

Uploaded to the VFC Website

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton
Tax ID #27-3820181
CA Incorporation ID #3340400
CA Dept. of Charities ID #: CT-0190794

If Veterans don't help Veterans, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=WGT2M5UTB9A78

Note:

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

item D Number	04900 Not Scanned
Author	Lakings, Duane
Corporate Author	Midwest Research Institute, Kansas City, Missouri
Report/Article Title	Determination of Pentachlorophenol and Hexachlorobenzene Residues
Journal/Book Title	
Year	1980
Month/Bay	July 29
Color	
Number of Images	0
Descripton Notes	EPA Prime Contract No. 68-01-5915, MRI Project No. 4901-A12

212 7467 24644253 D7441974

DETERMINATION OF PENTACHLOROPHENOL AND HEXACHLOROBENZENE RESIDUES

TASK 12 FINAL REPORT July 29, 1980

EPA Prime Contract No. 68-01-5915 MRI Project No. 4901-A12

Prepared for

U.S. Environmental Protection Agency
Office of Pesticides and Toxic Substances
Field Studies Branch
401 M Street, S.W.
Washington, D.C. 20460

Attn: Dr. Frederick Kutz, Project Officer
Ms. Sandra Strassman-Sundy, Task Manager

DETERMINATION OF PENTACHLOROPHENOL AND HEXACHLOROBENZENE RESIDUES

来说:"我们的我们就是我的人,这是我们的事情就是我们的,我们就是这个人,我们的人,我们就是这个人,我们就是这个人,我们们就是这个人。""我们,我们就是这个人,我

by

Duane Lakings Wilma Subra John Going

TASK 12 FINAL REPORT July 29, 1980

EPA Prime Contract No. 68-01-5915 MRI Project No. 4901-A12

Prepared for

U.S. Environmental Protection Agency Office of Pesticides and Toxic Substances Field Studies Branch 401 M Street, S.W. Washington, D.C. 20460

Attn: Dr. Frederick Kutz, Project Officer
Ms. Sandra Strassman-Sundy, Task Manager

This document has been reviewed and approved for publication by the Office of Toxic Substances, Office of Pesticides and Toxic Substances, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

PREFACE

This final report presents the results obtained on MRI Project No. 4901-A, Task 12 "Determination of Pentachlorophenol and Hexachlorobenzene Residues," for the Environmental Protection Agency (EPA Prime Contract No. 68-01-5915). This work was conducted through a subcontract with Gulf South Research Institute, Ms. Wilma Subra, Task Manager. This report was prepared by Dr. Duane B. Lakings, MRI Task Leader, and Ms. Wilma Subra.

MIDWEST RESEARCH INSTITUTE

John E. Going Program Manager

Approved:
Samph. Spigarelli

James L. Spigarelli, Director

Analytical Chemistry Department

CONTENTS

Preface.		i
Figures.		v
Tables .		⁄i
1.	Introdocution	}
2.	Summary	2
3.	Conclusions	
4.	Recommendations	
5.	Study Protocol	
	Sample collection	
	Sample preparation procedures	
	Analytical methods	
	Quality control procedures	
6.	Results and Discussion	
	Serum PCP and HCB determinations	
	Unconjugated urinary PCP determination	
•	Field spike experiments for serum PCP and HCB	•
	and urinary PCP	14
	Statistical evaluaton of serum and unconjugated urinary	
	PCP levels	; ı
	PCP levels in hydrolyzed urines	
	Air sample levels of PCP and HCB	
	PCP and HCB in food products	
	PCP and OCDD in wood samples	
	TOT AND COUNT IN WOOD Samples	טכ
Appendix	I - Stenciling on Arsenal Boards from Madison County, Kentucky.	70

FIGURES

Number	<u>r</u>	Page
1	Location of residences sampled in Madison County, Kentucky	7
2	Pentachlorophenol standard on 1.5% OV-17/1.95% QF-1	23
3	Serum sample of individual 209A on 1.5% OV-17/1.95% QF-1	30
4	Serum sample of individual 210A on 1.5% OV-17/1.95% QF-1	31
5	Serum sample of individual 211A on 1.5% OV-17/1.95% QF-1	32
6	Serum sample of individual 209A on 1.5% OV-1/2.4% OV-225	33
7	Serum sample of individual 210A on 1.5% OV-1/2.4% OV-225	34
8	Serum sample of individual 211A on 1.5% OV-1/2.4% OV-225	35
9	Mass spectrometry confirmation of serum of individuals 209A through 212A	36
10	Urine sample (unconjugated) of individual 207A on 1.5% OV-17/1.95% QF-1	41
11	Urine sample (unconjugated) of individual 208A on 1.5% OV-17/1.95% QF-1	42
12	Urine sample (unconjugated) of individual 209A on 1.5% OV-17/1.95% QF-1	43
13	Mass spectrometry confirmation of urine of individuals 206A, 207, 208A and 209A	45
14	Mass spectrometry confirmation of urine of individual 211A	46
15	Mass spectrometry confirmation of urine of individuals 210A, 212A, and 213A	47
16	Correlation of serum'and urinary (unconjugated) concentrations of pentachlorophenol	56
17	Correlation of serum and urinary (unconjugated) concentrations of pentachlorophenol excluding outliers	57

TABLES (continued)

Numbe	<u>r</u>	Page
18	Correlation of logarithms of serum and urinary (unconjugated) concentrations of pentachlorophenol	58
19	Air sample I007 (special case residence) on 1.5% OV-17/1.95% QF-1	62
20	Air sample I008 (special case residence) on 1.5% OV-17/1.95% QF-1	63
21	Mass spectrometry confirmation of air samples 1007 and 1008	61

TABLES

Numbe	<u>r</u>	Page
1	Listing of Residences Sampled for Pentachlorophenol in the Madison County Area, Kentucky	7
2	Individuals of Madison County, Kentucky, Sampled for Penta- chlorophenol and Hexachlorobenzene in Their Blood and Urine .	10
3	Residences of Madison County, Kentucky Whose Air was Sampled for Pentachlorophenol and Hexachlorobenzene	13
4	Food Products Collected from Various Residences in the Madison County, Kentucky Area	14
5	Residences in the Madison County, Kentucky Area from Which Wood Samples were Collected	15
6	Linearity of Pentachlorophenol and Hexachlorobenzene Analysis by GC-EC	20
7	Levels of Pentachlorophenol and Hexachlorobenzene in the Serum and Urine (Unconjugated) of Test Cases	26
8	Levels of Pentachlorophenol and Rexachlorobenzene in the Serum and Urine (Unconjugated) of Controls	28
9	Duplicate Analyses of Serum Samples for Pentachlorophenol	38
10	Recovery of Pentachlorophenol and Hexachlorobenzene Added to Pooled Serum Aliquots	39
11	Recovery Values for Pentachlorophenol and Hexachlorobenzene in Serum by Two Extraction Methods	40
12	Replicate Analyses of Urine Samples for Unconjugated Pentachlorophenol	45
13	Recovery of Pentachlorophenol Added to Pooled Urine Aliquots	49
14	Recovery Values for Pentachlorophenol and Hexachlorobenzene in Field Spikes of Serum and Urine (Unconjugated)	50
15	Recovery Values for Pentachlorophenol and Hexachlorobenzene in Simulated Field Spikes	52
16	Test Cases and Control Individuals for the Pentachlorophenol Study in Richmond, Kentucky	54

TABLES (continued)

Numbe	<u>er</u>	Page
17	Serum and (Unconjugated) Urinary Pentachlorophenol Concentration (ppb) for Cases and Controls	55
18	Levels of Pentachlorophenol (Conjugated and Unconjugated) in Hydrolyzed Test and Control Urine Samples	60
19	Levels of Pentachlorophenol and Hexachlorobenzene in Air Samples	61
20	Recovery Values for Pentachlorophenol and Hexachlorobenzene from Tenax	65
21	Levels of Pentachlorophenol and Hexachlorobenzene in Food Products	67
22	Levels of Pentachlorophenol and Octachlorodibenzodioxin in Wood Samples	68

INTRODUCTION

Between 1968 and 1971, the U.S. Army Lexington Blue Grass Depot received a large supply of wooden munition crates possibly treated with pentachlorophenol (PCP). A number of these crates, given or sold to residents of Madison County, Kentucky, were used in housing construction, paneling, etc. Thus, some area residents may have been exposed to high levels of PCP.

The Center for Disease Control (CDC), in response to requests by Congress and local medical authorities, initiated plans to investigate potential health problems associated with PCP exposure. A phase of the study was to determine and compare serum and urinary (unconjugated) PCP and serum hexachlorobenzene (HCB) levels in individuals exposed to PCP-treated ammunition crate wood in their home and in unexposed controls and to assess the levels of PCP and HCB in wood, air, and food product samples from the possible PCP-exposed residences and controls. The Environmental Protection Agency (EPA) through a contract with Midwest Research Institute (MRI) and a subcontract with Gulf South Research Institute (GSRI) assisted in the analysis of samples selected and collected by CDC.

The major goals of this study were:

- 1. Define and collect samples from a test group of approximately 30 individuals from 15 families having PCP-treated ammunition crate wood in their homes.
- 2. Identify and collect samples from a control group with no PCP-treated ammunition crate wood in the home. The control group was to be matched with the test group in number, approximate age, sex, and race. The residences of the control group were to be adjacent or near the homes of the test group.
- 3. Samples to be collected included serum and urine from each test and control individual and air, food products, and wood from the residences.
- 4. Analyze the collected samples as follows: serum PCP and HCB; urine unconjugated PCP; air samples PCP and HCB; food products PCP and HCB; and wood PCP, HCB, and dioxins. The wood samples were analyzed at the EPA laboratory in Beltsville, Maryland.

The remainder of this report presents the summary, conclusions, recommendations, experimental protocol, results and discussion, and appendix.

SUMMARY

A number of individuals who have been exposed to pentachlorophenoltreated ammunition crate wood obtained from the Blue Grass Army Depot, Lexington, Kentucky were sampled for serum and unconjugated urinary PCP levels and wood, air, and food product samples from selected residences were taken for PCP level determination. A control individual matched to each test case in age, sex, and residence location was also sampled. In addition, control residences were sampled to obtain background levels of PCP in wood, air, and food products. Also, two families who live in log homes treated with "penta" requested to be a part of the study and were designated as special cases. A total of 45 residences were sampled and resulted in 45 test case, 7 special case, and 47 control individual serum samples, 51 test case, 7 special case, and 47 control individual urine specimens, 18 test case, 2 special case, and 20 control individual residence air samples, 9 test case and 7 control individual residence food product samples, and 28 test case, 1 special case, and 21 control individual residence wood samples.

The serum, urine, air, and food product samples were analyzed for PCP at Gulf South Research Institute. The serum, air, and food products were also analyzed for HCB, a compound whose major metabolite is PCP. Urinary PCP levels were determined for the unconjugated compound. The wood samples were analyzed at the EPA Laboratory in Beltsville, Maryland.

The data for serum and unconjugated urinary PCP levels indicated that the test cases and control individuals had similar levels. Statistical evaluation of these data showed no increase in the PCP levels of the test cases and no correlation between the serum and unconjugated urinary PCP level.

However, the special cases, two familes who reside in log homes and do not have the ammunition crate wood present, had elevated serum and unconjugated urinary PCP levels in relation to the control individuals. The highest serum PCP levels were in the three special case children (ages 2, 4, and 9 years) and were 1,750, 1,680, and 910 ppb, respectively (compared to the normal control PCP serum level average of 24 ppb). The urinary excretion of unconjugated PCP in these three special cases was more than 20 times the average of the normal controls.

No HCB was detected in the serum of any test or special case or control individual.

The air samples obtained from test case and control residences had non-detectable (< 0.005 ng/l) levels of PCP and HCB. Air samples from one log home (special case residence) gave PCP levels of 0.2 and 0.38 ng/l. No air sample was obtained from the other log home.

Food products contained PCP levels ranging from not detectable (< 0.4 ppb) to 11.7 ppb. No correlation was made between the food products obtained from test case and control residences due to the limited number of samples analyzed. HCB was not detected in any food product analyzed. No food products were obtained from the special case residences.

