

Uploaded to the VFC Website

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton
Tax ID #27-3820181
CA Incorporation ID #3340400
CA Dept. of Charities ID #: CT-0190794

If Veterans don't help Veterans, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd= s-xclick&hosted button id=WGT2M5UTB9A78

Note

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

3.2.1. Headspace Analysis

Field sampling included the collection of representative headspace samples from each sampling area of concern. Soil samples were collected at periodic depths for headspace analysis to provide a rough indication of the vertical extent of VOC contamination within each soil core. Headspace samples were placed into individual sealable plastic bags. Then, the probe tip of a PID was inserted into the plastic bag to take a reading of the concentration of volatile contaminants present in the sample headspace.

3.2.2. Soil Sampling Strategy and Identification

A continuous soil sample was collected from each borehole for sample description. Sampling interval for laboratory analysis was three: 0~2 m, 2~4m and 10~12m respectively. The first two samples were to see if any chemicals associated with surface activities, and the last was to see if any chemicals might be associated with groundwater which is close to the groundwater table.

Each soil sample has a unique identification number that is consistent with borehole and monitoring well IDs used in previous investigation. The sample identification format provides general information about the boring type, year of investigation, and depth interval. The sample identification number used in this project follows this format: B09-XXX-S#, where

B indicates that the sample came from a soil boring 09 is the year in which the soil boring was drilled (i.e. 2009)

XXX is the sequential soil boring number

S indicates soil sample

is the sequential sample number, from top-down in the boring

MW instead of S# indicates monitoring well converted after completion of XXX boring

3.3. Groundwater Monitoring Well Construction.

3.3.1. Monitoring well construction

Monitoring wells were installed after completion of borehole drilling using a GeoProbe. The depth of the wells and the length of the screen intervals varied depending on the site specific characteristics observed during soil sampling. The well locations were chosen based on their location relative to known groundwater contamination as well as getting additional areal coverage in relation to the existing monitoring wells.

A 12-cm diameter air percussion hammer was used to drill the hole as slightly larger diameter (14-cm) temporary steel casing is pushed and hammered into the subsurface to hold back the overburden. After the hammer has reached the target depth, it was removed from the hole. The monitoring well casing material was then placed inside the temporary steel casing. The steel casing was gradually removed from the hole as the annulus was filled with medium grained sand filter pack, bentonite, and grout.

Groundwater monitoring well construction materials include 5.04 cm inside diameter (ID) threaded Schedule 40 polyvinyl chloride (PVC) solid pipe and slotted screen. Solid 5.04 cm

ID schedule 40 PVC pipe with threaded ends was used from approximately 10 cm below ground surface (bgs) to a depth of approximately 5 meter above the level when groundwater encounters first during drilling. A 0.254-mm slotted PVC well screen was threaded onto the bottom of the solid well-pipe to the base of the borehole. A PVC well point was screwed to the bottom of the well screen and a well cap was secured to the top of the well pipe. The annular space around the well from the bottom of the borehole to a minimum of 50 cm above the top of slotted section was filled with clean medium-grained silica sand (0.4-1.2 mm). A 50 cm thick seal of bentonite pellets was placed above the sand pack, and the bentonite pellets are hydrated either by water inside using a known clean water source. The remainder of the hole was filled with a Portland Type I cement grout to just below the frost line. Once the grout cured, concrete was used to fill the rest of the annulus around the well pipe. The wells were then completed with a flush-mount and concrete pad. Groundwater monitoring well location is presented in Figure 3-1. The Appendix II presents the well construction log.

3.3.2. Monitoring Well Development.

After installation, all wells were fully developed. The objectives of well development were to (1) remove sediment that had settled inside the well during construction; (2) remove all water that may have been introduced during drilling and well installation; (3) remove very fine grained sediment in the filter pack and nearby formation so that groundwater samples would not be turbid and well silting does not occur; and (4) improve the flow into the well from the adjacent formation, thus yielding a representative groundwater sample and an accurate water level measurement.

Well development consisted of surging by a surge block and pumping out the turbid water using BEC's vacuum truck until a noticeable reduction in sediment occurred in the discharged water. This development continued for a minimum of five well volumes of pumped water and continued until the water was visually clear or the site geologist determined that no further development is practical. Groundwater parameters were measured during well development to see the variation of the parameter, Table 3-2 presents the measurement result of the groundwater parameters. Temperature of groundwater ranges from 13.3 °C to 16.7 °C and the pH ranges from 6.0 to 6.4.

3.3.3. Groundwater Sampling.

The groundwater sampling was conducted in accordance with the protocol described in the project Work Plan. Prior to sampling, wells are checked for the presence of any floating product with an electronic oil/water level indicator probe. Then, the well was purged by removing a minimum of three times the standing volume of static water present in the well.

A low pressure pump was utilized for micro purging and sampling from the monitoring wells. The groundwater parameters such as pH, temperature, specific conductance and turbidity of the removed water were monitored during the purging and sampling process. Groundwater stabilizing criteria were adopted established in American Society for Testing and Materials (ASTM) D6671-02: pH +/- 0.2, specific conductance +/- 3%, temperature +/- 0.5°C, and turbidity +/- 3%. The groundwater was sampled using a low pressure bladder pump and dedicated tubing for each well sampled. Table 3-2 summarizes the groundwater parameter

measured during sampling activity. Temperature of groundwater ranges from 16.1 °C to 16.5 °C and the pH ranges from 6.3 to 7.3.

The collected water samples were placed into laboratory-grade, specially cleaned 40 ml sample containers with HCl preservative, and then placed immediately into a cooler with ice for preservation below 4 °C prior to arrival to the analytical laboratory. All samples were transported to the laboratory accompanied by chain-of-custody sheets thru the priority mail service company.

3.4. Topographic survey

The FED survey section performed a location and topographic survey using a SOKKIA Set 2C Total Station survey instrument. The survey included the ground surface elevation at each monitoring well location, the top of well riser pipe for each monitoring well, and, if necessary, the elevations of buildings and any significant utilities. All elevation measurements were expressed in meters above mean sea level (AMSL), and World Geodetic System 84 Universal Transverse Mercator (WGS 84 UTM) Zone-52 grid system was applied for longitude and latitude systems. The accuracy of survey elevation for top of the casing measurements was to the nearest 3 mm. Ground surface elevations were made to the nearest centimeter. Table 3-3 presents the monitoring well coordinates surveyed.

3.5. Investigation Derived Wastes

Waste materials or investigation-derived wastes (IDW), that required management and disposal during the ESI field work included concrete and asphalt debris, used disposable sampling equipment, well development water, decontamination water and used personal protective equipment (PPE). There are no specific Korean regulations applicable to the small quantities of IDW that were generated during the course of this project. The IDW generated during the course of this investigation was placed in woven synthetic bags while development water was placed in 55-gallon drums. The bags were segregated by their contents and stored on site until transported to BEC's field facility located in Yojoo, Kyeonggi-Do at the end of well construction period for treatment and disposal.

There was very little concrete or asphalt debris generated during the course of the ESI field work. The concrete and asphalt that was generated in order to expose the underlying soil was bagged along with the soil cuttings from the respective borehole. BEC personnel then transported the bags to their field facility for disposal.

3.5.1. Contaminated soil

All soil cuttings retrieved during boring were bagged on-site in tight knit, woven synthetic bags. Apparent petroleum contaminated soils in the cuttings were not segregated from uncontaminated soils. Therefore all soil waste generated during this investigation was considered petroleum impacted and transported for treatment at BEC's off-site remediation facility located in Yojoo, Kyeonggi-Do. A non-hazardous waste manifest was used to document the transport of the contaminated soil to the treatment facility.

3.5.2. Well Development and Decontamination Water

Water from decontamination activities was pumped into a BEC vacuum truck at the end of each day and disposed of at the oil/water separator system at the Land Farm of Camp Carroll. Groundwater generated during well development and pump test activities was pumped into BEC's larger pump truck, and also disposed of at the same system.

3.5.3. Site Restoration

Borings were backfilled with bentonite pellets and the surfaces sealed with concrete which was backfilled flush to the existing surface grade. Monitoring wells installed during the project were flush-mounted and pose no impediment to vehicular or foot traffic. All mud and soil cuttings generated in the vicinity of each boring and monitoring well were cleaned up by field personnel immediately following the completion of the task.

3.6. Additional Site Characterization Sampling

A test was performed on the aquifer matrix to determine the saturated and air permeability of the impacted aquifer material present at the site. In addition, soil samples were collected for chemical and microbial analysis that are useful for determining whether the present physical/chemical/biological condition of the aquifer is conducive for natural degradation of VOCs contamination present at the sites.

3.6.1. Slug Test

The hydraulic characteristics of the aquifer underlying the site were determined by performing slug tests on the monitoring wells both existing and new. The hydraulic conductivity, K, of the aquifer was calculated using slug tests recovery measurements that were performed on all monitoring wells. After the completion of well purging work, a slug with an approximate volume of 2.5 liter was put in the wells. The drop down water level after the slug was put into the wells was recorded using a pressure transducer data logger. Also the rise in water level after removing the slug from the wells was recorded in same way. Measurements were collected until the water level within the monitoring well returned to within approximately 3 centimeters of the original water level. The original water level in the well prior to the tests was measured with a Solinst electronic oil/water interface prove. Appendix III presents the summary of test procedure and slug test result.

3.6.2. Air Permeability Test.

Air Permeability is an integrated measure representing the complex relationship between the geometry of the pore system and hydraulics of the flow of air through that system. Permeability is not measured directly; rather, it is calculated by inverting an assumed model populated with measured state data (i.e. flux and pressure). For this investigation, permeability was determined by applying a pressure gradient across the project site by use of a vacuum truck on 12 November 2009.

In situ air permeability test data were performed at the site by placing a blower on a setup monitoring well and measuring the time varying pressure responses at monitoring wells adjacent to that central well. The decision was made to perform the air permeability test by

3704

blowing out of the well by applying a vacuum rather than injection to prevent the spread of any contaminants due to air introduction into well.

A constant pressure was applied to the injection well for no longer than 25 minutes, and changes in pressure at adjacent wells were recorded at various time intervals on a roughly logarithmic basis. The measured changed in air pressure at the various monitoring wells spaced varying distance from the injection well were evaluated using analytical solutions for aquifer pumping tests that have been modified for vapor flow conditions.

3.6.3. Nutrient and Microbial Sampling

A total of seven soil samples were collected, respectively, from each borehole. The samples were submitted to the National Instrumentation Center of Environmental Management (NICEM) at Seoul National University. The samples were analyzed for biological and chemical properties relevant to potential the potential for natural attenuation.

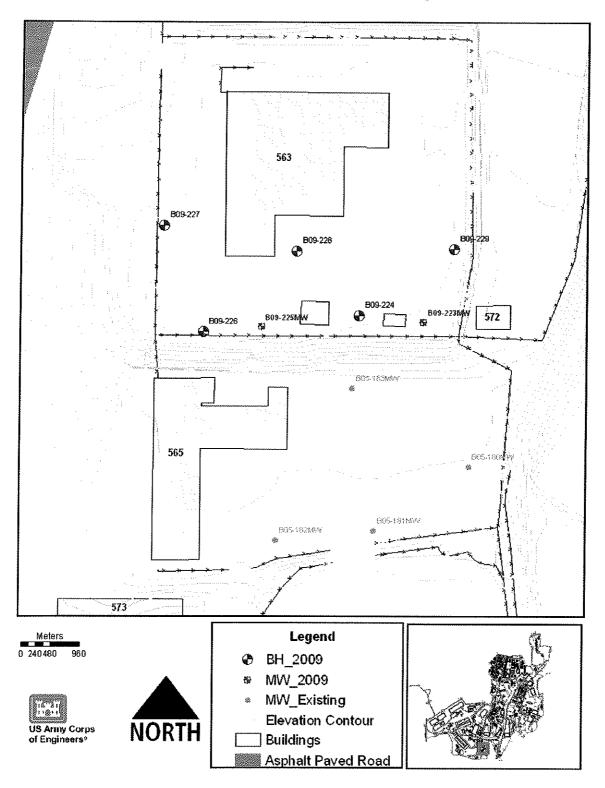
Table 3-1. Project Chronology of ESI at VCY of Camp Carroll.

Task	Date Performed
Request a site digging permit and get approval	February 6, 2009
Drilling and groundwater monitoring well installation	March 2 ~3, 2009
Well development	March 3~4, 20~23, 2009
Water level measurements	March 20 & May 19~22, 2009
Groundwater Sampling	May 19~20, 2009
Air permeability test	November 12, 2009
Hydrologic slug test	November 9~12, 2009

Table 3-2. Groundwater Parameters Measured During Well Development and Grondwater Sampling.

Well ID	Tempo	erature ©	cond	ectric uctivity S/cm)	Ox	solved ygen ig/L)	Į	эΗ	Redu Pote	lation action ential aV)	£	oidity (TU^)
To the Action of	WD*	GWS [§]	WD	GWS	WD	GWS	WD	GWS	WD	GWS	WD	GWS
B05-180MW	13.3	16.5	0.024	0.080	7.6	8.9	6.0	7.3	282	219	16	76.7
B09-223MW	14.9	16.1	0.423	0.068	8.5	9.2	6.4	6.3	277	154	287	202
B09-225MW	16.7	16.1	0.110	0.079	8.2	8.9	6.3	6.3	308	287	74	530

^{*} values measured during Well Development on 23 March 2009.


^{\$} values measured during Groundwater Sampling on 22 May 2009

[^] Nephelometric Turbidity Units

Table 3-3. Coordinate of Borehole and Groundwater Monitoring Wells at VCY of Camp Carroll.

Borehole and	Easting	Northing	Elevation	Top of Pipe	Remark
Monitoring well	en secure		(above	(above mean sea	havat Ganzat
	eseason pee		mean sea	level, m)	
			level, m)		N(500)00440000000000000000000000000000000
B09-223MW	447006.07	3982991.55	46.51	46.46	monitoring well
B09-224	446989.66	3982993.26	46.53		borehole
B09-225MW	446964.45	3982990.40	46.57	46.63	monitoring well
B09-226	446949.29	3982989.04	46.69	and an extension of the second	borehole
B09-227	446939.21	3983016.19	46.51		borehole
B09-228	446973.37	3983009.60	46.78		borehole
B09-229	447013.86	3983010.21	46.53		borehole
B05-180MW	447017.90	3982954.80	41.43	41.33	existing well
B05-181MW	446993.60	3982938.40	41.23	41.07	existing well
B05-182MW	446968.40	3982936.10	41.23	41.09	existing well
B05-183MW	446987.80	3982974.70	41.59	41.41	existing well

Figure 3-1. Location of Borehole and Groundwater Monitoring Wells at VCY.

4. ESI Investigation Results

4.1. Laboratory Analysis.

All laboratory analysis was performed using US EPA published methods. The laboratory that performed the analysis is accredited by the National Environmental Laboratory Accreditation Conference (NELAC) for the analytical procedures specified for this project.

Soil and groundwater samples collected in this ESI were submitted to the NCA-Korea Laboratory in Anyang, Korea. The contract laboratory shipped the samples for VOCs and PAHs to the NCA laboratory in the United States since the NCA-Korea lab has only certified TPH and VOCs. Soil samples collected from soil borings were analyzed for gasoline, diesel-range TPH by Ultrasonic extraction GC/FID methods EPA3550/8015. Purge & Trap GC/MS methods EPA5030/8260 were used for VOCs analysis of soil and water samples. PAHs were analyzed by GC/MS SIM (Selective Ion Monitoring: EPA 8270). Table 4-1 to Table 4-3 present the analytical result of soil and Table 4-4 presents those of groundwater.

4.2. Summary of Investigations

A total of 18 soil samples were retrieved from a total of seven boreholes and described and screened for VOCs using a PID. All samples were submitted to the NCA-Korea for TPH, PAH and VOCs analysis. Chemical analytical results for soil are listed in Tables 4-1, 4-2 and 4-3. The summary of laboratory reports is provided in the compact disk (CD) separately.

4.2.1. Subsurface Soil

4.2.1.1. Subsurface geology

FED personnel characterized subsurface soils from each of the seven boreholes at the site. No bedrock was encountered during borehole drilling. The soil types encountered in boreholes were silty gravel with sand (fill), dark red high plasticity fat clay (residual soil), and clay to silty sand (residual soil). Fill material was generally less than 50cm thick. Fat clay was encountered beneath the fill and encountered various depths between 0.5 m and 5 m bgs. The clayey and silty sand of residual soil was encountered beneath the fat clay. Groundwater was not encountered in any of the seven boreholes during soil boring.

4.2.1.2. Total petroleum hydrocarbons

Soil test results produced by the analytical laboratory during this investigation demonstrate subsurface soil contamination by diesel range organics (TPH-DRO) and residual range organics (TPH-RRO). Gasoline range organics (GRO) were not identified in any soil samples. One sample appears consisting of the mixture of TPH DRO and RRO. TPH-DRO concentrations in soil samples range from not detected (ND) to 26.3 mg/kg and RRO from ND to 103 mg/kg. The sum of each TPH range in soil samples varies the concentration from ND to 129.3 mg/kg. Table 4-1 presents the TPH test result. Figure 4-1 depicts the TPH analytical result.

4.2.1.3. Volatile Organic Compounds

A total of eighteen soil samples were submitted to the analytical laboratory for VOCs analysis. Table 4-2 presents the analytical result of VOCs in soil sample.

A total of six chemicals were reported the concentrations above the practical quantification limit (PQL), while the concentrations of the other chemicals appeared below the PQL but the quantitation was estimated. The detection mostly occurred between 0 to 4 m bgs. Benzene and methyl tert-butyl ether (MTBE) considered to be a major component of gasoline were not reported above the PQL. Ethylbenzene and xylenes were reported from one sample (B09-227-S2). The chemicals reported are summarized as below:

1,1- dichloroethylene: 11 μg/kg

Methylene chloride: 51μg/kg to 180μg/kg

Ethylbenzene: 31 μg/kg Naphthalene: 3.1μg/kg

Toluene: 87µg/kg to 140 µg/kg

Xylenes: 85 μg/kg

4.2.1.4. Polyaromatic Hydrocarbons

A total of eighteen soil samples collected were submitted to the laboratory for PAH analysis. None of the sample concentrations were reported above the PQL. Table 4-4 presents the summary of analytical results of PAHs for soil samples.

4.2.2. Groundwater Contamination

4.2.2.1. Groundwater Level Measurement Result

Only three wells out of total six wells around the site were used to measure the groundwater levels during this project due to the current site activities. Water levels were measured two times in March and September 2009 from each well with an oil/water interface probe. The measurement of 20 March 2009 is assumed to be a representative water level as a dry winter season. There was no water in B05-180MW during the measurement of 1st September 2009. The water level measured during this project ranges from 11.0 m bgs to 16.1 m bgs. Table 4-2 summarizes the water level measurement result.

Based on the result of groundwater level measurements, the groundwater flow direction was analyzed as depicted the result of 20 March 2009 in Figures 4-2. A groundwater flow direction is generally toward southwest and south from the monitoring well B09-223MW within the area of concern.

4.2.2.2.Groundwater Chemical Test Result

A total of three groundwater samples were collected from the monitoring wells at VCY and submitted to the laboratory for VOCs analysis. The analytical results are presented in Table 4-5 and depicted in Figure 4-2. A range of quantified VOC concentrations in groundwater samples are generally lower than the laboratory practical quantitation limit (PQL). Some reported values are also below the PQLs but just estimation or associated with method blank contamination. PCE was identified from all groundwater samples ranging from 5.6 μ g/L to 9.5 μ g/L. The concentrations above the PQLs are summarized as below:

 B05-180MW Chloroform: 1 μg/L Tetrachloroethylene (PCE): 5.4 µg/L

B09-223MW
 Cis-1,2-Dichloroethylene (DCE): 5.6 μg/L

PCE: 9.5 μg/L

Trichloroethylene (TCE): 1.1 μg/L

4.3. Data Quality Control/Assurance

Field and laboratory quality control (QC) samples were collected and analyzed in accordance with USACE and industry standard methods and practices. The FED Environmental chemist (Dr. performed a data review on soil and groundwater samples collected from the VCY site. The data review was performed in accordance with the project work plan and Chemical Quality Assurance for Hazardous, Toxic, and Radioactive Waste (HTRW) Projects (USACE, EM 200-1-6, 1997). The accuracy, precision, representativeness, and completeness of the data were evaluated by performing analytical data quality and field quality assurance (QA) /QC data quality review. Accuracy was evaluated using the laboratory sample receipt information, analyses requested, technical holding times, and laboratory QC data (method blank, laboratory control sample (LCS)/LCS duplicate, matrix spike (MS)/MS duplicate, and surrogate recoveries).

4.4. Hydrologic Characteristics of the Site

Two slug tests were performed for the monitoring wells of B09-223MW and B09-225MW at the VCY site. The monitoring wells selected for slug testing was subject to the presence of groundwater and the site accessibility. Measurements of water level versus time, along with other relevant aquifer and well characteristics were then used to determine a value for hydraulic conductivity of the site. The calculations were performed with AQTESOLV aquifer test analysis software. An anisotropy ratio (Kz/Kr) was assumed in the analysis and the analytical solution developed by Bouwer and Rice (1976) for an unconfined aquifer system was used to calculate the hydraulic conductivity. Hydraulic conductivity (K) was obtained by manual fitting using AQTESOLV (Figure 4-3). The calculated K values for the monitoring wells at the VCY area are from 1.2E-04 to 4.2E-04 cm/sec, which belongs to semi-pervious characteristics consisting of very fine sand and clay.

4.5. Air Permeability Test

The layout of the test was determined based on the location of groundwater monitoring wells, which can be focused on the center of the project site. B09-288 was installed as an air monitoring well, use as an air extraction well. The two groundwater monitoring wells of B09-223MW and B09-225MW were used as observation wells. The extraction well was hooked up to the vacuum pump to control the air flow rate. The extraction valves and measurement devices were securely attached and sealed at the top of each well pipe to prevent introducing any ambient air. Table 4-5 presents the well information used for the air permeability test.

Field data were obtained from extraction and observation wells. While the extraction vacuum was maintained at a constant, the observation wells were measured if any pressure change occurs. Field test was lasted for approximately 20 minutes with the air flow rate of 30 cubic meter/hour. The extraction vacuum used during the test was about 10 to 30 kPa. There was no response identified during this test, probably due to the long distance between the wells or due to the very low air permeability by the site subsurface geology.

Table 4-1. TPH Test Results of Soil Samples from the VCY of Camp Carroll.

Borehole ID	Sample ID	Sample Interval	Total 1	Petroleum Hydrocarbo	ons (mg/kg)
		mej kindining kepada pangan	GRO* (C7-12)	DRO** (C10-24)	RRO*** (C20-40)
B09-223	S1	0~2m	_***	26.3	103
	S2	2~4m		***	12.6
	S3	10~12m			
B09-224	S 1	0~2m			
	S2	2~4m		ente e de la proprio constitución en esta participa e de la constitución de la constitución de la defenda de l En enterior de la constitución en enterior de la constitución de la const	entere de la companya de la company
	S3	10~12m	-		ent.
B09-225	S1	0~2m	**	14.1	
	S2	2~4m	endrina den sa la se a se fore se con en procedo meno de polytor e mon sende a colone à definition de challede be pui 	17.9	**************************************
	S3	10~12m	makes the second and the second secon		grand Africa de de de la companya de de esta Africa de de la Corpo colombo de companya de la companya de esta Africa de la companya de la com
B09-226	S1	0~2m		interface) in the Association of the Committee of the Com	
	S2	2~4m		—	
	S3	10~12m	-		
B09-227	S1	0~2m		##	
	S2	2~4m		### **********************************	
	S3	10~12m		fferenskilminerkissiki kusumineroomaanemussaa paramaaneen varamaaneen ominista.	geteraliset del de est est de la California de California de del des de la california de la california de la c Ma
B09-228	S1	0~2m	-	_	
	S2	2~4m		interior in the state of the interior and annual analysis to the state of the state	allah seringan ang karangan ang kanangan ang kanangan ang kanangan ang kanangan ang kanangan ang kanangan ang Tang
	S3	10~12m	-	_	Man and a second of the second
B09-229	S1	0~2m	-		16.8
	S2	2~4m	•	**************************************	•
	S3	10~12m	-		-
*- gasoline	range organ	ics, **- dies	el range organics,	***- residual range or	ganics
***- not det	tected above	the practica	l quantitation limit	eldisaksi kirilik katikhi kirishasab walasalawa kakunda afikala afi Ahmin Ahmi kirinka a kalende andan khi.	nianiana kardinara da da add do o mai iyan nika isana kardoo ara ba'a'iyin nabaq kan kardoo ka ahaa ana ana ana

^{***-} not detected above the practical quantitation limit.

