

Uploaded to the VFC Website

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton
Tax ID #27-3820181
CA Incorporation ID #3340400
CA Dept. of Charities ID #: CT-0190794

If Veterans don't help Veterans, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd= s-xclick&hosted button id=WGT2M5UTB9A78

Note

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

Table 9. Continued

	Boreho	e → E11-124	E11-125	E11-125	E11-126	E11-126	E11-127	E11-127	E11-128	E11-128	E11-129
No	Sample I	D → S4	\$1	52	S1	\$2	S1	\$2	S1	S2	S1
	Analyte↓ Depth, i	n → ~7.35	0~0.5	~1.56	0~0.5	~1.83	0~0.5	~2.32	0~0.5	~3.2	0~0.76
1	Arsenic mg/k	1.79	2.37	1.72	2,43	3,41	1.4	1.56	9.31	2,59	1.83
2	Barium mg/k	63.8	95	96.7	68.4	85.6	119	161	59.7	96.9	104
3	Cadmium mg/k	0.508	0.6	0.572	0.692	0.653	0.512	0.606	ND	ND	ND
4	Chromium mg/kg	6.06	1.71	2,48	2.54	ND	3.83	4.32	4.04	2,93	1.9
5	Lead mg/kg	6.44	5.3	5.26	7.63	8.83	6.16	5.95	23.6	15.9	7.34
6	Mercury mg/kg	, ND	ND	ND	ND	ND	ND	ND	0.002 1	ND	ND
7	Selenium mg/kį	0.656 J	NĐ	ND							
8	Silver mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

Table 9. Continued

		Borehole →	£11-130	E11-131	E11-131	E11-132	E11-132	E11-133	E11-133	E11-134	E11-134	E11-135
No		Sample ID →	S1	S1	\$2	S1	S2	\$1	S2	S1	S2	S1
	Analyte↓	Depth, m →	0~1.22	0.12~0.5	~1.7	0.1~0.6	~3.0	0.15~0.65	~2.46	0~0.5	~1.51	0~0.5
1	Arsenic	mg/kg	7.32	10.8	4,97	8.76	3.26	8.33	5.52	4.53	4.08	39
2	Barium	mg/kg	102	95.7	150	128	71.1	105	134	80.6	66,4	80
3	Cadmium	mg/kg	ND	1.12	0.974	1.43	0.431 J	0.74	0.776	ND	ND	2.76
4	Chromium	mg/kg	3.52	6.93	2.51	2.95	3.87	3.45	3.98	4.88	4.06	2.35
5	Lead	mg/kg	22.3	23.4	11.6	16.3	7,95	10.9	10,2	19.7	27.2	138
6	Mercury	mg/kg	0.00338 J	ND	ND	0.00155 J	ND	ND	ND	0.0147 J	0.00688 J	0.00792 J
7	Selenium	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.556 J	ND	ND
8	Silver	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48 J

J: Estimated amount between the detection limit and reporting limit

ND: Not detected

Table 9. Continued

	Borehole -	▶ E11-135	E11-135	E11-135	E11-136	£11-136	E11-137	E11-137	E11-137	E11-137	E11-138
No	Sample ID -	S2	\$3	S4	S1	S2	S1	52	S3	54	S1
	Analyte↓ Depth, m -	·~2.0	·~5.0	~7.65	0~0.5	~3.2	0~0.5	~2.0	~5.0	~6.75	0.4~0.9
1	Arsenic mg/kg	8.5	3.08	1.84	2.43	2.24	5,93	3.63	2,2	0.994 1	0.744 J
2	Barium mg/kg	70.1	88,9	84	94,4	98.5	96.6	79.9	95.9	73.9	71,4
3	Cadmium mg/kg	ND	ND	ND	0.407 J	0.453 J	ND	ND	ND	ND	ND
4	Chromium mg/kg	2.66	5.62	4.19	3.8	3.76	3,22	4.75	4.08	3.45	3.97
5	Lead mg/kg	8.61	11,8	6.41	5,89	7.1	21	7.73	8.92	5,34	5.04
6	Mercury mg/kg	0.00194 J	ND	ND	ND	ND	0.00226 J	ND	ND	ND	ND
7	Selenium mg/kg	0.548 J	0.537 J	ND	ND	ND	0.48 J	0.708 J	0.549 J	0.862 J	ND
8	Silver mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

Table 9. Continued

		orehole >	E11-138	E11-139	E11-139	E11-139	E11-140	E11-140	E11-140	E11-141	E11-141	E11-141
No	Sa	mple ID →	52	\$1	\$2	S3	\$1	S2	S3	51	S2	S3
	Analyte↓ D	epth, m 🔿	~2.22	0~0.5	~2.0	~3.66	0~0.5	~2.0	~3.0	0.3~0.8	~2.3	~5.3
1	Arsenic	mg/kg	0.683 J	2.03	1.4	1.29	8.87	2.42	1,45	3.27	4.16	2.16
2	Barium	mg/kg	95.6	69.1	66.9	58,4	92,2	91.3	107	83	76.2	72.7
3	Cadmium	mg/kg	ND	ND	ND	ND	0.776	0.682	0.642	ND	ND	ND
4	Chromium	mg/kg	3.4	3.84	3.73	3,35	3.54	2.83	2.47	5.07	4.04	5.04
5	Lead	mg/kg	4.37	10.2	6.57	5,56	16	6.69	7.56	11.9	13.4	7.37
6	Mercury	mg/kg	ND	0.0101 J	0.00318 J	0.0032 J	ND	ND	ND	0.00186 J	0.0012 J	0.00364 J
7	Selenium	mg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
8	Silver	mg/kg	NĐ	ΝĐ	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

ND: Not detected

Table 9. Continued

	Borehole	→ E11-141	E11-142	E11-142	E11-142	E11-143	E11-143	E11-143	E11-144	E11-144	E11-145
No	Sample ID	→ S4	S1	S2	S3	S1	S2	S3	S1	S2	S1
	Analyte↓ Depth, m	→ ·~7.2	0~0.5	·~2.0	~4.73	0~0.5	~2.0	~3.55	0~0.5	~1.52	0~0.5
1	Arsenic mg/kg	1.53	3.93	1.67	1.7	1.13	1.36	1.68	3.81	1.22	14.4
2	Barium mg/kg	78.8	92,6	72.3	54.5	60.8	60.8	64.9	75.6	73	132
3	Cadmium mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	Chromium mg/kg	3.64	10	3.98	3.09	4.02	3.55	4,21	3.79	ND	3.66
5	Lead mg/kg	5.47	14	7.81	5.88	6.39	4.97	5.85	8.57	7.82	110
6	Mercury mg/kg	ND	0.0026.J	0.00161 J	ND	0.00223 J	0.00283 J	0.00507 J	0.00655 J	0.00486 J	0.00361.
7	Selenium mg/kg	0.47 J	0.55 J	ND	0,427 J	0,943 J	ND	ND	ND	ND	ND
8	Silver mg/kg	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	0.143 J

3: Estimated amount between the detection limit and reporting limit

Table 9. Continued

	Borel	nole →	E11-145	E11-145	E11-146	E11-146	E11-146	E11-147	E11-147	E11-148	E11-148	E11-148
No	Sampl	e ID →	S2	S3	S1	S2	53	S1	S2	51	S2	S3
	Analyte↓ Depti	ı, m →	~2.0	~5.0	0~0.5	~2.0	°4.85	0~0.5	~1.97	0.3~0.8	~2.3	~5.8
1	Arsenic mg	/kg	7.73	3.84	2.38	19.8	1.06	1.65	1.22	4.36	6.19	2.86
2	Barium mg	/kg	103	71.9	57.8	65.3	107	116	65.6	78.7	112	74,9
3	Cadmium mg.	/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	Chromium mg.	/kg	3.75	3.73	2,79	2.79	2.95	5.74	3.86	5.31	4.39	4.46
5	Lead mg.	/kg	19.1	11.6	8.08	13.9	17.5	9,55	4.09	15.1	19.4	7.02
6	Mercury mg,	/kg	0.00293 J	ND	0.00095 J	ND	ND	ND	ND	0.00278 J	0.00154 J	ND
7	Selenium mg,	/kg	0.783 J	ND	ND	0.495 J	ND	ND	ND	ND	1.01 J	0.7 J
8	Silver mg,	/kg	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

ND: Not detected

Table 9. Continued

	Borehol	≥ → E11-149	E11-149	E11-149	E11-150	E11-150	E11-150	£11-150	E11-151	E11-151	E11-151
No	Sample II) → S1	S2	S3	S1	\$2	S3	S4	51	S2	S3
	Analyte↓ Depth, n	1 → 0~0.5	~2.0	~3.6	0~0.5	·~2.0	~5.0	~7.0	0~0.5	~2.0	~5.0
1	Arsenic mg/kg	7.33	3.42	1.75	3.19	29.2	3.22	2.23	5.26	4,83	4,94
2	Barium mg/kg	101	122	132	90.4	82.6	48.3	49.2	70.7	79.8	88.2
3	Cadmium mg/kg	1.33	1.16	ND	ND	ND	ND	ND	ND	ND	ND
4	Chromium mg/kg	ND	3.84	ND	3.87	ND	10.3	4.08	6.83	4.35	3.91
5	Lead mg/kg	24.7	14.3	13.6	11.8	41.2	9.41	4,81	9.47	14.4	15.8
6	Mercury mg/kg	ر 0.0018	ND	ND	0.00381 J	0.00648 J	0.00247 J	0,00566 J	ND	ND	0.00241 J
7	Selenium mg/kg	ND	0.381 J	ND	ND	ND	ND	ND	ND	ND	ND
8	Silver mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

Table 9. Continued

•		Borehole →	E11-151	E11-152	E11-152	E11-152	E11-153	E11-153	E11-153	E11-153
No		Sample ID →	S4	S1	S2	S3	S1	S2	S3	S4
	Analyte↓	Depth, m →	*·7.85	0~0.5	^'2.0	^5.0	0.3~0.8	~2.3	~5.3	~10.0
1	Arsenic	mg/kg	1.27	3.69	3.82	1.67	9.04	4.51	4.5	2.65
2	Barium	mg/kg	87.8	66.6	80:3	62,8	108	123	89.5	75
3	Cadmium	mg/kg	ND	ND	ND	ND	1.17	ND	ND	ND
4	Chromium	mg/kg	4.09	ND	4,21	ND	4.6	ND	4.71	4,04
5	Lead	mg/kg	6.36	8,04	7,77	4.78	17.6	9.33	11.7	7.17
6	Mercury	mg/kg	ND	NĐ	0.00153 J	ND	0.00402 J	0.00301.1	0.004.1	0.00287 J
7	Selenium	mg/kg	1,32 J	ND	ND	ND	ND	ND	ND	ND
8	Silver	mg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ

J: Estimated amount between the detection limit and reporting limit

ND: Not detected

Table 10. Comparison of Duplicate Sample Results in Primary Laboratory

Parameter	Analyte		Result: E	11-124-S1	Comp	oare: Primary	vs. Dup
Parameter	Adayte	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	1.24 J	1.47 J	0.84	0.33-3.00	Agree
	1,2,3,4,6,7,8-HpCDF	pg/g	0.484 J	0.378 J	1.28	0.33-3.00	Agree
	1,2,3,4,7,8-HxCDF	pg/g	< 2.33	0.221 J	~	-	Agree
	2,3,7,8-TCDF	pg/g	< 0.465	0.276 J	-	-	Agree
	OCDD	pg/g	23.1	41.5	0.56	0.25-4.00	Agree
OC Pesticide	4,4'-DDD	μg/kg	3.81 J	3.31 J	1.15	0.33-3.00	Agree
	4,4'-DDE	μg/kg	8.76 J	8.42 J	1.04	0.33-3.00	Agree
	4,4'-DDT	μg/kg	36.4	35.6	1.02	0.25-4.00	Agree
	alpha-BHC	μg/kg	0.743 J	< 10.2	~	-	Agree
	delta-BHC	μg/kg	0.63 J	< 10.2	-	-	Agree
	gamma-BHC (Lindane)	μg/kg	13.5	1.33 J	10.15	0.33-3.00	Disagree
	Methoxychlor	μg/kg	< 10.3	1.27 J	-	-	Agree
VOC	2-Butanone	μg/kg	10.7 J	< 23.1	**	-	Agree
	Acetone	μg/kg	41.2 J	26 J	1.58	0.33-3.00	Agree
	Methylene chloride	μg/kg	1.44 J	1.33 J	1.08	0.33-3.00	Agree
svoc	Bis(2-Ethylhexyl)phthalate	μg/kg	69 J	70.1 J	0.98	0.33-3.00	Agree
Metal	Arsenic	mg/kg	5.7	6.82	0.84	0.50-2.00	Agree
	Barium	mg/kg	80.8	87.2	0.93	0.50-2.00	Agree
	Cadmium	mg/kg	0.81	0.904	0.90	0.50-2.00	Agree
	Chromium	mg/kg	4.61	5.69	0.81	0.50-2.00	Agree
	Lead	mg/kg	12.7	15.5	0.82	0.50-2.00	Agree
	Mercury	mg/kg	0.00247 J	0.00143 J	1.73	0.33-3.00	Agree