The wood samples collected were analyzed for PCP and octachlorodibenzo-dioxin (OCDD) at the EPA laboratory in Beltsville, Maryland. Seven test case wood samples had detectable PCP (range 8.6 to 737 ppm) and eleven control wood samples had PCP (range 4.3 to 1,452 ppm). A wood sample from one special case log home also had PCP (836 ppm). No wood was obtained from the other special case log home. Only one wood sample had detectable OCDD and that level was at the detection limit of the analytical method (1 ppm). Data on the HCB levels in these wood samples will be reported later.

CONCLUSIONS

The serum and unconjugated urinary levels of PCP in test cases and control individuals indicate that the residences with ammunition crate wood did not increase the PCP levels in the test case individuals. However, the two special case families, residing in log homes and not possessing ammunition crate wood, did have high serum and unconjugated urinary PCP levels. This increase was especially noted in the three children of the special case families where the serum PCP levels were 1,000 ppb or above. In an EPA report, serum levels of PCP above 1,000 ppb were noted to cause toxic effects. Thus, toxicity from PCP is possible in the three young special case children.

The urine from the test cases, special cases, and control individuals was analyzed for unconjugated PCP, and no correlation between serum PCP and unconjugated urinary PCP levels existed for the test cases and control individuals. However, when selected urines were hydrolyzed, a 2 to 7 times increase in the PCP level was observed. This increase in PCP level for hydrolyzed urine does not affect the overall results since the serum PCP levels of the test cases and control individuals showed similar levels. The lack of correlation between the serum and unconjugated urinary PCP levels indicates that unconjugated urinary analysis cannot be employed alone to assess possible PCP exposure. However, the total urinary PCP excretion (conjugated and unconjugated) over a defined time period (24 hr collection) or collection period (early morning excretion) may provide correlation to serum PCP levels.

The results from the air sample analyses of PCP and HCB showed that the test case individuals were not being exposed to PCP in the air. The only air sample with detectable PCP was from a log home (special case), again indicating that the special case individuals were being subjected to PCP exposure.

The limited number of food products analyzed for PCP and HCB residues prevented correlation between the test case and control residences.

Also, no correlation was possible from the wood samples taken from test case and control residences and analyzed for PCP and OCDD. The one wood sample taken from a log home (special case) had a high level of PCP. Since the treatment of the log homes with penta (PCP) may have included the total dwelling, the residents of the log home may be exposed to much higher PCP levels than the test case individuals where only a limited amount of ammunition crate wood was present.

EPA Report No. 540-9-77-013, Recognition and Management of Pesticide Poisoning, D. P. Morgan, 2nd edition, page 25, printed by EPA.

RECOMMENDATIONS

Additional studies on the PCP levels from test cases and control individuals are not required since similar PCP levels were found between these two groups indicating that the test case individuals are not carrying a body burden of PCP. However, the results from this study indicate that the special cases who reside in log homes are being subjected to high PCP exposure and additional studies on this group are recommended. These studies should be designed to define the health effects of chronic exposure to PCP and to determine the levels at which toxic effects to PCP become apparent. These data can be utilized to notify current log home residents of potentially adverse health effects to PCP exposure especially with regard to children and pregnant women.

Also, in future studies to assess possible exposure to PCP, or other toxic substances, the sampling protocol should be designed for the collection of a defined urine specimen, either a 24-hr collection or an early morning specimen, so that the urinary excretion can be better defined. The collected urine specimens should be analyzed for the unconjugated compounds and for possible metabolites such as the glucuronide or sulfate adduct so that the total urinary excretion (unconjugated and conjugated) of the compound can be determined. Prior to analyzing hydrolyzed urine specimens, studies to define the optimal hydrolysis conditions and the stability of the compound under these conditions should be conducted. By analyzing a defined urine specimen for total extretion of a compound and comparing the results to serum levels of the compound, a correlation between urinary excretion and serum levels may be obtained. This information may then be employed in other studies on the same compound using only defined urine specimens, a non-invasive technique which is usually more acceptable to the subjects being sampled, to determine the possible exposure and the exposure levels to the compound.

STUDY PROTOCOL

The collection of human blood and urine specimens and air, wood, and food products samples was performed from January 28, 1980 through February 7, 1980. During that time period, the human specimens and other samples were collected from 45 residences in the Madison County area. Table 1 presents a list of the residences and Figure 1 indicates their location. From the 45 residences, blood and urine specimens were collected from 97 and 105 individuals, respectively. Blood specimens were not obtained from eight young children due to their age. A list of the individuals by age, sex and race, their Madison County Health Department code number, and the date of collection of the serum and urine samples are presented in Table 2. Air samples were collected from 38 residences, listed in Table 3, in the Madison County area. Food products were collected from five residences in the area and consisted of milk, eggs, pork, and butter. The residences and products collected from each are presented in Table 4.

Wood samples were collected from 42 residences in the Madison County area, and the samples sent to the U.S. EPA laboratory in Beltsville, Maryland for analysis. Table 5 presents a list of residences, their Madison County Health Department code numbers, the date collected, and a description of the wood sampled. The study area was revisited between February 11 and 14, 1980 to record the stenciled information on all ammunition boxes from the Blue Grass Depot. All families known to have arsenal wood in their home or out-buildings, i.e., storage sheds, barns, chicken coops, etc., were contacted, and appointments were made to visit those residences with stenciling apparent on the wood. An appointment was not scheduled for the residences with painted wood or those that had disposed of the wood after the initial visit of the collection team. All visible stenciling was recorded and 35 mm photographic slides taken of the accessible boards. The stenciling data recorded from the residences visited are presented in the Appendix. Stenciling blurred, worn off, or covered over by other boards are represented in the Appendix presentation as a question The 35 mm slides are on file at MRI.

SAMPLE COLLECTION

General

The screening of test case volunteers and the selection of control volunteers were performed by the Center for Disease Control in cooperation with the Madison County Health Department and Kentucky State Department of Human Resources. The initial visit to each test and control home was made by Madison County Health Department personnel and GSRI personnel. Collection of human blood and urine specimens was performed by the health department personnel while wood, food product, and air sampling was performed by GSRI personnel.

TABLE 1. LISTING OF RESIDENCES SAMPLED FOR PENTACHLOROPHENOL IN THE MADISON COUNTY AREA, KENTUCKY

Residence number	Residence type	Residence number	Residence type
1	test case	23	control
2	control	24	control
3	test case	25	test case
4	control	26	control
5	test case	27	control
6	test case	28	control
7	control	29	test case
8	test case	30	control
9	special case	31	test case
10	test case	32	test case
11	test case	33	control
12	test case	34	control
13	control	35	test case
14	test case	36	test case
15	control	37	test case
16	control	38	test case
17	test case	39*	control*
18	test case	40	control
19	control	41	control
20	special case	42	test case
21	control	43	control
22	control	44	control
		45	control

Note: Numbers correspond to numbered locations on Madison County map (Figure 1).

Special cases are log home residences.

^{*} Control changed to test case after ammunition crate wood located in the residence.

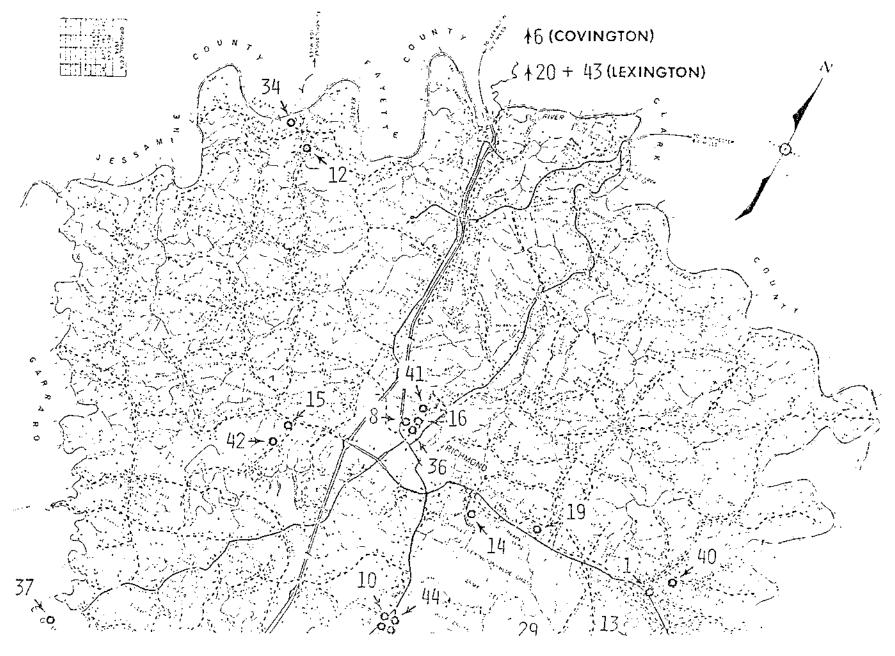


Figure 1. Location of residences sampled in Madison County, Kentucky.

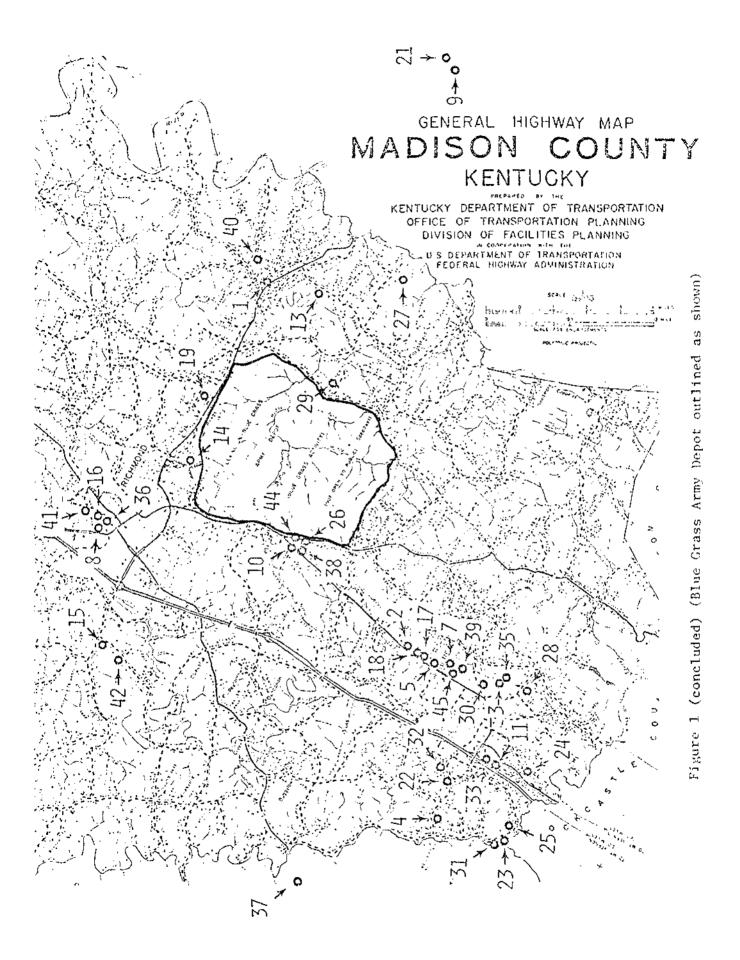


TABLE 2. INDIVIDUALS OF MADISON COUNTY, KENTUCKY SAMPLED FOR PENTACHLOROPHENOL AND HEXACHLOROBENZENE IN THEIR BLOOD AND URINE