Table 4-2. VOC Test Results for Soil Samples from the VCY of Camp Carroll

Table	4-2. N	OC.	Test H	lesuits	for S	oil Sa	mples	from	the V	CY of	Cam	<u>p Car</u>	roll									
	1		B09-2	23	<u> </u>	B09-2	24		B09-2	25		B09-2	26		B09-2	27		B09-2	28		B09-22	29
Component	Unit	SI	S2	S3	S1	S2	S3	SI	S2	S3	S1	S2	S3	SI	S2	S3	SI	S2	S3	SI	S2	S3
(EPA 8260b)		0~	2~4	10~1	0~	2~	10~1	0~	2~	10~1	0~	2~	10~1	0~	2~	10~1	0~	2~	10~1	0~2	2~4	10~1
	<u> </u>	2m	m	2m	2m	4m	2ın	2m	4m	2m	2m	4m	2m	2m	4ın	2m	2m	4111	2m	333	m	2m
cis-1,2-	μg/k			26J*			1			[
Dichloroethene	g	<u> </u>	-	*	-	-	19J	-	<u> </u>	-	_ ـ		-			~	-	-	-	-		-
1,1-	μg/k														11	6.4J	8.4	7.6				
Dichloroethene	g	<u> </u>	<u> </u>	-	-	-	8J		<u> </u>		<u> </u>		-		11	0.45	J	J	-	-	-	10J
	μg/k									l	1			29J	31	25J						ĺ
Ethylbenzene	g	31J	25J	24J	30J	33J	26J	29J	25J	30J	18J	34J	25J	2.70	J1	233	33J	39J	26J	26J	28J	26J
Methylene	μg/k				12						10	15		45J	51	49J						
chloride	g	54J	160	110	0	49J	50J	45J	47J	52J	0	0	110			1,70	59J	58J	54J	180	50J	56J
1	μg/k		2.9											3.1	3.1	_				4.7	2.6	
Naphthalene	g		JB	-	-	-	-	-	-	-				J			-	-		JB	JB	
	μg/k				1.5									_	_	1.5J		1.7				
Styrene	g	-	-	-	J	-	-	~				-					-	J	-	-	-	-
Tetrachloroeth	μg/k		5.5											-	-	-						ĺ
ene (PCE)	g	26J	J	6.8J	-	18J	-	-	-	-	-	-	-				*	*	-	-		<u> </u>
77.	μg/k		221	241		241	601			601	١		221	38J	14	99			40.			
Toluene	g	24J	27J	24J	35J	36J	60J	92	56J	60J	17J	35J	22J		0		64J	88	48J	87	40J	99
1,2,3-	. /1		107																			001
Trichlorobenze	μg/k		18J B												- 1	-						20J
ne 104	g	-	B	~		-												-			-	В
1,2,4- Trichlorobenze														13J								
1	μg/k													133	-	-						Į.
ne m-Xylene & p-	g						-	-					-									
Xylene	μg/k	77J	56J	62J	66J	78J	65J	75J	63J	79J	52J	71J	63J	66J	85	76J	911	84J	65J	65J	72J	73J
Aylene	g μg/k	7.3	303	UZJ	7.3	7.4	บวง	1,33	000	173	J 23	/13	031	6.4			713	047	0.33	7.2	i ∠J	133
o-Xylene	μg/κ g	7.5		_	73 I	/. -	_			7.4J			_	0.4	-	-		_	6.8J	1.2	_	_
O-Ayione	_5	J	_ "	-	٠	9 1	-	_ "		1.40			-	و ا					0.00	٠	1	

^{*} B- method blank contamination, the associated method blank contains the target analyte at a reportable level.

Page 22

^{**} J- the quantitation is an estimation.

Table 4-3. PAH Test Result for Soil Samples from the VCY of Camp Carroll.

Component (EPA	Unit	B0	9-223	3	В	09-2	24	В	09-225		B0	9-22	6	В	09-2	27	B0	9-22	8	В	09-229)
8270C)	s	St	S2	S3 3	S 1	S 2	S 3	SI	S2	S 3	SI	S 2	S 3	S	S 2	S 3	SI	S 2	S 3	SI	S2	S 3
Acenaphthylene	μg/k g	_			_	_	_	_	0.61 J	_	_			_	_	_	_	_	_	_	-	_
Benzo(a)anthracene	μg/k g	0.35J *	**	_	-	<u> </u>	١		0.41 J	_	-	 -	_	_	-	_	_	_	_	0.47 J	-	
Benzo(b)fluoranthe ne	μg/k g	2Ј	-	-	_	_	_	-	1.1J	_	0.67 J	_	_	_	_	_	_	_	_	1.4J	_	
Benzo(ghi)perylene	μg/k g	1.7J	-	_	-	-	-	_	-	_	-		_	-	_	-	-	-	-	-	-	_
Benzo(a)pyrene	μg/k g	0.591	-	-	-	_	-		-	_	-	-	-	-	-	-	-	_	-	-	~	-
Chrysene	μg/k g	0.89J	-			_	-	-	1.6J	-	0.54 J	-	-	-	-		0.45 J	_		1.3J	-	-
Fluoranthene	μg/k g	1J	-	-	-	-	_	0.37 J	2,9J	-	1.1J	_	-			-	1.73	-	_	1,4J	0.52 J	_
Indeno(1,2,3- cd)pyrene	μg/k g	0.843		-	,	-	-	_	-	_	_	-	_	_		~		u		0.64 J	_	_
Phenanthrene	μg/k g	0.61J	-	-	-	_	_	_	2.4J	_	0.46 J	-	_	-			0.78 J			0.54 J	-	_
Pyrene	μg/k g	0.72J				2	-	-	2.1J	-	0.8J	-	-	-	-	-	1,2J	-	-	1.53	_	_

¹⁻ sample from 0~2m, 2- depth interval from 2~4 m, 3- depth interval from 10~12 m.

^{*} J- The quantitation is an estimation. **- not detected above the practical quantitation limit.

Table 4-4. VOCs Test Result for Groundwater at the VCY Area.

Chemical Parameter (μg/L)	Unit	B05-180MW	B09-223MW	B09-225MW
Acetone	μg/L	_*	-	2.1J**
Benzene	μg/L	and Control and Control and State Control and Control		**
Bromobenzene	μg/L	.	-	u
Bromochloromethane	μg/L		-	***
Bromodichloromethane	μg/L	-		-
Bromoform	μg/L	-	-	-
Bromomethane	μg/L			pan.
2-Butanone (MEK)	μg/L	54		
n-Butylbenzene	μg/L		\$44.50 \ + 34.50 \ 1.50	•
sec-Butylbenzene	μg/L	-	_	-
tert-Butylbenzene	μg/L	•		-
Carbon disulfide	μg/L	-	-	-
Carbon tetrachloride	μg/L			
Chlorobenzene	μg/L	_	-	***
Dibromochloromethane	μg/L	•	-	-
Chloroethane	μg/L	## ### ### ### ### ### ### ### #### ####	##	
Chloroform	μg/L	1	0.5J	0.38 J
Chloromethane	μg/L	-	-	#M
2-Chlorotoluene	μg/L	<u> </u>		
4-Chlorotoluene	μg/L	<u></u>		
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	-	-	***************************************
1,2-Dibromoethane (EDB)	μg/L	-	-	
Dibromomethane	μg/L	_		
1,2-Dichlorobenzene	μg/L	-	-	
1,3-Dichlorobenzene	μg/L	<u></u>		
1,4-Dichlorobenzene	μg/L	-	-	
Dichlorodifluoromethane (Freon 12)	μg/L	•		
1,1-Dichloroethane	μg/L	_	***	THE
1,2-Dichloroethane	μg/L	_		
cis-1,2-Dichloroethylene	μg/L	0.2 J	5.6	de additional de Ventral and Article States and Commence and Commence of States and Commenc
trans-1,2-Dichloroethylene	μg/L			
1,1-Dichloroethylene	μg/L	ma	-	managar aliang panamanah asamangan analambanah mah habib habib atau aslamban bahar analamban sa alian da bahar
1,2-Dichloropropane	μg/L	_		
1,3-Dichloropropane	μg/L	-	Bar	

Table 4-4. VOCs Test Result (Continued).

Chemical Parameter (µg/L)	Unit	B05-180MW	B09-223MW	B09-225MW
2,2-Dichloropropane	μg/L	-		H-
cis-1,3-Dichloropropene	μg/L	-	-	-
trans-1,3-Dichloropropene	μg/L			
1,1-Dichloropropene	μg/L	-	_	-
Ethylbenzene	μg/L		- Constitution of the Cons	
Hexachlorobutadiene	μg/L	-	-	General de mais en vision de la réceixa de la réceixa de la réceixa de la réceixa de la receixa de la receixa d Anti-
2-Hexanone	μg/L			
Isopropylbenzene	μg/L		-	
p-Isopropyltoluene	μg/L	_		-
Methylene chloride	μg/L	-		
4-Methyl-2-pentanone (MIBK)	μg/L	-	-	
Naphthalene	μg/L		-	-
n-Propylbenzene	μg/L			
Styrene	μg/L	_	Marine e han, it is god, have a love of the department of an area area area and an article of an area of an article of the debt.	MA
1,1,1,2-Tetrachloroethane	μg/L	NW	***	-
1,1,2,2-Tetrachloroethane	μg/L	_	ua.	•
Tetrachloroethylene (PCE)	μg/L	5.4	9.5	7.4
Toluene	μg/L	16B***	13B	10
1,2,3-Trichlorobenzene	μg/L		*	
1,2,4-Trichlorobenzene	μg/L	-	a -1	-
1,1,1-Trichloroethane	μg/L	-	•	***
1,1,2-Trichloroethane	μg/L	-	-	-
Trichloroethylene (TCE)	μg/L	0.41 B	1.1	-
Trichlorofluoromethane (Freon 11)	μg/L	##	ab	**
1,2,3-Trichloropropane	μg/L		_	-
1,2,4-Trimethylbenzene	μg/L	-		-
1,3,5-Trimethylbenzene	μg/L	—	<u>-</u>	
Vinyl chloride	μg/L	-	ma .	***
m-Xylene & p-Xylene	μg/L		-	
o-Xylene	μg/L		-	###
* - not detected above the sample quantitation li	mit.			
** J- the quantitation is an estimation.	And the state of t		**************************************	oosseers maaneerske holisterik holisterikske eerichte kreeriksk holistelik holistelik en volksk kriesteriksk
***B- method blank contamination, the associat	ed method blank	contains the target	analyte at a reportab	le level.

Table 4-5. Monitoring Well Information used for Air Permeability Test at the VCY area.

Purpose	Well ID	Well Depth	Water level	Inter-well
***************************************		(m)		Distance
Extraction Well	B09-288	15.2 m	12.4 m bgs*	0
Air Monitoring	B09-223MW	18.5 m	13.5 m bgs	37 m
Air Monitoring	B09-225MW	19.5 m	15.81 m bgs	27 m

^{*}below ground surface

Figure 4-1. TPH Analytical Result (only detection) in Soil Samples from the VCY.

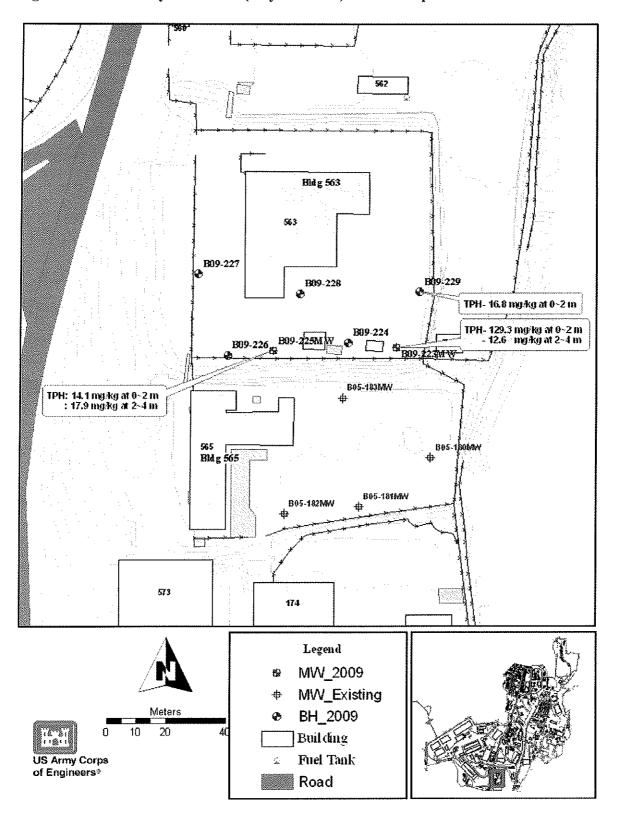


Figure 4-2. Groundwater Flow Direction and Chemical Test Result in Groundwater Sample at the VCY.

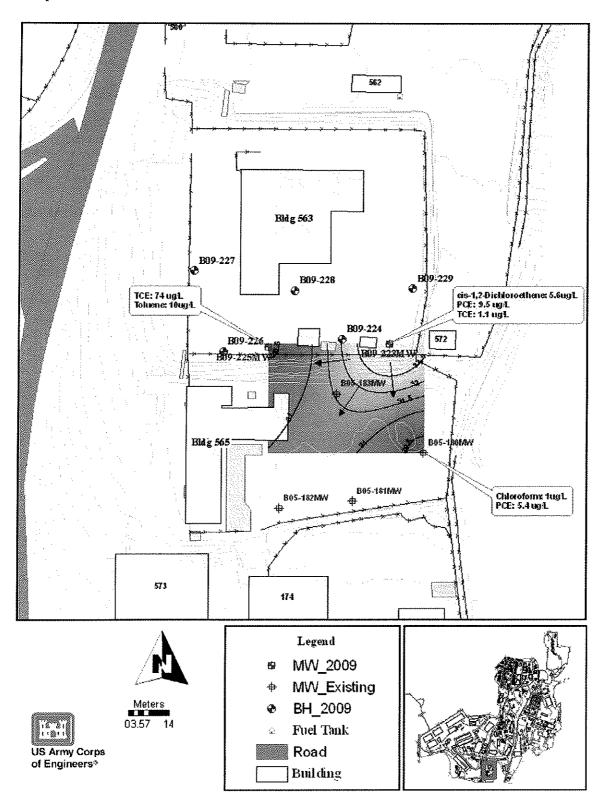
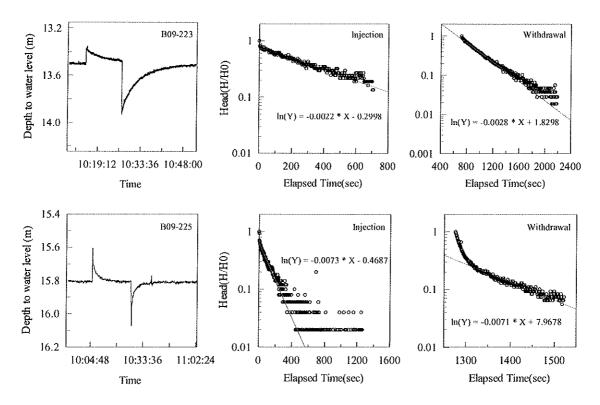
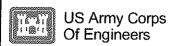



Figure 4-3. Curve Fitting Results against Elapsed time during the Slug Test at the VCY Site.

Appendix I: Soil Borehole Logs


EXPLORATION LOG

HOLE NO. B09-223MW

				vestiga	on at VCY Area		
	ION: <u>Cam</u>				The state of the s	SPECTOR:	
	TARTED:		02 Ma			RILLER:	agesta the electrical section
	IG METHO					TAL DEDTIL	10.0
	IG AGENC	***************************************		t Distric		OTAL DEPTH:	
	URDEN TH			. 447 6		ATUM:	MSL
1	ID COVER:		<u>71.J</u> L	<u>'44/,t</u>	CONTAMINATION:		
	F HOLE:		eter	☐ Mon			
				<u> </u>			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ELEVATION / DEPTH (meters)	SAMPLE TYPE / NUMBER GRAPHIC LOG	CONTAMINATED BLOW COUNT	SPT N-VALUE	USCS / STRATA	DESCRIPTION OF MATERIALS	FIELD DATA	LAB DATA
	. Com			CH	FAT CLAY WITH SAND: brown; moist; subangular fine to	%Recovery = 90	
46	S1 ///			GP CH	medium Sand (max.2mm); medium plasticity; medium; fill material(CH); no.	FC = F4 FC = S1	
	52				POORLY GRADED GRAVEL WITH SAND: gray; dry; subangular medium to coarse gravel (max.4cm); subangular	FC = F3 %Recovery = 80	<u> </u>
-2					fine to coarse Sand (max.4.8mm); no plasticity; medium; fill material(GP); no.	PID = 1.3ppm %Recovery = 85	
44-	53 ///				FAT CLAY: moderate red; moist; subangular medium Sand (max.2mm); high plasticity; stiff; alluvial; no.	PID = 1.6ppm	
	S4				oano (max.zmm), mgn piasnony, sun, anuvial, no.	%Recovery = 95 PID = 1.7ppm	
42	S5 ///					%Recovery = 80 PID = 2.4ppm	
	56	,		ML	<u>SILT</u> : dark yellowish orange; moist; subangular fine to medium Sand (max.2mm); low plasticity; medium; residual; no; contain MICA.	%Recovery = 80 PID = 2.4ppm	
40	S7					%Recovery = 90 PID = 1.5ppm	
	S8					%Recovery = 90 PID = 2.8ppm	
38	S9 S9					%Recovery = 90 PID = 3.7ppm	
SKOREA.GDT 7/6/1/1 99 101	S10					%Recovery = 90 PID = 3.3ppm	
36	S11			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		%Recovery = 80 PID = 3.9ppm	
	S12					%Recovery = 100 PID = 4.3ppm	
34	S13					%Recovery = 0 PID = 0ppm	
-14	S14					%Recovery = 40 PID = 1.2ppm	
4 6 8 8	S15					%Recovery = 80 PID = 3ppm	
958 B26	S16			CH ,	SANDY FAT CLAY: yellowish brown; moist; subangular ine to medium Sand (max.2mm); high plasticity; soft; esidual; no; contain MICA.	%Recovery = 100 PID = 1.7ppm	
12	\$17			ML.	FAT CLAY: moderate red; moist; subangular fine to medium Sand (max.2mm); high plasticity; soft; residual; no; contain MICA. SANDY SILT; yellowish brown; moist; subangular fine to medium Sand (max.2mm); low plasticity; medium; residual; no; contain MICA.	%Recovery = 100 PID = 1.1ppm	
28— 28— 28—	and the second						
ENC					3783		

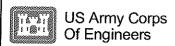
EXPLORATION LOG

HOLE NO. B09-224

•								t VCY Area		***************************************			والتناف والمراجع التناف التناف والمراجع
				<u>p carrol</u>				G&EE NO.:		8-037E		PECTOR:	4.19-4-315.1 3
								FINISHED:	02	Mar 09	DRI	LLER:	
				DD/EQUI						2	TO	FAL DEDTU.	12.0 m
	VERE	NG AU	シロハし	HCKNES	rar eas	t Distric	<u>: L</u>	HOLE DIAMET				「AL DEPTH: _ TER DEPTH:	12.V m
								GROUND ELE	•	46.53 m		TUM:	MSL
				Grass				CONTAMINAT	****		D, ()		111011
				☐ Piezor						☐ Auger Hole			
				T 1		·							
EI EVATION /	DEPTH (meters)	SAMPLE TYPE / NUMBER	GRAPHIC LOG	CONTAMINATED BLOW COUNT	SPT N-VALUE	USCS / STRATA		DESCRIPTIO	N OF M	ATERIALS		FIELD DATA	ŁAB DATA
46		S1	111			CH GP	\mater	DY FAT CLAY: brown; rial(CH); no.		•		%Recovery = 70 PID = 3.2ppm	
						CH ML	POOF	RLY GRADED GRAVEL gular medium gravel (. WITH :	SNAD: brown; moist cm); no plasticity;	i;	FC = F4 FC = S1	
		\$2			Ì	CH CH	mediu	um; fill material(GP); no LAY: brown; moist; hi	١.			FC = F3 FC = F4	
44-	2	\$3					mater	ial(CH); no. brown; moist; low plas		•		%Recovery = 100 PID = 2.8ppm	
"							mater	iai(ML); no.	•			FC = F4	
		\$4				ML	_լ mater	brown; moist; low plas ial(ML); no.	-			%Recovery = 80 PID = 2.8ppm	7
	4		1				stiff; f	LAY: dark yellowish or ill material(CH); no.	•			%Recovery = 90 PID = 2.3ppm	1
42-		S5					SILT:	moderate red; moist; l	ow plast	icity; stiff; residual;		%Recovery = 90	-1
		S6										\PID = 2.6ppm %Recovery = 80	4
	-6											PID = 2.1ppm %Recovery = 90	
40-	-	\$7										PID = 2.1ppm	
		S8										%Recovery = 100 PID = 1.4ppm	
38-	-8	S9										%Recovery = 0 PID = 0ppm	
76/11		S10										%Recovery = 50 PID = 2.1ppm	
<u>601 7</u>	-10					SM		SAND: yellowish brow ; residual; no.	n; mois	l; medium plasticity	i	%Recovery = 80	
36-		S11										PID = 0.8ppm %Recovery = 100	
SE SK		S12										PID = 2.8ppm	
ENVIRO-EXPLORATION LOG 08-037E B565 CP CARROLL GPJ USACE SKOREA.GDT 7/6/11	, ~												

US Army Corps Of Engineers

EXPLORATION LOG


HOLE NO. B09-225MW

				al Site Ir	ivestiga	ation at VCY Area
LOCAT	ION:	Camp	<u>carrol</u>	1		G&EE NO.: <u>08-037E</u> INSPECTOR:
				02 Ma		
						Probe 6600
DRILLI	NG AG	ENC	/ :	Far Eas	<u>t Distri</u>	ict HOLE DIAMETER: 3 cm TOTAL DEPTH: 20.0 m
						DEPTH DRILLED: <u>20.0 m</u> WATER DEPTH:
COORI	DINATE	ES: N:	3,982,	<u>990.4</u> E	: <u>446,9</u>	.964.5 GROUND ELEV.: <u>46.57 m</u> DATUM: <u>MSL</u>
GROUI	AD CO	VEK:	Grass			CONTAMINATION:
TYPE (OF HOL	_ L :	Piezo	meter	∐ Mon	nitoring Well
ELEVATION / DEPTH (meters)	SAMPLE TYPE / NUMBER	GRAPHIC LOG	BLOW COUNT	SPT N-VALUE	USCS/ STRATA	DESCRIPTION OF MATERIALS FIELD DATA LAB DATA
L_0					СН	SANDY FAT CLAY; brown; moist; medium plasticity; soft;
46	SI				GP	fill material(CH); no. PID = 3.3ppm FC = F4
					СН	\\ medium grave! (max.3cm); no plasticity; medium; fill \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	255					material(GP); no. FAT CLAY: dark yellowish orange; moist; high plasticity; Recovery = 90
-2	S3				ML	stiff; residual; no.
4	S3					SILT WITH SAND: moderate red; moist; low plasticity; stiff; residual; no. PID = 3.3ppm
	S4					%Recovery = 90 PtD = 2.3ppm
4						
2-	Sb					%Recovery = 90 PID = 2.7ppm
	S6					%Recovery = 90 PtD = 3.1ppm
<u>_</u> 6	S7					%Recovery = 100 PID = 3ppm
0-					SM	SILTY SAND: yellowish brown; moist; low plasticity;
	S8				į	medium; residual; no. %Recovery = 100 PID = 2.6ppm
88	59					%Recovery = 90 PID = 2.9ppm
	S10					%Recovery = 90 PID = 2.3ppm
10						
;	811					%Recovery = 100 PID = 1.3ppm
	į.				SM	SILTY SAND: yellowish brown; residual.
12						
ı						
	į					
14						
<u> </u>	Ė					
· ·		**1			Ì	
	ŀ.					
-16						
) 	l:					
	:					
18	į.					
8						
	į.				1	
					ĺ	