Table 10. Continued

Parameter	Analyte	unit	Result: E	11-124-S2	Com	pare: Primary	vs. Dup
raidilletei	and specific and Allalyte passes from all the specific and all the speci	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.395 J	1.08 J	0.37	0.33-3.00	Agree
	1,2,3,4,6,7,8-HpCDF	pg/g	0.291 J	< 2.56		-	Agree
	1,2,3,4,7,8-HxCDF	pg/g	0.161 J	< 2.56	-	+	Agree
	1,2,3,6,7,8-HxCDF	pg/g	0.118 J	< 2.56	-	-	Agree
	OCDD	pg/g	4.74 J	24.1	0.20	0.33-3.00	Disagree
OC Pesticide	alpha-BHC	μg/kg	2730 J	4380 J	0.62	0.33-3.00	Agree
	delta-BHC	μg/kg	3530 J	4860 J	0.73	0.33-3.00	Agree
	gamma-BHC (Lindane)	μg/kg	46100	64100	0.72	0.25-4.00	Agree
VOC	1,2,4-Trichlorobenzene	μg/kg	3.15 J	< 4.63	-	-	Agree
	1,2,4-Trimethylbenzene	μg/kg	2.72 J	< 4.63	-	-	Agree
	1,3,5-Trimethylbenzene	μg/kg	1.41 J	< 4.63	-	-	Agree
	Acetone	μg/kg	25.6 J	17.8 J	1.44	0.33-3.00	Agree
	m,p-Xylene	μg/kg	6.71 J	< 9.26	-	•	Agree
	Methylene chloride	μg/kg	1.11 J	1.35 J	0.82	0.33-3.00	Agree
	Naphthalene	μg/kg	2.4 J	< 4.63	-	-	Agree
	o-Xylene	μg/kg	3 J	< 4.63	-	-	Agree
	Tetrachloroethene	μg/kg	1.06 J	< 4.63	-	-	Agree
SVOC	1,2,4-Trichlorobenzene	μg/kg	87.5 J	50.2 J	1.74	0.33-3.00	Agree
	2-Methylnaphthalene	μg/kg	1690	961	1.76	0.25-4.00	Agree
	Bis(2-Ethylhexyl)phthalate	μg/kg	< 338	114 J	-	-	Agree
	Naphthalene	μg/kg	53.9 J	40.2 J	1.34	0.33-3.00	Agree
Metal	Arsenic	mg/kg	2.3	2.65	0.87	0.50-2.00	Agree
	Barium	mg/kg	81.1	90.8	0.89	0.50-2.00	Agree
	Cadmium	mg/kg	0.809	0.705	1.15	0.50-2.00	Agree
	Chromium	mg/kg	4.97	4.51	1.10	0.50-2.00	Agree
	Lead	mg/kg	7.44	8.87	0.84	0.50-2.00	Agree
	Selenium	mg/kg	0.728 J	< 2.04	<u>-</u>	-	Agree

Table 10. Continued

Parameter	Analyte	unit	Result: E	11-124-S3	Comp	are: Primary	vs. Dup
rarameter		unt	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.439 J	0.402 J	1.09	0.33-3.00	Agree
	OCDD	pg/g	10	8.26	1.21	0.25-4.00	Agree
OC Pesticide	alpha-BHC	μg/kg	53.5 J	19.8 J	2.70	0.33-3.00	Agree
	delta-BHC	μg/kg	61.3 J	29 J	2.11	0.33-3.00	Agree
	gamma-BHC (Lindane)	μg/kg	1130	415	2.72	0.25-4.00	Agree
VOC	Acetone	μg/kg	10.8 J	12.6 J	0.86	0.33~3.00	Agree
	Methylene chloride	μg/kg	1.5 J	1.03 J	1.46	0.33-3.00	Agree
	Tetrachloroethene	μg/kg	1.8 J	1.31 J	1.37	0.33-3.00	Agree
SVOC	2-Methylnaphthalene	μg/kg	70.7 J	< 323	-	-	Agree
Metal	Arsenic	mg/kg	1.31	0.969	1.35	0.50-2.00	Agree
	Barium	mg/kg	73.8	70.9	1.04	0.50-2.00	Agree
	Cadmium	mg/kg	0.564	0.542	1.04	0.50-2.00	Agree
	Chromium	mg/kg	5.7	5.85	0.97	0.50-2.00	Agree
	Lead	mg/kg	5.63	4.57	1.23	0.50-2.00	Agree
	Selenium	mg/kg	< 1.99	0.874 J	-	-	Agree

Parameter	Analyte	unit	Result: E	11-124-54	Comp	oare: Primary	vs. Dup
raiametei	Aldiyle	uint	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.353 J	0.363 J	0.97	0.33-3.00	Agree
	1,2,3,4,6,7,8-HpCDF	pg/g	< 2.39	0.375 J	-	**	Agree
	1,2,3,7,8-PeCDF	pg/g	< 2.39	0.13 J	-	-	Agree
	2,3,4,7,8-PeCDF	pg/g	< 2.39	0.189 J	-	-	Agree
	OCDD	pg/g	3.44 J	7.25	0.47	0.33-3.00	Agree
OC Pesticide	alpha-BHC	μg/kg	22.5 J	< 492	-		Agree
	delta-BHC	μg/kg	43.3 J	38.3 J	1.13	0.33-3.00	Agree
	gamma-BHC (Lindane)	μg/kg	728	695	1.05	0.25-4.00	Agree
VOC	Acetone	μg/kg	< 45	8.32 J	-	-	Agree
	Benzene	μg/kg	< 4.5	0.905 J	-	-	Agree
	Tetrachloroethene	μg/kg	< 4.5	ل 0.785 J	-	-	Agree
	Toluene	μg/kg	0.999 J	0.96 J	1.04	0.33-3.00	Agree
SVOC	2-Methylnaphthalene	μg/kg	53.9 J	< 330	-	-	Agree
	Bis(2-Ethylhexyl)phthalate	μg/kg	53.9 J	3130	0.02	0.33-3.00	Disagree
Metal	Arsenic	mg/kg	1.79	1.58	1.13	0.50-2.00	Agree
	Barium	mg/kg	63.8	65.9	0.97	0.50-2.00	Agree
	Cadmium	mg/kg	0.508	0.663	Ŭ.//	0.50-2.00	Agree
	Chromium	mg/kg	6.06	14	0,43	0.50-2.00	Disagree
	Lead	mg/kg	6.44	8.68	0.74	0.50-2.00	Agree
	Selenium	mg/kg	0.656 J	< 1.9	_	_	Agree

Table 10. Continued

Parameter		unit	Result: E11-125-S1		Compare: Primary vs. Dup		
Parametei	Analyte	umi	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	2,3,7,8-TCDF	pg/g	0.286 J	0.382 J	0.75	0.33-3.00	Agree
	OCDD	pg/g	2.24 J	2.51 J	0.89	0.33-3.00	Agree
OC Pesticide	4,4'-DDT	μg/kg	1.51 J	1.76 J	0.86	0.33-3.00	Agree
VOC	Acetone	μg/kg	14.3 J	9.11 J	1.57	0.33-3.00	Agree
	Methylene chloride	μg/kg	0.632 J	< 17.5	-	-	Agree
	Toluene	μg/kg	3.33 1	1.65 J	2.02	0.33-3.00	Agree
Metal	Arsenic	mg/kg	2.37	1.98	1.20	0.50-2.00	Agree
	Barium	mg/kg	95	98.3	0.97	0.50-2.00	Agree
	Cadmium	mg/kg	0.6	0.515	1.17	0.50-2.00	Agree
	Chromium	mg/kg	1.71	1.44	1.19	0.50-2.00	Agree
	Lead	mg/kg	5.3	6.12	0.87	0.50-2.00	Agree
	Silver	mg/kg	0.254 J	0.328 J	0.77	0.33-3.00	Agree

			Result: E	11-125-52	Comp	are: Primary	vs. Dup
Parameter	Analyte	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.346 J	0.26 J	1.33	0.33-3.00	Agree
	2,3,4,7,8-PeCDF	pg/g	0.07 J	< 2.46	-	w	Agree
	2,3,7,8-TCDF	pg/g	0.29 J	0.303 J	0.96	0.33-3.00	Agree
	OCDD	pg/g	11.8	8.99	1.31	0.25-4.00	Agree
OC Pesticide	4,4'-DDT	μg/kg	1.53 J	1.29 J	1.19	0.33-3.00	Agree
VOC	Acetone	μg/kg	9.78 J	8.16 J	1.20	0.33-3.00	Agree
	Methylene chloride	μg/kg	< 18.7	1.98 J	-	-	Agree
	Toluene	μg/kg	3.35 J	4.49	0.75	0.33-3.00	Agree
Metal	Arsenic	mg/kg	1.72	1.34	1.28	0.50-2.00	Agree
	Barium	mg/kg	96.7	81.5	1.19	0.50-2.00	Agree
	Cadmium	mg/kg	0.572	0.477 J	1.20	0.33-3.00	Agree
i i	Chromium	mg/kg	2.48	1.99	1.25	0.50-2.00	Agree
	Lead	mg/kg	5.26	4.88	1.08	0.50-2.00	Agree
	Silver	mg/kg	0.272 J	0.276 J	0.99	0.33-3.00	Agree

Table 10. Continued

Parameter	Analyte		Result: E	11-121-S2	Compare: Primary vs. Dup		
Parameter	Alldiyte (1)	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.287 J	< 2.68	-	-	Agree
	2,3,7,8-TCDF	pg/g	0.246 J	0.325 J	0.76	0.33-3.00	Agree
	OCDD	pg/g	15.9	19.7	0.81	0.25-4.00	Agree
OC Pesticide	gamma-BHC (Lindane)	μg/kg	2.2 J	2.74 J	0.80	0.33-3.00	Agree
VOC	2-Butanone	μg/kg	2.21 J	5.16 J	0.43	0.33-3.00	Agree
	Acetone	μg/kg	12.2 J	28.3 J	0.43	0.33-3.00	Agree
	Methyl iodide	μg/kg	< 4.75	0.828 J	-	-	Agree
	Methylene chloride	μg/kg	1.05 J	1.47 J	0.71	0.33-3.00	Agree
	Tetrachloroethene	μg/kg	4.28 J	2.55 J	1.68	0.33-3.00	Agree
SVOC	Bis(2-Ethylhexyl)phthalate	μg/kg	30.7 J	< 342	-	-	Agree
Metal	Arsenic	mg/kg	4.83	6.31	0.77	0.50-2.00	Agree
	Barium	mg/kg	409	941	0.43	0.50-2.00	Disagree
	Cadmium	mg/kg	0.847	0.902	0.94	0.50-2.00	Agree
	Chromium	mg/kg	4.17	5.36	0.78	0.50-2.00	Agree
	Lead	mg/kg	9.37	9.65	0.97	0.50-2.00	Agree
	Mercury	mg/kg	0.00109 J	< 0.0198	-	-	Agree
	Selenium	mg/kg	1.35 J	1.85	0.73	0.33-3.00	Agree
	Silver	mg/kg	0.509 J	0.853 J	0.60	0.33-3.00	Agree

			Result: E	Result: E11-133-S2		Compare: Primary vs. Dup		
Parameter	Analyte	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation	
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.305 J	0.217 J	1.41	0.33-3.00	Agree	
	2,3,7,8-TCDF	pg/g	0.28 J	0.235 J	1.19	0.33-3.00	Agree	
	OCDD	pg/g	19.7	7.14	2.76	0.25 4.00	Agree	
OC Pesticide	4,4'-DDT	μg/kg	< 10.2	2.99 J	-	-	Agree	
VOC	Acetone	μg/kg	12.3 J	9.08 J	1.35	0.33-3.00	Agree	
	Methylene chloride	μg/kg	1.68 J	1.3 J	1.29	0.33-3.00	Agree	
:	Toluene	μg/kg	< 4.83	1.29 J	~		Agree	
Metal	Arsenic	mg/kg	5.52	4.18	1.32	0.50-2.00	Agree	
	Barium	mg/kg	134	92.8	1.44	0.50-2.00	Agree	
	Cadmium	mg/kg	0.776	0.591	1.31	0.50-2.00	Agree	
Chromium Lead	Chromium	mg/kg	3.98	3.95	1.01	0.50-2.00	Agree	
	Lead	mg/kg	10.2	7.75	1.32	0.50-2.00	Agree	
	Silver	mg/kg	0.35 J	0.153 J	2.29	0.33-3.00	Agree	

Table 10. Continued

Parameter	Analyte	unit	Result: E11-128-S2		Compare: Primary vs. Dup		
Parameter			Primary	Primary Dup	Ratio	Criteria	Evaluation
Dioxin	2,3,7,8-TCDF	pg/g	0.253 J	0.307 J	0.82	0.33-3.00	Agree
	OCDD	pg/g	2 J	1.63 J	1.23	0.33-3.00	Agree
OC Pesticide	4,4'-DDT	μg/kg	1.45 J	1.29 J	1.12	0.33-3.00	Agree
VOC	Acetone	μg/kg	< 41	10.4 J		-	Agree
	Methylene chloride	μg/kg	1.42 J	2.08 J	0.68	0.33-3.00	Agree
Metal	Arsenic	mg/kg	2.59	3.09	0.84	0.50-2.00	Agree
	Barium	mg/kg	96.9	66.2	1.46	0.50-2.00	Agree
	Cadmium	mg/kg	0.861	0.637	1.35	0.50-2.00	Agree
	Chromium	mg/kg	2.93	2.33	1.26	0.50-2.00	Agree
	Lead	mg/kg	15.9	10.5	1.51	0.50-2.00	Agree

Parameter			Result: E	Result: E11-147-S2		Compare: Primary vs. Dup		
Parameter	Analyte	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation	
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	< 2.62	0.277 J	-	-	Agree	
	2,3,4,7,8-PeCDF	pg/g	< 2.62	0.0745 J	-	-	Agree	
	2,3,7,8-TCDF	pg/g	0.211 J	0.158 J	1.34	0.33-3.00	Agree	
	OCDD	pg/g	4.37 J	5.97	0.73	0.33-3.00	Agree	
VOC	Acetone	μg/kg	12.8 J	8.05 J	1.59	0.33-3.00	Agree	
	Methylene chloride	μg/kg	1.72 J	< 19	-	-	Agree	
	Toluene	μg/kg	0.89 J	0.943 J	0.94	0.33-3.00	Agree	
SVOC	Bis (2-Ethylhexyl) phthalate	μg/kg	91.7 J	53 J	1.73	0.33-3.00	Agree	
Metal	Arsenic	mg/kg	1.22	0.829 J	1.47	0.33-3.00	Agree	
	Barium	mg/kg	65.6	61.7	1.06	0.50-2.00	Agree	
	Cadmium	mg/kg	0.699	0.598	1.17	0.50-2.00	Agree	
	Chromium	mg/kg	3.86	3.66	1.05	0.50-2.00	Agree	
	Lead	mg/kg	4.09	3.33	1.23	0.50-2.00	Agree	
	Selenium	mg/kg	< 1.96	0.46 J	_	-	Agree	