Madison County Health	Identification		Collection date		
Department number	age	sex	race	serum	urine
Test cases					
100A	32	female	white	1/28/80	1/28/80
101A	62	female	white	1/28/80	1/29/80
102A	69	male	white	1/28/80	1/29/80
103A	11	female	white	1/28/80	1/28/80
104A	29	female	white	1/28/80	1/28/80
105A	47	male	white	1/29/80	1/30/80
106A	25	female	unknown	1/29/80	1/30/80
107A	11	male	white	a	1/30/80
108A	13	male	white	1/29/80	1/29/80
109A	49	female	white	1/29/80	1/30/80
110A	65	female	white	1/29/80	1/30/80
111A	20	female	white	1/29/80	2/1/80
112A	50	female	white	1/29/80	2/1/80
113A	56	male	white	1/29/80	2/1/80
114A	47	female	white	1/29/80	1/30/80
115A	14	female	white	1/29/80	1/30/80
116A	10	\mathtt{male}	white	а	1/30/80
117A	05	female	white	a	1/30/80
118A	11	male	white	1/29/80	1/30/80
119A	26	male	white	1/30/80	1/31/80
120A	27	female	white	1/30/80	1/31/80
121A	33	female	white	2/1/80	2/1/80
122A	15	female	white	2/1/80	2/1/80
123A	12	female	white	2/1/80	2/1/80
124A	02	male	white	a	2/5/80
125A	55	female	white	2/5/80	2/2/80
200A	36	female	white	1/28/80	1/29/80
201A	14	male	white	1/28/80	1/29/80
202A	10	female	white	1/28/80	1/29/80
203A	57	female	white	1/29/80	1/30/80
204A	32	female	white	1/29/80	2/4/80
205A	25	female	white	1/29/80	2/5/80
213A	33	female	white	1/31/80	1/30/80
214A	80	female	white	a	1/31/80
215A	05	female	white	1/31/80	1/31/80
216A	56	male	white	1/31/80	2/1/80
217A	45	female	white	1/31/80	2/1/80
218A	15	female	white	1/31/80	2/1/80
219A	21	male	white	1/31/80	2/1/80
220A	17	male	white	1/31/80	2/1/80
221A	51	male	white	2/1/80	2/1/80

(continued)

TABLE 2 (continued)

Madison County Health		Identifica	ation	Collect	ion date
Department number	age	sex	race	serum	urine
202B	09	male	white	2/1/80	2/1/80
203B	49	female	white	1/30/80	1/31/80
204B	32	female	black	2/3/80	2/3/80
205B_	32	female	white	2/4/80	2/4/80
206B ^C	30	male	white	2/6/80	2/6/80
207B_	33	female	white	2/5/80	2/6/80
210B ^C	33	f e male	white	2/5/80	2/5/80
213B	28	female	white	2/5/80	2/6/80
214B	04	male	white	а	2/5/80
215B	06	male	white	2/5/80	2/6/80
216B	56	male	white	2/5/80	2/5/80
217B	55	female	white	2/5/80	2/5/80
218B	16	male	white	2/4/80	2/2/80
219B	32	male	black	2/3/80	2/3/80
220B	17	male	white	2/2/80	2/5/80
221B	65	male	white	2/5/80	2/5/80
222B	59	female	white	2/5/80	2/5/80
223B,	23	male	white	2/5/80	2/5/80
223B _b 224B	21	female	white	2/5/80	2/5/80
225B	54	$\mathtt{mal}e$	white	2/2/80	2/3/80
226B	46	female	white	2/2/80	2/3/80
227B	29	female	white	2/5/80	2/5/80
228B	29	male	white	2/5/80	2/6/80

a Blood specimens not obtained from these young children.

Note: None of the individuals were of hispanic origin.

b Control individual changed to test cases after ammunition crate wood located in their residences.

c Control individuals for special cases.

TABLE 3. RESIDENCES OF MADISON COUNTY, KENTUCKY WHOSE AIR WAS SAMPLED FOR PENTACHLOROPHENOL AND HEXACHLOROBENZENE

Residence number and type	Madison County Health Department number	Collection Date	Description
	beparence aminer	2400	20022190201
l – test case	1004	1/31/80	chicken house
2 - control	1019	2/1/80	dining room
3 - test case	1022	2/1/80	second floor
5 - test case	жоо6	1/29/80	basement
	ноо7	1/29/80	upstairs
7 - control	P0007	2/5/80	study
8 ~ test case	1002	1/30/80	kitchen
10 - test case	HO 1 O	1/30/80	kitchen cabinet
			under sink
ll - test case	ноо8	1/29/80	"d
12 - test case	ξ025	2/2/80	actic
13 - control	1050	2/5/80	living room
14 - test case	HOO 1	1/29/80	upstairs bedroom
15 - control	1045	2/5/80	living room
ló - control	1003	1/30/80	
17 - test case	P0001	2/4/80	^a
18 - test case	P0002	2/5/80	a
19 - control	1005	1/31/80	bedroom
20 - test case	1007	1/31/80	first floor
	1008	1/31/80	second floor
22 - control	1021	2/1/80	dining room
23 - control	1042	2/5/80	bedroom
24 - control	1040	2/5/80	study
25 - test case	1039	2/1/80	collected by resider
26 - control	1014	1/31/80	trailer
27 - control	1027	2/2/80	bedroom
28 - control	1033	2/2/80	sewing room
30 - control	1023	2/1/80	dining room
31 - test case	I031	2/2/80	library
32 - test case	ноо9	1/29/80	kitchen
33 - control [,]	TO16	2/1/80	den
34 - control	1035	2/3/80	kitchen
35 - test case	1015	1/31/80	closet in middle bedroom
36 - test case	1001	1/29/80	basement
39 - control	1037	2/4/80	living room
40 - control	1047	2/5/80	hall pantry
41 - control	P0009	2/5/80	utility room
42 - test case	1006	1/31/80	stairway hall on second floor
43 - control	1052	2/6/80	den
44 - control	1029	2/2/80	living goom
45 - control	P0005	2/4/80	a

a No description of where air sample was taken.

b Changed from control residence to test residence after ammunition crate wood located in residence.

TABLE 4. FOOD PRODUCTS COLLECTED FROM VARIOUS RESIDENCES IN THE MADISON COUNTY, KENTUCKY AREA

Residence number and type	Madison County Health Department number	Collection Date	Description
I - test case ^a	G022	1/31/80	egg white
	6021	1/31/80	egg yolk
	G023	1/31/80	egg shell
29 - test case ^b	G005	1/28/80	salted pork $^{ m d}$
29 - test case	·		saited pork
	G006	1/28/80	milk (raw)
	G007	1/28/80	egg yolk
	G008	1/28/80	egg white
13 - control ^c	1055	2/6/80	milk (pasteurized)
	1059	2/6/80	egg white
	1060	2/6/80	egg yolk
	1061	2/6/80	egg shell
32 - test case	G014	1/29/80	milk ,
	G015	1/29/80	butter ^d
40 - control ^c	1056	2/6/80	egg white
	1057	2/6/80	egg yolk
	1058	2/6/80	egg shell

a Chicken roost an ammunition crate.

b Chicken roost made from ammunition crate wood.

c Eggs store purchased.

d Items selected for sampling by sampling crew; no control items obtained.

TABLE 5. RESIDENCES IN THE MADISON COUNTY, KENTUCKY AREA FROM WHICH WOOD SAMPLES WERE COLLECTED

Residence number	Madison County Health		
and type	Department number	Date	Description
1 - test case	G024	1/31/80	ammunition crate
			chicken nest
2 - control	8101	2/1/80	old board in basement
3 - test case	1011	2/1/80	closet floor
- control	1054	2/6/80	scrap board
5 - test case	G001	1/28/80	beam in basement
7 - control	P0008	2/5/80	shelf in garage
8 - test case	G018	1/30/80	inside kitchen cabine
10 - test case	G027	1/31/80	inside kitchen cabine under sink
11 - test case	G016	1/30/80	outbuilding
ll – test case	G017	1/30/80	back porch
12 - test case	1026	2/2/80	attic
13 - control	1051	2/5/80	studs in new room
14 - test case	1049	2/5/80	toy box
l5 - control	1046	2/5/80	studs in living room
16 - control	G019	1/30/80	toy train box in bedroom
17 - test case	P0004	2/5/80	bookshelf in bedroom
18 - test case	P0003	2/4/80	bookshelf in study
19 - control	G025	1/31/80	shelf board in closet
20 - special case	1009	1/30/80	second floor bath
22 - control	1020	2/1/80	outbuilding
23 - control	1043	2/5/80	firewood
23 - control	1044	2/5/80	ammunition box
24 - control	1041	2/5/80	firewood
25 - test case	1012	2/1/80	outside wood
25 - test case	1013	2/1/80	inside wood
26 - control	I010	1/31/80	dog house
27 - test case`	1028	2/2/80	basement
28 - test case	1034	2/2/80	basement
29 - test case	G002	1/28/80	hog house
29 - test case	G003	1/28/80	cow and chicken house
29 - test case	G004	1/28/80	meat house
30 - control	1024	2/1/80	old board in basement
31 - test case	1032	2/2/80	subfloor
31 - test case	228A	2/2/80	deck floor
32 - test case	G011	1/29/80	ammunition box
32 - test case	G012	1/29/80	manger
32 - test case	G013	1/29/80	basement
33 - control	1017	2/1/80	workbench in basement
34 - control	1036	2/2/80	ammunition box
35 - test case	G026	1/31/80	closet

(continued)

TABLE 5 (continued)

Residence number and type	Madison County Health Department number	Date	Description		
					
36 ~ test case	G010	1/29/80	subfloor		
37 - test case	G009	1/28/80	ammunition crate shelf in kitchen		
38 - test case	G020	1/30/80	pantry		
39 - control ^a	1038	2/4/80	ammunition box		
40 - control	1048	2/5/80	firewood		
41 - control	P0010	2/5/80	shelf		
42 - test case	G028	1/31/80	ammunition box		
43 - control	1053	2/6/80	outside front door		
44 - control	1030	2/2/80	outside wood		
45 - control	P0006	2/4/80	board in garage		

a Changed from control residence to test case residence after ammunition crate wood located in residence.

Blood

Blood specimens were drawn directly into red top Vacutainer collection tubes. The blood was allowed to clot and the serum separated by centrifugation. The serum was transferred into 15 ml pre-washed (soaked in sodium hydroxide followed by deionized water and acetone rinses) septum vials with pre-washed Pasture pipettes. The vials were sealed with Teflon lined septa and frozen.

Urine

Pre-washed wide mouth 60 ml amber bottles with Teflon lined lids were provided for the collection of urine specimens. The urine was transferred from the amber bottles into two pre-washed 15 ml septum vials with pre-washed Pasture pipettes. The vials were sealed with Teflon lined septa and frozen.

Air

Sampling of the air in the designated homes was performed using a Brailford air pump powered by three 12-volt and two 6-volt batteries. Air was drawn through two 500 mg portions of Tenax resin separated by glass wool and contained in 15 cm x 1.2 cm ID glass tubes for 6 to 8 hr at a flow rate of approximately 1 liter per minute. Following sampling, the glass tubes were wrapped in heavy duty aluminum foil and sealed in glass screw cap culture tubes with Teflon lined lids.

Food Products

Samples of food products were collected in 60 ml pre-washed amber wide-mouth bottles or heavy duty aluminum foil. Samples of meat and butter were sealed in the amber bottles with a Teflon lined lid and frozen. Samples of milk (raw or pasteurized) were transferred to pre-washed 15 ml septum vials using pre-washed Pasture pipettes, sealed with Teflon lined septa and frozen. Egg samples were cracked and the whites and yolks separated and collected in pre-washed amber 60 ml wide-mouth bottles. The egg shells were also placed in amber bottles. The bottles were sealed with Teflon lined lids and frozen.

Wood

Wood samples (10 to 20 g) were collected in pre-washed 60 ml wide-mouth amber bottles. The bottles were sealed with Teflon lined lids and the entire bottle wrapped in heavy duty aluminum foil and frozen. At each residence having arsenal wood, the data stenciled on the wood was recorded and 35 mm slides taken of accessible boards.