ENVIRO-EXPLORATION LOG 08-027E B565 CP CARROLL.GPJ USACE SKOREA.GDT 7/6/11

EXPLORATION LOG

HOLE NO. B09-226

					<u>nvestiga</u>	tion a	t VCY Area						
		TION: <u>Car</u>					G&EE NO.:		8-037E	-	PECTOR:		
		STARTED:			r 09	waha (FINISHED:	03	Mar 09	DR	LLER:	<u> </u>	
							HOLE DIAMET		2 am	TO:	TAL DEPTH:	12.0 m	
		BURDEN T			L DISCI R						TER DEPTH:		
	3						GROUND ELEV			. DA	ΓUM:	MSL.	
		ND COVE					CONTAMINATI		10107 111			1111/23	
		OF HOLE:					Vell ☐ Test Pit	E	☐ Auger Hole		other		
		1. 1	Т.Т.	·	1	7				··	1		
	ELEVATION / DEPTH (meters)	SAMPLE TYPE / NUMBER GRAPHIC LOG	CONTAMINATED BLOW COUNT	SPT N-VALUE	USCS / STRATA		DESCRIPTION	OF M	ATERIALS		FIELD DATA	LAB DA	TA
	<u> </u>	200			GP-GC		RLY GRADED GRAVEL			. [%Recovery = 90		
	46	S1			CH CH	∦(max.	orown; moist; subangula 4cm); low plasticity; loo				PID = 2.5ppm FC = F2		
ı		52					in MICA. I Y FAT CLAY ; dark yello	wish o	range: moist: medic	um	FC = F4 FC = F3	1	
	2		4			plastic	city; medium; fill materia CLAY: moderate red; mo	I(CH);	no.	į	%Recovery = 100 \PID = 2.2ppm		
ĺ	44	S3			ML	\alluvia	il; no.		•	" /	%Recovery = 90		
						residu	dark yellowish orange; i al; no.	noist; I	ow plasticity; medi	um;	PID = 2.4ppm %Recovery = 60		
	-4	S4									PID ≈ 2.1ppm		
	42-	S5								;	%Recovery = 90 PID = 2.2ppm		
	-6	S6									%Recovery = 90 PID = 1.8ppm		
	40-	S7									%Recovery = 90 PID = 3.1ppm		
	-8	S8									%Recovery = 60 PID = 2.5ppm		
	38-	S9			SM		WITH SILT: yellowish b residual; no.	rown; r	noist; low plasticity	;	%Recovery = 70 PID = 2ppm		
T 7/6/11	10	S10								%Recovery = 80 PID = 2.1ppm			
SKOREA.GDT 7/6/11	36	S11									%Recovery = 70 PID = 1.7ppm		
ACE SKC		S12									%Recovery = 100 PID = 1.9ppm		
ENVIRO-EXPLORATION LOG 08-037E B565 CP CARROLL.GPJ USACE	12												THE CONTRACT OF THE CONTRACT O

CEPOF-ED-G

3726

US Army Corps Of Engineers

EXPLORATION LOG

HOLE NO. B09-227

	ECI: j	Unvii	on	menta	l Site In	vestiga	tion a	t VCY Area					
LOCA	TION:	Can	ıp (arroll		_		G&EE NO.: _ FINISHED: _	0	8-037E	INS	PECTOR:	
DATE	START	TED:			03 Ma	r 09		FINISHED:	03	Mar 09	DR	ILLER:	a policy bearing the second
DRILLI	ING ME	ETHO	DD/	EQUIF	PMENT:	GeoP	robe (6600			-		
								HOLE DIAME	TER:	3 cm	TO	TAL DEPTH:	12.0 m
OVER	BURDE	EN TI	ΗC	KNES	SS:			DEPTH DRILL	.ED:	12.0 m	- WA	TER DEPTH:	
													MSL
GROU	ND CC	VER	: Ē	Grass				CONTAMINA	TION:		_		
YPE (OF HO	LE:		Piezon	neter	☐ Moni	toring V	CONTAMINAT	it [Auger Hole			
	····											***************************************	
ELEVATION / DEPTH (meters)	SAMPLE TYPE / NUMBER	GRAPHIC LOG	CONTAMINATED	BLOW COUNT	SPT N-VALUE	USCS/ STRATA		DESCRIPTIO	ON OF MA	ATERIALS		FIELD DATA	LAB DATA
-0		443				SC	S CLAY	EY SAND WITH GRA	VEL : brow	no: mojet, embana	ulor F	%Recovery = 100	
6	Si]			CH	fine to	o medium gravel (max	.1cm); su	bangular fine to c	oarse 🌡	PID = 2.3ppm	
						SM ML	∦no.	(max.4.8mm); low pla			- 11	FC = F3 FC = F4	
	S2						FAT	CLAY WITH SAND: mo	oderate re	ed; moist; subangi	ular	FC = F3 FC = F4	
2							mediu	ım; fill material(CH); r	10.	•		%Recovery = 70	
4	S3						SILTY	'SAND; yellowish bro e Sand (max.4.8mm);	wn; moist	; subangular fine	lo	PID = 2.6ppm %Recovery = 100	_]
							mater	ial(SM); no; contain M	ICA.	•		\PID = 2.6ppm	
	S4						SAND	Y SILT: dark yellowisi medium Sand (max.:	n orange;	moist; subangula	ľ	%Recovery = 100 PID = 2.9ppm	
4								iai(ML); no.	211111), 101	v piasticity, medio	F11; 1(118	%Recovery = 100	
2	85										PID = 2.1ppm		
			İ	Ì		ML	SAND	Y SILT: dark yellowist	orange;	moist; subangula	Γ :	%Recovery = 100	
	S6						fine to	medium Sand (max.)	2mm); lov	v plasticity; mediu	m;	PID = 2.6ppm	
-6					100,000,000							%Recovery = 90	
)	87		ļ									PID ≈ 2,2ppm	
			İ	ĺ								%Recovery = 100	
	S8											PID = 2.1ppm	
8												%Recovery = 90	
1	S9		ĺ	ı	-	- 1						PID = 2.4ppm	
			ļ		-							%Recovery = 100	
	S10	[]]										PID = 2.4ppm	
10												%Recovery = 100	
	\$11											PID = 1.9ppm	
												%Recovery = 100	
	S12	$\ \ \ $				-						PID = 2.3ppm	
L-12	L	1		-		I.			······································	***************************************	<u>-</u>		
													ļ

CEPOF-ED-G

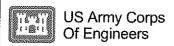
ENVIRO-EXPLORATION LOG 08-037E B565 CP CARROLL.GPJ USACE SKOREA.GDT 7/8/11

3727

US Army Corps Of Engineers

EXPLORATION LOG

HOLE NO. B09-228


PROJECT: Environmental Site Investigation at VCY Area LOCATION: Camp carroll G&EE NO.: 08-037E INSPECTOR: DATE STARTED: 03 Mar 09 FINISHED: 03 Mar 09 DRILLER: DRILLING METHOD/EQUIPMENT: GeoProbe 6600 DRILLING AGENCY: Far East District HOLE DIAMETER: 3 cm TOTAL DEPTH: 11.0 m OVERBURDEN THICKNESS: DEPTH DRILLED: 11.0 m WATER DEPTH: COORDINATES: N: 3,983,009.6 E: 446,973.4 GROUND ELEV: 46.78 m DATUM: MSL GROUND COVER: Grass CONTAMINATION: TYPE OF HOLE: Piezometer Monitoring Well Test Pit Auger Hole Other										
ELEVATION / DEPTH (meters)	SAMPLE TYPE / NUMBER GRAPHIC LOG CONTAMINATED	BLOW COUNT	SPT N-VALUE	USCS / STRATA	DESCRIPTION OF MATERIALS	FIELD DATA	LAB DATA			
46——0 46——2 44——4 42——6 40——8 38——10	\$2 \$2 \$3 \$4 \$5 \$6 \$7 \$9 \$10 \$11			SC CH ML ML	CLAYEY SAND WITH GRAVEL: dark brown; moist; subangular fine gravel (max.1cm); subangular fine to coarse Sand (max.4.8mm); low plasticity; soft; fill material(SC); no. FAT CLAY WITH SAND: moderate red; moist; subangular fine to medium Sand (max.2mm); medium plasticity; medium; fill material(CH); no. SILT WITH SAND: dark yellowish orange; moist; subangular fine to medium Sand (max.2mm); low plasticity; stiff; residual; no; contain MICA. SILT WITH SAND: dark yellowish orange; moist; subangular fine to medium Sand (max.2mm); low plasticity; stiff; residual; no; contain MICA. SNADY SILT: yellowish brown; moist; subangular fine to medium Sand (max.2mm); low plasticity; medium; residual; no; contain MICA.	%Recovery = 100 PID = 0.9ppm FC = F3 FC = F4 FC = F4 %Recovery = 100 PID = 1.ppm FC = F4 %Recovery = 100 PID = 1.2ppm %Recovery = 100 PID = 1.5ppm %Recovery = 90 PID = 1.7ppm %Recovery = 100 PID = 1.5ppm %Recovery = 100 PID = 1.3ppm %Recovery = 90 PID = 1.3ppm				

CEPOF-ED-G

ENVIRO-EXPLORATION LOG 08-037E B565 CP CARROLL GPJ USACE SKOREA GDT 7/6/11

3708

PAGE 1 of 3

EXPLORATION LOG

HOLE NO. B09-229

PROJECT: Environmental Site Investigation at VCY Area												
LOCA	TION:	Camp	carrol				G&EE NO.:08-037E			PECTOR:		
				03 Ma			FINISHED:	03	Mar 09		LLER:	and the same of the same of
DRILLING METHOD/EQUIPMENT: GeoProbe 6600												
DRILL	ING AC	SENCY	': <u>]</u>	Far Eas	t Distric	<u>et</u>	HOLE DIAMETI	ER: _	3 cm	TO	TAL DEPTH: _	
OVEF	BURDE	EN THI	CKNES	SS:			DEPTH DRILLE	ED:	12.0 m	. WA	TER DEPTH:	
							GROUND ELEV			. DA	ГUМ:	MSL
GROU	IND CC	VER:	Grass	·	~~		CONTAMINATION Vell	ON: _				
TYPE	OF HO	LE: [☐ Piezor	neter	☐ Moni	itoring V	Vell ☐ Test Pit		Auger Hole		other	
ELEVATION / DEPTH (meters)	SAMPLE TYPE / NUMBER	GRAPHIC LOG CONTAMINATED	SLOW COUNT	SPT N-VALUE	USCS / STRATA		DESCRIPTION	OF MA	TERIALS		FIELD DATA	LAB DATA
388	S S	8000	PH OH	Las ≥	STS							
		7222			SC	CLAV	EY SAND WITH GRAVE	1.6			0/10	
46	S1				GP /	₁ fine g	ravel (max.1cm); mediui	m plastic	n; moist; subangt city; medium; fill	наг <i>Г</i>	%Recovery = 100 PID = 1ppm	
					CH	POOR	ial(SC); no. RLY GRADED GRAVEL I	WITH SA	AND: dark brown:	{	FC = F3 FC = NFS	-
	S2					moist;	subangular medium gra II material(GP); no.	avel (ma	ix.3cm); no plastic	city;	FC = F4 %Recovery = 80]
-2						FATC	LAY WITH SAND: dark				\PID = 2.1ppm	<i></i>
44	\$3					high p	lasticity; stiff; fill materia	I(CH); n	ID.		%Recovery = 100 PID = 2.3ppm	
	S4										%Recovery = 65 PID = 1.6ppm	
					ML	SILT V	VITH SAND : moderate r esidual; no; contain MIC	'ed; moi: A.	st; fow plasticity;			
42-	\$5				-						%Recovery = 90 PID = 2.4ppm	
	S6										%Recovery = 100 PID = 1.9ppm	
-6												
40-	S7										%Recovery = 90 PtD = 1.6ppm	
	S8										%Recovery = 90 PID = 2.1ppm	
388	S9										%Recovery = 90 PtD = 2.2ppm	
	\$10										%Recovery = 100 PID = 1.8ppm	
36-	S11		,								%Recovery = 90 PID = 1.6ppm	
	S12										%Recovery = 90 PID = 2ppm	

ENVIRO-EXPLORATION LOG 08-027E B565 CP CARROLL GPJ USAGE SKOREA.GDT 7/6/11

Appendix II: Monitoring Well Construction Logs

MONITORING WELL LOG

WELL NO. **B09-223MW**

PROJECT: Environmental Site Investigation at VCY Area LOCATION: Camp carroll G&EE NO.: 08-037E INSPECTOR: DATE STARTED: 02 Mar 09 FINISHED: 02 Mar 09 DRILLER: DRILLING METHOD/EQUIPMENT: GeoProbe 6600 DRILLING AGENCY: Far East District HOLE DIAMETER: 3 cm TOTAL DEPTH: OVERBURDEN THICKNESS: DEPTH DRILLED: 19.0 m WATER DEPTH: 13.5 m COORDINATES: N: 3,982,991.5 E: 447,006.1 GROUND ELEV.: DATUM: ___ 46.51 m GROUND COVER: Grass TOP of WELL RISER CASING ELEV.: 46.46 m WELL GRAPHIC ELEVATION; DEPTH (meters) WELL CONSTRUCTION GRAPHIC LOG FIELD DATA USCS / STRATA **DETAILS** Depth Protective PROTECTIVE CASING casing Diameter: 20 cm Elevation: 46.46 m Type: Manhole Interval: -0.02 to 0.18m %Recovery = 90 46-1 FC = F4 1FC = S1 WELL RISER CASING FC = F3 Diameter: 2 inch 2 %Recovery = 80 PID = 1.3ppm Type: Schedule 40 PVC -2 Interval: -0.01 to 10.6m 3 44-%Recovery = 85 PID = 1.6ppm %Recovery = 95 PID = 1.7ppm Cement Grout 4 WELL SCREEN Diameter: 2 inch %Recovery = 80 PID = 2.4ppm 42-5 Type: 0.01 Slot Sch 40 %Recovery = 80 -Well Casing Interval: 10.6 to 18.2m 6 PID = 2.4ppm--6i %Recovery = 90 40-7 PID = 1.5ppm WELL POINT Type: Schedule 40 PVC %Recovery = 90 Bentonite Seal 8 PID = 2.8ppm Interval: 18.2 to 18.35m -8 %Recovery = 90 PID = 3.7ppm 38-9 **CONCRETE PAD** %Recovery = 90 PID = 3.3ppm 10 Diameter: 0.3m -10 10 Interval: -0.05 to 0.15m %Recovery = 80 36-11 PID = 3.9ppm%Recovery = 100 **GROUT** 12 PID = 4.3ppmType: Portland Type II -12 12 -%Recovery = 0 Interval: 0.0 to 7.0m 13 PID = 0ppm Quantity: 9 bags of 20 kg %Recovery = 40 PID = 1,2ppm Filter Pack 14 -14 14 -%Recovery = 80 SEAL Well Screen 32-15 PID = 3ppmType: Bentonite ĊН %Recovery = 100 Interval: 7.0 to 8.0m 16 PID = 1.7ppm СН Quantity: 2.5 gal -16 16 -%Recovery = 100 30~ 17 PID = 1.1ppm SAND PACK Type: medium sand -18 18 Interval: 8.0 to 18.5m Well Bottom Borehole Bottom Quantity: 135kg Grain Size: 0.4-1.2 mm Note: Remarks: ☑ Ground-water level at completion of borehole 03/03/09 caved Ground-water level on 13.5m ▲ Product level on

USACE SKOREA.GDT

CARROLLGPU

08-037E B565 CP

8

US Army Corps Of Engineers

MONITORING WELL LOG

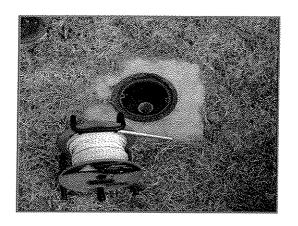
WELL NO. B09-225MW

PROJECT: Environmental Site Investigation at VCY Area LOCATION: Camp carroll G&EE NO.: ____ INSPECTOR: 1 08-037E 02 Mar 09 DATE STARTED: FINISHED: 02 Mar 09 DRILLER: DRILLING METHOD/EQUIPMENT: GeoProbe 6600 DRILLING AGENCY: Far East District HOLE DIAMETER: 3 cm TOTAL DEPTH: DEPTH DRILLED: __ OVERBURDEN THICKNESS: WATER DEPTH: 20.0 m 15.8 m COORDINATES: N: 3,982,990.4 E: 446,964.5 GROUND ELEV.: 46.57 m DATUM: ____ MSL GROUND COVER: Grass TOP of WELL RISER CASING ELEV.: 46.63 m ELEVATION / DEPTH (meters) WELL GRAPHIC WELL CONSTRUCTION GRAPHIC LOG USCS/ STRATA FIELD DATA DETAILS Depth (m) Protective **PROTECTIVE CASING** casing/ Diameter: 20 cm Elevation: 46.63 m Type: Manhole Interval: -0.02 to 0.18m %Recovery = 80 46-PID = 3.3ppm FC = F4 GP **WELL RISER CASING** CH Diameter: 2 inch FC = NFS 2 FC = F3 Type: Schedule 40 PVC -2 %Recovery = 90 Interval: -0.01 to 11.4m 3 44-PID = 2.6ppm %Recovery = 100 PID = 3.3ppm 4 WELL SCREEN %Recovery ≈ 90 Cement Grout PID = 2.3ppm Diameter: 2 inch 42-5 %Recovery = 90 \PID = 2.7ppm Type: 0.01 Stot Sch 40 Interval: 11.4 to 19.3m 6 %Recovery = 90 Well Casing PID = 3.1ppm -6 %Recovery = 100 PID = 3ppm 7 40-**WELL POINT** SM Type: Schedule 40 PVC %Recovery = 100 8 PID = 2.6ppm Interval: 19.3 to 19.45m -8 %Recovery = 90 Bentonite Seal 9 38-PID = 2.9ppm **CONCRETE PAD** %Recovery = 90 PID = 2.3ppm 10 Diameter: 0.3m -10 10 Interval: -0.05 to 0.15m %Recovery = 100 PID = 1.3ppm 36 11 SM **GROUT** Type: Portland Type II -12 12 Interval: 0.0 to 8.2m 34 Quantity: 11 bags of 20 kg 14 -Filter Pack SEAL 32-Type: Bentonite Well Screen Interval: 8.2 to 8.8m Quantity: 2.5 gal -16 16 30-SAND PACK Type: medium sand -18 18 Interval: 8.8 to 19.5m 28-Quantity: 180kg Well Bottom Grain Size: 0.4-1.2 mm Borehole Bottom Note: Remarks: ☑ Ground-water level at completion of borehole 03/03/09 no water Ground-water level on 15.8m ▲ Product level on

AONITORING WELL LOG 08-037E 3565 CP CARROLLIGPJ USACE SKOREA,GDT

Appendix III: Field Experiment Result- Slug Test

US Army Corps of Engineers


Far East District

Report

FOR

TASK ORDER NO.0014 CAMP CARROLL FIELD SLUG AIR PERMEABILITY TEST

APRIL 2010

Prepared for:

US Army Corps of Engineers, Far East District Geotechnical and Environmental Engineering Branch Unit #15546, APO AP 96205-5546

Contract # W912UM-07-D-0001 Task Order # 0014

Prepared by:

Table of Contents

1.	INTRODUCTION	2
1.1	1 Project Background	2
1.2	2 Project Progress	2
2.	ANALYSIS MATHOD	2
2.1	1 Slug test	2
3.	ANALYSIS RESULT	4
	Information of Monitoring Wells	
3.2	2 Description for the slug test at Sites	4
3.2	2.1 Vehicle Cutting Yard	5
3.3	B Result	6
3.3	3.1 Slug test	6

1. INTRODUCTION

1.1 Project Background

BEC has prepared this report for the FED under contract NO. W912UM-07-D-0001, Task Order No.0014. This report summarizes the result to analyze for slug and air permeability test at Camp Carroll.

1.2 Project Progress

Field tests were performed in the camp Carroll during the period of 9 November, $2009 \sim 13$ November, 2009(1st) and 22 February, $2010 \sim 25$ February, $2010(2^{nd})$. Kinds of field test are slug and air permeability tests. The project site is a former vehicle-cutting yard (building 563) in Camp Carroll.

Hydrologic field experiments such as slug and pumping, and air permeability tests were conducted at the project site. Pumping test and air permeability tests were due to not sufficient water level draw down and no response during field experiments.

2. ANALYSIS MATHOD

2.1 Slug test

The slug test method involves the instantaneous injection or withdrawal of a volume or slug of water or solid cylinder of known volume. This is accomplished by displacing a known volume of water from a well and measuring the artificial fluctuation of the groundwater level. The primary advantages of using slug tests to estimate hydraulic conductivities are numerous. First, estimates can be made in-situ, thereby avoiding errors incurred in laboratory testing of disturbed soil samples. Second, tests can be performed quickly at relatively low costs because pumping and observation wells are not required. Lastly, the hydraulic conductivity of small discrete portions of an aquifer can be estimated (e.g., sand layers in a clay)(EPA,1994).

The most commonly used method for determining hydraulic conductivity in groundwater investigation is the Bouwer and Rice slug test shown schematic groundwater level drawdown zone through withdrawal of dummy(Hammm et al, 2001).

Bouwer and Rice's expression for hydraulic conductivity (K) is:

$$K = \frac{r_c^2 \ln(R_e/R)}{2L_e} \frac{l}{T} \ln \frac{H_t}{H_0}$$

Where:

K = hydraulic conductivity [ft/sec]

 R_e = filter pack (borehole) radius [ft]

R =screen radius [ft]

 $r_c = \text{casing radius [ft]}$

 L_e = length of open screen (or borehole)[ft]

 H_{θ} = drawdown at t = 0

 $H_t = \text{drawdown at t } \geq H_\theta$

The simplest interpretation of piezometer recovery is that of Hvorslev(1951). The analysis assumes a homogenous, isotropic medium in which soil and water are incompressible(EPA,1994).

$$K = \frac{r2 \ln(L/R)}{2L T_0} \quad for L/R > 8$$

Where:

K = hydraulic conductivity [ft/sec]

r = casing radius [ft]

L = length of open screen (or borehole)[ft]

R = filter pack (borehole) radius [ft]

 T_{θ} = Basic Time Lag [sec]; value of t on semi-logarithmic

plot of H-h/H-H0 vs. t, where H-h/H-H = 0.370

H = initial water level prior to removal of slug

3

 H_{θ} = water level at t = 0

h = recorded water level at t > 0

3. ANALYSIS RESULT

3.1 Information of Monitoring Wells

Next is the information is performed wells each area in camp Carroll. The test is performed by in 9 Nov.~12 Nov and chosen one well that test is possible. The depth, natural groundwater level, radius, order of wells was checked before the test. Water level measured for time after injected the dummy using a diver. If water level has been stable, withdrew the dummy so water level measured. Sometimes, rise up with diver when the dummy is withdrew that get tangled fixed each line of the dummy and diver in well. Also, water level after injected the dummy rose up more than natural groundwater level. It should pay attention to analysis of test results (Table 1).

Table 1. Information of slug test is performed wells

Site	Well No.	Time	D		D 1		
316	wen no.	HIHE	Dummy	D ¹⁾ (m)	WR ²⁾ (mm)	NG ³⁾ (m)	Remark
	D00 002	1015	injection		51		
VCY (B563)	B09-223	1027	withdrawal	- 18.50		13.502	
. , -	D00 005	1006	injection	10.71			
	B09-225	1027	withdrawal	- 19.54	51	15.805	

¹⁾ well depth, 2) well radius, 3) natural groundwater level(blg)

3.2 Description for the slug test at Sites

Generally, groundwater level showed a fluctuation by injection and withdrawal of dummy. Groundwater level data of withdrawal is less than a noise the groundwater level data of injection. Groundwater level had been stable within minutes beyond the stress(dummy). Some data of wells are distinct with other trend of wells. When the slug test analyzed the range of groundwater was assumed in the aquifer

The diagrams are plots of injection and withdrawal during the slug test at the site. Each plot of injection and withdrawal is the head (H/H0) against the elapsed time. The plot is drew the fitting line above interval which is consistent on head (H/H0). The analysis for slug test needs the initial drawdown data of water level. Sometimes, the initial drawdown of water level have the noise of data to be different with general trend so the initial drawdown is selected by an analyst is based the hydrogeology. The slope (\Deltas) to need analysis can obtain from fitting line is drew on drawdown of water level.

3.2.1 Vehicle Cutting Yard

The slug test conducted B09-223 and B09-225 in the VCY site. The groundwater level of MW(monitoring wells) was checked from 13.50m to 15.81m and the depth of MW is from 18.50 m to 19.54m respectively.

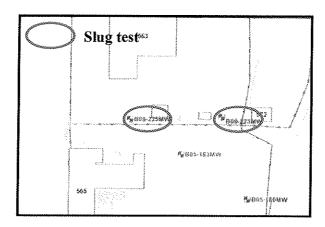


Figure 1 Location of Monitoring well conducted the slug test in the B565.

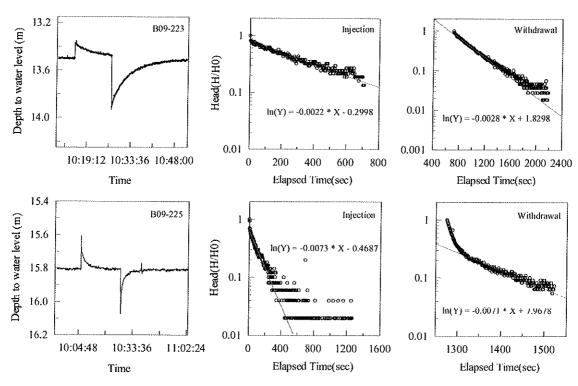


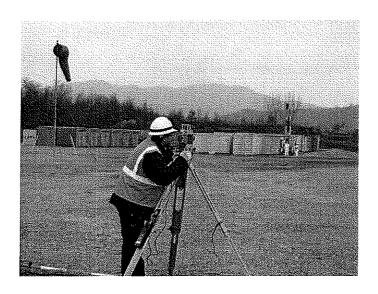
Figure 2 Curve-fitting results against elapsed time at constant slug tests in the B565.