			Result: E	Result: E11-123-S3		Compare: Primary vs. Dup		
Parameter	Analyte	unit	Primary	Primary Dup	Ratio	Criteria	Evaluation	
Dioxin	1,2,3,7,8-PeCDF	pg/g	< 2.64	0.13 J	-	-	Agree	
	2,3,7,8-TCDD	pg/g	0.11 J	< 0.506	-	-	Agree	
	2,3,7,8-TCDF	pg/g	0.381 J	0.269 J	1.42	0.33-3.00	Agree	
	OCDD	pg/g	3.14 J	2.98 J	1.05	0.33-3.00	Agree	
VOCs	Acetone	μg/kg	10 J	< 43.5	-	-	Agree	
	Methylene chloride	μg/kg	1.22 J	0.862 J	1,42	0.33-3.00	Agree	
Metals	Arsenic	mg/kg	4.12	2.96	1.39	0.50-2.00	Agree	
	Barium	mg/kg	107	86.1	1.24	0.50-2.00	Agree	
	Cadmium	mg/kg	0.389 J	<0.516	-	-	Agree	
	Chromium	mg/kg	1.83	1.57	1,17	0.50-2.00	Agree	
	Lead .	mg/kg	7.72	4.7	1.64	0.50-2.00	Agree	

Table 11. Comparison of Duplicate Sample Results between Primary and QA Laboratories

Parameter	Analyte	Unit	Result: E	11-120-S2	Compare: Primary vs. QA		
rarameter	Analyte	Oilit	Primary	QA	Ratio	Criteria	Evaluation
Dioxin	1,2,3,4,6,7,8-HpCDD	pg/g	0.315 J	<5.3	-	-	Agree
	1,2,3,4,6,7,8-HpCDF	pg/g	0.27 J	<5.3	-	-	Agree
	1,2,3,4,7,8-HxCDF	pg/g	0.104 J	<5.3	-	*	Agree
	1,2,3,6,7,8-HxCDF	pg/g	0.107 J	<5.3	-	-	Agree
	1,2,3,7,8,9-HxCDF	pg/g	0.182 J	<5.3	-	-	Agree
	1,2,3,7,8-PeCDD	pg/g	0.107 J	<5.3	-	-	Agree
	1,2,3,7,8-PeCDF	pg/g	0.136 J	<5.3	-	-	Agree
	2,3,4,7,8-PeCDF	pg/g	0.0882 J	<5.3	-		Agree
	2,3,7,8-TCDF	pg/g	0.336 J	0.45 J	0.75	0.33-3.00	Agree
	OCDD	pg/g	5.14	8.2 J	0.63	0.33-3.00	Agree
	OCDF	pg/g	0.784 J	<11	-	-	Agree
OC-P	Endosulfan I	μg/kg	0.531 J	<11	-	-	Agree
VOC	2-Butanone	μg/kg	1.96 J	<8.61	-	-	Agree
	Acetone	μg/kg	8.75 J	15.071 J	0.58	0.33-3.00	Agree
	Methylene chloride	μg/kg	1.07 J	<17.2	-	-	Agree
	Toluene	μg/kg	<4.39	3.337 J	=	-	Agree
Metal	Arsenic	mg/kg	0.937 J	<43	-	-	Agree
	Barium	mg/kg	76.3	90	0.85	0.50-2.00	Agree
	Cadmium	mg/kg	<0.499	1.3 J	0.38	0.33-3.00	Agree
	Chromium	mg/kg	2.28	2.3 J	0.99	0.33-3.00	Agree
	Lead	mg/kg	13.4	17	0.79	0.50-2.00	Agree
	Mercury	mg/kg	<0.0204	0.0039 J	₩	-	Agree

Parameter	Analyte	Unit	Result: E	Result: E11-123-S3		Compare: Primary vs. QA		
a ai ainetei	Analyte	OIIIL	Primary	QA	Ratio	Criteria	Evaluation	
Dioxin	2,3,7,8-TCDD	pg/g	0.11 J	<1.1	-	<u>.</u>	Agree	
	2,3,7,8-TCDF	pg/g	0.381 J	0.37 J	1.03	0.33-3.00	Agree	
	OCDD	pg/g	3.14 J	<11	-		Agree	
VOC	Acetone	μg/kg	10 J	15.248 J	0.66	0.33-3.00	Agree	
	Methylene chloride	μg/kg	1.22 J	<19.6	-	-	Agree	
Metal	Arsenic	mg/kg	4.12	<42		-	Agree	
	Barium	mg/kg	107	110	0.97	0.50-2.00	Agree	
	Cadmium	mg/kg	0.389 J	1.4 J	0.28	0.33-3.00	Disagree	
	Chromium	mg/kg	1.83	1.7 J	1.08	0.33-3.00	Agree	
- 1	Lead	mg/kg	7.72	9.3 J	0.83	0.33-3.00	Agree	
	Mercury	mg/kg	<0.0203	0.0036 J	-	~	Agree	
	Silver	mg/kg	0.443 J	<2.1	_	-	Agree	

Table 11. Continued

Parameter	Analyte	Unit	Result: E	Result: E11-136-S2		Compare: Primary vs. QA		
rarannetei	Aldiyte		Primary	QA	Ratio	Criteria	Evaluation	
Dioxin	2,3,4,7,8-PeCDF	pg/g	0.0641	<5.3	-		Agree	
	2,3,7,8-TCDF	pg/g	0.2	0.4	0.50	0.33-3.00	Agree	
	OCDD	pg/g	2.4	6.3	0.38	0.33-3.00	Agree	
VOC	Acetone	μg/kg	<45.1	10.684	-	-	Agree	
	Methylene chloride	μg/kg	1.1	<18.5	-	=	Agree	
Metal	Arsenic	mg/kg	2.24	<42	-	+	Agree	
	Barium	mg/kg	98.5	83	1.19	0.50-2.00	Agree	
	Cadmium	mg/kg	0.453	1.4	0.32	0.50-2.00	Disagree	
	Chromium	mg/kg	3.76	4.1	0.92	0.50-2.00	Agree	
Lead	Lead	mg/kg	7.1	8.5	0.84	0.50-2.00	Agree	
	Mercury	mg/kg	<0.0179	0.004	-	-	Agree	

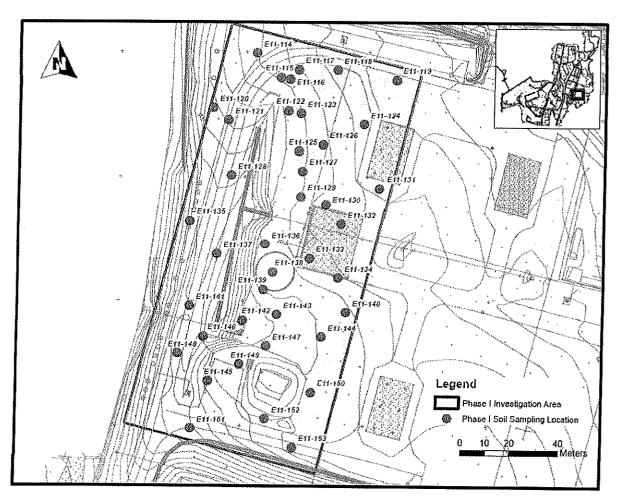


Figure 1. Phase I (Hellpad) Site Borehole Locations

DEPARTMENT OF THE ARMY

U.S. ARMY CORPS OF ENGINEERS, FAR EAST DISTRICT Unit #15546 APO AP 96205-5546

CEPOF-ED-G

SEP 1 9 2011.

MEMORANDUM FOR USFK Assistant Chief of Staff, Engineers, ATTN: Colonel Joseph F. Birchmeier, UNIT #15237, APO AP 96205-5237

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

- 1. Enclosed are final test results for soil samples collected at Phase II and IIb Sites, Cp Carroll. Soil sampling was conducted from 5 Aug to 13 Aug 2011 and a total of 154 samples were collected from 43 boreholes by the Geotechnical and Environmental Engineering Branch, US Army Corps of Engineers, Far East District (FED). The locations of boreholes are shown in Figure 1 and sample information, with sampling depth, is provided in Table 1.
- 2. The samples were tested by SGS North America located in Wilmington, NC, according to US EPA SW-846 Methods. The analytical parameters tested were dioxins and furans, chlorinated herbicides, organochlorine (OC) pesticides, organophosphorus (OP) pesticides, volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and RCRA (Resource Conservation and Recovery Act) metals. Seven (7) samples were tested by the US Army Public Health Command as duplicate analyses for quality assurance purposes. A total of 204 analytes were tested for each soil sample. Table 2 provides test method information for each analytical parameter.

3. Laboratory Findings

Summaries of test results for each analytical parameter are provided in Tables 3 through 9. The highlighted numbers indicate detections of contaminants. The summary tables presented in this memorandum indicate those parameters which were detected above the reporting limit or, at least, estimated to be above its detection limit. The full laboratory reports are provided on compact disk (CD).

a. Dioxin and Furan: Of particular interest for the dioxins and furans is the dioxin commonly associated with Agent Orange - 2,3,7,8-TCDD. Three samples have concentrations of 2,3,7,8-TCDD at levels greater than reporting limits. The locations, concentrations, and sample depths (meters below ground surface) were as follows:

• E11-171-S3	7.44 pg/g	2.0 to 6.5 m
• E11-181-S1	0.57 pg/g	0.0 to 0.5 m
• E11-184-S1	0.502 pg/g	0.0 to 0.5 m

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

The result for E11-184-S1 was EMPC-flagged (estimated maximum possible concentration). This means the result was calculated from a signal which did not meet the mass spectrum quality criteria, but was estimated as the maximum possible concentration under the assumption the signal is only originated from the analyte.

An additional 26 samples had detected concentrations of 2,3,7,8-TCDD that were reported at concentration levels between the detection limit and reporting limits. The concentrations ranged between 0.0683 ~ 0.317 pg/g. These values were flagged "J EMPC" during data validation.

Other dioxin and furan compounds were frequently detected in the collected samples. The most frequently detected dioxins and furans were OCDD (151 of 154 samples); 1,2,3,4,6,7,8-HpCDD (128 of 154 samples); 1,2,3,4,6,7,8-HpCDF (75 of 154 samples); and OCDF (61 of 154 samples). The maximum concentrations, locations, and sample depths (meters below ground surface) of these dioxins and furans were:

• OCDD	1,960 pg/g	E11-195-S3	2.0 to 5.0 m
• 1,2,3,4,6,7,8-HpCDD	76.9 pg/g	E11-170-S2	0.5 to 2.0 m
• 1,2,3,4,6,7,8-HpCDF	19.7 pg/g	E11-178-S1	0.0 to 0.5 m
• OCDF	41.1 pg/g	E11-173-S1	0.0 to 0.5 m

Calculated toxic equivalent (TEQ) values for detected dioxins and furans (EMPC included) ranged from 0.00 to 10.09 pg/g based on 2005 World Health Organization (WHO) evaluation. The maximum TEQ was calculated for sample E11-171-S3 (2.0 to 6.5 m bgs).

- **b.** Chlorinated Herbicide: No chlorinated herbicides were detected in any of the collected samples. Agent Orange-related chemicals in chlorinated herbicides are 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). The reporting limits of Agent Orange constituents ranged from 0.0152 to 0.0193 mg/kg for both of 2,4-D and 2,4,5-T.
- c. OC-Pesticide: Several OC-Pescicides were detected in the collected samples. The OC-Pesticides most frequently detected were 4,4'-DDD (107 out of 154 samples), 4,4'-DDE (103 out of 154 samples), 4,4'-DDT (117 out of 154 samples), gamma-BHC (Lindane) (45 out of 154 samples), dieldrin (30 out of 154 samples), beta-BHC (29 out of 154 samples), alpha-chlordane (28 out of 154 samples), and gamma-chlordane (27 out of 154 samples). The maximum concentration and location for each of these OC-Pesticides are as follows:

•	4,4'-DDD	13 , 500 μg/kg	E11-179-S1	0.0 to 0.5 m
•	4,4'-DDE	2,830 µg/kg	E11-170-S1	0.0 to 0.5 m
•	4,4'-DDT	70,200 µg/kg	E11-179-S1	0.0 to 0.5 m
٠	gamma-BHC (Lindane)	13,900 μg/kg	E11-174-S1	0.3 to 0.8 m
•	dieldrin	336 μg/kg	E11-178-S1	0.0 to 0.5 m
٠	beta-BHC	112 μg/kg	E11-174-S1	0.3 to 0.8 m

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

•	alpha-chlordane	78.7 μg/kg	E11-171-S2	0.5 to 2.0 m
•	gamma-chlordane	93 μg/kg	E11-171-S2	0.5 to 2.0 m

- d. OP-Pesticide: No OP-pesticides were detected in any of the collected samples.
- **c.** VOC: A number of VOCs were detected in the collected samples. The VOCs that were detected most frequently are acetone (76 of 154 samples), tetrachloroethene (63 of 154 samples), 2-butanone (57 of 154 samples), methyl iodide (33 of 154 samples), toluene (32 of 154 samples), methylene chloride (31 of 154 samples), trichloroethene (31 of 154 samples), and cis-1,2-dichloroethene (31 of 154 samples). The maximum concentration and location for each of these VOCs are as follows:

•	Acetone	108 μg/kg	E11-193-S1	0.0 to 0.5 m
٠	tetrachloroethene	32,300 µg/kg	E11-179-S1	0.0 to 0.5 m
٠	2-butanone	28 μg/kg	E11-180-S1	0.0 to 0.5 m
	methyl iodide	7.92 µg/kg	E11-180-S1	0.0 to 0.5 m
•	toluene	21,300 μg/kg	E11-180-S4	5.0 to 10.0 m
	methylene chloride	38.2 μg/kg	E11-164-S4	5.0 to 11.0 m
٠	trichloroethene	587 μg/kg	E11-176-S4	5.0 to 10.0 m
•	cis-1,2-dichloroethene	558 μg/kg	E11-170-S3	2.0 to 5.0 m

- **f. SVOC**: The most common SVOC analyte detected in Phase II and IIb samples was bis(2-ethylhexyl)phthalate. It was detected in 35 of the 154 samples, but 33 of those detected values are estimated and J-flagged because they were less than the reporting limit. Forty-four (44) other SVOCs were detected in the soil samples. Theses detections were often in only one or two samples at levels less than the reporting limit. Indeed, one sample (E11-160 at a depth of 2 to 3.4 meters below ground surface) accounts for 44 of the detected SVOCs found in the soil samples collected during Phase II and IIb.
- g. Metals: Arsenic, barium, chromium, and lead were detected in all 154 samples. Mercury, selenium, and cadmium were also detected in a significant number of samples collected during Phase II and IIb. Silver was only detected in four of the 154 collected samples. The maximum concentration and location for each of the most frequently detected metals are as follows:

•	Arsenic	308 mg/kg	E11-155-S1	0.0 to 0.5 m
•	Barium	143 mg/kg	E11-191-S3	2.0 to 5.0 m
•	Chromium	19.6 mg/kg	E11-173-S2	0.5 to 2.0 m
•	Lead	34.7 mg/kg	E11-190-S3	2.0 to 5.0 m

- 4. Quality Control and Quality Assurance
 - a. Data Validation

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

Chemical data validation was conducted by Laboratory Data Consultants, Inc. located in Carlsbad, CA. The data was evaluated in accordance with US Department of Defense Quality System Manual (DoD QSM) for Environmental Laboratories, National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins and Chlorinated Dibenzo-furans Data Review (OSWER 9240.1-51), National Functional Guidelines for Superfund Organic Methods Data Review (OSWER 9240.1-48), and National Functional Guidelines for Inorganic Superfund Data Review (OSWER 9240.1-51). Full data validation reports are included on compact disk (CD).

