 23300 27100 100	19800 27300 25900 83.8	<1600 ~9000 ~4000 ~520	1050 ~4000 ~3000 ~360	.196 .230 .235 .13
9 0 1	11 11	ND3 ND1 0.1		34.9 1.9 0.6	4080 2.1 5.0	3650 3.6 38.5	24400 0.9 0.8	24500 6.2 4.3	<560 7.2 6.3	330 9.4 10.1	.0534 <.0025 <.0038
9 0 1 2	12 12 12 12	ND3 ND3 ND3 ND3		172 110 46.6 53.6	1560 2300 13200 6530	1370 1200 18200 8680	32800 26200 7150 817	33500 27300 4290 1900	ND3 ND3 ND3 ≤400	~300 ND3 ND3 100	.178 .080 .111 .081
0	13 13	ND2 ND1		11.2 ND1	23.9 ND1	23.7 0.1	ND2 ND1	1.0 ND1	ND2 ND1	ND2 0.2	≤.0003 N/A
0	14 14	IDN IDN		0.8 ND1	4.4	0.6	0.2	1.0	ND2 0.4	1.2	N/A N/A
0	15 15	ND1		1.5 ND1	3.8	ND1 0.3	ND1	FDN TDN	ND1 0.1	ND1 0.2	N/A N/A

Summary of Analytical Results for Herbicide Orange, Its Hydrolysis Products and TCDD in the Johnston Island Storage Facilities (Continued)
PAGE THREE

		II:PUR.	ITIES	HYDROLYSIS 1	PRODUCTS	HERBIC	CIDE ORANGE	COMPONENT	rs.	
Sample Date Codea	Site No.	Dichloro- phenol	Trichloro- phenol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD
0	16 16	ND1 ND1	1.5 ND1	1.2	0.1	ND1	0.1 ND1	ND1 0.1	ND1 0.2	N/A N/A
0	17	NDS	12.5	5.8	6.8	ND2	NDI	ND2 0.1	ND2 0.2	N/A N/A
1	17	NDI	0.1	0.1	0.3	NDI	0.1	0.1	0.2	II/ II
0	18 18 .	ND2	11.1	691	2920 4.9	28.8	57.2 1.5	13.1 ND2	46.0 ND2	.001 <.0014
0	19 19	ND1	1.4 ND1	1.3 ND1	0.2	O.1 ND1	0.2 ND1	ND2 0.1	ND2 0.1	N/A N/A
0	20 20	101 101	1.3 ND1	4.7 ND1	0.1	ND1 ND1	ND1 ND1	ND1 0.1	0.1	N/A N/A
0	21 21	NDI	1.4 ND1	1.0 ND1	0.3 0.1	ND1 ND1	ND1 0.1	ND1 0.1	ND1 0.2	N/A N/A
0	22 22	וחוי וחוי	0.1	0.6 3.9	0.2 8.8	ND1 1.9	ND1 2.4	ND1 1.6	ND1 1.5	N/A N/A
0	23 23	11D2 11D1	9.0 0.1	47.6 0.9	23.4	ND2 0.4	3.4 3.7	ND2 0.4	ND2 0.4	<.0006 N/A
0 1 2	24 24 24	ND3 ND3 ND3	206 81.3 125	3440 9690 19500	2130 12100 20600	24500 ND3 ND3	22000 646 341	-9000 -500 2900	8000 -2000 3100	.025 .024 .064
0	25 25	MD2 0.1	4.2 1.8	6.0 20.6	4.6 38.1	ND2 11.0	1.2 36.9	ND2 34.3	2.7 27.2	N/A N/A

Summary of Analytical Results for Herbicide Orange, Its Hydrolysis Products and TCDD in the Johnston Island Storage Facilities (Continued)
PAGE FOUR