3.3 Result

3.3.1 Slug test

The hydraulic conductivity(K) is calculated by the Hvorslev and the Bouwer & Rice methods:

• 2.68E-04 / 2.62E-04 cm/sec in the VCY


Table 2 Hydraulic conductivity (K) estimated from the slug test using the Horvslev and Bouwer & Rice method

Site	Well	Dummy	K(m/sec) (Horvslev)	K(m/sec) (B& R)	K(m/day) (Horvslev)	K(m/day) (B&R)	Average K (cm/sec) Horvslev	Average K (cm/sec) B&R
	B09-223	injection	1.0E-06	9.7E-07	0.08875	0.08366	1.167-04	1.000.04
VCY	D09-223	withdrawal	1.3E-06	1.2E-06	0.11189	0.10548	- 1.16E-04	1.09E-04
VC1	B09-225	injection	4.2E-06	4.2E-06	0.36696	0.36308	4.05.04	1105.01
	DU9-223	withdrawal	4.1E-06	4.1E-06	0.35765	0.35387	- 4.19E-04	4.15E-04

Report for

Environmental Site Investigation at Land Farm and Area D of Camp Carroll, Republic of Korea

Submitted to: Environmental Division of Directorate of Public Works United States Army Garrison Daegu Unit # 15746, APO AP 96218-5746

Prepared by: Environmental Section Geotechnical and Environmental Engineering Branch US Army Corps of Engineers District, Far East Unit #15546, APO AP 96205-5546

August 2011

Executive Summary

This Environmental Site Investigation (ESI) was conducted at the Land Farm and Area D (LF-Area D) located within Camp Carroll of the United States Army Garrison (USAG) Daegu, Republic of Korea (ROK) during February 2009 to March 2010. Previous investigations conducted at the area showed the presence of hazardous substances in soil and groundwater from previous burial of drums of hazardous substances. The ESI at the site was conducted to better delineate the lateral extent of subsurface soil and groundwater contamination and the levels of chemicals of potential concern of the LF-Area D. The investigation was completed to allow the installation meet its obligations under DoD Directive 4715.1E to protect DoD personnel and the public from hazardous environmental substances and provide information to support the evaluation process in DoD Instruction 4718.5 for determining the need for remediation of environmental contamination.

Thirteen boreholes were completed during this ESI. A total of 49 soil samples were collected to a depth of 6 meters at 2 meter increments. All 49 samples were submitted to the analytical laboratory for analysis volatile organic compounds (VOCs) and organo-chlorinated pesticides (OC-pesticides). Twenty-six samples (0 to 2 meters and 2 to 4 meters) were submitted for analysis of total petroleum hydrocarbon (TPH), semi-VOCs, and dioxin-furans. Thirteen samples (0 to 2 meters) were submitted for analysis of metals and polychlorinated biphenyls (PCBs). Groundwater samples were collected from 16 groundwater monitoring wells and 6 water supply wells. Those samples were analyzed for VOCs and/or OC-pesticides.

VOCs were detected in some soil samples collected from each of the borehole drilled at the Area D. Toluene; 2,4-chlorotoluene; tetrachloroethene; and trichloroethene were detected in site soil samples. Other VOCs are mostly below the practical quantitation limit (PQL). Toluene was detected in 23 soil samples out of total 49. Tetrachloroethene was detected in 5 soil sample out of total 49. The 2,4-chlorotoluene and trichloroethene were detected in only one sample.

OC-pesticides were detected in soil samples collected from each of the boreholes drilled at the Area D. Lindane, 4,4'-DDE, DDD and DDT were the chemicals detected above the PQL with 4,4-DDD and DDT being the most common pesticides identified in soil samples.

A total of 26 soil samples were tested for diesel range (DRO) and residual range (RRO) petroleum hydrocarbons. Four samples were identified containing petroleum hydrocarbons. The samples with detected petroleum hydrocarbon were the shallow sample depths, indicating incidental releases from vehicle operations rather than a release from a storage tank.

No target SVOCs were detected above the PQL in soil samples collected from boreholes drilled at the Area D. Table 4-4 presents the chemical test result for SVOCs.

Twenty-six soil samples were submitted for dioxin/furan analysis. Various dioxin-furan congeners were detected in soil samples. No 2,3,7,8-TCDD was detected in soil. The International-Toxic Equivalent Factors (I-TEF) for dioxins and furans were used to calculate the International-Toxic Equivalent (I-TEQ) for each soil sample The I-TEQ is expresses the detected concentration of dioxin-furans with respect to the toxicity of 2,3,7,8-TCDD and 1,2,3,7,8-

PeCDD. The I-TEQ calculated for each of the soil samples collected at the site ranges from 0.03 to 1.73.

Target metals were detected in all 13 soil samples collected from the boreholes drilled at the Area D, but the detected concentrations of metals were close to the results from a site background sample. According to the comparison with the site background sample, the metal concentrations of site soil samples have not been affected by historic activities.

No PCBs were detected in soil samples collected from boreholes drilled at the LF-Area D.

374 Commen

Acronyms

ASTM: American Society for Testing and Materials BEC: Beautiful Environmental Construction (BEC)

CD: Compact disk

COPC: Chemicals of Potential Concern

CSM: Conceptual Site Model

DDD: dichlorodiphenyl dichloroethane DDT: dichlorodiphenyl trichloroethane DPW: Directorate of Public Works

EM-Engineering Manual

EPA: Environmental Protection Agency ESA: Environmental Site Assessment ESI: Environmental Site Investigation

FED: Far East District

HTRW: Hazardous, Toxic, and Radioactive Waste IDIQ: Indefinite Delivery and Indefinite Quantity

IDW: Investigation-derived wastes

I-TEF: International-Toxic Equivalent Factors

I-TEQ: International-Toxic Equivalent

LCS: Laboratory Control Sample LF-Area D: Land Farm and Area D

LNAPL: Light Non-Aqueous Phase Liquid

MS: Matrix Spike ND: Not detected

NELAC: National Environmental Laboratory Accreditation

Conference

O/M: Operation and Maintenance

OC-pesticide: organo-chlorinated pesticides

PCB: polychlorinated biphenyl PCE: tetrachloroethylene PID: Photo Ionization

PQL: Practical quantitation limit PSA: Preliminary Site Assessment

QA: Quality Assurance QC: Quality Control ROK: Republic of Korea SI: Site Investigation

SSHP: Site Safety and Health Plan

SVE: Soil Vapor Extraction TCE: trichloroethylene

TPH: total petroleum hydrocarbon

TPH-D: diesel range TPH TPH-G: gasoline range TPH

TPH-O: oil range TPH

USACE: US Army Corps of Engineers USAG-Daegu: US Army Garrison Daegu

USFK: US Forces Korea

UTM: Universal Transverse Mercator VOCs: volatile organic compounds WGS: World Geodetic System

WP: Work Plan

ZVI: Zero Valent Iron

3744

Table of Contents

1.	Int	roduction	1
	1.1.	Project Authority	1
	1.2.	Project objectives	1
	1.3 Re	gulatory Considerations	1
2.	Site	Description and History	3
	2.1.	Camp Carroll	3
	2.2.	Land Farm	3
	2.3.	Area D	3
	2.4.	Summary of Previous Investigations	4
	2.4.	1. Land Farm	4
	2.4.	2. Area D	5
	2.5.	Identification of Data Needs	5
	2.5.	1. Land Farm	5
	2.5.	2. Area D	5
3.	Fiel	d Activity	15
		Field Activities	
	3.2.	Borehole drilling and soil sampling	15
	3.2.		
	3.2.		16
	3.3.	Groundwater Monitoring Well Construction	16
	3.3.		16
	3.3.2		
	3.3.	3. Groundwater Sampling	18
	3.4.	Topographic survey	18
	3.5.	Investigation Derived Wastes	18
	3.5.1	Contaminated Soil	19
	3.5.2	2. Well Development and Decontamination Water	19
	3.5.3	<u>-</u>	
	3.6.	Supplemental Site Characterization	19
	3.6.1	Slug Test	19
	3.6.2	2. Aquifer Pumping Test	20
	3.6.3	3. Air Permeability Test	20
	3.6.4	Nutrient and Microbial Sampling	20
1 .	Find	lings during ESI Investigation	
4		Laboratory Analysis	
4		Data Quality Control/Assurance	
4		Subsurface Soil Investigation Result	
	4.3.1		
	4.3.2		
	4.3.2	•	
	4.3.2		

	4.3.2.5	. Polychlorinated Biphenyls	
	4.3.2.6	1 1	
	4.3.2.7	. Dioxins/Furans	
	4.3.3.	Groundwater Contamination	
4.	4. Hy	ydrologic Characteristics of the Site	
	•	Slug Test	
		Pumping Test	
		Air Permeability Test	
		Nutrient and Microbial Sampling	
		ences	

List of Table

Table 2-1 Trichloroethylene (TCE) Concentrations (µg/L) in Groundwater Sample in	
the Production Wells at Camp Carroll from 1991 to 1996. Drinking water standard	of
TCE at US Army installations is 5 µg/L (USFK 2004).	7
Table 3-1. Project Chronology of ESI at LF-Area D of Camp Carroll.	21
Table 3-2. Topographic Survey Result for Borehole and Monitoring Well at LF-Area	D of
Camp Carroll.	22
Table 4-1. Soil Sample Information versus the Chemical of Concern from each Boreh	iole. 30
Table 4-2. TPH Chemical Test Results for Soil Samples at LF-Area D.	
Table 4-3 VOCs Chemical Test Results for Soil Sample at LF-Area D	
Table 4-3 VOCs Chemical Test Results (Continued).	33
Table 4-4 SVOCs Chemical Test Results for Soil Samples of LF-Area D	33
Table 4-5. Metal Chemical Test Result for Soil of LF- Area D	34
Table 4-6. OC-Pesticides Chemical Test Results for Soil of LF-Area D	35
Table 4-6. OC-Pesticides Chemical Test Results (Continued)	36
Table 4-7. Dioxin-Furan Chemical Test Results for Soil of LF-Area D.	37
Table 4-8 Water Level Measurement Result at LF-Area D	38
*- below ground surface; ^- above mean sea level	38
Table 4-9 Groundwater Sampling Strategy at LF-Area D.	39
Table 4-10 OC-Pesticides Chemical Test Result of Groundwater at LF-Area D	40
Table 4-10 OC-Pesticides Chemical Test Result (Continued).	41
Table 4-10 OC-Pesticides Chemical Test Result (Continued).	
Table 4-11 VOCs Chemical Test Result for Groundwater of LF-Area D	43
Table 4-11 VOCs Chemical Test Result (Continued)	
Table 4-11 VOCs Chemical Test Result (Continued)	45
Table 4-11 VOCs Chemical Test Result (Continued)	46
Table 4-11 VOCs Chemical Test Result (Continued)	47
Table 4-12 Slug Test Result at LF-Area D	48
Table 4-13 Pumping Test Result at LF-Area D	48
Table 4-14 Microbe and Total CNP Analytical Result of Soil at LF-Area D	49

List of Figure

Figure 2-1. Location of Camp Carroll in Republic of Korea	
Figure 2-2. Location of Land Farm and Area D at Camp Carroll9)
Figure 2-3. Tetrachloroethene (PCE) in the Subsurface Soil at Land Farm by FED in 2007.	٠
10)
Figure 2-4 Groundwater gradient at Land Farm Area by FED in 200711	Ĺ
Figure 2-5 Previous investigation result around Area D by Samsung in 2004 12	
Figure 2-6 TCE test results for Groundwater of the Supply Wells at Camp Carroll during	
1991~1996	3
Figure 3-1. Location of Boreholes and Groundwater Monitoring Wells at LF-Area D of	
Camp Carroll	3
Figure 4-1. Toluene Concentration in Soil at LF-Area D of Camp Carroll50)
Figure 4-2. PCE Concentration in Soil at LF-Area D of Camp Carroll51	ĺ
Figure 4-3 4',-4 DDT in Soil at LF-Area D of Camp Carroll	,
Figure 4-4. Supply Well and Groundwater Monitoring Well Locations in the Vicinity of	
LF-Area D of Camp Carroll	Š
Figure 4-5 Correlation among the Groundwater Level Measurement Results at LF-Area D	
of Camp Carroll54	
Figure 4-6 Groundwater Flow Direction at LF-Area D of Camp Carroll55	
Figure 4-7 Toluene in Groundwater of LF-Area D of Camp Carroll56)
Figure 4-8 PCE in Groundwater of LF-Area D of Camp Carroll57	7
Figure 4-9 TCE in Groundwater of LF-Area D of Camp Carroll 58	ŝ
Figure 4-10 Monitoring Well Layout of Hydrologic Tests at LF-Area D of Camp Carroll. 59)

Appendices

I : Soil Borehole Logs

II: Monitoring Well Construction Logs

III: Hydrologic Test Result

IV: Chemical Data Quality Discussions

1. Introduction

This report describes the work results obtained from the Environmental Site Investigation (ESI) conducted for the Land Farm and Area D, which are located at the central eastern portion of Camp Carroll.

This ESI project was conducted by US Army Corps of Engineers, Far East District (FED), with support from FED's Environmental Indefinite Delivery and Indefinite Quantity (IDIQ) contractor Beautiful Environmental Construction (BEC). This report was developed in accordance with industry standards and US Environmental Protection Agency (EPA) guidelines for sampling and analysis. All field and analytical work were conducted according to the Work Plan (WP) and Site Safety and Health Plan (SSHP) developed by FED for this project.

1.1. Project Authority.

FED was authorized by the US Army Garrison Daegu (USAG-Daegu) Directorate of Public Works (DPW), US Forces Korea (USFK) to conduct work on 30 April 2008 at Land Farm and Area D through MIPR 8GDBPENV06.

1.2. Project objectives

The overall objective of this ESI was to delineate the nature and extent of contamination that had a potential to affect human health. The project objectives were developed based upon the previous investigation result by Samsung 2004. The chemicals of interest were selected based on those reported in the 2004 result.

The following specific objectives were addressed during this ESI for Land Farm and Area D:

- Assess the presence of total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), semi-VOCs, polychlorinated biphenyl (PCB), metals, dioxins, and organochlorinated pesticide (OC-pesticide) in subsurface soil, and VOCs and semi-VOCs for groundwater.
- Assess the potential migration of VOCs from groundwater at the site to nearby operating drinking water supply wells.

1.3 Regulatory Considerations

The release of hazardous substances by DoD activities to the environment has potential implications for health and well-being of DoD personnel (including dependants) on the installation and the public living and working adjacent to the installation. The Department of Defense (DoD) Directive 4715.1E titled "Environment, Safety, and Occupational Health (ESOH)" establishes policies for all DOD components world-wide regarding environment, safety, and occupational health (DoD, 2005). DOD 4715.1E states it is DoD policy to protect DoD personnel from accidental death, injury, and occupational illness and to protect the public from risk of death, injury, illness, or property damage because of DoD activities. Consequently, installations have an obligation to identify potential effects to DoD personnel and the public when a release of hazardous substances is discovered. Once the nature of the contamination is

determined DoD Instruction 4715.8 titled "Environmental Remediation for DoD Activities Overseas" describes the policy and procedures for remediation of environmental contamination on DoD installations and facilities located outside the US (DoD, 1998). According to this document, remediation of environmental contamination is required when

- 1. A known imminent and substantial endangerment to human health and safety due to environmental contamination that was caused by DoD operations and that is located on or is emanating from a DoD installation or facility.
- 2. After consultation with the DoD Environmental Eccutive Agent, the in-thater commander of the DoD Component determines additional remediation of environmental contamination is required to maintain operations or protect human health and safety.
- 3. International agreements require the United States to fund environmental remediation.

In Korea, DoD Instruction 4715.8 is implemented through US Forces Korea Regulation 200-1 titled "United States Forces Korea Remediation Regulation". Other regulatory guidance for environmental standards in Korea is contained in US Forces Korea Pamphlet 200-1 titled "Environmental Governing Standards."

2. Site Description and History

2.1. Camp Carroll

Camp Carroll is a U.S. Army Installation located adjacent to the village of Waegwan in the south-central portion of Korea (Figure 2-1). Camp Carroll serves as the Headquarters, U.S. Army Material Support Center and functions as a staging ground for U.S. military operations on the Korean Peninsula. The primary mission of the base is to serve as a staging facility and a storage and maintenance depot. Urban areas bound Camp Carroll on the northwest, west and southwest. Hilly, forested areas bound the base on the north and east. Agricultural fields (mostly rice paddies) border the camp on the northeast and the south. The Naktong River flows north-south approximately 0.5 kilometers west of Camp Carroll. The Land Farm and Area D sites are located at the central eastern installation boundary Camp Carroll, next to the H805 helipad. Figure 2-2 presents the location of Land Farm and Area D at Camp Carroll.

2.2. Land Farm

The Camp Carroll Land Farm consists of three engineered units for treatment of contaminated soil. Two of the units are treatment beds, referred to as Bed #1 at east and Bed #2 at west and the third unit is a water retention pond. The dimensions of each treatment bed, which is bounded by a berm, are approximately 70 meters by 30 meters. The dimensions of the water retention pond are approximately 30 meters by 20 meters. The total Land Farm facility is approximately 9,100 square meters.

Camp Carroll environmental DPW personnel suspect that contaminated soil and material from Area 41 were disposed of in the area now occupied by the Land Farm. Their suspicions are based on the fact that contaminated soil and waste materials, such as one-gallon cans were uncovered during the excavation and construction of Bed #1 in 1995 (northwest corner of Bed #1). The Land Farm is also located near to Area D.

2.3. Area D

Area D is a former hazardous waste disposal area. Numerous hazardous materials were disposed in this disposal area between the years of 1977 and 1982. Personnel interviews indicated that numerous drums of hazardous materials were transported to Area D from Area 41. The drums contained a variety of chemicals including pesticides (including DDT), herbicides, solvents, and over 100 other detected chemicals. The disposal area dimensions were approximately 150 meters (m) by 75 m in area; and 6 m to 9 m deep.

Reportedly, much of the disposal area material and surrounding soil was excavated between 1982 and 1983 and placed into 55-gallon drums. The fate of the excavated drums is unknown. Despite the removal activity, residual amounts of contaminated material may have remained. No visual evidence of hazardous waste disposal, such as soil discoloration, dead vegetation, or hummocky terrain, was observed during a 1992 site inspection performed by a Woodward-Clyde Consultants field team.

2.4. Summary of Previous Investigations

The two areas to be investigated have been previously evaluated for environmental conditions during an environmental site assessment (ESA) and preliminary site assessment (PSA) as follows:

Land Farm:

ESA by FED in December 2004

Groundwater monitoring well construction in Land Farm in 2007.

Soil sampling to support of construction of treatment bed by FED in February 2008

Excavation of buried construction wastes, drums and cans during excavation for constructing a new treatment bed by the contractor in March 2008

Area D:

Woodward Clyde in 1992

Site Investigation by Samsung in July 2004

2.4.1. Land Farm

In 1992, monitoring well MW-23 was constructed by Woodward-Clyde personnel approximately 140 meters west of the Land Farm facility. Groundwater sample was collected from the well. No VOCs, SVOCs or organophosphorus (OP)-pesticides were detected in the groundwater sample collected from the well in 1992.

In 2004, results of soil sampling during the ESA showed site soils were contaminated with VOCs. Most of the detected VOCs were solvent-related chemicals. VOC contamination was detected as deep as 6 to 8 meters below ground surface. In addition, several pesticide, metal, and dioxin/furan compounds were also detected in site soils. Arsenic was detected in one soil sample at a concentration greater than the EPA guidance level for protection of ground water. Preliminary findings indicate that VOC and arsenic contamination exist in site soils and the levels could contribute to the contamination of the underlying groundwater. Groundwater contamination could pose a threat to human health, because ground-water supply wells are used for Camp Carroll's potable water supply.

In 2007, soil and groundwater were sampled and analyzed by FED to determine the level of chemicals potentially from the use of treatment facilities. Results showed there were no chemicals released into the environment from the treatment bed in use. However, results of soil sampling showed that concentrations of VOCs were present, including PCE and TCE. Mixed TPH of JP-8, diesel and oil was identified from one soil boring with the concentration of 10,000 mg/kg. Groundwater sampling result indicate the presence of VOCs, including PCE and TCE. Concentrations of arsenic, lead and OC-pesticide were also detected in groundwater samples.

In 2008, during soil excavation in support of a new treatment bed #2, approximately 2,200 cubic meters of contaminated soils with various chemicals were excavated and stockpiled within the Land Farm facility. In association with the contaminated soil, buried materials were uncovered such as 55gallon drums, 5 gallon cans and construction debris. Most 55 gallon drums were crushed and empty. Despite the removal and excavation activities, residual amounts of contaminated material likely remained. Figure 2-3 to 2-4 summarizes the previous investigation results at Land Farm.

2.4.2. Area D

In 2004, Samsung Co. conducted site investigation (SI) at Area D, and reported that the soil contained numerous contaminants including TPH-G, TPH-D, TPH-O, VOCs, SVOCs, pesticides, metals, and dioxins. The investigation reported that several soil contaminant concentrations exceeded EPA Region IX Preliminary Remedial Goal screening criteria. Groundwater samples obtained from Area D monitoring wells contained concentrations of TPH-G and TPH-D, VOCs, SVOCs, pesticides, metals, and dioxins. Figure 2-5 summarizes the previous investigation results at Area D.

2.5. Identification of Data Needs

2.5.1. Land Farm

Previous environmental investigations at the site found concentrations of VOCs, OC-pesticides, and metals in soils from the site subsurface soil and groundwater. During excavation in support of treatment bed #2 construction, buried drums and cans were uncovered from the bed. Although no chemical data are available, the removal activities of buried drums and cans containing various chemicals are to be believed as a source for soil and groundwater contamination. Groundwater quality is a primary concern for the installation because it is the source of drinking water. Table 2-1 summarizes the groundwater test results available for TCE collected from the supply wells and some buildings following treatment by the aeration tower that was installed in the early 1990. The concentration ranged from not detected (ND) to 1,229 µg/Liter. The highest concentration was found at the Well #15-286 located about 400 meters west of the Land Farm and Area D. Based on the distribution of TCE detected in the supply wells, the TCE contamination in supply wells is not likely to be a single common source. Figure 2-6 shows the location of supply wells with the chemical test data (the highest number) presented in Table 2-1 at Camp Carroll.

This ESI at the Land Farm site will focus on the groundwater quality. To evaluate the groundwater quality of the supply wells in association with the groundwater quality at the Land Farm area, three groundwater monitoring wells (estimated 40 meters deep) were installed between the supply wells and the Land Farm to monitor the gradient of groundwater quality from the Land Farm to the supply wells. The contaminants of intererst in this ESI at Land Farm are VOCs in groundwater.

2.5.2. Area D

The SI for Area D by Samsung in 2004 evaluated groundwater conditions and identified site soil contamination, but did not evaluate the vertical extent of contamination. This ESI at Area D expanded the SI and determined the vertical and the lateral extent of contamination in the

subsurface soil. In addition, groundwater monitoring wells were installed to determine the groundwater condition. The contaminants of interest for this ESI at Area D focuses on TPH, VOCs, semi-VOCs (SVOCs), OC-pesticides, metals, and dioxins in soil; and VOCs and OC-pesticides in groundwater.

Table 2-1 Trichloroethylene (TCE) Concentrations (μ g/L) in Groundwater Sample from the Production Wells at Camp Carroll from 1991 to 1996. Drinking water standard of TCE at US Army installations is 5 μ g/L (USFK 2004).

Collection Point	28-May-96	23-Apr-96	27-Feb-96	23-Jan-96	4-Dec-95	7-Nov-95	19-Sep-95	8-Aug-95	11-Jul-95	9-May-95	7-Mar-95	2-Nov-94	24-Oct-94	9-Sep-91
Well #1	4.4		5.6	5.9	-	-	austri annuarmu	-	-	+	_	-	3.2	5.66
Well #2	21.4	-	13.8	_	-	_	-	-	-	-	-	_	20.4	3.39
Well #3	<0.5	-	<0.5	<0.5	-	-	-	-	-	-	-	-	<0.5	22,22
Well #6	103.1	-	63.9	72.7	-	-	-	-	-	-	_	-	36.8	_
Well #8	<0.5		0.5	-	_	-	-	-					<0.5	<0.2
Well #10	-	-	-	<0.5	_	-	-	-	-	-	-	_	<0.5	<0.2
12-247	250.7	-	240	368.1	-	•				-		-	204.1	116.97
13-279	+	-	-	-	-	-	_	_	-	-	-	-	252.4	125.1
14-283	8.1	-	15.2	8.8				-					26.1	
15-286	1229	-	188.6	217.8	-	-	-	_	-	-	-	-	161.4	-
16-289	22.2		28.7	29.5		-	-	-				-	44.4	
Well #17	-	-	-	4.4	-	-	_	_	-	-	-	-	***	-
Well #18	<0.5	-	0.6	<0.5	•		-	-						
Aeration Tower (all mixed)	79.3	56.6	36.7	92.5	89.4	71.1	64	19	39.4	58.9	34.2	62.2	58	
S-262 Barracks					1	1.1	1.6	1.1	4	1.4	0.8	1.7	0.6	-
S-108 BEQs	1.3	0.7	1.3	0.9	0.8	0.9	1.6	1.1	3.3	1.5	1.1	1.7		
S-627 Distribution	0.7	1.2	1.2	0.9	0.8	1,1	1.4	1	2.8	1.5	0.7	1.8	0.5	
Room														
S-111 Snack Bar	1.3	-	1.3	1	-	-	-	-	-	-	-	#	-	-
S-117 WCC	1.2	- 8 1 8 8 1 8 8 8	1.3							7				
S-101 BOQ		-	-	-	-	-	-	-	-	pas .	•	-	-	-

Figure 2-1. Location of Camp Carroll in Republic of Korea.