- (1) Sample Preservation: All samples must be refrigerated at $4 \pm 2^{\circ}$ C. The chain-of-custodies were reviewed for temperature upon time of receipt. In one sample delivery group (SDG 31102153) out of a total of six, the temperature blanks were reported at 11 °C, 9 °C, 8.1 °C upon receipt by the laboratory but cooler temperatures in this SDG were reported at 2 °C, 3 °C, 4.4 °C upon receipt by the laboratory. The temperature discrepancies in temperature blanks should not affect the results of analyses.
- (2) Holding Times: The maximum allowable holding time between sample collection and sample preparation or sample preparation and sample analysis depends on the analyte. All soil samples met holding time criteria; the 14 day analysis holding time for VOC, the 28 day analysis holding time for mercury, the 180 day analysis holding time for all other metals, the 30 day extraction and 45 day analysis holding time for dioxins/furans, the 14-day extraction and 40 day analysis holding time for SVOC, pesticides, and herbicides. There was no holding time discrepancy.
- (3) Quality Control Samples: The validation report evaluated the performance of QC samples such as blanks, laboratory control samples, matrix spike/matrix spike duplicates, and surrogate spikes. Method blanks were performed at the required frequencies. VOCs, OC-pesticides, metals, and dioxin/furans were detected in several method blanks. Method blank contamination resulted in flagging of field sample results as "not detected" depending on level of detection in these sample groups. Thirteen (13) trip blanks were collected and analyzed for VOC to identify possible contamination originating from storage, shipping, site conditions, and laboratory handling. Several VOCs were detected in the trip blanks at low levels. As a result of trip blank contamination, field samples were qualified as "not detected" depending on level of detection in corresponding sample groups.

Surrogates were added to all samples and blanks as required. The laboratory control samples, and matrix spike/matrix spike duplicates were performed at the required frequencies. All recoveries of surrogates, laboratory control samples, and matrix spike/matrix spike duplicates were within acceptance limits with a few exceptions. Relative percent recoveries between matrix spike and matrix spike duplicates were within acceptance limits with several exceptions. At the base of quality control issues of exceeding acceptance limits, the validation report includes identification of reported results which need to be qualified (flagged) and the reasons for the flags. During data validation, a total of fifteen data were qualified as rejected due to severely

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

low recoveries in matrix spike/matrix spike duplicates. The rejected data were identified with the flag "R"; 3 results in chlorinated herbicides, 3 results in OC-pesticides, 7 results in OP-pesticides, and 2 results in VOCs.

(4) Summary: Laboratory data packages were evaluated for preservation, holding times, blanks, surrogate spikes, laboratory control samples, and matrix spike/matrix spike duplicates. The evaluation for these parameters is considered to be a "Level 2a" Data Validation. The difference between Level 2a and 2b is that 2a validation does not review calibrations, while 2b does. The overall data validation showed that the data is generally of acceptable quality with some results for specific analytes being rejected or qualified as estimated/not detected.

b. Duplicate Sample Results

Field samples were collected as duplicates and used for performance evaluation and QA purposes. Duplicate sample results were evaluated based on EM 200-1-6 titled Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste Projects. The document identifies the criteria for comparing field QC and QA sample data. Based on those criteria, the concentration ratio between primary and duplicate samples should be within designated limits to be evaluated as "agreement" with each other. The acceptance criteria are as follows:

 $0.33 \le \text{Ratio} \le 3.00$ when one result is less than reporting limit

 $0.50 \le \text{Ratio} \le 2.00 \text{ for metal}$

 $0.20 \le \text{Ratio} \le 5.00 \text{ for VOC}$

 $0.25 \le \text{Ratio} \le 4.00$ for Dioxin, Herbicide, Pesticide, and SVOC

- (1) Duplicate Samples in Primary Laboratory: Seventeen (17) sets of duplicate samples were provided to the primary laboratory for blind duplicate analyses (primary and primary dup). Table 10 shows the results of samples to be compared and outcome of evaluation determining whether the ratio is within "agreement" criteria or not. The table lists the analytes having at least one quantified (detected) result. Other analytes which are not included in the table had results "not detected" at both of the primary and primary dup samples, and they are considered as in "agreement" each other. Out of 17 sets of samples and 3468 analytes (204 analytes/sample), 14 analytes showed "disagreement" between duplicate samples analyzed in the primary laboratory.
- (2) Duplicate Samples between Primary and QA laboratories: Seven (7) sets of duplicate samples were analyzed and compared between primary and QA laboratories. Comparison of the results and performance evaluation are provided in Table 11. The analytes that were not detected in both samples were omitted in this table. Out of 7 sets of samples and 1428 analytes, 7 analytes showed "disagreement" as a result of the comparison of data between two different laboratories.
- (3) The possible reason for the duplicate disagreement is considered to be due to non-homogeneity of the soil samples. Soil samples are homogenized when they are collected in two

SUBJECT: Final Test Results of Phase II and IIb Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-62)

different containers at the site and also the laboratories homogenize soil samples prior to analyses. But there can be "hot spots" in a container that go into the sample aliquot and cause disparity between the results. Reported results having values between the detection limits and reporting limits (J-flagged) are estimated amount and will have a much higher degree of variability and uncertainty in measurement. Many of the disagreements involved data with J-flags: disagreement on 10 of 14 duplicate samples between primary and primary dup, disagreement on 3 of 7 in duplicate samples between primary and QA laboratories. The overall data comparison showed pretty good performance and assured the quality of analyses.

5. The POC for this matter is

bl

Encl

Chief, Geotechnical and Environmental Engineering Branch

Tables and Figures

- Final Test Results of Phase II & IIb Soil Samples, Cp Carroll -

Table 1.	Soil Sample Information for Phase II and IIb
Table 2.	Soil Test Methods Used in Phase II and IIb
Table 3.	Summary of Dioxin/Furan Results for Phase II & IIb Soil Samples
Table 4.	Summary of Chlorinated Herbicide Results for Phase II & IIb Soil Samples
Table 5.	Summary of Organochlorine Pesticide Results for Phase II & IIb Soil Samples
Table 6.	Summary of Organophosphorus Pesticide Results for Phase II & IIb Soil Samples
Table 7.	Summary of Volatile Organic Compound Results for Phase II & IIb Soil Samples
Table 8.	Summary of Semivolatile Organic Compound Results for Phase II & IIb Soil Samples
Table 9.	Summary of Metal Results for Phase II & IIb Soil Samples
Table 10.	Comparison of Duplicate Sample Results in Primary Laboratory
Table 11.	Comparison of Duplicate Sample Results between Primary and QA Laboratories

Figure 1. Borehole Locations at Phase II and IIb Sites

Table 1. Soil Sample Information for Phase II and IIb

Borehole	Sample	Depth (m)	Borehole	Sample	Depth (m)	Borehole	Sample	Depth (m)	Borehole	Sample	Donath (ca)	Danakala	Sample	
	ID		Poster a serior de la	ID			ID	Debut (tti)	buleriole	ID	Depth (m)	Borehole	ID	Depth (m)
E11-154	S1	0.0-0.5	E11-164	<u>S1</u>	0.0-0.5	E11-173	S4	5.0-10.0	E11-181	S3	2.0-5.0	E11-189	S3	2.0-5.0
E11-154	S2	0.5-2.3	E11-164	S2	0.5-2.0	E11-174	S1	0.3-0.8	E11-182	S1	0.0-0.5	E11-189	S4	5.0-10.0
E11-155	S1	0.0-0.5	E11-164	S3	2.0-5.0	E11-174	S2	0.8-2.3	E11-182	S2	0.5-2.0	E11-190	S1	0.0-0.5
E11-155	S2	0.5-1.8	E11-164	S4	5.0-11.0	E11-174	S3	2.3-5.3	E11-182	S3	2.0-5.0	E11-190	S2	0.5-2.0
E11-156	S1	0.0-0.5	E11-165	S1	0.0-0.5	E11-174	S4	5.3-8.9	E11-182	S4	5.0-10.0	E11-190	S3	2.0-5.0
E11-156	S2	0.5-2.0	E11-165	S2	0.5-2.0	E11-175	S1	0.0-0.5	E11-183	S1	0.0-0.5	E11-190	S4	5.0-10.0
E11-156	S3	2.0-6.45	E11-165	S3	2.0-5.0	E11-175	S2	0.5-2.0	E11-183	\$2	0.5-2.0	E11-191	S1	0.0-0.5
E11-157	S1	0.0-0.5	E11-165	S4	5.0-10.0	E11-175	S3	2.0-5.0	E11-183	S3	2.0-5.0	E11-191	S2	0.5-2.0
E11-157	S2	0.5-2.0	E11-166	S1	0.3-0.8	E11-175	S4	5.0-7.25	E11-183	S4	5.0-10.0	E11-191	S3	2.0-5.0
E11-157	S3	2.0-4.5	E11-166	S2	0.8-2.7	E11-176	S1	0.0-0.5	£11-184	S1	0.0-0.5	E11-191	S4	5.0-7.7
E11-158	S1	0.0-0.5	E11-167	S1	0.0-0.5	E11-176	S2	0.5-2.0	E11-184	S2	0.5-2.0	E11-192	S1	0.0-0.5
E11-158	S2	0.5-2.0	E11-167	S2	0.5-2.0	E11-176	S3	2.0-5.0	E11-184	S3	2.0-5.0	E11-192	S2	0.5-2.0
E11-158	S3	2.0-5.0	E11-167	S 3	2.0-5.5	E11-176	S4	5.0-10.0	E11-184	S4	5.0-8.75	E11-192	S3	2.0-5.0
E11-158	S4	5.0-8.5	E11-168	S1	0.0-0.5	E11-177	S1	0.4-0.9	E11-185	S1	0.0-0.5	E11-192	S4	5.0-10.0
E11-159	S1 [0.0-0.5	E11-168	S2	0.5-3.0	E11-177	S2	0.9-2.4	E11-185	S2	0.5-2.0	E11-193	S1	0.0-0.5
E11-159	S2	0.5-2.0	E11-169	S1	0.0-0.5	E11-177	S3	2.4-5.4	E11-185	S3	2.0-5.0	E11-193	S2	0.5-2.0
E11-159	S 3	2.0-5.0	E11-169	S2	0.5-1.8	E11-177	S4	5.4-9.0	E11-185	S4	5.0-8.8	E11-193	S3	2.0-5.0
E11-159	S4	5.0-10.0	E11-170	S1	0.0-0.5	E11-178	S1	0.0-0.5	E11-186	S1	0.0-0.5	E11-193	S4	5.0-8.6
E11-160	S1	0.0-0.5	E11-170	S2	0.5-2.0	E11-178	S2	0.5-2.0	E11-186	S2	0.5-2.0	E11-194	S1	0.3-0.8
E11-160	S2	0.5-2.0	E11-170	S3	2.0-5.0	E11-178	S3	2.0-5.0	E11-186	S3	2.0-5.0	E11-194	S2	0.8-2.0
E11-160	S3	2.0-3.4	E11-170	S4	5.0-7.5	E11-178	S4	5.0-10.0	E11-186	S4	5.0-8.0	E11-194	S3	2.0-5.0
E11-161	S1	0.0-0.5	E11-171	S1 .	0.0-0.5	E11-179	S1	0.0-0.5	E11-187	S1	0,0-0,5	E11-194	S4	5 0-10.0
E11-161	S2	0.5-2.0	E11-171	S2	0.5-2.0	E11-179	S2	0.5-2.0	E11-187	S2	0.5-2.0	E11-195	S1	0.3-0.8
E11-161	S3	2.0-5.0	E11-171	S3	2.0-6.5	E11-179	S3	2.0-5.0	E11-187	S3	2.0-5.0	E11-195	S2	0.8-2.0
E11-161	S4	5.0-7.9	E11-172	S1	0.0-0.5	E11-179	S4	5.0-10.0	E11-187	S4	5.0-10.0	E11-195	S3	2.0-5.0
E11-162	S1	0.0-0.5	E11-172	S2	0.5-2.0	E11-180	S1	0.0-0.5	E11-188	S1	0.0-0.5	E11-195	S4	5.0-10.0
E11-162	S2	0.5-1.52	E11-172	S3	2.0-5.0	E11-180	S2	0.5-2.0	E11-188	S2	0.5-2.0	E11-196	S1	0.3-0.8
E11-163	S1	0.0-0.5	E11-172	S4	5.0-8.7	E11-180	S3	2.0-5.0	E11-188	S3	2.0-5.0	E11-196	S2	0.8-2.3
E11-163	S2	0.5-2.0	E11-173	S1]	0.0-0.5	E11-180	S4	5.0-10.0	E11-188	S4	5.0-9.6	E11-196	S3	2.3-5.3
E11-163	S3	2.0-5.0	E11-173	S2	0.5-2.0	E11-181	S1	0.0-0.5	E11-189	S1	0.0-0.5	E11-196	S4	5.3-10.3
E11-163	S4	5.0-10.0	⊵11-173	S3 į	20-5.0	E11-181	S2	0.5-2.0	E11-189	S2	0.5 2.0	i		