SAMPLE PREPARATION PROCEDURES

The procedures employed to prepare the samples for GC analysis of PCP and HCB levels are delineated in the following paragraphs. The serum and unconjugated urinary levels of PCP and the serum level of HCB were determined by the method outlined in "Analysis of Pesticide Residues in Human and Environmental Samples," U.S. Environmental Protection Agency, Health Effects Research

Laboratory, Research Triangle Park, North Carolina, revised June 1977. The assay for hydrolyzed urine (unconjugated and conjugated PCP) was conducted using the method of Edgerton and Moseman.²

Serum and Urine

Serum and unconjugated urinary levels of PCP and serum HCB levels were determined by GC after extraction of the compounds from the sample matrix and acetylation of the phenolic group of PCP. The sample preparation procedure is as follows:

- a. Quantitatively pipette 2.0 ml of serum or urine in a 15 ml culture tube with a Teflon-lined screw cap.
- b. Add two drops of concentrated sulfuric acid to the sample and mix on a Vortex mixer for 30 sec.
- c. Add 6.0 ml "nanograde" hexane (Mallinckrodt) to the sample and cap the vial.
- d. Extract the mixture for 2 hr on a mechanical rotator at approximately 30 rpm.
 - e. Centrifuge the sample at 2,000 rpm for 10 min to break the emulsion.
 - f. Pipette 3.0 ml of the hexane layer to a 15 ml septum vial.
- g. Add 2.0 ml 0.1 M sodium borate and 50 μ l acetylation reagent (2 ml pyridine plus 0.8 ml acetic anhydride, prepared fresh daily).
 - h. Shake for 1 min and allow the phases to separate.
- Transfer 1 ml of the hexane to a 1 ml autosampler vial for GC analysis.

Hydrolysis of Urine

The sample preparation procedure described above for urinary PCP levels measured the unconjugated or free levels of PC. Normally, compounds with polar groups like the phenolic group of PCP are not excreted in the urine as the parent compound but are first metabolized in the liver. For PCP, the metabolism would most likely consist of conjugation to form the glucuronide or sulfate adduct. The conjugated PCP would be efficiently removed from the blood by the kidney; thus, very little of the metabolized PCP would be present in the blood. Due to the relative nonpolarity of PCP and the ability of the kidney to readsorb (through passive diffusion) nonpolar compounds back into the blood, very little unconjugated PCP would be expected to be present in the urine.

Edgerton, T. R., and R. F. Moseman, "Determination of Pentachlorophenol in Urine: The Importance of Hydrolysis." J. Agric. Food Chem., Vol. 27, No. 1, 197-199 (1979).

Also, after the conjugated PCP is in the urine (bladder) or after excretion, a limited amount of hydrolysis may occur which would be detected as unconjugated PCP in the urine. The kinetics of hydrolysis would vary between humans, thus providing widely different levels of unconjugated compound in the urine. To obtain the true rate of urinary excretion of a compound, the urine must be analyzed for both the conjugated and unconjugated compound. If the conjugate is the glucuronide or sulfate adduct (which are the most likely adducts for PCP), hydrolysis to the free compound can be accomplished by enzymatic (aryl sulfatase, β -glucuronidase) or acid hydrolysis. The analysis of a hydrolyzed urine provides a measure of the conjugated and unconjugated level of a compound.

Analysis of the human urine specimens for unconjugated PCP was requested. A short study was conducted to determine the total (conjugated and unconjugated) urinary PCP levels. Selected urine specimens were first subjected to acid hydrolysis followed by hexane extraction. The sample preparation procedure was as follows:

- a. Quantitatively pipette 5.0 ml of urine into a culture tube with a Teflon-lined screw cap.
 - b. Add 1.25 ml concentrated hydrochloric acid and seal the vial.
 - c. Heat the sample at 100°C for 1 hr with frequent shaking.
 - d. Cool to room temperature.
 - e. Adjust the pH to 11 to 12 with 1 N sodium hydroxide.
 - f. Add 5.0 ml "nanograde" hexane.
 - g. Seal the tube and extract for 1 hr on a mechanical rotator.
 - h. Centrifuge at 2,000 rpm for 10 min.
 - i. Draw off the hexane layer and discard.
 - j. Adjust to pH 1 with concentrated sulfuric acid.
- k. Add 2 ml "nanograde" hexane, seal the tube, and extract for 1 hr on a mechanical rotator.
 - 1. Centrifuge at 2,000 rpm for 10 min.
 - m. Pipette 1.0 ml of the hexane layer to a 15 ml septum vial.
- n. Derivatize the sample using the same procedure outlined for serum and urine sample.

Air Samples

The front and back section of a Tenax tube were emptied into a 15 ml centrifuge tube and 5 ml of nanograde hexane added volumetrically. The tube was sealed and extracted on a mechanical rotator for 2 hr. The contents of the tube were centrifuged for 10 min and 1.5 ml of the hexane layer transferred to a'15 ml septum vial for derivatization. The derivatization procedure was the same as described for serum and urine samples.

Food Products

Two milliliters or 2 g (ground in a mortar and pestle) of food product were transferred to a 15 ml glass stoppered centrifuge tube. Two drops of concentrated sulfuric acid were added to the tube and the contents mixed for 30 sec on a Vortex mixer. Six milliliters of nanograde hexane was added volumetrically to the sample, the tube sealed, and extracted and derivatized by the method presented for serum and urine.

Wood

The wood samples were shipped on dry ice to the U.S. EPA laboratory in Beltsville, Maryland for analysis of PCP, HCB, and octachlorodibenzodioxin (OCDD).

ANALYTICAL METHODS

The levels of PCP and HCB in the various samples collected from indivíduals and their residences were determined by gas chromatography (GC) with electron capture (EC) detection. Samples which gave a positive GC response for PCP or HCB were subjected to gas chromatography-mass spectrometry (GC-MS) confirmation.

Gas Chromatography

The GC conditions employed for the quantitative determination of PCP and HCB in the various collected samples were as follows:

- a. Instrument: Hewlett Packard 5840
- b. Column: 1.5% OV-17/1.95% QF-1 on 100/120 mesh Supelcoport packed in a 6 ft glass column, 2 mm ID.
- c. Injector Temperature: 250°C
- d. Column Temperature: 165°C
- e. Detector Temperature: 325°C
- f. Carrier Gas: Helium
- g. Flow Rate: 30 ml/min
- h. Detector: Electron capture, 63Ni.
- i. Injection: 6 µl with an HP 7671 autosampler.

These parameters were employed for all samples analyzed. Those samples showing a positive PCP or HCB response were reanalyzed on a 1.5% OV-1/2.4% OV-225 on 80/100 mesh Chromosorb W, 6 ft x 2 mm ID. If the chromatographic peaks in the sample had the proper retention times for PCP or HCB in the two chromatographic systems, partial confirmation of the peak could be made.

Gas Chromatography-Mass Spectrometry Confirmation

The samples which had shown positive GC peaks for PCP or HCB in two chromatographic systems were confirmed by GC-MS using selected ion monitoring (SIM) techniques. GC-MS parameters employed to confirm PCP were as follows:

- a. Instrument: Hewlett Packard 5985 GC-MS
- b. Column: 1.5% OV-17/1.95% QF-1 on 100/120 mesh Supelcoport packed in a 6 ft glass column, 2 mm ID
- c. Injector Temperature: 250°C
- d. Column Temperature: 165°C
- e. Carrier Gas: Helium
- f. Flow Rate: 30 ml/min
- g. Transfer Line and Jet Separator Temperature: 275°C
- h. Ionization Voltage: 70 eV
- i. Ions Monitored: m/e 263.8, 267.8, and 305.8
- j. Injection: 5 µl

QUALITY CONTROL PROCEDURES

Analytical Method Validation and Method of Calculation

The EC-GC analytical method for the determination of PCP and HCB in the various matrices was evaluated by analyzing reference solutions of PCP and HCB. A linearity study was conducted by adding known levels of PCP and HCB (ranging from about 4 to 2,000 ng of each) to 5 ml hexane, derivatizing, and injecting 5 μ l. The results of this study are given in Table 6. These data indicate a linear response to PCP and HCB for a concentration range of 0.8 to 400 ng/ml. This range is equivalent to a concentration range in extracted samples of 2.4 to 1,250 ppb if a 2 ml or 2 g sample is taken. The sensitivity limit of the technique was 0.4 ng/ml for both PCP and HCB.

During sample analysis, a reference solution of PCP (13.3 ng/ml) and HCB (12.9 ng/ml) was analyzed prior to samples and after every fifth sample. The response factor (peak area/ng injected) was calculated for each reference solution injected with a sample set, and the average response factor determined. This value was then employed to calculate the PCP and HCB levels in the samples. The equations for these calculations are:

- 1. Response factor = $\frac{\text{peak area}}{\mu l \text{ injected}} \times \frac{\text{total volume } (\mu l)}{\text{ng compound}}$
- 2. ng compound/extract = $\frac{\text{peak area}}{\mu l \text{ injected}} \times \frac{\text{total volume } (\mu l)}{\text{response factor}}$
- 3. ppb compound = $\frac{\text{ng compound/extract}}{\text{weight sample (g)}}$

The response factors for the reference solutions analyzed during the linearity study were calcualted and are shown on Table 6. A representative GC-EC chromatogram for the determination of PCP and HCB is presented in Figure 2.

TABLE 6. LINEARITY OF PENTACHLOROPHENOL AND HEXACHLOROBENZENE ANALYSIS BY GC-EC

Reference solution	ng Added		Peak area PCP HCB		Peak area ng injected PCP HCB	
no.	PCP	нсв	(x 1	0 ³)	(x 10 ⁻⁶)	
1	-	_	0	0	0	0
2	3.98	3.87	10.0	12.5	2.510	3.230
3	7.96	7.74	11.0	22.4	1.380 ^a	2.895
4	23.9	23.2	57.0	80.9	2.385	3.485
5	79.6	77.3	181.4	249.3	2.280	3.225
6	159.2	154.6	373.1	488.2	2.345	3.160
7	199	193	472.1	591.3	2.370	3.065
8	398	386	981.4	1,139	2.465	2.950
9	796	772	2,083	2.196	2.615	2.845
10	1,990	1,930	5,254	5,146	2.635	2.665

Linear regression:

PCP - Y (peak area) = 2,650 x (ng) - 28,250 Correlation coefficient - 0.999

HCB - Y (peak area) = 2,670 x (ng) + 45,160
Correlation coefficient - 0.999

Response factor (peak area/ng injected)

PCP - average, 2.450 x 10^6 , S.D. ± 0.13 x 10^6

HCB - average, 3.055×10^6 , S.D. $\pm 0.245 \times 10^6$

Sensitivity limits: PCP - 0.4 ng/ml HCB - 0.4 ng/ml

a Value not used for linearity or response factor calculations.

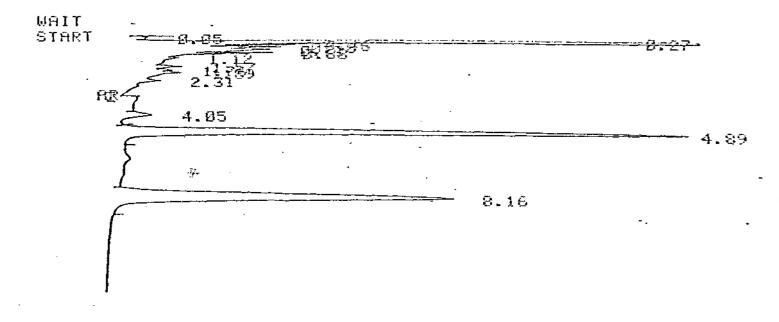


Figure 2. Pentachlorophenol standard on 1.5% OV-17/1.95% QF-1.

RRT (relative retention time): Pentachlorophenol - 8.16 min, 13.3 pg/µl Hexachlorobenzene - 4.89 min, 12.9 pg/µl

Sample Analysis Quality Control

The quality control for the determination of PCP and HCB in the various samples consisted of analyzing duplicate aliquots of a sample for every 10 samples analyzed and spiking pooled samples with known levels of PCP and HCB. For those samples with detectable PCP or HCB, the sample was reanalyzed using a second GC column and if the retention times on the two systems agreed that the peak detected was PCP or HCB, tentative confirmation was made. Final confirmation of PCP or HCB being present in a sample was made by SIM-GC-MS.