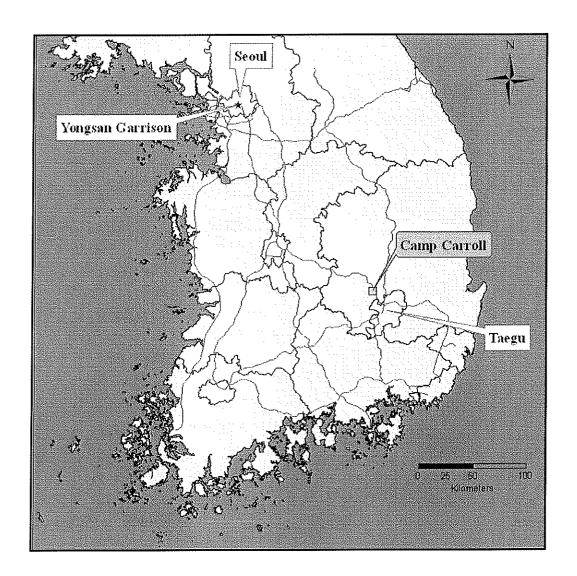


Figure 2-2. Location of Land Farm and Area D at Camp Carroll.

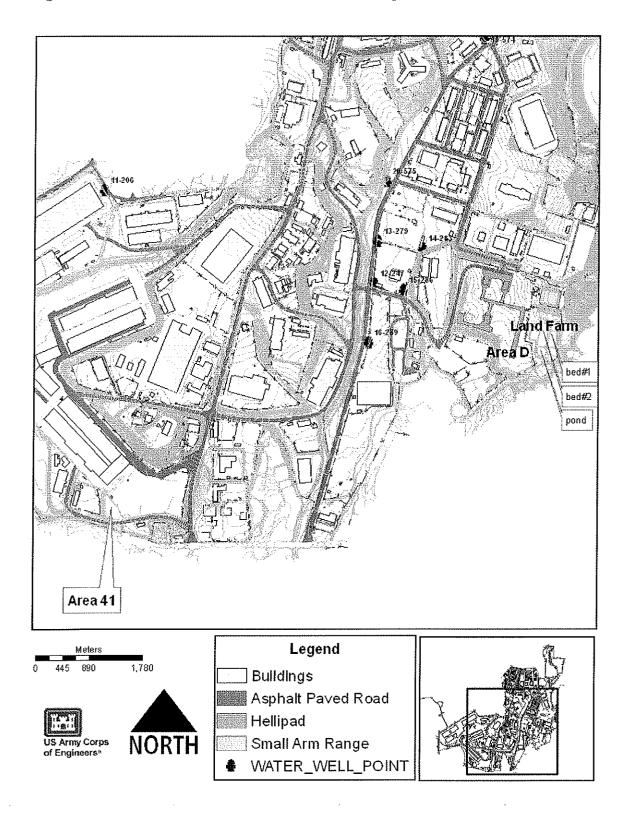


Figure 2-3. Tetrachloroethene (PCE) in the Subsurface Soil at Land Farm by FED in 2007.

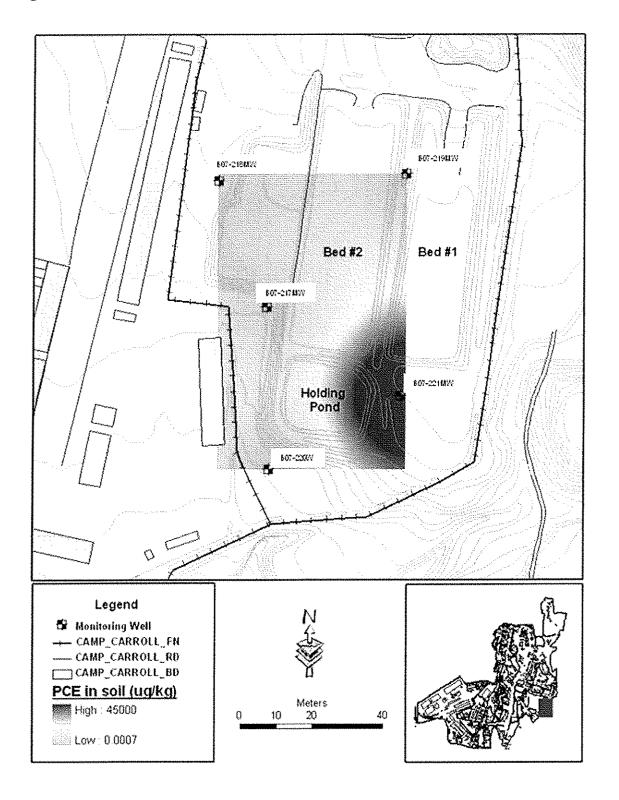


Figure 2-4 Groundwater gradient at Land Farm Area by FED in 2007.

WL AMSL- water level above mean sea level

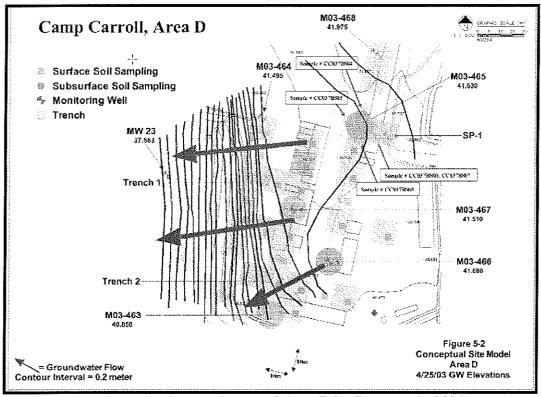
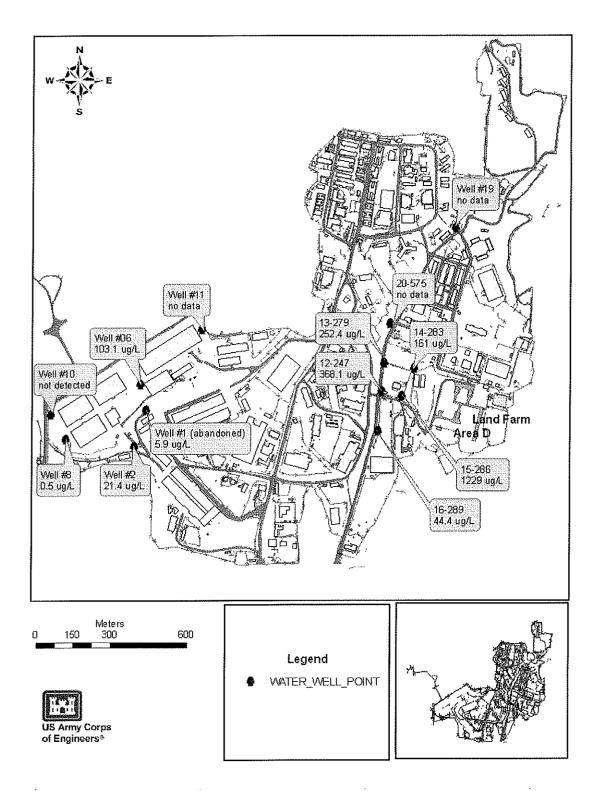



Figure 2-5 Previous investigation result around Area D by Samsung in 2004.

Presenting the groundwater flow direction with the arrows, and color shading indicates the locations that have been affected by chemicals of concern.

Figure 2-6 TCE test results for Groundwater of the Supply Wells at Camp Carroll during 1991~1996.

Report for ESI at Land Farm and Area D, C	amp Carroll
---	-------------

August 2011

Page 14 3 62

3. Field Activity

3.1. Field Activities

Field procedures for this ESI followed the description in the project Work Plan. A total of three groundwater monitoring wells were installed in order to assess a groundwater quality for Land Farm. A total of thirteen boreholes were drilled for soil sampling at Area D and two of those were converted to groundwater monitoring wells.

Since the Land Farm and Area D are located physically next to each other, for convenient, hereafter the project site is referred to "LF-Area D". All sample collection and analyses were conducted in accordance with industry standard practice and in strict accordance with the requirements of the project specific Site Safety and Health Plan. The resultant data was used to help determine the spatial extent of contamination and whether significant subsurface contamination with the chemicals of concern at the site is present in soil and groundwater of the project site. The analytical results were used to conduct a human health risk assessment with a comparison to the Environmental Action Levels. The project chronology is summarized in Table 3-1.

3.2. Borehole drilling and soil sampling

Borehole locations were chosen prior to actual field work to provide areal coverage based on the existing available data. During performance of the field work, some proposed borehole locations were moved to avoid underground and aboveground utilities and for drill rig accessibility. The number of subsurface soil collection intervals was determined by target depth, apparent contamination, depth to shallow groundwater, and depth to bedrock. Soil samples submitted for laboratory analyses were chosen based on field observations and a Photo Ionization Detector (PID) reading to determine the level of concentrations of the chemicals of concern. Soil samples were collected from every two meters interval to the bottom of each borehole to describe soil visual properties and to submit the samples to the laboratory. Two boreholes were converted into groundwater monitoring wells (B09-193MW and B09-221MW). Those wells are to monitor groundwater quality and to measure the groundwater level.

Borehole drilling for soil samples was conducted using a direct push soil probing machine (GeoProbe). The GeoProbe minimizes cuttings and creates a smaller diameter borehole that is easily grouted/filled after all subsurface soil samples are collected. Using a GeoProbe, continuous soil cores were collected from the ground surface to the target depth. Subsurface soil sample cores were collected by advancing an open barrel sampler with a plastic sample liner (3.7 cm inner diameter) through the sample interval equivalent to the barrel length or less (normally about 0.9 m). After the barrel sampler was pushed through the desired depth interval, the sampler was extracted from the hole and the plastic liner, containing the soil sample, was removed from the barrel sampler. The discrete soil sample required for chemical analyses (e.g., TPH) was collected from the desired depth by retrieving it from the appropriate interval of the plastic liner. Figure 3-1 presents the soil boring location, Appendix I presents the soil bore logs.

A portion of each recovered soil sample was placed into a sealable plastic bag and the headspace was analyzed for VOCs with a PID. All soil samples were subsequently placed in zip-lock bags and kept in an ice-cooler for preservation until field screening tests were performed if required except VOCs sample. Soil sample for VOCs a analysis was collected using a Terra Core kit with fixed 5-g volume, and immediately put in methanol preservative 40 ml jar. Information on the sample container labels included project number, installation name, analysis required, sample identification number, depth, name of sample collector, and date and time of collection.

3.2.1. Headspace Analysis

Field sampling included the collection of representative headspace samples from each sampling area of concern. Soil samples were collected at periodic depths for headspace analysis to provide an indication of the vertical extent of VOC contamination within each soil core. Headspace samples were placed into individual sealable plastic bags. Then, the probe tip of a PID was inserted into the plastic bag to take a reading of the concentration of volatile contaminants present in the sample headspace.

After completion of borehole drilling, the top of borehole was plugged to keep the borehole gas inside the hole and take a measure using a PID. The PID readings were recorded by field personnel and ultimately transferred to the electronic boring log.

3.2.2. Soil Sample Identification

Each soil sample has a unique identification number that is consistent with borehole and monitoring well IDs used in previous investigation. The sample identification format provides general information about the boring type, year of investigation, and depth interval. The sample identification number used in this project follows this format: B09-XXX-S#, where

B indicates that the sample came from a soil boring 09 is the year in which the soil boring was drilled (i.e. 2009) XXX is the sequential soil boring number S indicates soil sample # is the sequential sample number, from top-down in the boring MW instead of S# indicates monitoring well after soil boring.

3.3. Groundwater Monitoring Well Construction.

3.3.1. Monitoring well construction

A groundwater monitoring well installation was utilized two different rig types depending upon the well depth. In case of deep well drilling through the bed rock a FED-owned DESILTECHT40KW Air Percussion Down-the-Hole Hammer drill rig was utilized for three monitoring wells (B09-176MW ~ 178MW). Relatively shallow monitoring wells were installed after completion of borehole drilling using a Direct Push GeoProbe. The depth of the wells and the length of the screen intervals varied depending on the site specific characteristics observed during soil boring. The well locations were chosen based on their location relative to known groundwater contamination as well as getting additional areal coverage in relation to the existing monitoring wells.

In case of FED-owned Drill Rig, a 25 centimeter (cm) diameter air percussion hammer was used to drill the hole as slightly larger diameter (20 cm) temporary steel casing is pushed and hammered into the subsurface to hold back the overburden and weathered bedrock. After the hammer has reached the target depth, it was removed from the hole. The monitoring well casing material was then placed inside the temporary steel casing.

In case of GeoProbe a 12-cm diameter air percussion hammer was used to drill the hole as slightly larger diameter (14-cm) temporary steel casing is pushed and hammered into the subsurface to hold back the overburden. After the hammer has reached the target depth, it was removed from the hole. The monitoring well casing material was then placed inside the temporary steel casing. The steel casing was gradually removed from the hole as the annulus was filled with medium grained sand filter pack, bentonite, and grout.

Ground-water monitoring well construction materials include 5.04-cm inside diameter (ID) threaded Schedule 40 polyvinyl chloride (PVC) solid pipe and slotted screen. Solid 5.04cm ID schedule 40 PVC pipe with threaded ends was used from approximately 10-cm below ground surface (bgs) to a depth of approximately 3-meter above the level when groundwater encounters first during soil boring. A 0.254-mm slotted PVC well screen was threaded onto the bottom of the solid well-pipe to the base of the borehole. A PVC well point was screwed to the bottom of the well screen and a well cap was secured to the top of the well pipe. The annular space around the well from the bottom of the borehole to a minimum of 50-cm above the top of slotted section was filled with clean medium-grained silica sand (0.4-1.2 mm). A 30-cm thick seal of bentonite pellets was placed above the sand pack, and the bentonite pellets are hydrated either by water inside the borehole from cascading perched water or using a known clean water source. The remainder of the hole was filled with a Portland Type I cement grout to just below the frost line. Once the grout cured, concrete was used to fill the rest of the annulus around the well pipe. The wells were then completed with a flush-mount and concrete pad. Groundwater monitoring well location is presented in Figure 3-1 and the construction process was logged and placed in the Appendix II.

3.3.2. Monitoring Well Development.

After installation, all wells were fully developed. The objectives of well development were to (1) remove sediment that had settled inside the well during construction; (2) remove all water that may have been introduced during drilling and well installation; (3) remove very fine grained sediment in the filter pack and nearby formation so that groundwater samples would not be turbid and well silting does not occur; and (4) improve the flow into the well from the adjacent formation, thus yielding a representative groundwater sample and an accurate water level measurement.

Well development consisted of surging by a surge block and pumping out the tubid water using BEC's vacuum truck until a noticeable reduction in sediment occurred in the discharged water. This development continued for a minimum of five well volumes of pumped water and continued until the water was visually clear or the site geologist determined that no further development is practical.

3.3.3. Groundwater Sampling.

The groundwater sampling was conducted in accordance with the protocol described in the project work plan. Prior to sampling, wells are checked for the presence of any floating product with an electronic oil/water level indicator probe. Then, the well was purged by removing a minimum of three times the standing volume of static water present in the well.

Groundwater samples from the six supply wells were also collected and analyzed for VOCs. Sampling from the supply wells were conducted after discharging water for about 10 minutes through the sampling tab. A low pressure pump was utilized for micro purging and sampling from the monitoring wells.

The groundwater parameters such as pH, temperature, specific conductance and turbidity of the removed water were monitored during the purging and sampling process. Groundwater stabilizing criteria were adopted established in American Society for Testing and Materials (ASTM) D6671-02: pH +/- 0.2, specific conductance +/- 3%, temperature +/- 0.5°C, and turbidity +/- 3%. The groundwater was sampled using a low pressure bladder pump and dedicated tubing for each well sampled. Table 3-2 presents the groundwater parameter during sampling and those during well development were also included. Groundwater temperature varies during the year, which is the highest during August to September sampling period. The pH variation shows the relatively high number during August to September, which is likely to be similar to the groundwater temperature variation. A couple of groundwater samples showed negative oxidation-reduction potential values during sampling at B03-466MW, B03-467MW, 14-283 and 15-286.

The collected water samples were placed into laboratory-grade, specially cleaned sample containers, and then placed immediately into a cooler with ice for preservation below 4°C prior to arrival to the analytical laboratory. All samples were transported to the laboratory accompanied by chain-of-custody sheets thru the priority mail service company.

3.4. Topographic survey

The FED survey section performed a location and topographic survey using a SOKKIA Set 2C Total Station survey instrument. The survey included the ground surface elevation at each borehole location, the top of well riser pipe for each monitoring well, and, if necessary the elevations of buildings, any significant utilities and fuel storage tanks. All elevation measurements were expressed in meters above mean sea level, and World Geodetic System 84 Universal Transverse Mercator (WGS 84 UTM) Zone-52 grid system was applied for longitude and latitude systems. The accuracy of survey elevation for top of the casing measurements was to the nearest 3 mm. Ground surface elevations were made to the nearest centimeter. Table 3-3 presents the borehole and monitoring well coordinates surveyed.

3.5. Investigation Derived Wastes

Waste materials, or investigation-derived wastes (IDW), that required management and disposal during the ESI field work included concrete and asphalt debris, petroleum contaminated soil, used disposable sampling equipment, well development water, decontamination water and used personal protective equipment (PPE). There are no specific Korean regulations applicable to the small quantities of IDW that were generated during the course of this project. The IDW

generated during the course of this investigation was placed in woven synthetic bags while development water was placed in 55-gallon drums. The bags were segregated by their contents and stored on site until transported to BEC's field facility located in Yojoo, Kyeonggi-Do at the end of each week for treatment and disposal.

There was very little concrete or asphalt debris generated during the course of the ESI field work. The concrete and asphalt that was generated in order to expose the underlying soil was bagged along with the soil cuttings from the respective borehole. BEC personnel then transported the bags to their field facility for disposal.

3.5.1. Contaminated Soil

All soil cuttings retrieved during boring were bagged on-site in tight knit, woven synthetic bags. Apparent petroleum contaminated soils in the cuttings were not segregated from uncontaminated soils. All soil waste generated during this investigation was transported for treatment at BEC's off-site remediation facility located in Yojoo, Kyeonggi-Do. A non-hazardous waste manifest was used to document the transport of the contaminated soil to the treatment facility.

3.5.2. Well Development and Decontamination Water

Water from decontamination activities was pumped into a BEC vacuum truck at the end of each day and disposed of at the oil/water separator system at the Land Farm facility of Camp Carroll. Groundwater generated during well development and pump test activities was pumped into BEC's larger pump truck, and also disposed of at the same system.

3.5.3. Site Restoration

Borings were backfilled with bentonite pellets and the surfaces sealed with concrete which was backfilled flush to the existing surface grade. Monitoring wells installed during the project were flush-mounted and pose no impediment to vehicular or foot traffic. All mud and soil cuttings generated in the vicinity of each soil boring and monitoring well were cleaned up by field personnel immediately following the completion of the task.

3.6. Supplemental Site Characterization

Test was performed on the aquifer matrix to determine the saturated and air permeability of the impacted aquifer material present at the site. In addition, soil samples were collected for chemical and microbial analysis that are useful for determining whether the present physical/chemical/biological condition of the aquifer is conducive for natural degradation of the diesel and gasoline contamination that is present at the sites.

3.6.1. Slug Test

The hydraulic characteristics of the aquifer underlying the site were determined by performing slug tests on the monitoring wells installed in the previous investigations and during this study. The hydraulic conductivity, K, of the aquifer was calculated using slug tests recovery measurements that were performed on all monitoring wells during $9 \sim 12$ November 2009. After the completion of well purging work, a slug with an approximate volume of 2.5 liter was put in the wells. The drop down water level after slug into the wells was recorded using a pressure

transducer data logger. Also the rise in water level after removing the slug from the wells was recorded in same way. Measurements were collected until the water level within the monitoring well returned to within approximately 3 centimeters of the original water level. The original water level in the well prior to the tests was measured with a Solinst electronic oil/water interface prove. Appendix III presents the summary of test procedure and slug test result.

3.6.2. Aguifer Pumping Test

A pumping test was conducted to obtain information regarding the aquifer characteristics at the site. The aquifer at the site is formed within the open bedrock fractures underneath overlying soil layers. The pumping test and recovery period measurement was conducted on 24 ~ 25 February, 2010. The test was comprised of pumping a volume of groundwater from monitoring well B07-217MW at a controlled rate varying between approximately 1.2 Liter/min while monitoring the water levels within the pumping well and four observation wells (B07-874MW, B09-252MW, B09-256MW, and B01-788MW). Information was collected during the pumping test and subsequent recovery period using pressure sensitive transducers connected to data loggers. Hydraulic head, temperature, and specific conductance of the groundwater were recorded during the test. The pumping test data was interpreted using the Cooper-Jacob's method (1946) method within the computer analysis program AQTESOLV. Appendix III presents the summary of test procedure and aquifer pumping test result.

3.6.3. Air Permeability Test.

Air Permeability is an integrated measure representing the complex relationship between the geometry of the pore system and hydraulics of the flow of air through that system. Permeability is not measured directly; rather, it is calculated by inverting an assumed model populated with measured state data (i.e. flux and pressure). For this investigation, permeability was determined by applying a pressure gradient across the project site by use of a vacuum truck.

In situ air permeability test data were performed at the site by placing a blower on a setup monitoring well and measuring the time varying pressure responses at monitoring wells adjacent to that central well. The decision was made to perform the air permeability test by blowing out of the well by applying a vacuum rather than injection to prevent if any contaminants spread over due to air introduction into well.

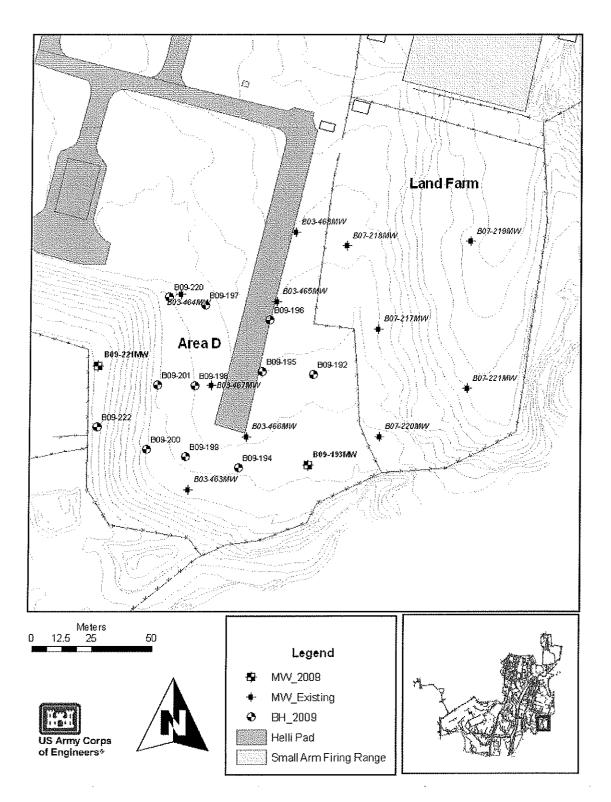
A constant pressure was applied to the injection well for no longer than 25 minutes, and changes in pressure at adjacent wells were recorded at various time intervals on a roughly logarithmic basis. The measured changed in air pressure at the various monitoring wells spaced varying distance from the injection well were evaluated using analytical solutions for aquifer pumping tests that have been modified for vapor flow conditions. Appendix III presents the result of air permeability test at the site.

3.6.4. Nutrient and Microbial Sampling

A total of 13 soil samples were collected, with one sample from each borehole. Those samples were shipped to the National Instrumentation Center of Environmental Management (NICEM) at Seoul National University. The samples were analyzed for biological and chemical properties relevant to potential natural degradation of site contamination.

Table 3-1. Project Chronology of ESI at LF-Area D of Camp Carroll.