Table 2. Soil Test Methods Used in Phase II and IIb

Parameter	Number of Analytes	Method: Preparation Analysis	Description
		3540C	Soxhlet Extraction
Dioxins and furans	17	8290A	High-resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)
Chlorinated	5	3541	Automated Soxhlet Extraction
herbicides	5	8151A	GC-MS Using Methylation Derivatization
OC nesticides	21	3550C	Ultrasonic Extraction
OC pesticides	21	8270D	GC/MS
OP pesticides	27	3546	Microwave Extraction
or pesticides	2'	8141B	GC-Flame Photometric Detector
VOCs	67	5035	Closed System Purge and Trap
VOC3	07	8260B	GC/MS
SVOCs	59	3541	Automated Soxhlet Extraction
5VOC3		8270D	GC/MS
		3050B	Acid Digestion
RCRA Metals (total)	8	6010C	Inductively Coupled Plasma-Atomic Emission Spectrometry
	j	7471B mercury	Cold Vapor Technique

Table 3. Summary of Dioxin/Furan Results for Phase II and IIb Soil Samples

1 2,3,7,8-TCDD pg/g ND ND ND ND ND 0.085/JEMPC ND ND 12 2 1,2,3,7,8-PeCDD pg/g 0.154/J ND ND 0.109/JEMPC ND ND	\$2 \$3 *2.0 *4.5 ND ND ND ND ND ND ND ND ND ND
1 2,3,7,8-TCDD pg/g ND ND	ND ND ND ND ND ND ND ND ND ND
2 1,2,3,7,8-PeCDD pg/g 0.1541J ND ND 0.309 JEMPC ND ND ND ND I 3 1,2,3,4,7,8-HxCDD pg/g 0.247.) ND ND 0.087. ND ND 0.175 JEMPC ND I 4 1,2,3,6,7,8-HxCDD pg/g 0.375 JEMPC ND ND 0.12 JEMPC ND ND ND ND ND ND	ND ND ND ND NO ND
3 1,2,3,4,7,8-HxCDD pg/g 0,247 J ND ND 0,087 J ND ND 0,175 JEMPC ND 1 1 1,2,3,6,7,8-HxCDD pg/g 0,375 JEMPC ND ND 0,32 JEMPC ND	ND ND ND
4 1,2,3,6,7,8-HxCDD pg/g 0.375 JEMPC ND ND 0.32 JEMPC ND ND ND ND ND ND	ND ND
5 12 3 7 8 9-HVCDD pg/g 03EA ND ND ND GAAC TARGO ND GAAC ND	ND ND
5 1,2,3,7,8,9-HxCOD pg/g 0.354 ND ND 0.0144 EMPC ND 0.222 1 0.433 ND 1	
6 1,2,3,4,6,7,8-HpCDD pg/g 1.04 / EMPC 0.429 1 0.877 J 0.945 / EMPC 0.529 J 3.27 12.8 0.791 / 1	1,21 J EMPC 0.3 J EN
7 OCDD pg/g 242 16.3 14.2 36.4 19.3 32.8 523 48.7 35	39.7 13.4
8 2,3,7,8-TCDF pg/g ND	ND ND
9 1,2,3,7,8-PeCDF pg/g 0.226.) ND 0.157.) 0.141.) ND 0.277.JEMPC ND ND ND	ND 0.042 JEN
10 2,3,4,7,8-PeCDF pg/g 0.201 JEMPC ND 0.233 J 0.148 JEMPC ND 0.318 JEMPC ND ND ND N	ND ND
11 1,2,3,4,7,8-HxCDF pg/g 0.1891 ND ND 0.093 JEMPC ND 0.497 JEMPC ND ND ND	ND ND
12 1,2,3,6,7,8-HxCDF pg/g 0.189 JEMPC ND 0.118 JEMPC 0.135 J ND 0.472 J ND ND ND N	ND ND
13 1,2,3,7,8,9-HxCDF pg/g 0.329 JEMPC ND 0.347 J 0.316 JEMPC ND NO ND ND ND ND	ND ND
14 2,3,4,6,7,8-HxCDF pg/g 0.195 JEMPC ND 0.147 JEMPC 0.138 JEMPC ND 0.32 J ND ND N	ND ND
15 1,2,3,4,6,7,8-HpCDF pg/g ND 0.0961 ND 0.2391 ND 2.251 ND ND N	ND ND
16 1,2,3,4,7,8,9-HpCDF pg/g ND ND ND ND ND .335; JEMPC ND ND N	ND ND
17 OCDF	ND ND
WHO-2005 TEO (ND=0), pg/g 0.4065 0.0101 0.1290 0.2619 0.0111 0.4087 0.3454 0.0225 0.	0.0240

0.1290 0.2619 0.0111 0.4087 0.3454 0.0225 0.0240 0.0083

NOTES:

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

Table 3. Continued

HA	вида в применя в Во	rehole →	E11-158	E11-158	E11-158	E11-158	E11-159	E11-159	E11-159	E11-159	E11-160	E11-160
No	San	nple iD →	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2
	Analyte↓ De	pth, m →	0.010.5	^2.0	~5.0	~8.5	0.0~0.5	~2.0	~5.0	*10.0	0.0~0.5	"2.0
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	ND	ND	ND	0.168 J EMPC	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	0.1413	ND	ND	ND	ND	МĎ	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	0.264 J	ND	ND	ND	0.132 J EMPC	0.171 JEMPC	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.88 J	2.06 J	4,26	2,02 J	0.568 J	0.524.)	1.65 J	15.6	0.635 J	0,373 J EMPC
7	OCDD	pg/g	19.1	37	118	49.2	11.7	15.4	42.3	616	20.2	13.7
8	2,3,7,8-TCDF	pg/g	NĐ	ND	ND	ND	NĐ	ND	ND	NO	0.23 J	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	0.107 J	0.068)	ND	ND	0.056 J EMPC	NĐ	ND	0.082 J EMPC	ND
10	2,3,4,7,8-PeCDF	pg/g	0.126 J EMPC	0.131 J	0.082 J EMPC	ND	ND	0.076 J	0,082 J	ND	0,088 J EMPC	ND
11	1,2,3,4,7,8-HxCDF	pg/g	0.083 J	0,162 J	0.08 J	ND	ND	ND	NĐ	ND	0.071 J	ND
12	1,2,3,6,7,8-HxCDF	pg/g	0.092 J EMPC	0.182 J	D.08 J	ND	NO	0.069 J EMPC	ND	ND	0.071 J	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	0.107 J	ND	ND	ND	ND	ND	ND	0.079 J EMPC	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	0.093 J	ND	ND	ND	0.042 J EMPC	ND	ND	0.067.J	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.235 J	0.344 J	0.175 J	ND	0.177 JEMPC	0.151 J	0.113 J	NĐ	0.167 J	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ΝĐ	ОИ	ИÐ	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	0.611 J	0.318 J	ND	ND	ND	ND	ND	0.623 J	ND
	WHO-2005 TEQ (ND=0), pg,	/g	0.0722	0.1322	0.1629	0.0350	0.0110	0.0471	0.2361	0.3579	0.0949	0.0078

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

30.000 30.000	Bor	ehole →	E11-160	E11-161	E11-161	E11-161	E11-161	E11-162	E11-162	E11-163	E11-163	E11-163
No	Sam	ple ID →	S3	S1	S2	\$3	S4	S1	S2	S1	S2	S3
	Analyte↓ Dep	th, m →	~3.4	0.0~0.5	~2.0	~5.0	~7.9	0.0*0.5	~1.52	0.0~0.5	~2.0	~5.0
1	2,3,7,8-TCDD p	pg/g	ND	МÐ	ND	ND	0.135 J EMPC	ND	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	0.182 J	0.145 J EMPC	ND	ND	ND	ND	DM
3	1,2,3,4,7,8-HxCDD p	pg/g	ND	ND	ND	0.078 J EMPC	ND	ND	ND	NĐ	ND	ND
4	1,2,3,6,7,8-HxCDD r	pg/g	ND	ND	ND	0.157 J EMPC	NÐ	ND	NĐ	ND	ND	ND
5	1,2,3,7,8,9-HxCDD r	pg/g	ND	NĐ	ND	0.251 1	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD p	og/g	0,38 1 EMPC	0.525 J	0,76 J	1.94 J	1.62 J	2.3 J	2.24 J	ND	ND	ND
7	OCDD p	og/g	19,5	14.9	29	63.9	52.8	81.5	89.7	18.6	20,8	16.5
8	2,3,7,8-TCDF p	og/g	ND	ND	ND	ND	ВN	ND	ND	ND	ND	ND
9	1,2,3,7,8-PeCDF p	og/g	ND	ND	ND	ND	NĐ	В	NĐ	NĐ	ND	0.155 J
10	2,3,4,7,8-PeCDF p	og/g	0,081 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	1,2,3,4,7,8-HxCDF p	og/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF p	og/g	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF p	g/g	ND	ND	NĐ	0.152 J EMPC	0.071 /	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF p	ıg/g	ND	ND	ND	ND	0.075 J EMPC	NĐ	NĐ	ΝĐ	ND	ND
15	1,2,3,4,6,7,8-HpCDF p	og/g	0.113 J	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
16	1,2,3,4,7,8,9-HpCDF p	g/g	ND	0.221 J	ND	ND	ND .	ND	ND	ND	ND	ND
17	OCDF p	og/g	ND	0.918 J	ND	0,605 J	NĐ	ND	ND	ND	ND	ND
	WHO-2005 TEQ (ND=0), pg/	g .	0.0332	0.0122	0.0163	0.2846	0.3266	0.0475	0.0493	0.0056	0.0062	0.0096

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

Table 3. Continued

		Borehole 🔿	E11-163	E11-164	E11-164	E11-164	E11-164	E11-165	E11-165	E11-165	E11-165	E11-166
No		Sample ID →		S1	S2	S3	S4	S1	. S2	S3	S4	S1
	Analyte↓	Depth, m →	~10.0	0.0~0.5	~2.0	~5.0	~11.0	0.0*0.5	~2.0	~5.0	**10.0	0.3~0.8
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	0,108 J EMPC	ND	0.077 J EMPC	ND	ND	ND	0,188 J EMPC
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	0,192 J EMPC	NĐ	ND	ND	ND	NĐ	ND ND	0.112 J
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	МĐ	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	0.313 J EMPC	ND	NĐ	ND	ND	ND ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	0.375 J EMPC	0.093 J EMPC	ND	ND	ND	NĐ	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	ND	ND	0.811 J EMPC	0.422 J	ND	0.996 J	0.892 J	1.79 1 EMPC	1.111	0.906 J
7	OCDD	pg/g	7,99 EMPC	22.5	34.4	19.1	20,1	24	29.1	40.4	51.5	22.7
8	2,3,7,8-TCDF	pg/g	ND	ND	NĐ	ND	ND	ND	0.3641	ND	0.333 J EMPC	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	0,264 J	0.076 J	ND	NÐ	0.113 J	ND	ND	0,129 J EMPC
10	2,3,4,7,8-PeCDF	pg/g	ND	ND	0.218 J EMPC	0.087 J EMPC	ND	ND	0.159 J EMPC	ND	ND	ND J EMPC
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	0.106 J EMPC	ND	ND	ND	0.141 J EMPC
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	NĐ	0,087 J EMPC	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	NO	ND	ND	ND	ND	ND	ND	0.108 J
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	0.093 J	ND	ND	ND	0.141]
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	NĐ	ND	ND	NĐ	0.505 J EMPC	0.253 J EMPC	0.428 J	0.288 J EMPC	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	ND	ND	0.474 J	ND	1.02 J	ND	0.429 J EMPC
	WHO-2005 TEQ (ND≈0),	pg/g	0.0024	0.0068	0.3526	0.1556	0.0060	0.1277	0.1077	0.0346	0.0627	0.3589

 $\mbox{\it J};\;$ Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

Table 3. Continued

	Вог	rehole >	E11-166	E11-167	E11-167	E11-167	E11-168	E11-168	E11-169	E11-169	E11-170	E11-170
No	Sam	ple ID 🔿	S2	S1	S2	S3	S1	S2	S1	S2	S1	S2
e primisis je	Analyte↓ Der	oth, m 🤿	~2.7	0.0~0.5	~2.0	°5.5	0.0^0.5	~3.0	0.010.5	~1.8	0.0^0.5	2.0
1	2,3,7,8-TCDD	pg/g	0.251 J EMPC	ND	ND	МĎ	ND	ND	ND	ND	0.156 J EMPC	0.155 J EMPC
2.	1,2,3,7,8-PeCDD	pg/g	ND	ND	D.116 JEMPC	ND	ND	ND	0,201 J	ND	0.269 JEMPC	0.451)
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	NÐ	0.682 J EMPC	ND	ND	ND	0.484)	0.996 I
4	1,2,3,6,7,8-HxCDD	pg/g	ND	NĐ	GN	ND	ND	NĐ	ND	ND	1.19 /	2.97
5	1,2,3,7,8,9-HxCDD	pg/g	ND	0.143 J	ND	ND	ND	ND	ND	ND	0.996 J	2.35 J
6	1,2,3,4,6,7,8-HpCDD	pg/g	ND	4.11 EMPC	3.74	1.14 J EMPC	13	ND	4,66	1,54 J	34.5	76.9
7	OCDD J	pg/g	10.2	80.7	70.1	54.5	132	9.55 EMPC	66	57.6	306	639
8	2,3,7,8-TCDF ;	og/g	ND	2.26	ND	ND	ND	ND	ND	ND	21.3	16.4
9	1,2,3,7,8-PeCDF	og/g	ND	0.375 J EMPC	0.243 J EMPC	ND	0.525 J EMPC	ND	NĐ	ND	2.67	2.07.1
10	2,3,4,7,8-PeCDF s	og/g	ND	0.254 J EMPC	0.152 J	ND	0.42 J	ND	ND	ND	1.61 J	1.41 J
11	1,2,3,4,7,8-HxCDF	og/g	ND	0.356 J EMPC	0.297 J	ND	0.882 J EMPC	ND	0.481 J	ND	1.45 1	1.51 J
12	1,2,3,6,7,8-HxCDF p	og/g	ND	ND	0.205 J EMPC	ND	ND	ND	0.397 J	ND	0.544 J EMPC	0.895 J
13	1,2,3,7,8,9-HxCDF p	og/g	ND	ND	ND	ND	ND	ND	ND	ND	0.324 J	0.328 J EMPC
14	2,3,4,6,7,8-HxCDF p	g/g	ND	ND	GN	ND	0.397 J	ND	0.371 J	ND	0.521 J	0.899 J
15	1,2,3,4,6,7,8-HpCDF p	g/g	ND	1.67 J EMPC	1.58 J	ND	3.37	ND	2.4	ND	7.6	15.1
16	1,2,3,4,7,8,9-HpCDF p	g/g	ND	ND	ND	ND	ND	ND	0.45 J	ND	0.52 J EMPC	0.917 J
17	OCDF F	g/g	ND	3,49 J	2.77 J	0.409 J EMPC	7.43	ND	5,15	ND	14.5	28,5
	WHO-2005 TEQ (ND=0), pg/	g Ì	0.2541	0.4464	0.2942	0.0279	0.5434	0.0029	0.4223	0.0327	4.1924	4.8553