For serum specimen PCP and HCB determinations, the precision and accuracy of the analytical results were assessed by analyzing duplicate aliquots of one sample and a pooled serum sample spiked with 40 ppb PCP and 39 ppb HCB with every 10 samples analyzed. A similar protocol was employed for urinary unconjugated PCP level precision and accuracy evaluations.

Food product samples of sufficient size were spiked with PCP and HCB to determine recovery values for samples carried through the analytical procedure. No duplicate food product samples were analyzed.

Analytical Procedure Quality Control

The methodology employed for the determination of PCP and HCB in human specimens was evaluated. For serum sample analysis, the extraction procedure was studied to determine if the recovery was higher with two 3-ml hexane extractions instead of a single 6-ml extraction. A short study was conducted to evaluate the effects of urinary sediments on the recovery of unconjugated PCP. Urine specimens with sediment were centrifuged, divided equally into a clear sample and a sediment sample, extracted, derivatized, and analyzed.

Field Sampling Quality Control

The stability of PCP and HCB in samples collected in Madison County, shipped to the analytical laboratory, and stored until assay was evaluated by field spiking studies. Field spikes for serum and urine specimens were prepared by adding a known level of PCP and HCB to collection vials, transporting the vials to the field, and adding 5 ml serum or 10 ml urine to the vials in the field. These spiked samples were then treated as collected specimens. A simulated field spiking study was conducted in the laboratory to confirm the results of the field spikes. For air samples, the collection tubes were field spiked with a hexane solution containing PCP and HCB. Two tubes were sealed immediately after spiking and two had air drawn through prior to sealing. In addition, the same procedure was used to prepare a set of laboratory spiked air samples.

RESULTS AND DISCUSSION

SERUM PCP AND HCB DETERMINATIONS

Serum Analysis

The results for the GC-EC determination of PCP and HCB serum levels in 45 test case, 7 special case, and 45 control individuals are given in Tables 7 and 8. The test case individuals had an average serum PCP level of 21.0 ppb, a standard deviation (SD) of \pm 11.3, a relative standard deviation (RSD) of 54%, and a range of 2.2 to 54.6 ppb. Five test case individuals, young children ages 2 to 11 years, could not be sampled for serum. The control individuals had an average serum PCP level of 24.0 ppb, with a SD and RSD of \pm 12.5 and 52%, respectively, and a range of 4.5 to 67.9 ppb. Two control individuals, young children ages 2 and 4 years, did not have blood taken because they were controls for the test case individuals who could not be sampled. No HCB was detected in the serum of either the test cases or control individuals.

The individuals from the two special case families, who reside in log homes, had elevated serum PCP levels. Special cases 206A and 207A reside in a log home which they had treated with "penta," and special case 207A had a serum PCP level of 95.8 ppb which is 4 times the average PCP serum level for the control individuals, while special case 206A had a serum PCP level (47.6 ppb) that was 2 times the control serum PCP average level. Special case 208A, 209A, 210A, 211A, and 212A live in a commercially purchased log home. The serum PCP level for each of these special cases and the number of times above the control individual average were: 208A - 910 ppb (38X), 209A - 710 ppb (30X), 210A - 580 ppb (24X), 211A - 1,750 ppb (73X), and 212A - 1,680 ppb (70X), respectively. Special attention is made to the fact that the highest PCP serum levels occurred in the three children special cases (209A, 211A, and 212A). Representative GC-EC chromatograms of special cases 209A, 210A, and 211A on the 1.5% OV-17 and 1.95 QF-1 column are presented in Figures 3, 4, and 5, respectively. No HCB was detected in the serum of any of the special cases.

Confirmation of PCP Serum Analysis

The chromatographic peak designated as PCP on the OV-17/QF-1 column for the special case individuals was tentatively confirmed as PCP by reanalysis on a 1.5% OV-1 and 2.4% OV-225 column. Figures 6, 7, and 8 present chromatograms obtained for serum PCP confirmation for special cases 209A, 210A, and 211A on the OV-1/OV-225 system. Final confirmation of the observed GC peak being PCP was made by SIM-GC-MS. Figure 9 presents the GC-MS confirmation for special cases 209A, 210A, 211A, and 212A. The reas of the three m/e ions monitored were summed and are shown as a single pea.

TABLE 7. LEVELS OF PENTACHLOROPHENOL AND HEXACHLOROBENZENE IN THE SERUM AND URINE (UNCONJUGATED) OF TEST CASES

Madison County		······································		Serum		Urine PCP	
Health Department	Identification				(ppb)		
number	age	sex	race	(ppb) ^a	(ppb) ^a	(unconjugated	
100A	32	female	white	40.0	N.D. ^b	2.4	
101A	62	female	white	12.0	N.D.	1.1	
102A	69	male	white	21.9	N.D.	1.2	
103A	11	female	white	29.7	N.D.	1.4	
104A	29	female	white	54.6	N.D.	0.6	
105A	47	male	white	17.1	N.D.	1.9	
106A	25	female	unknown	13.8	N.D.	1.3	
107A	11	male	white	C	c	2.0	
108A	13	male	white	25.3	N.D.	1.3	
109A	49	female	white	9.9	N.D.	1.2	
110A	65	female	white	17.1	N.D.	3.6	
111A	20	female	white	2.2	N.D.	3.8	
112A	50	female	white	15.2	N.D.	1.2	
113A	56	male	white	13.5	N.D.	1.5	
114A	47	female	white	19.9	N.D.	1.0	
115A	14	female	white	27.8	N.D.	1.5	
116A	10	male	white			1.7	
	05	mare female		c	C	1.1	
117A			white	¢	C		
118A	11	male	white	22.1	N.D.	0.9	
119A	26	male	white	27.3	N.D.	1.7	
120A	27	female	white	33.1	N.D.	0.7	
121A	33	female	white	7.1	N.D.	1.2	
122A	15	female	white	8.1	N.D.	2.6	
123A	12	female	white	28.7	N.D.	1.0	
124A	02	male	white	C ·	c	0.9	
125A	55	female	white	10.6	N.D.	2.8	
200A	36	female	white	15.5	N.D.	0.9	
201A	14	male	white	21.8	И.Д.	0.8	
202A	10	female	white	22.6	N.D.	1.5	
203A	57	femal <i>e</i>	white	20.6	1.0	1.4	
204A	32	female	white	14.2	N.D.	1.1	
205A	25		white			4.0	
213A	33	female				7.2	
214A	08	femal <i>e</i>	white	c	c	2.3	
215A	05	female	white	53.9	N.D.	4.0	
216A	56	male	white	13.7		2.4	
217A	45	female	white	16.3		1.6	
218A	15	female	white	21.2	N.D.	1.0	
219A	21	male	white	9.9	N.D.	2.2	
220A	17	male	white	28.7	N.D.	0.7	
221A	51	male	white	23.4	N.D.	1.6	
222A	49	female	white	13.4	N.D.	1.6	

(continued)

TABLE 7 (continued)

Madison County			 -	Ser	เนท	Urine PCP
Health Department	1	dentificat	tion			(ppb)
number	age	sex	race	(ppb) ^a	(ppb) ^a	(unconjugated
223A	16	female	white	21.1	N.D.	1.2
224A	22	male	white	16.5	N.D.	1.3
225A	49	male	white	11.0	N.D.	1.5
226A	49	female	white	13.6	N.D.	2.0
227A	29	female	white	30.5	N.D.	2.8
228A	39	male	white	40.6	N.D.	5.0
$117B_d^d$	08	female	white	c	С	1.5
121B".	38	female	white	16.9	N.D.	0.6
224B ^d	21	female	white	22.4	N.D.	1.6
Number				45	**	51
Average				21.0	_	1.8
Standard devi	ation			± 11.5	-	± 1.2
Relative stan		eviation		54%	-	68%
	Spec	ial Cases	- Log Ho	ome Residen	ts	
206A	29	male	white	47.6	N.D.	5.1
207A	28	female	white	95.8	N.D.	1.7
208A	09	male	white	910	N.D.	54.7
209A	34	male	white	710	N.D.	46.8
210A	29	female		580	N.D.	50.8
211A	02	female		1,750	N.D.	216
212A	04	female	white	1,680	N.D.	51.2

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml; HCB, 0.4 ng/ml.

b N.D. - none detected, < 0.4 ppb.

c Sample not collected.

d Control subjects changed to test cases after PCP treated amunition crate wood located in their residence.

TABLE 8. LEVELS OF PENTACHLOROPHENOL AND HEXACHLOROBENZENE IN THE SERUM AND URINE (UNCONJUGATED) OF CONTROLS

Madison County				Ser	um	Urine PCP (ppb)
Health Department	I	dentificat	tion			(ppb)"
number	age	sex	race	(ppb) ^a	(ppb) ^a	(unconjugated)
					b	
100B	28	female	white	25.0	N.D.b	1.3
101B	44	female	white	25.8	N.D.	4.3
102B	44	male	white	16.9	N.D.	1.9
103B	17	female	white	20.5	N.D.	1.6
104B	26	female	white	49.8	И.D.	2.2
105B	58	male	white	67.9	N.D.	2.9
106B	30	female	white	21.0	N.D.	0.9
107B	09	female	white	30.8	N.D.	1.9
108B	13	male	white	40.0	N.D.	3.1
109B	51	female	white	29.4	N.D.	1.6
110B	57	female	white	29.0	N.D.	2.2
111B	15	female	white	31.6	N.D.	3.3
112B	48	female	white	42.2	N.D.	2.0
113B	51	male	white	9.5	N.D.	2.5
114B	31	female	unknown	10.0	N.D.	1.2
115B	12	female	white	11.7	N.D.	2.2
116B	10	female	white	17.6	N.D.	0.9
118B	09	female	white	33.5	N.D.	3.5
119B	36	male	white	6.3	N.D.	1.7
120B	33	female	white	4.4	N.D.	1.2
122B	14	female	white	26.2	N.D.	1.2
123B	15	male	white	7.4	N.D.	1.2
1248	02	female	black	c	c	1.2
200B	29	female	white	23.0	N.D.	. 3.4
201B	16	female	white	35.4	N.D.	4.7
202B	09	male	white	35.8	N.D.	1.7
203B	49	female	white	13.7	N.D.	2.0
204B	32	female	black	24.2	N.D.	4.1
205B,	32	female	white	19.2	N.D.	1.2
206Bd	30	male	white	11.6	N.D.	1.2
206Bd 207Bd	33	female	white	20.6	N.D.	2.4
210B ^d	33		white	22.0		0.4
213B	28	female	white	38.4	N.D.	1.5
213B 214B	04	male	white	50.4 C	c c	1.4
215B	06	male		38.1	N.D.	3.1
215B 216B	56	male	white	29.3		2.8
217B	55	female		14.6	N.D.	0.7
217B 218B	33 16		white	22.8		4.2
218B 219B	32		black	18.4		1.0
219B 220B	32 17	male			N.D.	2.3
2208	17	шате	white	4.5	N.D.	2.3

(continued)

TABLE 8 (continued)

Madison County				Se	rum	Urine PCP
Health Department	Identification			•		(ppb) ^a
number	age	sex	race	(ppb) ⁶	(ppb) ^a	(unconjugated)
221B	65	male	white	17.2	N.D.	1.3
222B	59	female	white	13.2	N.D.	2.2
223B	23	male	white	21.7	N.D.	1.4
225B	54	male	white	15.1	N.D.	11.0
226B	46	female	white	19.8	N.D.	2.0
227B	29	female	white	23.7	N.D.	2.6
228B	29	male	white	29.5	N.D.	2.4
Number e				45	_	47
Average				24.0	•	2.3
Standard devi	ation			± 12.5	-	± 1.6
Relative stan		eviation		52%	_	72%

a ppb - parts per billion (ng/ml), sensitivity - 0.4, ng/ml; HCD, 0.4 ng/ml.

b N.D. - none detected, < 0.4 ppb.

c Sample not available.

d Control individuals for special cases.

e Number - number, average, standard deviation, and relative standard deviation includes controls for special cases.