Task	Date Performed
Request a site digging permit and get approval	February 3 and 16, 2009
Borehole drilling, soil sampling and groundwater monitoring well installation	February 17~ March 13, 2009
Well development	February 23 to March 3, 2009
Groundwater Sampling	August 31 ~ September 4, 2009
Hydrologic slug test	November 9-12, 2009
Hydrologic pumping test	February 24~25, 2010
Air permeability test	March 17, 2010


Table 3-2. Topographic Survey Result for Borehole and Monitoring Well at LF-Area D of

Camp Carroll.

Site Location	BH_ID	Easting	Northing	Elevation*	Top of Pipe	Year Constructed
	B09- 176MW**	447546.25	3983365.34	44.29	44.27	2009
	B09-177MW	447577.57	3983464.43	47.20	47.19	2009
£	B09-178MW	447590.41	3983538.60	49.12	49.09	2009
Land Farm	B07-217MW	447789.23	3983349.44	50.99	50.92	2007
anc	B07-218MW	447775.80	3983384.33	51.83	51.77	2007
	B07-219MW	447828.37	3983386.25	55.43	55.41	2007
	B07-220MW	447789.89	3983304.56	49.74	49.73	2007
	B07-221MW	447827.00	3983324.75	54.61	54.59	2007
	B09-193MW	447759.92	3983292.52	49.27	49.28	2009
	B09-221MW	447671.06	3983334.28	42.98	46.22	2009
	B03-463MW	447709.20	3983282,40	48.74	48.55	2004
	B03-464MW	447705.50	3983364.10	49.92	49.79	2004
	B03-465MW	447746.40	3983361.10	50.99	50.90	2004
	B03-466MW	447734.10	3983304.60	49.72	49.58	2004
	B03-467MW	447718.70	3983326.00	79.93	49.79	2004
	B03-468MW	447754.30	3983390.10	51.55	51.41	2004
0	B09-192	447761.76	3983330.29	49.800		2009
Area D	B09-194	447730.65	3983291.25	49.40		2009
₹	B09-195	447740.11	3983331.66	49.56		2009
	B09-196	44743.40	3983353.04	49.54		2009
	B09-197	447715.86	3983359.47	50.11		2009
	B09-198	447711.56	3983325.59	49.55		2009
	B09-199	447707.79	3983296.07	49.21		2009
	B09-200	447691.37	3983299.22	48.61		2009
	B09-201	447695.66	3983326,08	48.99		2009
	B09-220	447700.44	3983362.88	49.79		2009
	B09-222	447670.59	3983308.41	43.31		2009

^{*} Elevation above the mean sea level. ** MW indicates monitoring well.

Figure 3-1. Location of Boreholes and Groundwater Monitoring Wells at LF-Area D of Camp Carroll.

4. Findings during ESI Investigation

Laboratory Analysis. 4.1.

All laboratory analysis was performed using US EPA published methods. The laboratory that performed the analysis is accredited by the National Environmental Laboratory Accreditation Conference (NELAC) for the analytical procedures specified for this project. Soil and groundwater samples collected in this ESI were submitted to the NCA-Korea Laboratory in Anyang, Korea. The contract laboratory shipped the samples for VOCs, semi VOCs (SVOCs), PAIIs, dioxin, OC-pesticides, PCB and metals to the NCA laboratory in the States since the NCA-Korea lab has only certified TPH. Soil samples collected from soil borings were analyzed for diesel and residual oil range TPH by EPA 8015D, VOCs by 8260B, SVOCs by 8270D, OCpesticide by 8081B, PCBs by 8082A, dioxins by 8290A of high resolution mass spectrometry, metals by 6020A, and mercury by 7471B.

The chemical data table presented in this report are only for those which were detected above the practical quantitation limit (PQL) or were qualified as estimated by data validation. The full laboratory reports are provided on the separate compact disk (CD).

4.2. Data Quality Control/Assurance

Field and laboratory quality control (QC) samples were collected and analyzed in accordance with USACE and industry standard methods and practices. The FED Environmental chemist (Dr. SC Chon) performed a data review on soil and groundwater samples collected from the LF-Area D site. The data review was performed in accordance with the project work plan and Chemical Quality Assurance for Hazardous, Toxic, and Radioactive Waste (HTRW) Projects (USACE, EM 200-1-6, 1997). The accuracy, precision, representativeness, and completeness of the data were evaluated by performing analytical data quality and field quality assurance (QA) /QC data quality review. Accuracy was evaluated using the laboratory sample receipt information, analyses requested, technical holding times, and laboratory QC data (method blank, laboratory control sample (LCS) / LCS duplicate, matrix spike (MS) / MS duplicate, and surrogate recoveries). Appendix IV presents the project data quality objectives.

4.3. Subsurface Soil Investigation Result

Soil sampling strategy at LF-Area D is summarized in Table 4-1. The summaries of chemical test results for soil samples are presented. Figure 3-1 presents the locations of the soil boreholes, groundwater monitoring wells installed both this ESI and the previous investigations.

4.3.1. Subsurface Geology

The subsurface geology of LF-Area D consists mostly of fill materials and residual soils. Fill materials of clayey/silty sand/clayey sand with gravel were encountered in boreholes with the thicknesses ranging from 3 to 6 m. The fill material layer is generally about 2~3 m thicker at Area D than at Land Farm. In some location the fill material at Area D appears thicker than 6 m. Residual soil consists of fat clay and silty sand underlying the fill materials.

During drilling, field crews noted a chemical odor emanating from the soil samples collected at 3 meters to 7 meters bgs in boreholes B09-195 and B09-196. The odor was a kind of mixture of various chemicals. Soil samples were stained and decolorized to grayish green at this horizon. Pieces of metal, wood, and vinyl were also recovered from the depths with soil sample.

4.3.2. Chemical Analysis Result for Soil Sample

4.3.2.1. Total petroleum hydrocarbons

A total of 26 soil samples were tested for diesel range (DRO) and residual range (RRO) TPH. The test result is presented in Table 4-2. Four samples were identified containing TPH. One soil sample contains both DRO and RRO at 55.4 mg/kg and 171 mg/kg respectively. Three other samples contain either DRO or RRO up to 30.7 mg/kg. The samples with detected TPH occur most frequently in shallow sample depths. This finding indicates that the detection of TPH is likely from incidental releases during vehicle operations rather than a spill from a storage tank.

4.3.2.2. Volatile Organic Compounds

VOCs were detected in some soil samples collected from each of the borehole drilled at the Area D (Table 4-3). Toluene; 2-, 4- chlorotoluene; and tetrachloroethene (PCE) were detected in site soil samples. Other VOCs are mostly below the practical quantitation limit (PQL) or the concentrations were quantitatively estimated by the chemist due to the very low concentration. Except the detection of toluene above the PQL, other VOCs normally associated with TPH such as ethylbenzene and xylenes were not reported from site soil samples above the practical quantitation limit (PQL). Figures 4-1 and 4-2 present the distribution of toluene and tetrachloroethene (PCE) in site subsurface soil respectively.

Toluene was detected in 23 soil samples out of total 48. The 2-, 4-chlorotoluene was detected in only one sample. PCE was detected in 5 soil sample out of total 48. Trichloroethene (TCE) was detected in one sample. The highest concentration of VOCs detected was found at the borehole B09-196 (Figure 4-2). The concentration ranges of VOCs in the soil samples of LF-Area D are:

- 2-Chlorotoluene: non-detected (ND) ~ 27,000 μg/kg at B09-196
- 4-Chlorotoluene: ND to 89,000 μg/kg at B09-196
- Toluene: ND to 1,300,000 μg/kg
- PCE: ND to 24,000 μg/kg
- TCE: ND to 70 μg/kg

4.3.2.3. Semi-Volatile Organic Compounds.

No target SVOCs were detected above the PQL in soil samples collected from boreholes drilled at the Area D. Table 4-4 presents the chemical test result for SVOCs.

4.3.2.4. Target Metals.

Target metals were detected in all soil samples collected from the boreholes drilled at the Area D (Table 4-5). Selenium and Silver were not detected in soil samples above the PQL. The concentration of Mercury in soil samples was reported from two samples above the PQL. The detected concentration of metals was close to the result of the site background sample that was

taken from approximately 30 centimeters deep at about 5 meters easterly away from B09-193MW. The concentration ranges of target metals in the soil samples of LF-Area D are:

- Arsenic: 4.6 mg/kg to 11 mg/kg (7.3 mg/kg of background)
- Barium: 61.6 mg/kg to 105 mg/kg (98.2 mg/kg of background)
- Cadmium: 0.33 mg/kg to 0.87 mg/kg (0.51 mg/kg of background)
- Lead: 8.9 mg/kg to 23.7mg/kg (18.7 mg/kg of background)
- Mercury: 0.044 mg/kg to 0.05 mg/kg (0.011B mg/kg of background- this result indicates that the analyte is found in a blank associated with the sample)

According to the comparison with the result of the site background sample, the concentrations of metals in soil samples from the site were not significantly affected by the historic activities.

4.3.2.5. Polychlorinated Biphenyls.

No PCBs were detected in soil samples collected from boreholes drilled at the LF-Area D.

4.3.2.6. Organochlorinated Pesticides.

OC-pesticides were detected in soil samples collected from each of the borehole drilled at the Area D (Table 4-6). Lindane, 4,4'-DDE, DDD and DDT were the chemicals detected above the PQL. The 4,4'-DDD and DDT were the most commonly identified in soil samples. Soil samples from B09-196 contained the highest concentration of OC-pesticide out of the detection. The concentration ranges of OC-pesticide in the soil samples of LF-Area D are:

- Lindane: ND to 4,300 μg/kg
- 4,4'-DDE: ND to 42 µg/kg
- 4,4'-DDD: ND to 24,000 μg/kg
- 4,4'-DDT: ND to 54,000 µg/kg

4,4'-DDT was identified in soil samples collected from most of the boreholes. Maximum detected concentrations of DDT were reported from the samples collected in boreholes B09-196 and B09-201. Figure 4-3 presents the distribution of 4,4'-DDT in the site subsurface soil at LF-Area D due to detected in most site soil samples.

4.3.2.7. Dioxins/Furans.

Soil samples were submitted for dioxin/furan analysis (Table 4-7). The International-Toxic Equivalent Factors (I-TEF) for dioxins and furans were used to calculate the International-Toxic Equivalent (I-TEQ) for each soil sample according to the Toxics Release Inventory Program updated April 23, 2009 (http://www.epa.gov/tri/lawsandregs/teq/teqpfinalrule.html). The I-TEQ is expressed with respect to the toxicity of 2,3,7,8-TCDD and 1,2,3,7,8-PeCDD. Although 2,3,7,8-TCDD was not detected any of the soil samples above the PQL, I-TEQs were calculated for all soil samples based the I-TEFs. The I-TEQ calculated for each of the soil samples collected at the site ranges from 0.03 to 1.73.

4.3.3. Groundwater Contamination

4.3.3.1. Groundwater Level Measurement Result

Five groundwater monitoring wells were newly installed in the vicinity of LF-Area D. The five wells in association with the six supply wells and the eleven monitoring wells installed during the previous investigations were used to assess the site hydrogeologic conditions and the groundwater quality. Figure 4-4 presents the supply and groundwater monitoring well locations utilized during this project. Table 4-8 summarizes the measurement results of water level in both below ground surface (bgs) and above mean sea level (amsl). Water levels were measured a total of three times in each well with an oil/water interface probe. Floating product was not detected in any borehole.

The water levels were measured total three times before rainy season (May), after monsoon (August) and dry season (December) to determine if any groundwater level variation occurs during the year. The groundwater level variation among the measurements is quite systematic with a linear correlation as shown in Figure 4-5. Based on the result of groundwater level measurements, the groundwater flow direction was analyzed as depicted in Figures 4-6. General groundwater flow pattern is dominantly toward western and southwestern direction, which is similar to the site topographic gradient. The flow direction could be a function of the volume of water pumped at the supply wells at west, so the groundwater migration further to the off-post remains to be resolved with more data.

4.3.3.2.Groundwater Chemical Test Result

Groundwater samples were collected three times during this ESI projects: May, September and December 2010 to see if any variation in groundwater quality during one year. Table 4-9 presents the groundwater sampling strategy during this project.

4.3.3.2.1. Organochlorinated Pesticides

A total of sixteen groundwater samples were collected from groundwater monitoring wells installed the LF-Area D area for OC-pesticide analysis. Table 4-10 summarizes the OC-pesticide chemical test result. An OC-pesticide was detected above the reporting limit in eleven groundwater monitoring wells during the sampling events. A total of seven OC-pesticides were detected above the reporting limit as:

Alpha-BHC: 0.046 to 0.37 μg/L Gamma-BHC: 0.054 to 4.9 μg/L Beta-BHC: 0.072 to 0.73 μg/L Delta-BHC: 0.047 to 1.1 μg/L Dieldrin: 0.12to 0.44 μg/L

4,4'-DDD: 0.1μg/L at B07-218MW 4, 4'-DDT: 0.1 μg/L at B07-220MW

4.3.3.2.2. Volatile Organic Compounds

A total of twenty-two groundwater samples were collected including the six supply wells for VOCs analysis. Table 4-11 summarizes the VOCs chemical test result. VOCs were detected above the reporting limit from all the groundwater samples analyzed. A total of twenty-six chemical components of VOCs were reported from the samples. Groundwater samples from the six supply wells contained thirteen chemical components of VOCs. A majority of groundwater samples including those of the supply wells contains cis-1,2-DCE, methylene chloride, PCE, toluene and TCE. A couple of more VOC components appear during the 2nd or 3rd sampling event in the cases of B03-465MW and B03-466MW. Figures 4-7, 4-8 and 4-9 present the distributions of Toluene, PCE, and TCE in groundwater.

Hydrologic Characteristics of the Site 4.4.

Figure 4-10 presents the groundwater monitoring well locations used for air permeability and hydrologic field test.

4.4.1. Slug Test

Six slug tests were performed at the LF-Area D. The monitoring wells selected for slug testing was subject to its relative location within the LF-Area D area. Measurements of water level versus time, along with other relevant aquifer and well characteristics were then used to determine a value for hydraulic conductivity of the site. The calculations were performed with AOTESOLV aquifer test analysis software. An anisotropy ratio (Kz/Kr) was assumed in the analysis and the analytical solution developed by Bouwer and Rice (1976) for an unconfined aguifer system was used to calculate the hydraulic conductivity. Hydraulic conductivity (K) was obtained by manual fitting using AQTESOLV.

The calculated K values for the monitoring wells were similar between injection and withdrawal. The K values ranged from 1.7E-05 to 7.70E-04 cm/sec for inserting the slug and from 1.90E-05 to 7.60E-04 cm/sec for withdrawal the slug from the monitoring wells. Table 4-12 presents the hydraulic parameters obtained from the slug test.

4.4.2. Pumping Test

A review of the pumping test results indicates that the calculated transmissivity (T) values ranged from 0.07 cm²/sec to 9.03 cm²/sec. The T value is generally higher during water level drawdown than recovery. The K values during pumping test obtained ranging from 9.81E-05 cm/sec to 5.28E-02 cm/sec, with an average of 1.29E-02 cm/sec. The K values obtained during pumping test were quite higher than those during slug test. This high K value during pumping test might reflect the existence of high K interval within the well screened interval during pumping test. Table 4-13 presents the result of pumping test.

4.4.3. Air Permeability Test

An air permeability test was conducted on 17 March 2010, to evaluate subsurface air flow patterns and radius of influence at LF-Area D of the Camp Carroll. The layout of the permeability test was determined based on the location of existing groundwater monitoring wells and the pre-installed air permeability test well. Air permeability test was conducted at four wells (as a set) consisting of one air extraction well (B03-465MW) and three observation wells (B03464MW, B09-195, B03-466MW). Figure 4-10 presents the well layout of air permeability test at LF-Area D.

The extraction well was attached to a vacuum pump to control the air extraction rate. The extraction valves and measurement devices were securely attached and sealed at the top of each well pipe to prevent introducing any ambient air. Upon starting the vacuum pump for subsurface air extraction, field measurement data was collected from both extraction and observation wells. During the entire air permeability test, the extraction vacuum was maintained at a constant rate and the monitoring wells' down pressure was monitored indications in change of pressure. Conclusively, the observation wells (B09-195, B03-466MW and B03-464MW) did not respond during the permeability test probably due to the well locations are beyond the radius of influence.

4.4.4. Nutrient and Microbial Sampling

All soil samples were analyzed for their heterotrophic bacteria content. The following chemical parameters were also measured on these soils: Total Carbon, Total Nitrogen and Total Phosphorous (Total C/N/P). The average ratio of Total C/N/P at LF-Area D project site of Camp Carroll appears to be 83: 8: 9. Fuel disintegration bacteria were counted up to 517,000 Most Probable Number (MPN)/g in soil. However, the bacteria were not identified in some samples. The presence of fuel disintegration bacteria and the C/N/P ratio suggest a certain degree of biodegradation could positively occur within the contaminated soil formation. The biological and chemical parameters measured on these soil samples are summarized in Table 4-14.

Table 4-1. Soil Sample Information versus the Chemical of Concern from each Borehole.

Borehole ID	Sample ID	Sample Depth	VOCs	OC-pest	Dioxins	TPH-D	svoc	PCB	Metals
	S1	0~2m	О	О	O*	О	0	0	0
B09-192	S2	2~4m	0	0	0	0	0	_**	-
	S3	4~6m	0	О					-
	SI	0~2m	О	О	0	0	О	0	0
B09-193	S2	2~4m	0	О	0	0	0		
	S3	4~6m	О	0	_	-	-	-	-
	S1	0~2m	. 0	0	0	0	О	О	0
B09-194	S2	2~4m	О	0	0	O	0	-	-
	S3	4~6m	0	0					
**************************************	S1	0~2m	О	0	0	0	0	0	0
B09-195	S2	2~4m	0	О	0	0	0		
	S3	4~6m	О	0		-	-	-	-
	S1	0~2m	О	0	О	0	0	0	О
B09-196	S2	2~4m	О	0	О	0	О	-	-
	S3	4~6m	О	О					
	S1	0~2m	О	О	O	О	О	0	0
B09-197	S2	2~4m	О	O	О	О	О		-
	S3	4~6m	О	О	-	-	*	-	-
	S1	0~2m	О	О	О	О	О	О	О
B09-198	S2	2~4m	О	О	0	О	О	-	-
	S3	4~6m	О	О					
***************************************	S1	0~2m	О	О	О	0	0	0	О
B09-199	S2	2~4m	О	О	0	0	О		
ľ	S3	4~6m	О	О	-	-	_	-	_
	S1	0~2m	0.	Q	О	0	0	О	O
B09-200	S2	2~4m	O	О	О	О	0	-	-
	S3	4~6m	O	O	-	•		-	
	S1	0~2m	0	O	O	О	0	О	О
B09-201	S2	2~4m	Q	0	0	O	О		
]	S3	4~6m	0	О	-	-	-	-	-
	S1	0~2m	0	О	О	О	О	О	О
B09-220	S2	2~4m	0	О	О	0	0	-	-
That is the early had been been been been	S3	4~6m	0	0				eni ja jagaljenija	eniekvenielel
······································	S1	0~2m	O	O	O	O	0	O	O
B09-221	S2	2~4m	О	О	0	0	0	•	-
	S3	4~6m	O	O	···	-	-		_
	S1	0~2m	o	0	0	0	0	0	О
B09-222	S2	2~4m	0	0	0	0	О	_	umata andrew i be lite to retermine ket
	S3	4~6m	0	O			-		

Table 4-2. TPH Chemical Test Results for Soil Samples at LF-Area D.

BH_ID	Sample ID	Sample Interval	unit	Diesel range (C _{10~24})	Residual oil range (C ₂₄₋₄₀)	TPH (mg/kg)	PID
B09-192	S1	0~2 m	mg/kg	ND	ND	ND	6.8
	S2	2~4 m	mg/kg	ND	ND	ND	3,4
B09-193	S1	0~2 m	mg/kg	55.4	171	236	3.6
	S2	2~4 m	mg/kg	ND	ND	ND	3
B09-194	S1	0~2 m	mg/kg	ND	ND	ND	4.6
	S2	2~4 m	mg/kg	ND	ND	ND	11.7
B09-195	S1	0~2 m	mg/kg	ND	ND	ND	1.4
	S2	2~4 m	mg/kg	ND	ND	ND	2.3
B09-196	S 1	0~2 m	mg/kg	12.1	ND	12.1	3.5
	S2	2~4 m	mg/kg	ND	19	19	391
B09-197	S 1	0~2 m	mg/kg	ND	ND	ND	2.8
	S2	2~4 m	mg/kg	ND	ND	ND	1.9
B09-198	S1	0~2 m	mg/kg	ND	ND	ND	1.8
	S2	2~4 m	mg/kg	ND	ND	ND	2.4
B09-199	S1	0~2 m	mg/kg	ND	ND	ND	1.9
	S2	2~4 m	mg/kg	ND	ND	ND	7.9
B09-200	S1	0~2 m	mg/kg	ND	ND	ND	3.6
	S2	2~4 m	mg/kg	ND	ND	ND	1.9
B09-201	S1	0~2 m	mg/kg	ND	ND	ND	0.5
	S2	2~4 m	mg/kg	ND	ND	ND	0.9
B09-202	S1	0~2 m	mg/kg	ND	ND	ND	21.5
	S2	2~4 m	mg/kg	ND	ND	ND	2.5
B09-221	S1	0~2 m	mg/kg	ND	30.7	30,7	1.9
	S2	2~4 m	mg/kg	ND	ND	ND	2.2
B09-222	S1	0~2 m	mg/kg	ND	ND	ND	2.2
	S2	2~4 m	mg/kg	ND	ND	ND	3.2
ND- not de	tected						

Table 4-3 VOCs Chemical Test Results for Soil Sample at LF-Area D.

Chemicals (µg/kg)]	B09-192	2		B09-19	3		B09-19)4		B09-19	5		B09-1	96		В09-	197
	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	SI	S2	S3
2-Chiorotoluene	-	-	-	-	-	-	*	-	-	-	-	-	-	160J	27000	-	-	-
4-Chlorotoluene	-	-:	-	-			-		-				-	440	89000	: N. 1-1114.		
cis-1,2- Dichloroethene	-	-	18J	-	14J	21J	-	-	-	-	-	-	-	150J	-	-	-	-
1,1-Dichloroethene	7	-			7.7J	12J		9.9J	7-0				-	- S		9.5J		5.8J
Ethylhenzene	32J	21J	24J	33J	27J	20J	25J	20J	25J	19J	21J	-	28J	-	-	29J	243	20J
Methylene chloride	61J	33J	44J	52J	38J	33J	37J	34J	36J	30J	42J	41J	47.1	52J		48J	41J	41J
Naphthalene	-	2.8J B	-	-	-	-	-	-	-		-	-	-	-	*	-	-	-
Styrene			100-	100			** : -	-			1.6J				35. 52 - 63. 33		1.00 .	
Tetrachloroethene	6.4J	12J	57	-	20J	36J	110	41J	45J	-	-	-	58	350	24000	-	9J	19J
Toluene	87	14J	34J	70	100	110	23J	89	51	83	27J	6400	48J	16000	1300000	170	76	60
1,2,4- Trichlorobenzene	-	10J B	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Trichloroethene			9.91	14,14	26J	70	27J	14J						76J		Agie III 4		
m-Xylene & p- Xylene	94J	51J	63J	80J	60J	51J	55J	593	58J	47J	52J	67J	74)	68J	•	68J	63J	60J
o-Xylene	7.8J		7,1J	7.9J	6.3J	-	5.7J	-			233 . 320		7.5J			7.1J		6.6J

B-The analyte was found in a blank associated with the sample. "-" not detected above the detection limit.

J- Estimated result. Result is less than reporting limit.

Q- Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G-Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Table 4-3 VOCs Chemical Test Results (Continued).

Chemicals (μg/kg)	1	309-19	8		B09-1	99	I	309-20	0		309-20	1		B09-22	20	B	9-221			B09-2	22
	S1	S2	S3	SI	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
2-Chlorotoluene	*	-	-	-	-	-	-	-	-	-	-	-	! -	-	**	*	-	-	-	-	-
4-Chlorotoluene	1	-	1	100 T = 100 T			-	-	-			-	1 -	1	3-33	1001-00	† -	1 -	1012	174	-
cis-1,2-Dichloroethene	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	 -	 -	-	-	† -	-	-	-	†
1,1-Dichloroethene	-	-	-	-	9.5J			7.	ļ -	8.3J	15. - (3.	10.51	-	5.2J	1117-1111	1000	-	-	112		6.2J
Ethylbenzene	35J	27J	31J	26J	27J	32.1	28J	27J	25J	22J	24J	33J	21J	26J	21J	24J	28J	241	18J	20J	28J
Methylene chloride	61J	43J	45J	47J	48J	51J	49J	39J	42J	40J	42J	54J	31J	41J	46J	41J	36J	47J	32J	35J	433
Naphthalene	-	-	1 -	-	-	4.9J B	-	-	-	-	-	-	-	-	-	6.5J B	1 -	-	-	-	-
Styrene		-					-						-	-	1.5J		-				
Tetrachloroethene	-	5.5J	8J	-	6.IJ	-	-	-	-	-	-	-	Ì -	-	7.7J	-	T -	-	-	-	-
Toluene	9.4J	54	45J	42J	250	110	42J	64	43J	63	68	39J	49J	42.1	72	39J	39J	71	20J	69	99
1,2,4-Trichlorobenzene	*	-	-	_	-	*************	-	-	-	-	-	~	-	N	-	-	-	-	-	-	-
Trichloroethene	•		7	on the state of th	Amstern American			·;	-	-			-	-			-			10.4	
m-Xylene & p-Xylene	83J	70J	77J	68J	73J	75J	81J	68J	62J	63J	61J	82J	51J	66J	66J	75J	70J	70J	46J	54J	68J
o-Xylene	7.9J	7.3J		7.8J	6.1J	8J	9.6J	7.1J	1.4	5.8J	6,1J	7.9J	-	6.6J	6.7J	9.1J	-	8J		7.2J	-

Table 4-4 SVOCs Chemical Test Results for Soil Samples of LF-Area D.