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

Mirito	Boreho	le → E11-170	E11-170	E11-171	E11-171	E11-171	E11-172	E11-172	E11-172	E11-172	E11-173
No	Sample	ID → S3	S4	S1	S2	::::::S3	S1	S2	S3	S4	S1
	Analyte↓ Depth,	m → "5.0	·•7.5	0.0~0.5	-2.0	6.5	0.0~0.5	~2.0	~5.0	~8.7	0.0~0.5
1	2,3,7,8-TCDD pg/	g ND	ND	ND	ND	7.44	ND	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD pg/	g ND	ND	ND	ND	0,503 J EMPC	ND	ND	ND	ND	0.618 J
3	1,2,3,4,7,8-HxCDD pg/	g ND	ND	0.36 J EMPC	0.322 J	0,685.J	ND	NĐ	ND	ND	0.639 J
4	1,2,3,6,7,8-HxCDD pg/	g ND	ND	0.927 J	ND	2.52 J	ND	ND	ND	ND	2.2 J
5	1,2,3,7,8,9-HxCDD pg/	g ND	ND	0.567 J	ND	1.66 J	ND	ND	ND	ND	1,3 J
6	1,2,3,4,6,7,8-HpCDD pg/	g 0.708 J	1.68 J	26.5	8.17	55.5	6.94	ND	0.633 J EMPC	ND	49.1
7	OCDD pg/i	35.9	82,9	247	81,5	576	101	22.4	20.2	34.4	387
8	2,3,7,8-TCDF pg/s	ND ND	0.359 J EMPC	ND	ND	ND	1.14 EMPC	ND	ND	ND	3.09
9	1,2,3,7,8-PeCDF pg/s	3 ND	ND	ND	ND	0.379 J	NĐ	ND	ND	ND	1.08 J
10	2,3,4,7,8-PeCDF pg/s	0.063 J	ND	0,45 J EMPC	0.294 J EMPC	0.904 J	ND	ND	NĐ	ND	1.18.1
11	1,2,3,4,7,8-HxCDF pg/s	g ND	ND	0.807 J	0.232 J	1.72 J	ND	ND	NĐ	ND	1.51)
12	1,2,3,6,7,8-HxCDF pg/g	, ND	ND	0.539 J EMPC	ND	1.07 J	ND	ND	ND	ND	1,19 J
13	1,2,3,7,8,9-HxCDF pg/g	ND	МD	0,258 J	ND	0.448 J	ND	ND	ND	ND	0.403 J
14	2,3,4,6,7,8-HxCDF pg/s	, ND	ND	0.499 J	ND	1.17 J	ND	ND	ND	ND	1.2 1
15	1,2,3,4,6,7,8-HpCDF pg/g	0.086 J EMPC	ND	7,21	1.55 J	18.4	1.73 J	ND	ND	NĐ	14.3
16	1,2,3,4,7,8,9-HpCDF pg/g	ND	ND	NÐ	NĐ	1.16 J	ND	ND	ND	ND	1.02 J
17	OCDF pg/g	ND	ND	16.3	2,91 J	36,8	5.73 EMPC	ND	ND	ND	41.1
	WHO-2005 TEQ (ND≈0), pg/g	0.0375	0.0776	0.9468	0.2661	10.0873	0.2327	0.0067	0.0124	0.0103	2.9302

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

Table 3. Continued

	Borehole → Sample ID →		E11-173	E11-173	E11-173	E11-174	E11-174	E11-174	E11-174	E11-175	E11-175	E11-175
No			52	S3	54	S1	S2	S3	54	S1	S2	53
	Analyte↓	Depth, m →	~2.0	~5.0	~10.0	0.3~0.8	~2.3	2.3~5.3	~8.9	0.0~0.5	~2.0	~5.0
1	2,3,7,8-TCDD	pg/g	ND	МĐ	ND	0.312 JEMPC	ND	ND	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	0.143 J	ND	ND	ND	ND	ND	ND	0,395 JEMPC	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	NĐ	ND	ND	0.301 J EMPC	ND	ND	ND	0.46 J	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	1.05 J EMPC	0.275 J	ND	ND	1.41 J	ND	0.068 1 EMPC
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	0.608 J EMPC	0,163 J EMPC	ND	0.079 J EMPC	0.85 J	ND	0.116 J
6	1,2,3,4,6,7,8-HpCDD	pg/g	2.4 J	-1.11 J	0,483 J EMPC	23.8	6.15	ND	0.751 J EMPC	21,6	1.54 J	1.17 J EMPC
7	OCDD	pg/g	106	28,2	9.68	240	72.6	4,09 J	17.9	134	35.5	20,8
8	2,3,7,8-TCDF	pg/g	0.271 J	0.28 J	0.289 J EMPC	ND	ND	NO	ND	0.607	ND	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	0.894 J	ND	0,07 J EMPC
10	2,3,4,7,8-PeCDF	pg/g	0.264 J	0.156 J	ND	ND	ND	ND	0.088 J EMPC	1.3)	ND	0.104 J
11	1,2,3,4,7,8-HxCDF	pg/g	0.198 J	0.139 J EMPC	ND	0,535 J EMPC	ND	ND	ND	1.96 / EMPC	NĐ	0.076 J EMPC
12	1,2,3,6,7,8-HxCDF	pg/g	0,211 J	0.128 J EMPC	ND	0.457.1	ND	NO	ND	1.17 1	ND	0,091 J
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	0.617 J	NĐ	NĎ
14	2,3,4,6,7,8-HxCDF	pg/g	0.137 J	ND	ND	0.477 J	В	ND	ND	1.12 JEMPC	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.504 J EMPC	0.323 J	ND	7,1	1.82 J	ND	ND	9,42	ND :	0.753 J EMPC
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	0.486 J EMPC	ND	ND	ND	NÐ	ND	ND
17	OCDF	pg/g	1.23 J	ND	NĐ	13.3	3,61 J	NĐ	ΝĐ	6.76	ND	0.87 J EMPC
	WHO-2005 TEQ (ND=0),	0.3651	0.1243	0.0366	1.0447	0.1464	0.0012	0.0471	1.9836	0.0261	0.0941	

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

Table 3. Continued

	3.000 (10.000 (10.00 B	orehole →	E11-175	E11-176	E11-176	E11-176	E11-176	E11-177	E11-177	E11-177	E11-177	E11-178
No	Sa Sa	mple ID →	S4	51	S2	S3	S4	51	S2	S3	54	S1
	Analyte↓ D	epth, m →	7.25	0.010.5	2.0	**5.0	··10.0	0.4~0.9	~2.4	~5.4	~9.0	0.0~0.5
1	2,3,7,8-TCDD	pg/g	0.129 J EMPC	0.201 J EMPC	0.135 J EMPC	ND	ND	0.317 J EMPC	ND	ND	ND	0.207 J EMPC
2	1,2,3,7,8-PeCDD	pg/g	0.042 J EMPC	0,284 J	ND	0.168 J	ND	0.531 J EMPC	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	0.358 J	ND	ND	NĐ	0.628 J EMPC	ND	ND	ND	0.491 JEMPC
4	1,2,3,6,7,8-HxCDD	pg/g	ND	1.16 J	0.308 J EMPC	ND	ND	1.93 J	ND	ND	NĐ	1.94 J
5	1,2,3,7,8,9-HxCDD	pg/g	ND	0.631 J EMPC	ND	ND	ND	1,49 J	ND	ND	ND	0.583 J
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.771 J	24.8	4.44	0.576 J	0.872 J EMPC	53.7	2.49 EMPC	0.672 J EMPC	1.05 J	46.5
7	OCDD	pg/g	37.2	208	67	13.9	9.97	457	44,1	32.1	20,3	278
8	2,3,7,8-TCDF	pg/g	ND	3.86	0.5 1	ND	0.21 J EMPC	ND	ND	ND	ND	1,02
9	1,2,3,7,8-PeCDF	pg/g	0.06 J EMPC	0.604 J	ND	ND	ND	ND	ND	NĐ	ND	0.274 J EMPC
10	2,3,4,7,8-PeCDF	pg/g	0.078 J	0.566 J EMPC	0.251 J	ND	NĐ	NĐ	ND	0.098 J	ND	0.784 1
11	1,2,3,4,7,8-HxCDF	pg/g	0.04 J EMPC	0,698 J EMPC	0,261 J EMPC	0.141 3	ND	0.925)	0.333 J EMPC	ND	ND	0.958 J
12	1,2,3,6,7,8-HxCDF	pg/g	ND	0.495 J EMPC	0.217 J	0.17 J EMPC	ND	0.645 J EMPC	0.277 J EMPC	ND	ND	0,737 J
13	1,2,3,7,8,9-HxCDF	pg/g	ND	0.307 J	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND .	0.517.1	0.118 J	0.121.)	ND	0.912 J	0.233 J	ND	ND	0,993 J
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.178 J EMPC	7.98	1.25 J	0.152 / EMPC	ND	11.4	1.43 J EMPC	ND	ND	19.7
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	NĐ	ND :	ND	0.601 J EMPC	ND	ND	ND	0.727 J EMPC
17	OCDF	pg/g	0.278]	23,6	2.74 J EMPC	ND	ND	23.7	2,88 J	ND	ND	20.2
	WHO-2005 TEQ (ND=0), pe	g/g	0.2211	1.8728	0.4285	0.2227	0.0327	2.3022	0.1376	0.0457	0.0166	1.8814

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

		Borehole >	E11-178	E11-178	E11-178	E11-179	E11-179	E11-179	E11-179	E11-180	E11-180	E11-180
No		Sample ID →	S2:	S3	S4	S1	S2	.S3	S4	S1	S2	53
353	Analyte↓	Depth, m 🔿	*2.0	~5.0	10.0	0.0~0.5	~2.0	~5.0	~10.0	0.0*0.5	~2.0	~5.0
1	2,3,7,8-TCDD	pg/g	0.092 J EMPC	ND	ND	ND	ND	0.118 J EMPC	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	0.267 J EMPC	ND	0,085 J	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	0.28 J	ND	ND	ND	0.287 3 EMPC	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	0.286 J	DM	ND	ND	NĎ	0.108 J EMPC	ND	0.178)	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.971 J	0.733 J	1,57 J	5,04 EMPC	1.15 J	0,481 J	1.91 J	6.71	0.649 J EMPC	8.13
7	OCDD	pg/g	37.1	31.2	62.3	63.9	40.3	11.5	59.00	83,4	26.8	67.8
8	2,3,7,8-TCDF	pg/g	ND	NO	ND	0.642 EMPC	0.338 J	0.179 J EMPC	ND	ND	ND	ND
9	1,2,3,7,8-PeCDF	pg/g	0.123 J EMPC	ИD	ND	ND	ND	ND	ND	ND	ND .	ND
10	2,3,4,7,8-PeCDF	pg/g	0,119 J EMPC	ND	NO	0,238 I FMPC	ND	0.099 J EMPC	0,096 J EMPC	ND	ND	ND
11	1,2,3,4,7,8-HxCDF	pg/g	0.092 J	NĐ	ND	0.228 J EMPC	ND	0.089 J	ND	NĐ	NĎ	ND
12	1,2,3,6,7,8-HxCDF	pg/g	0.083 J	ND	0.081 JEMPC	0.22 J EMPC	ND	0,067 J EMPC	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	0.083 J EMPC	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	0.061 J EMPC	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.181 J	0.182 J EMPC	0.239 J EMPC	2 J	0.249 J	0.112 J	ND	2.22 3	ND	0.721 J EMPC
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	NÐ	ND	ND	NĐ	ND	ND	ND
17	OCDF	pg/g	0,729 J	NĐ	ND	5,83	ND	ND	ND :	4.65	ND	3.95 J EMPC
	WHO-2005 TEQ (ND=0),	pg/g	0.2084	0.0185	0.0449	0.5667	0.0599	0.2928	0.0656	0.1622	0.0145	0.0600

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

Table 3. Continued

	Во	orehole 🔿	E11-180	E11-181	E11-181	E11-181	E11-182	E11-182	E11-182	E11-182	E11-183	E11-183
No	San	mpie ID →	54	S1	S2	S3	S1	S2	\$3	S4	S1	S2
	Analyte↓ De	epth, m →	~10.0	0.0^0.5	~2.0	5.0	0.0~0.5	~2.0	~5.0	°10.0	0.0~0.5	~2.0
1	2,3,7,8-TCDD	pg/g	ND	0.57	ND	NĐ	ND	ND	NĐ	NO	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	0.356 J EMPC	ND .	ND	МĐ	ND	ND	ND	NĐ	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.579 J EMPC	7.97	0.559 J	0.821 J EMPC	1.35 J EMPC	1.96 J	2.14 J	0.798 J	0.857 J EMPC	0.327) EMP
7	OCDD	pg/g	16.7	69	23.6	31.9	32.9	54.1	41.3	26.3	38.6	17.1
8	2,3,7,8-TCDF	pg/g	ND	ND	ND	ND .	0.338 JEMPC	0.327 J EMPC	0.369 J EMPC	0.437 J	0.257 J	0.333 J
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	ND	ND	NÐ	ND	ND	ND	NĐ	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	0.222 J	ND	ND	ND	ND	ND	ND	ND	0,13 J
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
1 5	1,2,3,4,6,7,8-HpCDF	pg/g	ND	1.93 J	ND	0.185 J EMPC	0.426 J	0.561 J	0.617 J EMPC	ND	0.228 J EMPC	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	3.46 J	ND	NO	0.648 J	1:07 J	ND	ND	ND	ND
*************	WHO-2005 TEQ (ND≈0), pg,		0.0108	0.7929	0.0127	0.0196	0.0616	0.0745	0.0769	0.0596	0.0481	0.0807