		IMPURIT	TES	HYDROLYSIS	PRODUCTS	HERBIC	CIDE ORANGE	COMPONENT	TS		
Sample Date Code	Site No.	Dichloro- phenol	Trichloro- phenol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD	
0 1 2	26 26 26	ND2 ND2 ND3	3.8 0.2 8.0	45.3 1.0 245	88.6 6.1 256	2.2 0.2 ND3	18.6 0.4 ND3	≤10 1.4 ND3	<20 1.4 ND3	.010	
0	27 27	ND2	3.2 0.1	3.1 0.5	1.5 5.0	0.5 0.1	0.5	ND2 0.8	ND2 0.6	<.0002 N/A	
0	28 28	ND3 ND3	31.8 14.3	26800 9010	38800 13200	ND3	316 461	ND3 ND3	ND3	.0002 <.0009	
. 0	29 29	0.7 ND2	4.0	13.6 0.2	62.8	18.1 ND2	69.7 ND1	6.2 ND2	11.7	.0008 N/A	
0 1 2	30 30 30	ND3 ND3 ND3	45.1 22.2 20.0	4480 3170 708	2600 4760 3270	6980 2400 193	11800 2250 563	1400 ND3 340	500 ND3 97	.038 .036 .040	
0	31 31	ND2 ND2	4.5 0.3	71.8 0.9	303 6.6	2.3	21.3	≤17 1.2	19.9	<.001	
0	32 32	ND3 ND3	138 · 18.8	18800 10100	17700 20100	3590 ND2	7680 ND2	ND3 ND3	ND3 ND3	.0007 <.0023	
0	33 33	ND1 1.4	0.6 27.1	13.8 197	0.4	0.3 60.7	1.3	1.1	0.4		
0 1 2	34 34 34	ND3 ND3 ND3	23.9 27.7 32.0	2280 3240 2970	2080 7770 9130	81.5 ND3 ND3	583 133 10.1	ND3 ND3 ND3	ND3 ND3 ND3	.029 .152 .15	
0	35 35	ND3 ND3	99.0 82.5	16500 23400	14700 26100	350 ND3	350 444	-6000 -4000	12000 -28000	.008 <.0056	

Summary of Analytical Results for Herbicide Orange, Its Hydrolysis Products and TCDD in the Johnston Island Storage Facilities (Continued)
PAGE FIVE

μg/g

			IMPUR.	ITIES	HYDROLYSIS E	PRODUCTS	HERBI	CIDE ORANG	E COMPONEN	ITS .		
	Sample Date Code [©]	Site No.	Dichloro-	Trichloro- phenol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD	
á	0 1 2	36 36 36	ND3 ND3 ND3	150 61.1 179	15300 14200 29200	10500 29900 36600	37100 ND3 1040	44800 841 8570	ND3 ND3	ND3 ND3 ND3	.015 .019 .074	
	0 1 2	37 37 37	ND3 ND3 ND3	223 113 81.7	10800 19900 10900	10800 20600 11000	21000 12300 402	30200 11900 1170	ND3 ND3 <200	ND3 ND3 <500	.074 .094 .14	
	0	38 38	ND3 ND3	169 134	2780 12900	1230 7840	8630 ND3	7350 1640	22000 ~10000	14000 10000	.006 <.0018	
	0 1 2	39 39 39	ND3 ND3 ND3	38.8 30.4 7.9	1740 1640 492	1370 2290 1530	6380 1960 ND3	10200 2250 24.7	ND3 ND3 ND3	ND3 ND3 ND3	.029 .041 .050	
	0 1 2	40 40 40	ND3 ND3 ND3	236 120 116	11400 21900 13000	9350 21900 12900	31700 10100 635	29700 6330 1940	13000 ~1000 2700	5000 ~2000 2700	.055 .053 .084	
	0 1 2	41 41 41	ND3 ND3 ND3	280 143 183	11900 26900 36300	10600 29700 38700	25100 10200 1990	32600 5850 5840	5000 -300 -1000	~2200 ~800 900	.085 .127 .12	
,	0 1 2	42 ^đ 42 42	ND3 ND3 ND3	274 98.7 108	2470 5460 2650	5050 3930 3330	16700 4430 1060	17600 4390 2600	~13000 ~1500 ~2000	~5000 ~1500 ~1900	.025 .020 .021	
	0	43 ^d	NDI	0.1	0.5	0.5	ND1 .	NDT	ND2	ND2	≤.0001	
	0	44	NDI	0.4	2.4	23.9	0.4	1.6	ND2	ND2	N/A	

Summary of Analytical Results for Herbicide Orange, Its Hydrolysis Products and TCDD in the Johnston Island Storage Facilities (Continued) PAGE SIX