Chemicals (µg/kg)	B09	-192	B09	-193	B09	-194	B09	-195	B09	-196	B09	-197	В09-	198	B09	-199	В09-	200	B09	-201	B09	-220	B09-	221	B09	-222
	SI	S2	SI	S2	S1	S2	Sl	S2	SI	S2	S1	S2	S1	S2	SI	S2	SI	S2	S1	S2	SI	S2	S1	S2	Sl	S2
bis(2-Ethylhexyl) phthalate	1 -	-	-	_	-	-	-	-	-	-	-	-	120J	-	-	-	300J	-	-	-	-	-	230J	-	-	-
J- Estimated result. Result is	s less t	han re	portir	g lim	it, "-"	not d	etecte	d abo	ve the	detec	tion li	mit.							Veries							

J- Estimated result. Result is less than reporting limit.
B-The analyte was found in a blank associated with the sample.
"-" not detected above the detection limit.

Table 4-5. Metal Chemical Test Result for Soil of LF- Area D.

Chemical	AreaD-	B09-	B09-	B09-	B09-	В09-	B09-	B09-	B09-	B09-	B09-	В09-	В09-	B09-	В09-
(mg/kg)	BG&	192	193	194	195	196	197	198	199	200	201	202	220	221	222
		S1	SI	S1	S1	S1	S1	S1	S1	S1	SI	S1	S1	S1	S1
Arsenic	7.3	8.7	3.2B*	5.5	8.3	8	6.9	7.2	3.7B	6.7	7.5	11	5.8	4.6	3.3B
Barium	98.2	105	65	71.4	102	71.9	86.6	88.5	61.6	98.7	85.3	99.7	103	76.5	63.5
Cadmium	0.51	0.86	0.28B	0.48	0.33	0.17B	0.43	0.39	0.46	0.63	0.54	0.87	0.42	0.31B	0.24B
Chromium	3.8	4.4	5.1	3.4	3.2	4.5	3.3	4.9	5.2	3.5	2.3	3,2	3.2	5.4	3.7
Lead	18.7	22	14.6	23.7	12.6	8.9	15.4	14.6	18.3	20.5	20.4	19.6	12.5	18.2	13.2
Selenium	_**														
Silver	-	-	*	•	-	***************************************	-	-	-	0.14B		-	0.15B	0.13B	_
Mercury	0.011B	-	0.05				0.044	-	30.	7, 17, 17, 17, 17, 17, 17, 17, 17, 17, 1	-	-		-	

--- Page 34 -

Table 4-6, OC-Pesticides Chemical Test Results for Soil of LF-Area D.

Table 4-0	. 00-16	***********		~~~~~		S 101 50					****************			····			·		
Chemical (µg/kg)		B09-192			309-19)3		B09-19	4		В09-	195]	B09-196			B09-1	97
	SI	S2	S3	SI	S2	S3	S1	S2	S3	SI	S2	S3		S1	S2	S3	SI	S2	S3
alpha-BHC	-	-	-	0.71J	•	*	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	T -
gamma-BHC (Lindane)	-	1.5J		11	1 - 1	0.7J	6.4	3.4J	0.29J			1.	-	4300	5.8J	250J	26J	2.J	-
beta-BHC	H	0.74J	-	-	-	0.863	-	-	0.591	-	-	-	-	-	-	-	-	-	-
delta-BHC	4. [30]	IJ	1970 T. 1	1,6J		0.29J	: N 13.	-	0.35J	-		-	2.2J	in in in			: i - ; :		
Heptachlor epoxide	-	1.1J PG	2,9J PG	-	-	-	-	-	~	-	-	-	-	2 60J PG	-	-	-	-	-
gamma-Chlordane	6.2J PG	1.9J	10PG	-			-	-		-	-	-	-		-				
alpha-Chlordane	-	2.9PG	8.5J PG	2.3J	-	-	-	-	-	-	-	-	-	_	_	-	-	-	
4,4'-DDE	37J	7.5	37	11		0.35J	3.9	27	10.5	2.9J	12J	-	15J	730J	25	290J	20J	11J	-
Dieldrin	4.5J	1.6J	7J	0.39J	-	0.42J	-	-	*	-	1.8J	-	1.3J	*	**	*		**	-
4,4'-DDD	15J	6.4	18J	40	1. IJ	1.2J	0.64J	37		0.49J	7.2J	-	22	24000	17J PG	12000	47J	9.7J	-
4,4'-DDT	740	47	280	130	1.9J	2.6J	28	120	-	15	240	-	260	54000	500	26000	750	200	0.69J

B-The analyte found in a blank associated with the sample. "-" not detected above the detection limit.

J- Estimated result. Result is less than reporting limit.

Q- Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G-Elevated reporting limit. The reporting limit is elevated due to matrix interference.

PG: The percent difference between the original and confirmation analyses is greater than 40%.

Table 4.6 OC-Pasticides Chamical Test Results (Continued)

Table 4-6.	OC-P	estic	ides C	nemi		ninera Alexandresia e como e	suits (Conti	nuea	<u>). </u>	· · · · · · · · · · · · · · · · · · ·			~~~~		********				~		
Chemical (µg/kg)]	B09-19	8		В0	9-199]	B09-20	0		B09-2	01] 1	B09-220			B09-2	21	В	09-22	2
	S1	S2	S3	S1	S2	S 3	\$4	SI	S2	S3	S1	S2	S3	S1	S2	S3	SI	S2	S3	SI	S2	S3
alpha-BHC	-	-	0.47J	-	1 -		*	-	-	-	-	-	-	-	-	-	1	-	-	-	-	T
gamma-BHC (Lindane)	11.15	100 to 10	8.6	-	2.8J	7.1	1.3J		1		- :	4,5 J				7	-	-				13.4
beta-BHC	-	-	-	-	1 -	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	Γ-
delta-BHC			0,671	-		0.46J	0.46J		-				i i i				-		-	•	- 5	-
Heptachlor epoxide	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T -	-	-	-	-	-
gamma-Chlordane		1						1.7						i st					-		-	-
alpha-Chlordane	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
4,4'-DDE	3.8	28J	0.53J	4.1J	12	8.1	-	0.333	9,6	240J	4	35J	80J		13	44	29	0.52J		1.6 J		
Dieldrin	-	2J	-	-	-	1.11	*	-	-	*************	-	-	-	-	0.24J	-	-	-	-	-	-	-
4,4'-DDD	0.41J	300	4.1		24	48	•	•	1,4J	670	-	17J	250		3.7	19J	133	0,44J	11.5	3.5 J	-	-
4,4'-DDT	9.7	360	12	8.9	72	220	0,68J	0.53J	30	7300	4	300	4400	0.63J	85	460	190	2J	0.65 J	1.8 J	-	

J- Estimated result. Result is less than reporting limit.
"-" not detected above the detection limit.

Table 4-7. Dioxin-Furan Chemical Test Results for Soil of LF-Area D.

Borehole ID	Sample ID	Sample interval (m)	Method	International-89 Toxicity Equivalent Quantity*
B09-192	S1	0~2	SW8290	0.14
	S2	2~4	SW8290	0.20
B09-193	S1	0~2	SW8290	0.26
	S2	2~4	SW8290	0.11
B09-194	S1	0~2	SW8290	0.16
	S2	2~4	SW8290	1.73
B09-195	S1	0~2	SW8290	0.06
	S2	2~4	SW8290	0.06
B09-196	S1	0~2	SW8290	0.24
	S2	2~4	SW8290	0.04
B09-197	S1	0~2	SW8290	0.06
	S2	2~4	SW8290	0.07
B09-198	S1	0~2	SW8290	0.11
	S2	2~4	SW8290	0.05
B09-199	SI SI	0~2	SW8290	0.03
	S2	2~4	SW8290	0.06
B09-200	S1	0~2	SW8290	0.06
	S2	2~4	SW8290	0.33
B09-201	S1	0~2	SW8290	0.64
	S2	2~4	SW8290	0.51
В09-220	S 1	0~2	SW8290	0.73
	S2	2~4	SW8290	0.14
B09-221	S1	0~2	SW8290	0.86
	S2	2~4	SW8290	0.74
B09-222	S1	0~2	SW8290	0.77
	S2	2~4	SW8290	0.48

^{*} I-TEQ value calculated using International-89 Toxicity Equivalent Factors based on 2,3,7,8-TCDD.

Table 4-8 Water Level Measurement Result at LF-Area D

Proj_lD	Sites	MW_ID	Well	Тор	*****************	***************************************	Water	Level	n, med alverna. Alle vidde alverna in med vene bestem ed	Andrews week his browned der hand the sed on the
			Depth	of	28-F	eb-09	4-Se	ep-09	16-D	ec-09
	Management (1997)		(m)	Pipe (m)	bgs*	amsl^	bgs	amsl	bgs	amsl
08-035E	Area D	B03-463MW	11.8	48.55	9.0	39.6	7.97	40.6	8.8	39.8
		B03-464MW	13.0	49.79	9.1	40.7	8.59	41.2	8.9	40.9
		B03-465MW	13.0	50.90	10.2	40.7	9.65	41.3	10.0	40.9
		B03-466MW	12.3	49.58	8.0	41.6	7.85	41.7	7.7	41.9
		B03-467MW	12.3	49.79	9.2	40.6	8.64	41.2	9.0	40.8
		B03-468MW	13.4	51.41	10.1	41.3	9.42	42.0	9.8	41.6
		B09-193MW	15.5	49.28	9.1	40.2	8.00	41.3	8.8	40.5
		B09-221MW	11.8	43.22	5.1	38.1	6.10	37.1	4.9	38.3
08-034E	Land Farm	B07-217MW	11.4	50.92	3.7	47.2	3.28	47.6	4.0	46.9
		B07-218MW	12.3	51.77	10.8	41.0	9.27	42.5	9.8	42.0
		B07-219MW	11.7	55.41	7.3	48.1	7.04	48.4	7.7	47.7
		B07-220MW	9.2	49.73	3.1	46.6	2.57	47.2	3.3	46.4
		B07-221MW	11.7	54.59	6.9	47.7	6.1	48.5	7.3	47.3
		B09-176MW	40.0	44.27	8.5	35.8	8.87	35.4	8.4	35.9
		B09-177MW	42	47.19	9	38.2	9.04	38.2	9	38.3
		B09-178MW	41	49.09	9	40.2	8.87	40.2	8	40.9
Suppl	y Wells	12-247	70			N	ot mea	sured!		
		13-279	73							
		14-283	80	***************************************						
		15-286	77	***************************************						
		16-289	85							
		20-575	184	***************************************						

^{*-} below ground surface; ^- above mean sea level.

Table 4-9 Groundwater Sampling Strategy at LF-Area D.

Proj_ID	Sites	BH_ID	Well Depth (m)	Water level	VOCs	OC Pest
08-035E	Area D	B03-463MW	12.4	7.97	O	O
		B03-464MW	13.1	8.59	О	О
		B03-465MW	13.1	9.65	О	О
		B03-466MW	17.9	7.85	О	О
		B03-467MW	12.4	8.64	О	О
		B03-468MW	13.5	9.42	О	О
		B09-193MW	15.0	8.00	О	О
		B09-221MW	12.4	6.10	O	O
08-034E	Land Farm	B07-217MW	12.0	3.28	О	0
		B07-218MW	12.7	9.27	О	О
		B07-219MW	12.3	7.04	О	О
		B07-220MW	9.7	2.57	О	O
		B07-221MW			О	О.
		B09-176MW	40.0	8.87	О	
		B09-177MW	40	9.04	О	
		B09-178MW	40	8.87	0	
Suppl	y Wells	12-247	70		О	
		13-279	73		О	
		14-283	80		О	
		15-286	77		О	
		16-289	85		0	
		20-575	184		О	

Table 4-10 OC-Pesticides Chemical Test Result of Groundwater at LF-Area D.

Chemicals (µg/L)	I	303-463MW		B03-4	64MV	V	E	303-465M	W		B03-466MV	7
	1 st	2nd	3rd	1st	2nd	3rd	İst	2nd	3rd	lst	2nd	3rd
alpha-BHC	0,34	0.53J G	0.37	-	-	-	0.14PG	- G	0.057 PG	0.07PG	0.067J G	0.097 PG
gamma-BHC	3.5q	4.9	3.3	0.01J	11-11	%-F-%	0.069	0.022J	0.039 J	0.17	0,21J PG	0.26
Heptachlor	-	-	 -	+	+	-	0.031J	-	-	-	-	•
beta-BHC	0.73	0.76J PG	0.52	0.0047J			0,53PG	0.27PG	0.26 PG	0.66	0.75PG	0.71
delta-BHC	1	1.1	0.98	0.0073J		-	*	*	0.024J PG	0.57	0.51	0.51
Heptachlor epoxide					1,411				0.019J PG			0.015J PG
Endosulfan I	-	-	-	-	-	-	-	-	-	0.017J PG	-	-
gamma-Chlordane			14 L 14			323						
alpha-Chlordane	-	-	-	~		~	*	-	*	-	*	-
4,4'-DDE	1011		14.4						1.11.11.11.11.11.11.11.11	•		a Angensia
Dieldrin	0.007J	-	-	-	_	-	0.048J PG	-	0.037J PG	0.028J PG	0.078J	0.0741
Endrin		T					4.418 + 3343	11.11.11.11				Militaria
4,4'-DDD		-	-	-	-	-	-	-	-	-	-	-
4,4'-DDT		-	.,		``	-				•		
Endosulfan sulfate	-	-	-	-	-	-	*		*	*	-	_
Endrin ketone	•		33. 4 .33	min Çüri	-	1.	Strate Charles					

Sampling at 1st: May 11~15, 2009: at 2nd August 31~Sep 2, Sep14~16, 2009: at 3rd: Dec 12~15, 2009

PG- the percent difference between the original and confirmation analyses is greater than 40% "-" indicates not detected above the detection limit.

J- Estimated result. Result is less than reporting limit.

Q- Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G- Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Table 4-10 OC-Pesticides Chemical Test Result (Continued).

Chemicals	1	B03-467MW	I	B03-	468M	W		B07-217	MW		B07-218MW	
(μg/L)	1st	2nd	3rd	I st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
alpha-BHC	0.033J PG	- G	0.038J PG	-	-	-	0,028J	-	0.024J	*	0.0193	***************************************
gamma- BHC	0,05PG	0.6	0.24 PG	0.043J	-	-	0,06	0.018J	0.033J	0,016J	0,091	0.026J
Heptachlor	-	-	-	-	-	-	-	-	0.0076J PG	*	Ī -	0.0075J
beta-BHC	0.14PG	0.19J PG	0.072	-	-		<u>-</u>			0.025J PG	0.027J PG	0.013J PG
delta-BHC	0,3	0.11J	0.22	-	-	-	-	-	-	-	0.028J PG	0.012J PG
Heptachlor epoxide		•		70. - 1740 3 7 7 9 1	1 (- 11)	-	16 16 mm (1			0.013	0.011J	0.0057J
Endosulfan I	-	-	-	-	-	-	•	-	-	-		-
gamma- Chlordane					•	1				0.015J PG	0.0097.J	0.011J PG
alpha- Chlordane	-	-	*	-	-	-	-	-	-	0.022J PG	0.0096J PG	0.0089J PG
4,4'-DDE	-				1.7					0.0095,J	0.00841	-
Dieldrin	_	manusk ministration (ministration) of his distribute of	_	-	•	*	0.0096J	-	0.019J	0.04J	0.025J	0.016J
Endrin				N. 1921 14								
4,4'-DDD	-	-	-	-	-	-	-	-	+	0.1	0.084J	0.031J
4,4'-DDT		200 - 500			7	15.13		11/19/5		0.017J	0,048J	0.019J
Endosulfan sulfate	-	-	-	-	-	-	-	-	-	-	0.01J PG	-
Endrin ketone	n over the conjust places			- 1				•				

PG- the percent difference between the original and confirmation analyses is greater than 40%.

J- Estimated result. Result is less than reporting limit.

B-The analyte was found in a blank associated with the sample.

Q- Elevated reporting limit. The reporting limit is clevated due to high analyte levels.

G- Elevated reporting limit. The reporting limit is elevated due to matrix interference.

"-" not detected above the detection limit.

--- Page 41 -

Table 4-10 OC-Pesticides Chemical Test Result (Continued).

Chemicals (µg/L)		B07-219MW			B07-220	MW		B07-221MV	V
	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
alpha-BHC	0.041J PG	0.043J	0.046	-	0,025J	0.032J	0.018J		-
gamma-BHC	0.054	0.15	0.098	0.021J	0.15	0.2	0.0161	0.012J	0.014J
Heptachlor	an and a support a support and a support and a support and a support a support a support a support and a support a sup	*		-	-	_	-	-	_
beta-BHC	0.16	0.35	0.27	0.017J	0.19	0,26		0.035J PG	0.0077J
delta-BHC	0.065	0.047	0.059	-	0.012J	0.024J	0.016J	*	-
Heptachlor epoxide	•	***************************************	0.0054J	•		0.0123	-		
Endosulfan l	-	0.0061J PG	0.049 PG	-	-	0.02J	-	-	-
gamma-Chlordane	:	يومنك ويوامنا حرج لمروث الم	-	-	-	0.018J PG	-		
alpha-Chlordane		-	0.011J PG	*	-	-	-	-	-
4,4'-DDE	¥167639			• 11					
Dieldrin	0.12	0.28	0.44	-	-	0,0623	-	*	-
Endrin		0.0054J	0.013J PG			Deres grade	7		\$300 5 00 10
4,4'-DDD	-	-	_	-	-	0.006J	-	0.011J	0.013J
4,4'-DDT	-	± 3 3 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	· · · · · · · · · · · · · · · · · · ·	0.0079J		0.1		0.017J	0.01J
Endosulfan sulfate	-	*	*	-	-	0.0067J PG	-	-	-
Endrin ketone		0.038J	0.055J	NOTHING BY AND THE PARTY OF THE			-		-

PG- the percent difference between the original and confirmation analyses is greater than 40%.

J- Estimated result. Result is less than reporting limit.

B-The analyte was found in a blank associated with the sample.

Q- Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

"-" not detected above the detection limit.

Table 4-11 VOCs Chemical Test Result for Groundwater of LF-Area D.

Component (µg/L)	130	03-463	MW	E	303-464N	ИW		B03-465N	1W	В	03-466M\	V	l	303-467N	íW
	lst	2nd	3rd	1st	2nd	3rd	lst	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
Асетопе	1 -	1 -	- q	3.4J	-	-	-	-	-	4.43	-	- q	15	11	-
Benzene	0.97J		1.1J	0.451		1	9.8J	11	9,3	0.98J	4.2	1.7J	4.3	8	7.2
2-Butanone (MEK)	-	1	~	0.63	T -	1 -	-	-	1	-	-	-	0.77J	0.38J	-
Carbon disulfide	-	1				in miniminium		-	i i				-	 	0.24J
Chlorobenzene	4.93	3.5J	7.9	-	-	T -	-	5.4	5,3	2.8	15	5.9J	6.1	3	11
Chloroethane	11.4	-	1.00	-		1	1-1-1-1	4.4	3,4		100-11	-	7.6	7.9	7,1
Chloroform	1.93	1.43	1.4J	0.39J	0.22J	0.48J	-	0.42J	0.47J	0.68J	1.2	1,61	0,623	0.23J	0,29J
Chloromethane		10020	- 1	1 -	1 -	1 -		1	1	1	0.28J			0.3J	15.3
2-Chlorotoluene	-	-	0.393	-	-	-	9.21	19	14	0.0991	1.9	1 -	0.73J	0.085)	0.46J
4-Chlorotoluene	1.14.11	-]		***********		0.7J	0.54J	1	0.89J	 -	0.53J	1	0.14J
1,2-Dichlorobenzene	-	1 -	0,723	1 -	-	† -	-	-	-	-	0.28J	1 -	-	-	-
1,3-Dichlorobenzene	14-11	-	-	1		-			ACC-516	1	0.28J	1.00	100	1.1.	0.13J
1,4-Dichlorobenzene	-	1)	0.95J	-	1 -	1 -	-	0.26J	0.29J	0,2J	0.73J	1 -	0,34J	0.43	0.59J
Dichlorodifluorometha ne		-		1				34.34 V. 15				I Y			
1,1-Dichloroethane	2J	2.5J	1.7J	-	-	-	11)	11	12	0,3J	0.42J	-	7,4	5,6	18
1,2-Dichloroethane		-				10.0	• • • • • • • • • • • • • • • • • • • •	111115	0.98J			-	-	-	0.31J
cis-1,2-Dichloroethene	95q	98	160E	0.21J	0.5J	0.631	1100q	1100E	1100E	15	54	26	7.7	7.7	29
trans-1,2- Dichloroethene			0.65J		-		18J	28	24		0.52J		0.24J	0.49J	0.92J
1,1-Dichloroethene	-	-	0.3J	-	0.16J	0.37J	-	4.7	3,3	-	-	-	-	-	0.213
1,2-Dichloropropane	.	: : : : :		-		11:									0.19J
Ethylbenzene	-	-	-	0.32J	-	-		-	-	0.27J	1.9	-	0.71J	0.12J	0.26J
Isopropylbenzene	·	•	 	-						0.47J	0,57J		-	-	-
p-Isopropyltoluene	-	-	-	~	-	-	-	-		-	0.73J	-	-	-	-
Methylene chloride			1.5J	1.2	ii: 1 ii:	1.3		3.4	3	0.613	1.6		0.92J	1.7	1.7
Naphthalene	-	-	-	0.35J	-	-	-	-	-	-	5.3	-	-	-	-
Tetrachloroethene	110G	120	160E	23	40	30	233	27	21	13	200E	180	2.2	:0.94J	0.211
Toluene	33	1.53	8.1	21	0,7J	6.9	49J	9.2	22	14	480E	8.8J	34B	1.4	7.3
1,2,3-Trichlorobenzene						= 11.		7.	7.20	•	0.41J B	-	- · ·		
1,2,4-Trichlorobenzene	-	-	0.4J	-	-	-	~	-	-	-	0,53J B	-	-	-	0.19J
1,1,1-Trichloroethane						Ų	-				1.1				**************************************
Trichloroethene	62G	58	89	1.2	12	15	100	210E	150E	20	50	29	2.3	16	1.3
Trichlorofluoromethan e			0,623					7		7		-		-	
1,2,4- Trimethylbenzene	-	-	-	0.323	-	-	-	-	-	-	7.1	1.4J	0.143	-	0.44J
1,3,5- Trimethylbenzene		-							riospainis (1.8		-		
Vinyl chloride	-	-	2.6	-	-	-	18J	57	32	-	5.2	-	2.8	2.6	6.7
m-Xylene & p-Xylene	-	-		0.91						0.2J	1,6		0.22J	-	0.28J
o-Xylene	-	- 1	-	0.37J	-	-	-	-	-	0.18J	0.87J	-	0.13J	0.11.1	0.33J

Sampling at 1st: May 11~15, 2009: at 2nd August 31~Sep 2, Sep 14~16, 2009: at 3rd: Dec 12~15, 2009

PG- the percent difference between the original and confirmation analyses is greater than 40%. "-" not detected above the detection limit.

J- Estimated result. Result is less than reporting limit.

Q- Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G- Elevated reporting limit. The reporting limit is elevated due to matrix interference.

E Estimated result. Result concentration exceeds the calibration range.

Table 4-11 VOCs Chemical Test Result (Continued).