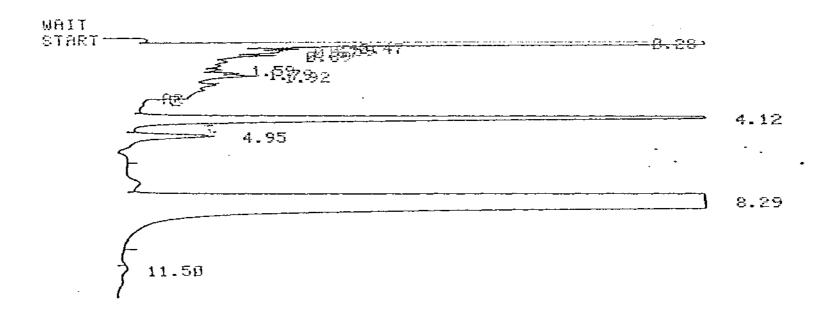


Figure 3. Serum sample of individual 209A on 1.5% OV-17/1.95% QF-1.

RRT: Pentachloropheno1 - 8.29 min, 710 ppb

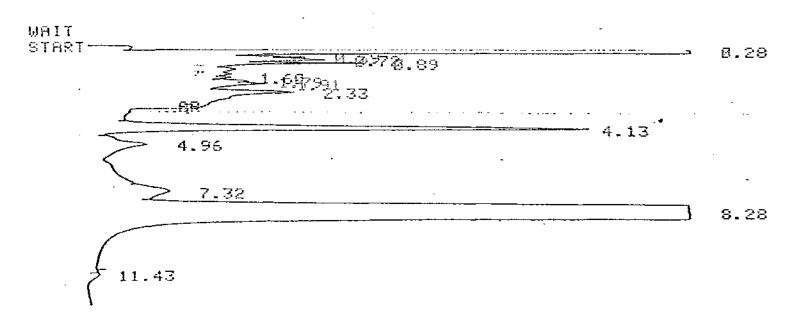


Figure 4. Serum sample of individual 210A on 1.5% OV-17/1.95% QF-1.

RRT: Pentachlorophenol 8.28 min, 580 ppb

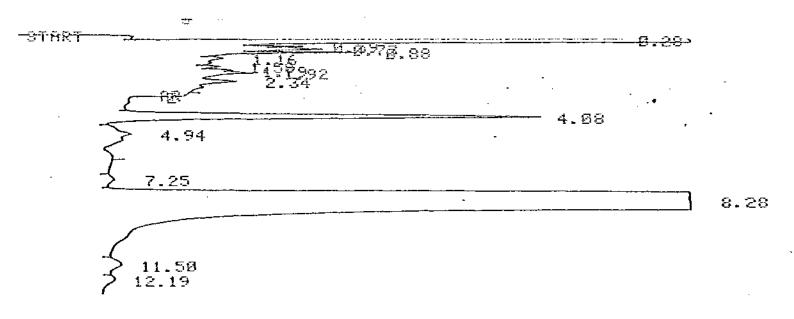


Figure 5. Serum sample of individual 211A on 1.5% OV-17/1.9% QF-1.

RRT: Pentachlorophenol - 8.28 min, 1,750 ppb

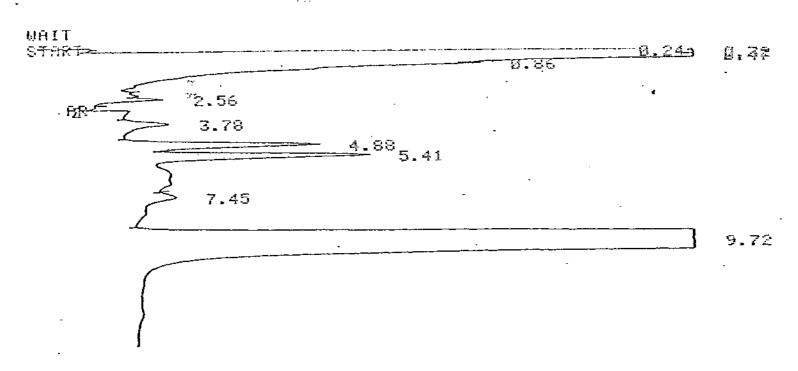


Figure 6. Serum sample of individual 209A on 1.5% OV-1/2.4% OV-225.

RRT: Pentachlorophenol - 9.72 min

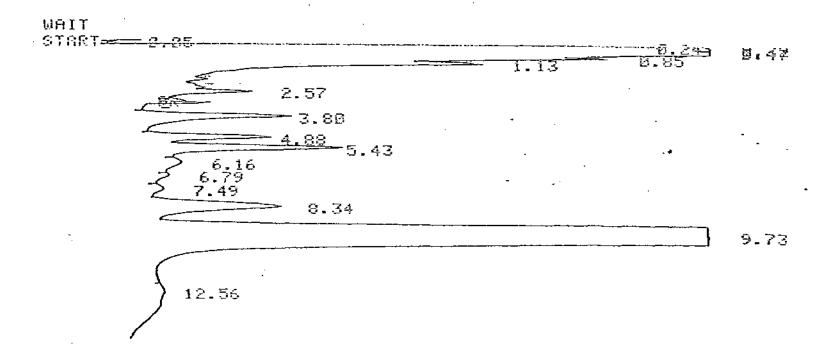


Figure 7. Serum sample of individual 210A on 1.5% OV-1/2.4% OV-225.

RRT: Pentachlorophenol - 9.73 min

BIL FACTOR: 1.8888 E+ 8

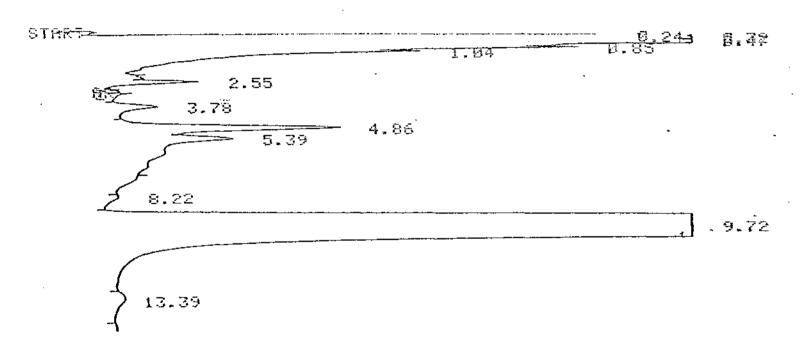


Figure 8. Serum sample of individual 211A on 1.5% OV-1/2.4% OV-225,

RRT: Pentachlorophenol - 9.72 min

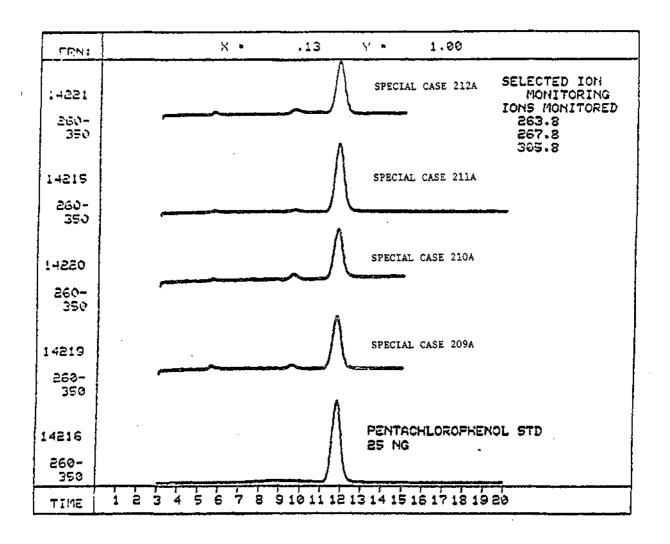


Figure 9. Mass spectrometry confirmation of serum of individuals 209A through 212A.

Quality Control - Sample Analysis, Precision and Accuracy

The precision and accuracy of the analytical data for PCP and HCB in serum was assessed by analyzing duplicate aliquots of a sample and spiked pooled serum aliquots. The duplicate analyses of PCP are given in Table 9. The standard deviation of pairs (S.D.P.) and relative standard deviation of pairs (R.S.D.P.) were \pm 3.6 and 15.4%, respectively; and the average percent difference between pairs was 18.2 \pm 18.9. Thus, the analytical method employed for serum PCP provided data within 20% of the actual value. Since no serum HCB was detected, evaluation of the method was not possible. The recovery of PCP and HCB in pooled serum samples (Table 10) averaged 78% and 91%, respectively, for 10 spiked samples. These data indicate that the analytical data have the necessary accuracy.

Quality Control - Sample Preparation Procedure

The sample preparation procedure of serum PCP and HCB levels was evaluated by extracting spiked serum with either one 6-ml or two 3-ml hexane aliquots. The results of this evaluation are summarized in Table 11 and show that the single extraction employed for this study was equivalent to a double extraction. Also, this study showed that the extraction was linear, i.e., similar recoveries were obtained for serum aliquots spiked with about 40 and 200 ppb of PCP and HCB.

UNCONJUGATED URINARY PCP DETERMINATION

Urine Analysis

The results for the GC-EC determination of unconjugated PCP urinary levels in 51 test case, 7 special case, and 47 control individuals are given in Tables 7 and 8. As was noted earlier for serum CP levels, the unconjugated PCP urinary levels for the test cases and control individuals were similar. The average, SD, RSD, and range for the test cases and control individuals unconjugated urinary PCP were: 1.8 and 2.3 ppb; \pm 1.2 and \pm 2.3; 68% and 72%; and 0.6 to 7.2 ppb and 0.4 to 11.0 ppb, respectively.

For five of the special case individuals, a substantial increase in unconjugated urinary PCP levels was noted. Special cases 206A and 207A had unconjugated urinary PCP levels of 5.1 and 1.7 ppb, respectively. While this level is within the range of the control individuals, the serum PCP level for these two special cases was elevated. Special cases 208A, 209A, 210A, 211A, and 212A, members of a single family who reside in a commercially purchased log home, all had elevated unconjugated PCP urinary levels. The levels and the number of times above the average unconjugated urinary PCP level for control individuals were: 208A - 54.7 ppb (24X), 209A - 46.8 ppb (20X), 210A - 50.8 ppb (22X), 211A - 216 ppb (94X), and 212A - 51.2 ppb (22X). As with the serum PCP levels for the special cases, the highest unconjugated urinary PCP was found in a child (211A), age 2 years. Representative GC-EC chromatograms for special cases 207A, 208A, and 209A on the OV-17/QF-1 column are shown in Figures 10, 11, and 12, respectively.

TABLE 9. DUPLICATE ANALYSES OF SERUM SAMPLES FOR PENTACHLOROPHENOL

Madison County		hlorophe	nol (ppb)		
Health Department	Repl	icate	Average	, ,	h
Number	A	В		(A-B)	% ^b
100A	36.8	41.1	39.0	4.3	11.0
109A	11.4	8.6	9.9	2.8	28.0
202A	22.0	23.3	22.6	1.3	5.8
213A	9.1	12.0	10.6	2.9	27.4
219A	9.6	10.2	9.9	0.6	6.1
226A	13.9	13.4	13.6	0.5	3.7
104B	49.5	50.1	49.8	0.6	1.2
108B	40.0	40.1	40.0	0.1	0.2
111B	27.5	35.7	31.6	8.2	26.0
203B	16.9	10.5	13.7	6.4	46.7
210B	21.4	22.5	22.0	1.1	5.0
218B	29.3	16.2	22.8	13.1	57.5
Avg A a S.D.P. R.S.D.P	nd B ^C 23 ± 3	.7 .6 .4%		Avg ^d S.D. f	18.2 ± 18.9

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml.

b % - Percent difference between A and B values.

$$\% = \left(A-B\right) / \frac{(A+B)}{2} \times 100$$

- c Avg A and B Average of all A and B values.
- d Avg Average of percent values.
- e S.D.P. Standard deviation of pairs. S.D.P. = $(\Sigma(A-B)^2/2xP)^{1/2}$ P = Number of pairs
- f S.D. Standard deviation. S.D. = $(\Sigma(\bar{x}-x)^2/2xN)^{1/2}$ N = Number of pairs
- g R.S.D.P. Relative standard deviation of pairs.
 R.S.D.P. = S.D.P./Avg A and B x 100

TABLE 10. RECOVERY OF PENTACHLOROPHENOL AND HEXACHLOROBENZENE ADDED TO POOLED SERUM ALIQUOTS

Pooled serum	Level added (ppb ^a)		Level fo	und (ppb ^a)	% Recovery ^b	
number	PCP	HCB	PCP	нсв	PCP	нсв
1	40	39	55.1	37.4	87	96
2	40	39	51.8	33.1	79	85
3	40	39	54.2	31.1	85	80
4	40	39	46.0	32.2	64	83
5	40	39	53.6	37.8	83	97
6	40	39	50.4	36.2	75	93
6 7	40	39	51.6	38.3	78	98
8	40	39	52.3	35.4	80	91
9	40	39	53.7	38.7	84	99
10	40	39	47.9	35.6	69	91
-	0	0	20.3	N.D. ^c		
				Avg	78	91
				S.D.	± 7	± 7

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml; HCB, 0.4 ng/ml.

b % Recovery = $\frac{ppb \ spiked - ppb \ unspiked}{ppb \ added} \times 100$

c N.D. - not detected, < 0.4 ng/ml.