Pg/g

			IMPUR.	ITIES	HYDROLYSIS !	PRODUCTS	HERBI					
Samp Dat Cod	te,	Site No.	Dichloro- phenol	Trichloro- phenol	2,4-D	2,4,5-1	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD	
(0	45	NDI	0.1	0.5	2.5	0.1	0.6	ND2	ND2	N/A	
(0	46 ^d	ND3	203	2830	2170	17800	16100	6000	4000	.024	
	0	47 ^d	5.8	10.6	574	25.9	10.2	NDI	ND2	ND2	<.0002	
(0	48 ^d	NDI	0.3	1.2	0.4	NDI	ND3	ND2	ND2	≤.0002	

a Sample Date Code: 9 - 25 August 1977

^{0 -} January 1978

^{1 - 18} October 1978

^{2 - 8} August 1979

b ND - none detected: ND1 - lower limit of detectability of 0.1 μg/g

ND2 - lower limit of detectability of 1.0 µg/g

ND3 - lower limit of detectability of 100 µg/g

Soil depth studies done on Johnston Island sites 42 and 46 in January 1978:

⁰⁻⁴² from 0-8 cm depth at site 42 0-43 from 8-16 cm depth at site 4 0-46 from 0-15 cm depth at site 4

⁰⁻⁴⁷ from 15-30 cm depth at te 0-48 from 30-45 cm depth at site

O N/A - not analyzed

TABLE 4 PESTICIDE ANALYSIS RESULTS OF PENETRATION STUDY CORAL SAMPLES TAKEN FROM JOHNSTON ISLAND SITES NO. 10 AND NO. 37 ON 8 AUGUST 1979.

µg/9

Sample Depth (cm) Site #10	Dichloro- phenol	Trichloro- phenol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD
0-2	ND3 $^{\alpha}$	120	29200	30200	65.1	257	590	500	.067
2-4 4-6 6-8 8-12 12-16 16-20 20-24	ND3 ND3 ND3 ND3 ND3 ND3 ND3	243 115 68.0 44.3 43.6 52.8 60.1	24900 15200 15600 7220 9930 10100 9410	31400 24100 20100 9800 13600 12900 10500	57.9 36.5 239 119 182 240 364	38.0 19.4 21.4 37.2 131 398 1020	630 630 <240 64 60 57 51	680 220 50 22 12 47 84	.14 .17 .10 .042 .045 .055
Site #37									
0-2 2-4 4-6 6-8 8-12 12-16 16-20 20-24	ND3 ND3 ND3 ND3 ND3 ND3 ND3 ND3	133 108 75.5 10.5 7.9 7.0 7.2 7.9	17700 13500 9570 2670 638 130 286 66.2	22300 11500 7290 2990 646 230 695 138	681 355 210 360 ND3 ND3 ND3 ND3	2530 1310 826 17.6 ND2 ND2 11.0 ND2	280 290 300 64 ND3 ND3 ND3 ND3	640 840 430 210 ND3 ND3 ND3 ND3	.14 .14 .135 .049 .015 .006 .011

 $[\]alpha$ ND - none detected

ND1 - lower limit of detectability of 0.1 $\mu g/g$ ND2 - lower limit of detectability of 1.0 $\mu g/g$ ND3 - lower limit of detectability of 100 $\mu g/g$

TABLE 6

PESTICIDE ANALYSIS RESULTS OF OCEAN FLOOR SEDIMENT SAMPLES AND CONTROL SOIL SAMPLES FROM JOHNSTON ISLAND AND LABORATORY BLANKS. THE SEDIMENT SAMPLES WERE TAKEN ON 7 AUGUST 1979 AND THE CONTROL SAMPLES FROM SAND ISLAND AND NORTH ISLAND WERE TAKEN IN OCTOBER 1978.

				ug/g					
Sample	Dichloro- phenol	Trichloro- phenol	2,4-D	2,4,5-T	Butyl Ester 2,4-D	Butyl Ester 2,4,5-T	Octyl Ester 2,4-D	Octyl Ester 2,4,5-T	TCDD
JISED-1	0.13	0.03	1.4	2.1	$ND1^a$	ND1	<0.02	<0.04	≤.0005
JISED-2	0.07	0.03	0.2	0.2	NDT	0.01	<0.01	<0.1	<u><.</u> 001
SAND IS.	NDT	0.02	0.11	0.06	NDT	0.01	NDI	ND1	N/A ^b
NORTH IS.	ND1	0.09	NDT	0.09	ND1	0.02	ND1	ND1	N/A
BLANK-1	NDT	ND1	0.2	0.02	ND1	ND1	NDI	ND1	
BLANK-2	NDT	NDI	0.3	0.07	NDT	0.02	NDT	ND1 '	

 $[\]alpha$ ND1 - none detected, lower limit of detectability of 0.1 $\mu g/g$.

b N/A - not analyzed.