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Ė

Table 3. Continued

		Borehole 🔿	E11-183	E11-183	E11-184	E11-184	E11-184	E11-184	E11-185	E11-185	E11-185	E11-185
No	S ()	ample ID →	S3	S4	S1:	S2	S3	S4	\$1	S2	S3	S4
3340YS	Analyte↓ I	Depth, m →	^5.0	~10.0	0.0~0.5	~2.0	~5.0	~8.75	0.0~0.5	~2.0	~5.0	~8.8
1	2,3,7,8-TCDD	pg/g	ND	ND	0.502 EMPC	ND	NÐ	ND	0.068 J EMPC	0.08 J EMPC	0.121 J EMPC	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	NĐ	0.208 J	ND	ND	ND	0,051 J	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	NĐ	ND -	DN	0.053 J	ND	NĐ	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	0.502 J EMPC	ND	ND	NĐ	0.085 J EMPC	ND	ND	NĐ
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	0.506 J EMPC	ND	ND	ND	0.074 J	ND	ND	NĐ
6	1,2,3,4,6,7,8-HpCDD	pg/g	ND	0.749 J	12.2	1.71 J	NĐ	ND	1.28 J	0.966 J EMPC	0.587 J	ND
7	OCDD	pg/g	15.2	31.8	B1.5	30	11.1	2.7 J	29.8	30.1	23,5	5.98
8	2,3,7,8-TCDF	pg/g	0.177 J	ND	0.969	NĐ	0.245 J EMPC	0.206 J	ND	0.241 J	В	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	0.868 J	ND	ND	NĐ	ND	ΝĐ	0.094 J EMPC	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	NO	1.42 J	ND	NĐ	ND	ND	ND	0.123 J EMPC	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	1.26 J EMPC	ND	ND	ND	ND	ND	0.121 J EMPC	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	0.71 J	ND	ND	ND	ND	NĎ	0.16 J	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	GN	ND	ND	ND	NĐ	ND	NĐ	0.065 J EMPC	ND
14	2,3,4,6,7,8-HxCDF	pg/g	NĐ	ND	0.588 J EMPC	ND	ND	ND	0,053 J	ФИ	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	2.25 J EMPC	0.482 J	0.349 /	ND	ND	ND	0.81 J EMPC	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	0.084 J EMPC	ND	ND	ND
17	OCDF	pg/g	ND	ND	3.18)	1.62 /	ND	ND	0.66 J	0.879 J EMPC	ND	ND
		***************************************						***************************************				
	WHO-2005 TEQ (ND≈0), j	pg/g	0.0223	0.0170	1.7854	0.0314	0.0313	0.0214	0.1688	0.1232	0.2113	0.0018

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

	Boreho	le → E1:	1-186	E11-186	E11-186	E11-186	E11-187	E11-187	E11-187	E11-187	E11-188	E11-188
No	Sample	ID →	S1 000	S2	S3	S4:	\$1	S2	S3	\$4	S1	S2
fata dal	Analyte↓ Depth,	m → 0.0	0~0.5	~2.0	~5.0	~8.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	2,3,7,8-TCDD pg/	0.16	з ЈЕМРС	NĎ	ND	ND	ND	ND	ND	NĐ	ND	ND
2	1,2,3,7,8-PeCDD pg/	3 0.359	5 J EMPC	0.172 J	0.085 J EMPC	ND	ND	ND	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD pg/	3 0.11	8 J EMPC	0.166 J EMPC	ND	ND	ND	ND	NĐ	ND	ND	ND
4	1,2,3,6,7,8-HxCDD pg/	0.936	6 J	0.182 J	ND	ND	ND	ND	ND	ND	ND	0.352 J
5	1,2,3,7,8,9-HxCDD pg/	0.25	2 J 💮 🔆	0.135 J EMPC	ND	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD pg/	3.8:	1	1.54 J	0,522 J	0.352 J EMPC	1.27 JEMPC	2,48 J	0.752 J	0.596 J	4.18 EMPC	8,16
7	OCDD pg/s	. 54	1	32.8	19.2	9.75 EMPC	23.6	49.1	25.9	119	80.4	99.3
8	2,3,7,8-TCDF pg/s	, NE	D	ND	ND	ND	В	ND	ND	ND	ND	ND
9	1,2,3,7,8-PeCDF pg/	, NE)	ND	ND	ND	ND	0.248 J	ND	ND	0.185 J	0.502 J
10	2,3,4,7,8-PeCDF pg/g	, NC	>	ND	ND	ND -	ND	0.194 J	0.129 J EMPC	ND	ND	0.261 J EMPC
11	1,2,3,4,7,8-HxCDF pg/s	, NC)	ФИ	ND	ND	ND	0.476 J EMPC	ND	NÐ	NĐ	1,03 J
12	1,2,3,6,7,8-HxCDF pg/	, NE)	ND	ND	ND	NĐ	0.285 J EMPC	ND	ND	NĐ	0.433 J EMPC
13	1,2,3,7,8,9-HxCDF pg/g	0.19) J	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF pg/g	0.353	3 3	0.126 J EMPC	ND	ND	ND	ND	МÐ	ND	0.265 J	0.386 J
1 5	1,2,3,4,6,7,8-HpCDF pg/g	2,01	l Janasa	МÐ	ND	ND	0.611 J EMPC	2.07.1	NĐ	ND	1.74 J EMPC	3.57
16	1,2,3,4,7,8,9-HpCDF pg/g	0.367	I J EMPC	ND	ND	ND	ND	ND	ND	ND	ND	0.95 J EMPC
17	OCDF pg/g	4.06	S) (S)	1.45 J	ND	ND	1.48 J	4.12 J	0.746 J	ND	3.8 J	12.6
*************	WHO-2005 TEQ (ND=0), pg/g	0.7	7284	0.2586	0.0964	0.0064	0.0263	0.2032	0.0545	0.0095	0.1165	0.4738

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

35 0	В	Borehole 🔿	E11-188	E11-188	E11-189	E11-189	E11-189	E11-189	E11-190	E11-190	E11-190	E11-190
No	Sa Sa	mple ID →	S3	S4:	S1	S2	S3	S4	S1	S2	S3	S4
9,000	Analyte↓ D	epth, m 🤿	~5.0	~9.6	0.0~0.5	^2.0	^5.0	~10.0	0.0~0.5	~2,0	~5.0	~10.0
1	2,3,7,8-TCDD	pg/g	ND	NĐ	0.174 J EMPC	ND	ND	ND	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	NĐ	ND	NĐ	ND	ND	ND	ND	NO	ND	ND
. 3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	NĐ .	NÐ	ND .	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.441 J	0.346 J EMPC	1.69 J	1,18 J	ND :	ND	0.274 J	0.511 J	0.686 J EMPC	NĐ
7	OCDD	pg/g	21.9	8.38	47.6	23	28.1	16.6	8.13	17.5	16.5	ND
8	2,3,7,8-TCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	0.276 J EMPC	0.293 J EMPC	ND	ND	ND	ND	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	NĐ	ND	0.145 J EMPC	0.194 J EMPC	ИD	ND	ND	NĐ	ND	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	0.477 J EMPC	0.398 J	NĐ	ND	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	0.268 J EMPC	0.23 J	ND	ND	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	1.71	1.39 J EMPC	ND	ND	ND	ND	ND	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	0.301 J EMPC	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	2.72 J	1.9 J	NO	NĐ	ND	ND	0.397 J	ND
	WHO-2005 TEQ (ND=0), р	g/g	0.0110	0.0060	0.3523	0.1630	0.0084	0.0050	0.0052	0.0104	0.0119	0.0000

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

	Во	rehole →	E11-191	E11-191	E11-191	E11-191	E11-192	E11-192	E11-192	E11-192	E11-193	E11-193
No	Sam	ıple ID →	S1	S2	S3	S4	S1	S2	S3	S4	51	S2
270.65	Analyte↓ Der	pth, m →	0.0~0.5	~2.0	~5.0	~7.7	0.0*0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	2,3,7,8-TCDD	pg/g	0.236 J EMPC	ND	0.272 J EMPC	ND	ND	ND	ND	ND	NĐ	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	0.389 J EMPC	ND	ND	ND	ND	ND	ND	0.093 J EMPC
3	1,2,3,4,7,8-HxCDD	pg/g	ИĎ	ND	0.353 J EMPC	NĐ	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	0.491 J	ND	ND	ND	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	0.599 J EMPC	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.535 J EMPC	1.64 J	0.787 J	NĐ	0.716 J	0.247 J	ND	0.659 J	0.92 J EMPC	0.605 J
7	OCDD	pg/g	14.9	30.2	1.9 J EMPC	ND	15.7	10.3	22.7	16.1	20.7	20.2
8	2,3,7,8-TCDF	pg/g	ND	ND	ND	0.483 J	ND	ND	ND	ND	ND :	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	0.533 J EMPC	ND	NĐ	ND	ND	ND	ND	0.076 J
10	2,3,4,7,8-PeCDF p	pg/g	ND	ND	NO	ND	0.113 /	0.077 J EMPC	ND	0.085 J	0.103 J	0.102 J EMPC
11	1,2,3,4,7,8-HxCDF	pg/g	ND	0.12 J EMPC	0.421 J	ND	ND	ND	ND	ND	0.088 J	ND
12	1,2,3,6,7,8-HxCDF p	pg/g	ND	0.092 J	0.455 J	ND	NĐ	ND	ND	NĐ	ND	ND
13	1,2,3,7,8,9-HxCDF p	pg/g	NĐ	ND	0.451 J	ND	0.156 1	ND	ND	ND	NĐ	ND
14	2,3,4,6,7,8-HxCDF #	pg/g	ND	0.09 J	0.379 J	ND	0.139 J	ND	ND	ND	NO	ND
15	1,2,3,4,6,7,8-HpCDF p	pg/g	ND	0.93 J	ND	ND	NO	0.104)	ND	0.206 J	ND	ND
16	1,2,3,4,7,8,9-HpCDF p	og/g	ND	ND	0,543 J	ND	ND	В	NĐ	NĐ	ND	ND
17	OCDF F	pg/g	ND	1.66 J	1,31; J EMPC	NĐ	ND	ND	ND	0.502 J EMPC	0,382 J	ND
	WHO-2005 TEQ (ND=0), pg/	/g	0.2458	0.0654	1.0062	0.0483	0.0753	0.0298	0.0068	0.0390	0.0552	0.1383

 $\label{eq:J:Estimated} \textbf{J: Estimated amount detected between detection limit and reporting limit} \\ \textbf{EMPC: Estimated maximum possible concentration due to ion raio failure}$

ND: Not detected

Table 3. Continued

	Bore	hole →	E11-193	E11-193	E11-194	E11-194	E11-194	E11-194	E11-195	E11-195	E11-195	E11-195
No	Samp	le ID →	.S3	54	S1	S2	S3	S4	S1	52	S3	. S4
	Analyte↓ Dept	h, m →	~5.0	~8.6	0.3*0.8	~2.0	~5.0	~10.0	0.3~0.8	~2.0	~5.0	~10.0
1	2,3,7,8-TCDD pg	g/g	0.174 J EMPC	ND	ND	ND	ND	ND	0.192 J EMPC	ND	ND	ND
2	1,2,3,7,8-PeCDD pg	5/g	ND ·	ND	ND ND	NĐ	ND	ND	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD pg	g/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD pg	g/g	ND	ND .	NĐ	ND	NĐ	ND	ND	NĐ	ND	ND
5	1,2,3,7,8,9-HxCDD pg	/g	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD pg	/g	ND	1.39 J EMPC	19.7	ND	ND	ND	0.741 J	0.803 J EMPC	24.3	15.3
7	OCDD pg	/g	4,37 J EMPC	7.18	146	1.89 J	ND	1.05 J EMPC	26	43	1960	1300
8	2,3,7,8-TCDF pg	/g	ND	ND	ND	0.451 J	0.25 1	0.372 J EMPC	0.236 J	NĐ	ND	ND
9	1,2,3,7,8-PeCDF pg	/g	0.137 J	ΝĐ	ND	0.101 J EMPC	ND	ND	0.204 J EMPC	ND	ND	ND
10	2,3,4,7,8-PeCDF pg	/g	0.151 JEMPC	ND	NO	0.126 J	ND	МÐ	0.168 J EMPC	ND	ΝD	ND
11	1,2,3,4,7,8-HxCDF pg	/g	0.4 J EMPC	NĐ	ND	NĐ	NO	ND	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF pg	/g	0,314 J EMPC	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
13	1,2,3,7,8,9-HxCDF pg	/g	ND	ND	ND	ND	ND	ND	0,171 J.EMPC	ND	ND	ND
14	2,3,4,6,7,8-HxCDF pg	/g	0.174 J EMPC	0.751 .	ND	В	NĐ	ND	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF pg,	/g	2,01 J	1.39 J EMPC	4.03	0.144 /	ND .	ND	0,305)	NĐ	В	ND
16	1,2,3,4,7,8,9-HpCDF pg,	/g	0.281	ND	NĐ	ND	ND	ND	ND	ND	ND	ND
17	OCDF pg,	/g	1.34 3	NĐ	10.9	ND	NĐ	ND	ND	ND	ND	ND
,,,,,,,	WHO-2005 TEQ (ND≈0), pg/g		0.3368	0.1051	0.2844	0.0879	0.0250	0.0375	0.3075	0.0209	0.8310	0.5430