TABLE 11. RECOVERY VALUES FOR PENTACHLOROPHENOL AND HEXACHLOROBENZENE
IN SERUM BY TWO EXTRACTION METHODS

	Pe	entachloroph	enol	He	exachloroben	zene
Sample	Level spiked (ppb ^a)	Level recovery (ppb)	Recovery (%)	Level spiked (ppb)	Level recovery (ppb)	Recovery (%)
Extraction pe	rformed w	ith one 6-ml	aliquot of I	nexane:		
Serum spiked	40	50.7	86	38.8	34.5	86
Serum spiked	40	46.2	75	38.8	35.7	89
Serum spiked	200	185	84	194	155	78
Serum spiked	200	170	77	194	145	73
Serum blank		16.2		-	N.D.	
Serum blank	_	16.5		-	N.D.	
Extraction pe	rformed w	ith two 3-ml	aliquots of	hexane:		
Serum spiked	40	52.8	84	38.8	42.3	106
Serum spiked	40	50.1	77	38.8	33.6	84
Serum spiked	200	178	79	194	167	84
Serum spiked	200	185	83	194	168	84
Serum blank	-	19.7		-	N.D.	
serum brank						

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml; HCB, 0.4 ng/ml.

Figure 10. Urine sample (unconjugated) of individual 207A on 1.5% OV-17/1.95% QF-1 RRT: Pentachlorophenol 8.44 min, 1.7 ppb

; (

DIL FACTOR: 1.0000 E+ 0

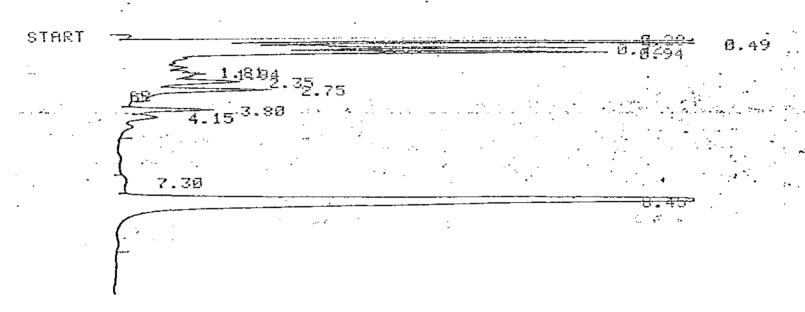


Figure 11. Urine sample (unconjugated) of individual 208A on 1.5% 0V-17/1.95% QF-1.

RRT: Pentachlorophenol 8.45 min, 54.7 ppb

Figure 12. Urine sample (unconjugated) of individual 209A on 1.5% OV-17/1.95% QF-1

RRT: Pentachlorophenol - 8.44 min, 46.8 ppb

Ŵ

Confirmation of Unconjugated PCP Urinary Analysis

The unconjugated PCP in the urine specimens from the special cases was tentatively confirmed by reanalysis on the OV-1/OV-225 column. Final confirmation of the detected peak being PCP was made by SIM-GC-MS. Selected ion monitoring traces for special cases 206A through 212A and test case 213A are shown in Figures 13, 14, and 15. The low level of PCP in special cases 206A and 207A prevented GC-MS confirmation. The other special cases and test case 213A were confirmed as having unconjugated PCP in their urine.

Quality Control - Sample Analysis, Precision and Accuracy

The precision and accuracy of the determination of unconjugated PCP in urine was assessed through duplicate determinations of selected samples and the recovery of PCP added to a pooled urine sample. The results of the duplicate analyses are given in Table 12; no statistical evaluation of these duplicates was made because the low level of unconjugated PCP would cause large errors for small differences between analyses. However, these data do show that similar values for PCP were obtained for duplicate determinations. The accuracy of the unconjugated urinary PCP levels was determined by analyzing spiked pooled urine aliquots. The results are given in Table 13 and show an average PCP recovery of 97% with a SD of \pm 7. Thus, quantitative recovery of PCP added to urine was obtained.

Quality Control - Sample Preparation Procedure

Selected urine specimens contained sediment which may have adsorbed unconjugated PCP; and thus, uniform sampling of urine may not have been possible. A study was designed to evaluate the effect of urinary sediment on the determination of unconjugated PCP levels. Urine samples containing sediment were centrifuged and equal aliquots taken, one with and one without the sediment. The results are given in Table 12, relicate column 3 for the sediment containing samples and replicate column 4 for the supernatant samples. These data show little difference between the unconjugated PCP levels in the separated urines, thus indicating that the urinary sediment did not affect the levels for unconjugated urinary PCP.

FIELD SPIKE EXPERIMENTS FOR SERUM PCP AND HCB AND URINARY PCP

The sampling, sample handling, storage, and shipment for serum and urine specimens was evaluated by conducting field spiking experiments. Pre-washed sample vials were spiked with a solution of PCP and HCB in hexane in the laboratory and shipped to the field with the sample vials. In the field, 10 ml of urine or 5 ml of serum were added to the vials, the vials sealed, and treated as samples. The results of the field spikes of urine and serum are presented in Table 14. Recovery values for PCP ranged from 61 to 88% in serum and 34 to 60% in urine. HCB was only detected in one serum and one urine field spike with recovery values of 67 and 27%, respectively. Due to the lack of recovery of HCB and the low recovery of PCP, a laboratory simulation of field spikes was performed. The vials were spiked and stored at room temperature 6 days prior to the addition of serum or urine. At that time, the serum and urine samples were added to the spiked bottles, and a similar set of serum and urine samples were added to septum bottles and these samples spiked.

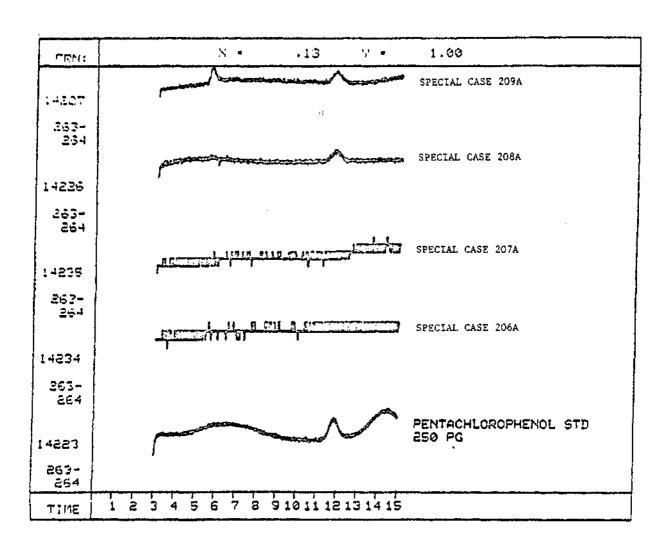


Figure 13. Mass spectrometry confirmation of urine of individuals 206A, 207A, 208A and 209A.



Figure 14. Mass spectrometry confirmation of urine of individual 211A.

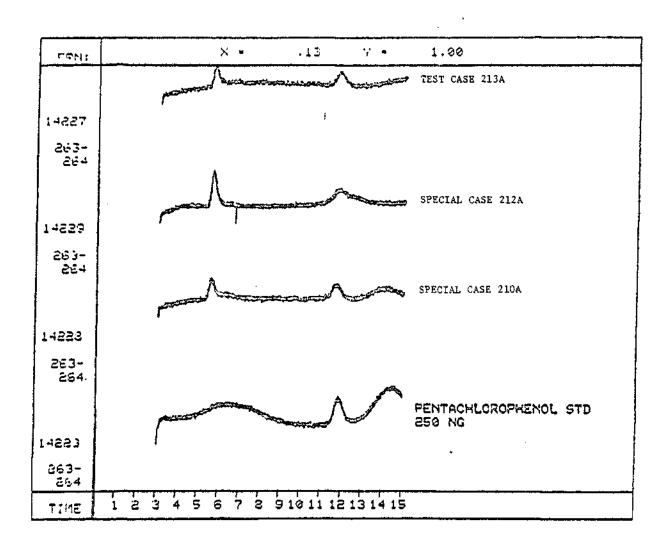


Figure 15. Mass spectrometry confirmation of urine of individuals 210A, 212A, and 213A.

TABLE 12. REPLICATE ANALYSES OF URINE SAMPLES FOR UNCONJUGATED PENTACHLOROPHENOL

Madison County		Penta	chlorop	phenol	(ppb ^a)
Health Department		Repla	icate 3	<u> </u>	
number	1	2	3	45	Average
100A	2.7	2.2			2.4
101A	1.1	1.1			1.1
105A	1.0	2.5	2.4	1.7	1.9
110A	4.2	3.1			3.6
207A	2.2	1.0	1.8	1.7	1.7
225A	1.1	0.8	2.0	2.0	1.5
100B	1.2	1.4			1.3
107B	1.1	2.2	2.8	1.4	1.9
121B	0.6	0.5			0.6
200B	0.9	2.3	4.9	5.5	3.4
213B	1.6	1.4			1.5
214B	1.4	1.4			1.4

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml.

b Four milliliters of urine centrifuged and 2 ml of supernatant extracted as replicate 4 and the 2 ml of urine containing the sediment extracted as replicate 3.

TABLE 13. RECOVERY OF PENTACHLOROPHENOL ADDED TO POOLED URINE ALIQUOTS

Pooled urine number	Level added (ppb ^a) PCP	Level found (ppb ^a) PCP	% Recovery b PCP
1	40	35.1	86
2	40	42.3	104
3	40	37.2	92
4	40	35.6	88
5	40	39.6	98
6	· 40	41.8	103
7	40	42.2	104
8	40	38.5	95
9	40	38.7	95
10	40	42.3	104
Blank	0	0.6	
			Avg 97
			S.D. ± 7

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml.

b % Recovery = ppb spiked - ppb unspiked (blank) x 100 ppb added

TABLE 14. RECOVERY VALUES FOR PENTACHLOROPHENOL AND HEXACHLOROBENZENE IN FIELD SPIKES OF SERUM AND URINE (UNCONJUGATED)

	Pe	entachlorop	henol	He	kachloroben:	zene
Sample	Level spiked (ppb ^a)	Level recovery (ppb)	Recovery (%)	Level spiked (ppb)	Level recovery (ppb)	Recovery
Serum:						
Field blank #1	~ =	N.D.b			N.D.	
Field blank #2		N.D.			N.D.	
Field blank #3		N.D.			N.D.	
220A	16	30.8	76	15.5	N.D.	
- 220A		18.7			N.D.	
101B	16	37.7	74	15.5	N.D.	
101B		25.8			N.D.	
110B	16	41.6	79	15.5	N.D.	
110B		29.0			N.D.	
106B	80	91.3	88	77.3	51.7	67
106B		21.0			N.D.	
112B	80	90.7	61	77.3	и.р.	
112B		42.2			N.D.	
200B	80	79.4	71	77.3	N.D.	
200B		23.0			N.D.	
Urine:						
Field blank #1		N.D.			N.D.	
Field blank #2		N.D.			N.D.	
Field blank #3		N.D.			Ŋ.D.	
108B	120	75.0	60	116	30.9	27
108B		3.1			N.D.	
202B	120	42.3	34	116	N.D.	
202B		1.7			N.D.	

b N.D. - none detected, < 0.4 ng/ml.