Component (µg/L)	В	03-468	MW	В	07-217N	1W	В	07-218N	1W	В	07-219N	1W	Ē	307-220	MW
	İst	2nd	3rd	1st	2nd	3rd	lst	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
Acetone	-	-	-	2.6J	1 -	- q	2.3J	-	- q	-	-	- q	- q	-	+ q
Benzene	-		1 -	0.34J		-	0.23J		-	1	-		***************************************		
2-Butanone (MEK)	-	-	1 -	-	-	-	T -	-	† -	-	-	1 -	 	1 -	1 -
Carbon disulfide	1	1		· · · · ·	-	-	1046	3.4		1	1 2 4 1	15.5		1 -	1
Chlorobenzene	 -	-	1 -	0.35J	† -	-	-	-	1 -	 -	0.523	-		1	
Chloroethane	-	13727	1 -				-	1777	1 -	1		7 77 77	7		1
Chloroform	0.86 J	0.23 J	0.6)	3.7	2.7J	3,73	0.48J	-	-	_	0.49J	-	4.3	1.83	1.2J
Chloromethane	10-4		1 -	-	1 -	-		1	1 -	 		†		1	danieno min
2-Chlorotoluene	-	-	<u> </u>	T	<u> </u>	***************************************	-	1	1	1	-	1			<u> </u>
4-Chlorotoluene	-		1 -	-	<u> </u>	***************************************		1	†	†			1 -	-	
1,2-Dichlorobenzene	-	-	1 -	-	 -	-	1	-	1-	 	-	-	+	 -	-
1,3-Dichlorobenzene		10,50	1	_	1	-	1000	- 10 m	† -	100210		1	300200	1.00	
1,4-Dichlorobenzene		-	 -	-	-	-	1 -	-	1 -	 	0.23J	 	-	 	
Dichlorodifluoromethane	11.4			0.533			h	SAMES!	-	ļ	77.2		0.65		-
1,1-Dichloroethane		-	-	0.15J	0.143	-	1 10 /10 11	1.000 (3.000 1)	_	-	-	_	1 1	1 1 1 1 1 1 1	
1,2-Dichloroethane			1	1	3.1-15	17.20	100	Tagana	1 2 2	H		hi	-	ļ	ļ
cis-1,2-Dichloroethene	***************************************	0.11 J	0.57	84E	110E	120	32	42q	71	84	75	96	35	190	120
trans-1,2-Dichloroethene			İ	1.3	2.9	3.7J	0.19J	0.38J	-	- I	6.1	6.33	0,53	1.1J	1.93
1,1-Dichloroethene	-		-	-	-	-	_						<u> </u>		
1,2-Dichloropropane	10.14	1,12.1.1		1,774,71	-	h		-	-			-		<u>.</u>	
Ethylbenzene			***************************************	0.2J	_	_	0.21.							*************	
lsopropylbenzene			<u> </u>			******	0.47J			***************************************	•		-		*****
p-Isopropyltoluene				<u> </u>	-	-		_	_	-		-	1000000		
Methylene chloride		1.9	1.7	1.5			1,6	2.3		Sel-lian	1.9		1.7J	:5-2 (X)	
Naphthalene		-	1.1.	0.27J	-	-	0.43			-			2011/19		
Tetrachloroethene	140g	70	160E	130E	180	280	32	78	210	590g	270E	410	86	41	32
l'oluene	11	0.95 J	5.8	17	-	7.71	17	0.623	7.7J	111	2.2	6.3J	19	pananahaning	5.31
1,2,3-Trichlorobenzene	-	- : : i		1, 1, 2, 1, 1, 1		-		36439		A SECTION	430.24.00	X. . 94		1,431	
1,2,4-Trichlorobenzene	-	-	-	-	-	-		-						-	3.1J B
.1,1-Trichloroethane					-							-		7.7	
Prichloroethene	6.1	1.7	11	210E	350	460	3.4	2.5	5.3J	150	80	120	110	230	340
Frichlorofluoromethane		*********				-					AlVoldina menanana	1.		2.50	-
,2,4-Trimethylbenzene		-		0.17J	-		0.26J	-		-		<u>- [-1]</u>	Jan Franci	205	
,3,5-Trimethylbenzene	d		10.4				33.33		3,8,4,33	1. .					
/inyl chloride		_	-	_					-						
n-Xylene & p-Xylene		X-2-4-3	77. 77	0,52J	27.2		0.61J		30.234			-	0.4J		-
-Xylene				0.24J			0.23J			1			V.4J		<u> - </u>

PG- the percent difference between the original and confirmation analyses is greater than 40%.

J- Estimated result. Result is less than reporting limit.

B-The analyte was found in a blank associated with the sample.

Q- Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

G- Elevated reporting limit. The reporting limit is elevated due to matrix interference.

E- Estimated result. Result concentration exceeds the calibration range.

"-" not detected above the detection limit.

Table 4-11 VOCs Chemical Test Result (Continued).

Component (µg/L)	В	07-221	MW		B09-17	6MW		B09-17	7MW	E	309-178M	W
	lst	2nd	3rd	1st	2nd	3rd	l st	2nd	3rd	İst	2nd	3rd
Acetone	- q			2.1J] -	-		-	-	2.6J] -	- q
Benzene	-	-		-		-	0.23 J	-	-	0.27 J	-	-
2-Butanone (MEK)	-	-	-	-	-	-	-	*	-	0,52 j		-
Carbon disulfide		1		1 -	-		-	· · · · ·	***************************************		1	-
Chlorobenzene	-	T -	-	-	-	*	T -	-	•	-	-	_
Chloroethane	-		· . · . · ·	-		in the second		1 -	-		-	: ·
Chloroform	5.2	-	0,45 J	0.21 J	0.18 J	0.37J	0.4J	0.17 J	0.37J	0.19 J	-	-
Chloromethane		0.28 J	-		İ	101-	-	li		<u>-</u> -		
2-Chlorotoluene	-	1	1	 -	1	-	-	-	-	-	1	 -
4-Chlorotoluene	1	1 -		1	4 540		Jagy.	1				3,410
1,2-Dichlorobenzene	-	1 -	-	 	-	_	_	 	_	_		_
1,3-Dichlorobenzene	la en	<u> </u>		-			1 -	1 7			<u> </u>	·
1,4-Dichlorobenzene	***********	+	<u> </u>	<u> </u>	1		-	 			-	-
Dichlorodifluoromethane		<u> </u>	15-11	-	1		1 -	 	1	ļ	-	· · · · · · · · · · · · · · · · · · ·
1,1-Dichloroethane	-	-	-	-	 -	<u> </u>	-	1 -	-	-	- 1 1 1 1 1 1 1 1	-
1,2-Dichloroethane	10,44	1 -				151111314			1	·	 	<u> -</u>
cis-1,2-Dichloroethene	52	0.58	3.7	0.17	0.15	0.12J	, Mag Magar	-	-	0.13	- -	-
trans-1,2-Dichloroethene	0.97 1	J	0.14 J	J	J		48 <u>1</u> 4		-	J	-	•
1,1-Dichloroethene	T	† -		-	1	-	_	_				<u> </u>
1,2-Dichloropropane			<u>.</u>	-	1		Sesimentiane		l	-	T	-
Ethylbenzene	-	-	a via vialitimo a resmedo no	-	-	-	0.22 J	-	-	0.47 J		-
Isopropylbenzene		-	********		-	_		ļ <u>.</u>	1772	-		-
p-Isopropyltoluene	-	-	-	-	-	-	-	<u> </u>		_	*	-
Methylene chloride	1.2J	1.5	1.4	1.5	1.3	1.1	1.2	0.79 J	1.1	0.54 J	0,8J	
Naphthalene	-	-	-	-	-	*	0.29 J	-	-	-	-	-
l'etrachloroethene	74	0.22 J	8.8	0.74 J	1.2	1.7	1.1			1.8	2.1	17 0
Toluene	23	2.7	6.6	11	1	5.6	9.6	0.64 J	6.6	19B	1.8	6.3 J
I,2,3-Trichlorobenzene	100	- 1	100.	3-2	-	30.5				11.14 P.	dair¥ršila	, i
1,2,4-Trichlorobenzene	-	-	-	*	-	0.31J B	-	-	0,32J B	-	0.22J B	-
1,1,1 Trichloroethane			-	10.00	30,200			-		75E 1659		-
Trichloroethene	99	0.37 J	7.1	0.68	0.96 J	0.99J	0.6J	- -	-	0.51	_	-
Crichlorofluoromethane			-							J 	_	
,2,4-Trímethylbenzene	-	-	-		-	-	0,27 J	******	-	-	-	
,3,5-Trimethylbenzene				7.2-71	77	-		77				
/inyl chloride			-			-	-	-		-	-	-
n-Xylene & p-Xylene	0.37						0.59	- 1		0.23	:::: <u>-</u> ::::::::::::::::::::::::::::::::	771
ı-Xylene	J	-	-			-	J 0 24			.j.,		
I Faired Bertin		l					J					

J- Estimated result. Result is less than reporting limit.
B-The analyte was found in a blank associated with the sample.
"-" not detected above the detection limit.

Table 4-11 VOCs Chemical Test Result (Continued).

Component (µg/L)	E	309-193N	iW	В	09-221N	1W		12-24	7		13-27	9
	1st	2nd	3rd	Ist	2nd	3rd	Ist	2nd	3rd	1st	2nd	3rd
Acetone] -	-	- q	-	-	-	-	5,1J	-	-	4.5J	-
Benzene	-		-	0.25J	-						1 4	şhah ala
2-Butanone (MEK)] -	-	-	-	-	-	+	-	-	-	-	-
Carbon disulfide			-		10.40	i i ja ky	\$	101,610	T		.	
Chlorobenzene	-	0.22J	-	-	-	-	~	-	-	-	-	-
Chloroethane			-				13. F. 12		1005,000			1,174
Chloroform	3.3J	2.3	2,4J	0.57J	0.32J	0.24J	1.1	0.65J	0.35J	1.8	1.2	1.1
Chloromethane		31454	100	10.04		da Para		3.9			9.6	in his in the
2-Chlorotoluene	-	-	-	0.38J	T -	-	-	-	-	†	-	
4-Chlorotoluene		-	-			N. 7. 1.			E E E E			
1,2-Dichlorobenzene	-	0.33J	-	<u> </u>	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	<u> </u>	0.12J			-							
1,4-Dichlorobenzene	1 -	-	-	-	-	-	-	-	-	-	-	*
Dichlorodifluoromethane				174-00		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
1,I-Dichloroethane	-	0.17J	-	-	-	-	0.5J	1	0.173	0.3J	-	0.15J
1,2-Dichloroethane			-				0.37J	_	-	1.1	0.931	0.79J
cis-1,2-Dichloroethene	130	130E	140	8.3	1.3	0.581	8	19	8.7	29	9.1	16
trans-1,2-Dichloroethene	1.3J	0.91J	1,3J	0.22J			0.75J	0.34J		1.2	0.53J	0.5J
1,1-Dichloroethene	-	0.27J	-	-	-	-	1,8	4.4	2.5	2.3	0.29J	1.5
1,2-Dichloropropane					7.74		- :::::			40 Y 2 Y 40.	(a. 14. 11. 1	
Ethylbenzene	-	-	-	0.113	-	-	-	_	-	*	-	-
Isopropylbenzene	-			_								
p-Isopropyltoluene	-	-	-	-	-	-	-	-	-	~	-	_
Methylene chloride		2.2		0.41J	1.4	1.5	1.8	hai yikini kaka isa asa	0.97J	1.4	-	1.2
Naphthalene	-	-	-	-	-	-	-	_		*	-	0,29JB
Tetrachloroethene	29	110E	.98	1.7	8.7	0.21J	5.8	16	2.6	12	4.5	9.6
Toluene	28	2	6.1J	12	1.6	6	30	1,6	9.5	25	1.3	8.2
1,2,3-Trichlorobenzene		•							0.26JB			*
1,2,4-Trichlorobenzene	-	-	-	-	-	-	-	-	0.34JB	-	-	_
1,1,1-Trichloroethane	-	-		-		7	0.36J	1.6	0.5J	0.65J	:	0,27J
Tríchloroethene	170	260E	240	2.7	4.8	-	69	21	59	100E	23	39
Trichlorofluoromethane	***			-		10 (1 . 1 (4)	0.26J	(i) - (i)	1-4,00	2006,00	0.400	949 <u>4</u> 10.00
1,2,4-Trimethylbenzene	-			-	-	-	-	-	-	-	-	_
1,3,5-Trimethylbenzene		•							1932168			
Vinyl chloride	- 1	-	-	-	-	- 1	-	-	-	-	-	-
m-Xylene & p-Xylene				0.27J					-			-
o-Xylene	-		-	-	-	-	-	-	-	-	-	-

J- Estimated result. Result is less than reporting limit.
B-The analyte was found in a blank associated with the sample.
E- Estimated result. Result concentration exceeds the calibration range.
"-" not detected above the detection limit.

Table 4-11 VOCs Chemical Test Result (Continued).

Component (µg/L)		14-28	33	***************************************	15-28	6	1	16-2	89	1	20-57:	5
	İst	2nd	3rd	l st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
Acetone	2.2.1	-	-	-	-	- q	2.3J	43	-	1 -	1 -	T -
Benzene			L		-		0.14 J		-	-	-	1
2-Butanone (MEK)	-	-	-	-	T -	-	-	-	-	-	-	-
Carbon disulfide	-	-	-	-				1	1	1	-	1
Chlorobenzene	-	-	-	0,12 J	-	*	-	-	-	-	-	-
Chloroethane	-	-				1 -	1 -	-				
Chloroform	0.37 J	0.73 J	0.463	0.83 J	0.76 J	0.5J	0,58 J	0,57 J	0.5J	0.56 J	0.77 J	0.7J
Chloromethane		61	-	-	15	-		20		1.55+11.0		
2-Chlorotoluene	-	-	-	-	-	-	-	-	-	-	-	0.24 J
4-Chlorotoluene				-								0.15 J
1,2-Dichlorobenzene	-	-	-	-	-	-	-	-	-	-	-	1 -
1,3-Dichlorobenzene							-	1 2				
1,4-Dichlorobenzene	-	<u> </u>	-	-	-	-	-	+	-	-	-	-
Dichlorodifluorometh ane	-				-		1	1.7		-		1
1,1-Dichloroethane	0.24 J	0.18 J	0.22J	9.5	5.7	7.4	9.2	0.54 J	0.94J	-	-	-
1,2-Dichloroethane	-				-	11.5		-			******	
cis-1,2- Dichloroethene	12	9,3	9.4	160 E	110 q	150	150 E	13	20	1.7	1.7	1.7
trans-1,2-	0.22	0.12		1.1	1.3J	IJ	3.7	0.18	0,21J	0.19	0.12	0.27
Dichloroethene	J	J					ļ	J		J	J	J
1,1-Dichloroethene	3.4	3.2	2.5	17	7.7	18	17	4.5	5.4	ļ	-	
1,2-Dichloropropane		114111	Nice in the	- 1	-	-	-		• •	hi benib	: e je sji	100-110
Ethylbenzene	-	-	*	-	-	-	-	-	<u> </u>	-	-	-
Isopropylbenzene		-					-	1 1 2 1 1		-		100-11
p-Isopropyltoluene					-			-				
Methylene chloride	1.3	-	1.1	1.9		1J	1.5		1.2	1.4	3.1	1.2
Naphthalene	-	-	0.29J B	-	-		0.29 J	-	-	4		*
Tetrachloroethene	3.6	2.4	2.2	67	39	77	73	11	19	-	-	0.1J
Toluene	32	2.6	9,1	30	2.9J	7.5	30	1.9	8.4	26	1,3	1,3
1,2,3- Trichlorobenzene		****		: - : : : : : : : : : : : : : : : : : :			0.55		7	1 6 6 Y 123	7117) i i
1,2,4- Trichlorobenzene	*	-	-	-	-	0.7J B	0,15 J	-	0,33J B			*
1,1,1-Trichloroethane	0.72 J	0.58 J	0,58J	13	6.3	11	12	1.4	1.7			
Trichloroethene	77	66	63	80E	53	96	83E	19	22	16	16	15
Trichlorofluorometha ne			74 (1)	0.25 J			0.3J	- : : : : : : : : : : : : : : : : : : :)			
1,2,4- Frimethylbenzene	-	-	-	-	-	-	-		~	-	-	-
1,3,5-	-	7		•		-		:::-::::::::::::::::::::::::::::::::::	-	- 1	-	
Frimethylbenzenc Vinyl chloridc	-	-	-	0.36	-	0.491	ra malajir -	-	-	-	enarenii -	-
n-Xylene & p-Xylene	W			J -			-	-	-			
S-Xylene	-]	<u> </u>	- l	- 1	- 1	-	-	-		-]	-	-

B-The analyte was found in a blank associated with the sample.
E-Estimated result. Result is less than reporting limit.
B-The analyte was found in a blank associated with the sample.
E-Estimated result. Result concentration exceeds the calibration range.
"" not detected above the detection limit.

Table 4-12 Slug Test Result at LF-Area D.

Well_ID	Activity	Bouwer and Rice (1976)						
		K(m/sec)	Average K (cm/sec)					
B03-464	Injection	7.70E-04	7.65E-04					
	Withdrawal	7.60E-04						
B03-465	Injection	5.60E-04	5.10E-04					
·	Withdrawal	4.60E-04						
B03-466	Injection	3.30E-04	2.75E-04					
	Withdrawal	2.20E-04						
B07-217	Injection	6.80E-05	7.70E-05					
	Withdrawal	8.60E-05						
B07-218	Injection	1.70E-05	1.80E-05					
	Withdrawal	1.90E-05						
B07-219	Injection	1.30E-04	2.05E-04					
	Withdrawal	2.80E-04						

Table 4-13 Pumping Test Result at LF-Area D.

Monitorin	ig Well	Status	Level of Displacement	Q	Slop	T (cm2/sec)	K (cm/sec)	Average K
			(m)	(m³/day)	(∆s)			(cm/sec)
Pumping	B07-	Drawdown	1.956	1.704	0.088	0.41	5.44E-04	3.21E-04
welli	217	Recovery		1.704	0.486	0.07	9.81E-05	
Observation Well 1	B07- 218	Drawdown	0.031	1.704	0.007	5.02	2.87E-02	2.87E-02
Observation Well 2	B03- 465	Drawdown	0.096	1.704	0.004	9,03	5.28E-02	5.28E-02
Observation	В07-	Drawdown	0.022	1.704	0.056	0.64	7.42E-04	1.19E-03
Well 3	220	Recovery		1.704	0.026	1.41	1.63E-03	
Observation Well 4	B07- 221	Drawdown	0.164	1.704	0.014	2.53	5.85E-03	5.85E-03

K = hydraulic conductivity [m/day], T = transmissivity[m2/day], Q = pumping capacity [m3]

 Δs = Slope of the straight part of the drawdown on a semi-logarithmic graph (m)

Table 4-14 Microbe and Total CNP Analytical Result of Soil at LF-Area D.

BH_ID	Total Microbe (CFU*/g)	Oil Disintegrated Microbe (MPN**/g)	Total Carbon (%)	Total Nitrogen (%)	Total Phosphorous (mg/kg)
B09-192-S3	1.99x10 ⁶	2.58x10 ²	0.25	0.0323	222.3
B09-193-S2	3.12x10 ⁵	3.12x10 ⁴	0.08	0.0106	263.24
B09-194-S1	5.35x10 ⁵	5.91×10 ⁴	0.01	0.0062	332.36
B09-195-S3	4.50×10^5	not detected (ND)	0.03	0.0081	197.7
B09-196-S3	1.18x10 ⁶	2.84×10^2	0.1	0.0106	173.32
B09-197-S1	5.22x10 ⁵	ND	0.07	0.0065	265.24
B09-198-S3	8.00x10 ⁴	3.30x10 ⁴	0.18	0.0115	81.72
B09-199-S1	8.28x10 ⁵	4.49x10 ⁵	0.17	0.0151	276.08
B09-200-S1	1.67x10 ⁶	5.22x10 ³	0.34	0.0221	353.89
B09-201-S1	3.39×10^6	5.17x10 ⁵	0.64	0.0507	322.35
B09-220-S3	2.13x10 ⁵	4.40×10^2	0.23	0.0221	136
B09-221-S2	1.49x10 ⁶	4.75x10 ³	0.18	0.0133	59.16
B09-222-S2	3.27x10 ⁶	2.88x10 ⁴	0.2	0.0294	100.37
* CFU-colony	forming unit, **]	MPN- most probable nun	nber		

Figure 4-1. Toluene Concentration in Soil at LF-Area D of Camp Carroll.

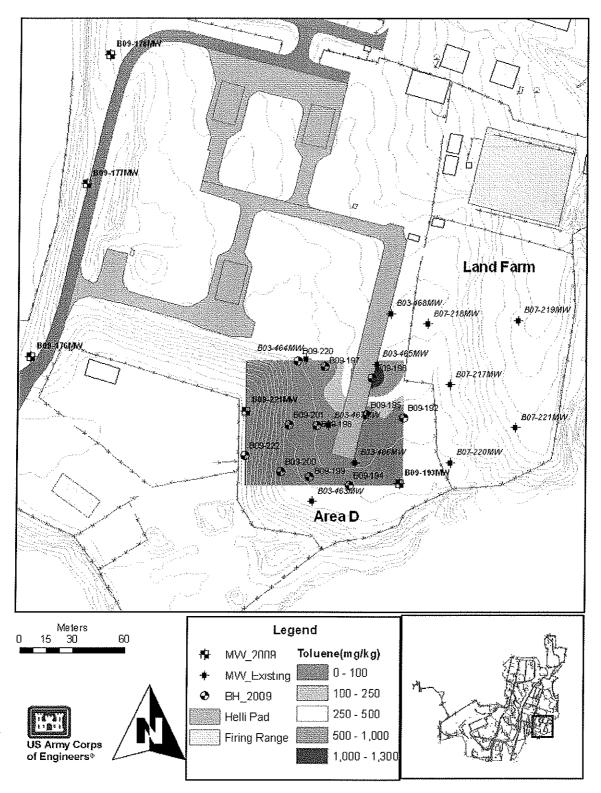


Figure 4-2. PCE Concentration in Soil at LF-Area D of Camp Carroll.

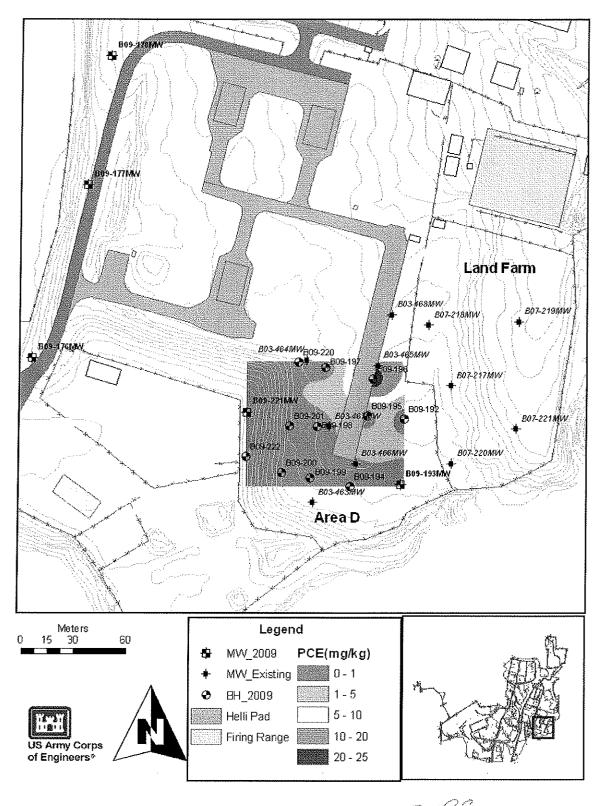
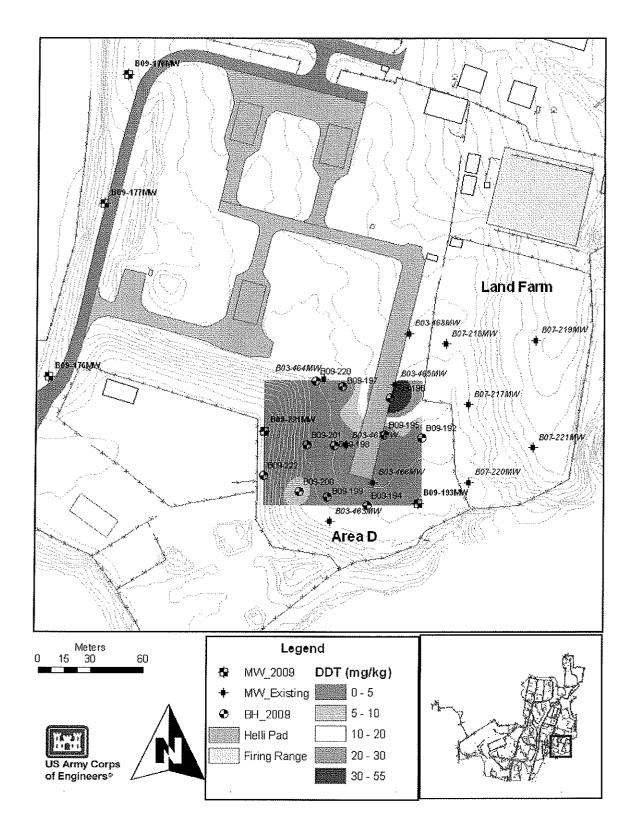



Figure 4-3 4',-4 DDT in Soil at LF-Area D of Camp Carroll.