The spiked serum and urine samples were frozen and stored for 7 days prior to extraction. At the time of extraction, additional serum and urine samples were spiked directly in the extraction tubes. The results of the simulated field spikes are presented in Table 15. The recovery value of PCP increased from spikes in the vials to spikes directly into the serum and urine samples. The recovery of HCB in vials spiked prior to addition of the serum and urine was non-existant. However, recovery of HCB from the field spikes which consisted of spiking directly into the samples compared favorably with the extraction time spikes. The vials used to store the samples were sealed with Teflon-lined septa and the spiking volume was 10 µl. Thus, the loss of HCB and the low recovery of PCP in the field spikes and laboratory simulation may have been caused by irreversible adsorption of the compounds on the walls of the vials or in the septum material. Another possible explanation is that the 10 µl hexane evaporated leaving the dried material on the glass. the physiological fluid was added, the compounds may not have been dissolved and thus were not extracted efficiently. The greater polarity of PCP compared to HCB and the partial recovery of PCP with no recovery of HCB when the compounds were added to vials prior to the physiological fluid would favor this rationalization. Since good recovery of PCP and HCB were obtained when spiked into the physiological fluid, the data on the serum and urinary levels should not have been compromised.

STATISTICAL EVALUATION OF SERUM AND UNCONDUGATED URINARY PCP LEVELS

The serum and unconjugated urinary PCP levels of the control individuals and test cases were statistically evaluated at the Center for Disease Control. For these evaluations, the residences of the log homes (test case 206A through 212A) and their corresponding control individuals (controls 206B, 207B, and 210B) were ommitted. Also, the three control individuals (controls 117B, 121B, and 224B) who were found to have ammunition crate wood in their residence were changed to test cases. The breakdown of the test cases, special cases, and control individuals by number, age, sex, and race is given in Table 16. A total of 51 test cases and 44 control individuals were evaluated. The statistical evaluation of the serum PCP levels and of the unconjugated urinary PCP levels is presented in Table 17. These data show little or no difference in the average serum or unconjugated urinary PCP levels of the test cases and the control individuals.

The possible correlation between the serum and unconjugated urinary PCP levels was evaluated by plotting the serum level versus the urinary level as shown in Figure 16. A correlation coefficient of 0.1206 (1.000 being a perfect fit) indicates that the serum PCP levels do not correlate with unconjugated urinary level. When the outliners, i.e., those values statistically outside the average value, were excluded as shown in Figure 17, a correlation coefficient of 0.3025 was obtained. Likewise, when the natural logarithm of the serum and unconjugated urinary PCP level were compared (Figure 18), no correlation (0.0823 correlation coefficient) in the values was obtained.

PCP LEVELS IN HYDROLYZED URINES

The normal means of urinary excretion of PCP would be as a conjugate, i.e., glucuronide or sulfate adduct through the phenolic group.

TABLE 15. RECOVERY VALUES FOR PENTACHLOROPHENOL AND HEXACHLOROBENZENE IN SIMULATED FIELD SPIKES

		ntachloroph	enol	Hexachlorobenzene		
Sample	Level spiked (ppb ^a)	Level recovery (ppb)	Recovery (%)	Level spiked (ppb)	Level recovery (ppb)	Recover
Serum:			-			
Bottle spiked ^b	16	22	_ж е	15.5	N.D. f	
Bottle spiked Bottle spiked	16	22	*	15.5	N.D.	
	10	44	•	13.3	и.д.	
Berum spiked and frozen	16	29	*	15.5	14	90
	10	27		13.3	14	30
Serum spiked						
immediately bef	ore	59	*	38.8	36	93
extraction	40	39	^	20.0	30	73
Bottle spiked	80	60	*	77.3	N.D.	
Bottle spiked	80	58	*	77.3	И.D.	
Serum spiked and						
frozen	80	84.3	ric	77.3	70	91
Serum spiked						
immediately bef	ore					
extraction	200	163	*	193	160	83
Urine:						
Bottle spiked	8	5.7	55	7.8	N.D.	
Bottle spiked	8	6.6	66	7.8	N.D.	
Urine spiked and						
frozen	8	8.7	92	7.8	6.5	83
Urine spiked and						
frozen	8	8.7	92	7.8	6.5	83
Urine spiked						
immediately bei	fore					
extraction	40	34	82	38.8	37	95
Urine spiked						
immediately bea	fore					
extraction	40	38	92	38.8	44	113
Bottle spiked	40	25	59	38.8	N.D.	
Bottle spiked	40	34.2	82	38.8	N.D.	
Urine spiked and		¥ · • •		J		
frozen	40	39	94	38.8	19.2	50
Urine spiked and	70		, -	55.0		55
frozen	40	42	102	38.8	22	57
Urine spiked	79	₹=	.~.	20.0		٠,
immediately be	fore					
extraction	200	180	89	193	153	79
averacerou	200	100	• •	.,,	100	,,

(continued)

TABLE 15 (continued)

	₽e	ntachloroph	enol	Hexachlorobenzene		
Sample	Level spiked (ppb ⁴)	Level recovery (ppb)	Recovery (%)	Level spiked (ppb)	Level recovery (ppb)	Recovery
Urine spiked immediately be	fore					
extraction	200	183	91	193	153	79
Urine blank	**	1.6			N.D.	
Urine blank		0.9			N.D.	

a ppb - parts per billion (ng/ml), sensitivity - PCP, 0.4 ng/ml; HCB, 0.4 ng/ml.

- b Spiking solutions added to glass vials with Teflon-lined septa. Six days after spiking the bottles, urine or serum was added to the vials and the samples frozen. Seven days after adding the samples to the vials, the samples were extracted.
- c Serum and urine samples added to clean glass bottles and the spiking solutions added directly into the samples. The samples were frozen and extracted seven days after the samples were spiked.
- d Serum and urine samples spiked immediately prior to extraction.
- e Recovery values could not be calculated due to loss of blank serum sample.
- f N.D. none detected, < 0.4 ag/ml.

TABLE 16. TEST CASES AND CONTROL INDIVIDUALS FOR THE PENTACHLOROPHENOL STUDY IN RICHMOND, KENTUCKY

	Cases	Controls	Special Cases	Special Case Control	Total
Age					· <u>-</u>
0-9 10-19 20-29 30-39 40-49 50-59 60+	5 13 10 7 7 6 3	6 10 7 7 5 8 1	3 3 1	- - 3	14 23 20 18 12 14
Sex					
Male Female	18 33	17 27	3 4	1 2	39 66
Race					
White, not hispanic Black, not hispanic Unknown	50 0 1	40 3 1	7	3	100 3 2
<u>Total</u>	51	44	7	3	105

TABLE 17. SERUM AND UNCONJUGATED URINARY PENTACHLOROPHENOL CONCENTRATION (ppb) FOR CASES AND CONTROLS

	Test Cases ^a	${\tt Controls}^{\tt b}$
Serum:		
Number	45	42
Range	2.20 - 54.6	4.32 - 67.9
Median	18.7	23.35
Arithmetic mean	20.99	24.19
Standard deviation (S.D.)	11.27	12.79
Geometric mean	18.19	20.70
Median log concentration	2.929	3.150
Mean log concentration	2.901	3.030
S.D. log concentration	0.572	0.610
Urinary (Unconjugated):		
Number	51	44
Range	0.6 - 6.6	0.7 - 11.0
Median	1.5	2.0
Arithmetic mean	1.83	2.34
Standard deviation (S.D.)	1.23	1.67
Geometric mean	1.56	2.00
Median log concentration	0.405	0.693
Mean log concentration	0.446	0. 6 93 ⁶
S.D. log concentration	0.541	0.534

a Cases - does not include seven special cases; does include three control individuals later changed to test cases when ammunition crate wood was located in their residences.

b Controls - does not include three controls for the seven special cases.

c p < 0.05 2-tailed unpaired t-test (t = 2.24, df = 93).

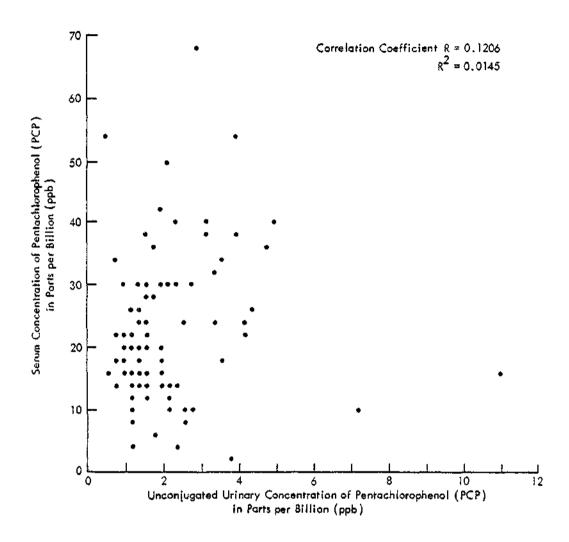


Figure 16. Correlation of serum and urinary (unconjugated) concentrations of pentachlorophenol.

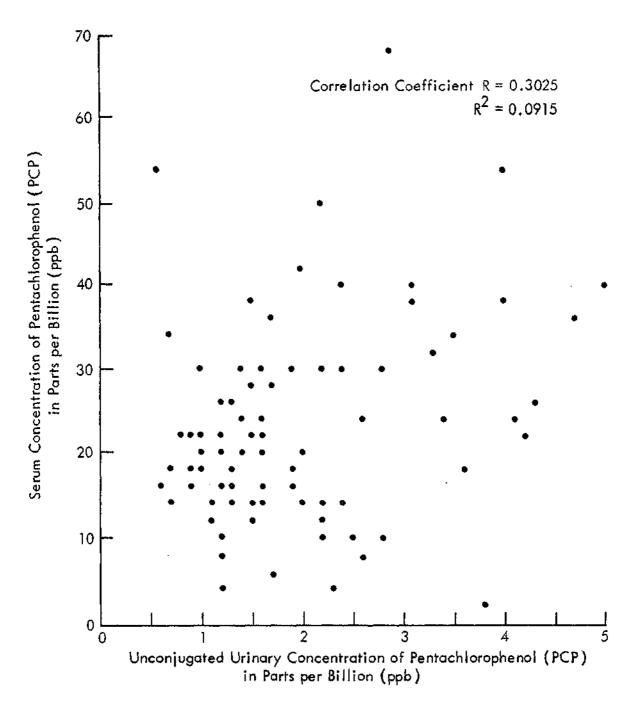


Figure 17. Correlation of serum and urinary (unconjugated) concentrations of pentachlorophenol excluding outliers.

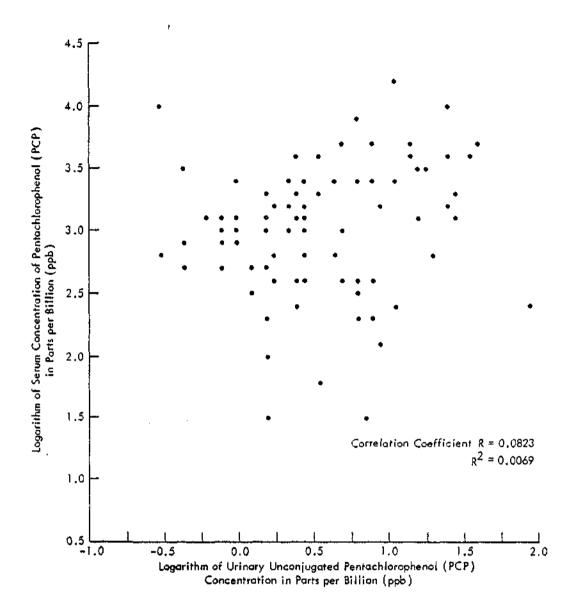


Figure 18. Correlation of logarithms of serum and urinary (unconjugated) concentrations of pentachlorophenol.