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 3. Continued

		Borehole →	E11-196	E11-196	E11-196	E11-196
No		Sample ID →	S1	S2	S3	S4
	Analyte↓	Depth, m →	0.3~0.8	~2.3	^5.3	~10.3
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	NO	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	GN	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	2.39 J	0.817 J EMPC	ND	ND
7	OCDD	pg/g	59,4	19.3	5.11 J EMPC	1.34 /
8	2,3,7,8-TCDF	pg/g	0.384 1	0.503	0.327 J EMPC	0.503 J
9	1,2,3,7,8-PeCDF	pg/g	0,161 J	ND	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	NĐ	ND	В
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	NĐ	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	NĐ	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0,248 J	0.273 J	ND	NĐ
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	ND

\$1+++111111111111111111111111111111111	\$4444444444444444444444444444444444444	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	ç+125++1111111111111111111
14/11/0 2000 TOO (ND OL(n)		0.0070	0.0040	
WHO-2005 TEQ (ND=0), pg/g	0.0874	0.0670	0.0342	0.0507
***************************************				`

J: Estimated amount detected between detection limit and reporting limit EMPC: Estimated maximum possible concentration due to ion raio failure

ND: Not detected

Table 4. Summary of Chlorinated Herbicide Results for Phase II and IIb Soil Samples

		Borehole →	E11-154	E11-154	E11-155	E11-155	E11-156	E11-156	E11-156	E11-157	E11-157	E11-157
No		Sample ID →	S1	S2	S1	52	S1	S2	S3	S1	S2	S3
1000000	Analyte↓	Depth, m →	0.0~0.5	**2.3	0.0~0.5	~1.8	0.0~0.5	~2.0	~6.45	0.0~0.5	~2.0	~4.5
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND	ΝĐ	ND	NĐ						
3	2,4-D	mg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	NĐ	ND	ND						
5	Dicamba	mg/kg	ND	NĐ	NĐ	ND						

R: Data rejected ND: Not detected

4/24/3

Table 4. Continued

43.70		Borehole →	E11-158	E11-158	E11-158	E11-158	E11-159	E11-159	E11-159	E11-159	E11-160	E11-160
No		Sample ID →	S1	52	S3	54	S1	S2	S3	54	S1	\$2
10.50	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5.0	~8.5	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND	NĐ	ND	NĐ						
3	2,4-D	mg/kg	ND	NĐ	ND	ND						
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND	NĐ	ND	NĐ	ΝĐ	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole →	E11-160	E11-161	E11-161	E11-161	E11-161	E11-162	E11-162	E11-163	E11-163	E11-163
No		Sample ID ->	S3	S1	S2	S3	S4	S1	\$2	S1	52	S2 S3
	Analyte↓	Depth, m →	^3.4	0.0^0.5	~2.0	~5.0	~7.9	0.0*0.5	~1.52	0.0~0.5	~2.0	~5.0
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4-D	mg/kg	ND									
4	2,4-D8	mg/kg	ND									
5	Dicamba	mg/kg	ND									

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole ->	E11-163	E11-164	E11-164	E11-164	E11-164	E11-165	E11-165	E11-165	E11-165	E11-166
No		Sample ID →	S4	S1	S2	S3	S4	51	S2	\$3	54	S1
ROY	Analγte↓	Depth, m 🔿	~10.0	0.0~0.5	~2.0	~5.0	~11.0	0.0~0.5	~2.0	~5.0	~10.0	0.3~0.8
1	2,4,5-1	mg/kg	ND	NĐ								
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4-D	mg/kg	ND	ИÐ	GN	ND						
4	2,4-D8	mg/kg	ND	NĐ	ND	ND						
5	Dicamba	mg/kg	ND									

R: Data rejected ND: Not detected

Table 4. Continued

11.11.11	Every and the second	Borehole ->	E11-166	E11-167	E11-167	E11-167	E11-168	E11-168	E11-169	E11-169	E11-170	E11-170
No		Sample ID →	.52	S1	S2	S3	S1	52	S1	S2	S1	S2
	Analyte↓	Depth, m 🔾	~2.7	0.0~0.5	~2.0	~5.5	0.0~0.5	~3.0	0.0~0.5	~1.8	0.0~0.5	~2.0
1	2,4,5-T	mg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND								
3	2,4-D	mg/kg	ND	ΝĐ								
4	2,4-D8	mg/kg	ND	DM	ND	ND						
5	Dicamba	mg/kg	ND	ND	МÐ	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

49.500		Borehole →	E11-170	E11-170	E11-171	E11-171	E11-171	E11-172	E11-172	E11-172	E11-172	E11-173
No		Sample ID ->	S3	S4	S1	∴ \ S 2	S3	S1	S2	S3	54	S1
	Analyte↓	Depth, m →	~5.0	~7.5	0.0~0.5	~2.0	~6.5	0.0~0.5	~2.0	~5.0	~8.7	0.0~0.5
1	2,4,5-T	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
3	2,4-D	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
5	Dicamba	mg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	NĐ	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole 🔿	E11-173	E11-173	E11-173	E11-174	E11-174	E11-174	E11-174	E11-175	E11-175	£11-175
No		Sample ID ->	S2	33 S	S4	S1	52	S3	54	S1	S2	S3
1000	Analyte↓	Depth, m 🔿	~2.0	~5.0	~10.0	0.3~0.8	~2.3	2.3~5.3	~8.9	0.0~0.5	~2.0	~5.0
1	2,4,5-T	mg/kg	ND	NĐ	ND	ND	ND R	ND	ND	NĐ	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4-D	mg/kg	ND	NĐ								
4	2,4-DB	mg/kg	ND	NÐ	ND							
5	Dicamba	mg/kg	ND	ND	NĐ	ND	ND	ND	ND	NĐ	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole ->	E11-175	E11-176	E11-176	E11-176	E11-176	E11-177	E11-177	E11-177	E11-177	E11-178
No		Sample ID 🔿	S4	S1	S2	S3	54	S1	S2	S3	S4	S1
diam	Analyte↓	Depth, m 👈	≏7.25	0.0^0.5	~2.0	~5.0	~10.0	0.4~0.9	~2.4	~5.4	~9.0	0.0~0.5
1	2,4,5-T	mg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
3	2,4-D	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
4	2,4-DB	mg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
5	Dicamba	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole 🔿	E11-178	E11-178	E11-178	E11-179	E11-179	E11-179	E11-179	E11-180	E11-180	E11-180
No		Sample ID →	S2	S3	54	S1	\$2	S3	\$4	S1	S2	\$3
100000000	Analyte↓	Depth, m →	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND	NĐ	ND	ND						
3	2,4-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND	NĐ								
5	Dicamba	mg/kg	ND									

R: Data rejected ND: Not detected

Table 4. Continued

273,78333 273,78333 273,78333		Borehole →	E11-180	E11-181	E11-181	E11-181	E11-182	E11-182	E11-182	E11-182	E11-183	E11-183
No		Sample ID →	S4	S1	S2	S3	\$1	S2	S 3	S4	S1	S2
	Analyte↓	Depth, m →	~10.0	0.0~0.5	~2.0	~5.0	0.0~0.5	~2.0	°5.0	~10.0	0.0~0.5	~2.0
1	2,4,5-T	mg/kg	ND	ND	ND	ND						
2	2,4,5-TP (Silvex)	mg/kg	ND	NĐ	ND	ND	ND	ND	NĐ	ND	ND	ND
3	2,4-D	mg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	ND	ND	ND						
5	Dicamba	mg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole →	£11-183	E11-183	E11-184	E11-184	E11-184	E11-184	E11-185	E11-185	E11-185	E11-185
No		Sample ID →	S3	\$4	S1	S2	\$3	S4	S1	S2	S3	S4
	Analyte↓	Depth, m →	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~8.75	0.0~0.5	~2.0	~5.0	~8.8
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
3	2,4-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND	NĐ								
5	Dicamba	mg/kg	ND	ND	ND	ND :	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole →	E11-186	E11-186	E11-186	E11-186	E11-187	E11-187	E11-187	E11-187	E11-188	E11-188
No		Sample ID →	S1	S2	S3	S4	S1	S2	53	54	S1	S2
Miletrich Miletrich	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5.0	~8.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	2,4,5-T	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND R	ND	ND
3	2,4-D	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
4	2,4-DB	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND R	ND	ND
5	Dicamba	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole →	E11-188	E11-188	E11-189	E11-189	E11-189	E11-189	E11-190	E11-190	E11-190	E11-190
No		Sample ID →	S3	S4	S1	S2	S3	S4	51	S2	S3	S4
	Analyte↓	Depth, m →	~5.0	~9.6	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2,0	~5.0	~10.0
1	2,4,5-T	mg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	МĐ	ND	ND	ND	ND	ND	ND
3	2,4-D	mg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	NO	ND							
5	Dicamba	mg/kg	ND -	ND	ND	ND						

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole →	E11-191	E11-191	E11-191	E11-191	E11-192	E11-192	E11-192	E11-192	E11-193	E11-193
No		Sample ID →	S1	S2	S3	54	S1	S2	S3	S4	S1	S2
	Analyte↓	Depth, m 🔿	0.0~0.5	~2.0	~5.0	~7.7	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	2,4,5-T	mg/kg	ND	NĐ	ND							
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	2,4-D	mg/kg	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	NĐ	ND	ND	ND	ND	NĐ	ND	ND	ND
5	Dicamba	mg/kg	ND	NĐ	ND	ND	ND	ND	NĐ	ND	ND	ND

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole ->	E11-193	E11-193	E11-194	E11-194	E11-194	E11-194	E11-195	E11-195	E11-195	E11-195
No		Sample ID →	S3	S4	S1	S2	S3	54	S1	S2	53	S4
	Analyte↓	Depth, m →	~5.0	~8.6	0.3~0.8	~2.0	~5.0	~10.0	0.3~0.8	~2.0	~5.0	~10.0
1	2,4,5-T	mg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND	ND	ND	ND -	ND	ND	ND	NĐ	ND	ND -
5	Dicamba	mg/kg	ND									

R: Data rejected ND: Not detected

Table 4. Continued

		Borehole →	E11-196	E11-196	E11-196	E11-196
No		Sample ID →	S1	52	S3	54
	Analyte↓	Depth, m →	0.3~0.8	~2.3	~5.3	~10.3
1	2,4,5-T	mg/kg	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	NĐ	ND	ND
3	2,4-D	mg/kg	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	ND	ND	ND
5	Dicamba	mg/kg	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 5. Summary of Organochlorine Pesticide Results for Phase II and IIb Soil Samples

11455		Borehole →	E11-154	E11-154	E11-155	E11-155	E11-156	E11-156	E11-156	E11-157	E11-157	E11-157
No		Sample ID 🔿	S1	S2	S1	S2	S1	S2	S3	S1	S2	S3
1000000	Analyte↓	Depth, m →	0.0~0.5	~2.3	0.0~0.5	~1.8	0.0~0.5	~2,0	~6.45	0.0~0.5	~2.0	~4.5
1	4,4'-DDD	μg/kg	ND	2.74	ND	5:14 J	0.807 J	2.15 1	0.815 J	ND	1.74 J	ND
2	4,4'-DDE	μg/kg	1,07 J	1.71 J	ND	3,43]	3,65	2.52	0.85 J	1.37 J	4.44	ND
3	4,4'-DDT	μg/kg	3.61	5.22	1,05 J	11.8	8.36	ND	ND	1.85 J	13.3	0.909)
4	Aldrin	μg/kg	ND									
5	aipha-BHC	μg/kg	ND									
6	alpha-Chlordane	μg/kg	NĐ	NĐ	ND							
7	beta-BHC	μg/kg	ND	ND .	ND	ND						
8	delta-BHC	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
9	Dieldrin	μg/kg	ND									
10	Endosulfan i	μg/kg	ND									
11	Endosulfan II	μg/kg	ND									
12	Endosulfan sulfate	μg/kg	ND									
13	Endrin	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
14	Endrin aldehyde	μg/kg	ND	ND	NĐ	ND						
15	Endrin ketone	μg/kg	ND									
16	gamma-BHC (Lindane)	μg/kg	ND									
17	gamma-Chlordane	μg/kg	ND									
18	Heptachlor	μg/kg	ND									
19	Heptachlor epoxide	μg/kg	ND									
20	Methoxychlor	μg/kg	ND	NĐ								
21	Toxaphene	μg/kg	ND	NĐ	ND							

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Во	rehole >	E11-158	E11-158	E11-158	E11-158	E11-159	E11-159	E11-159	E11-159	E11-160	E11-160
No	Sam	nple ID →	S1	S2	S3	S4	S1	S2	\$3	S4	S1	S2
**************************************	Analyte↓ De _l	pth, m →	0.0~0.5	~2.0	~5.0	*8.5	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	4,4¹-DDD I	μg/kg	ND	34.4	ND	ND	1.22]	19.7	0.795 J	ND	ND	ND
2	4,4'-DDE I	μg/kg	ND	15.7	ND	ND	4.36	50.4	-1.63 J	ND	ND	ND
3	4,4'-DDT	μg/kg	1.08 J	74.7	ND	ND	19.5	174	4,14	2 J	ND	ND
4	Aldrin	μg/kg	ND	NĐ								
5	alpha-BHC p	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
6	alpha-Chlordane μ	μg/kg	ND									
7	beta-BHC	μg/kg	ND	ND	ND	ND :	ND	ND	ND	ND	ND	ND
8	delta-BHC µ	ug/kg	ND									
9	Dieldrin p	μg/kg	ND									
10	Endosulfan I μ	μg/kg	ND	ИЙ	ND	GN	ND	ND	ND	ND	ОN	NĐ
11	Endosulfan II µ	μg/kg	ND	ND	ND .	ND						
12	Endosulfan sulfate μ	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
13	Endrin µ	μg/kg	ND	ND	ND	ND	ND	ND	ND :	ND	ND	ND
14	Endrin aldehyde µ	μg/kg	ND :	ND	ND	ВN	ND	ND	ND	ND	ND	ND
15	Endrin ketone µ	μg/kg	ND									
16	gamma-BHC (Lindane) µ	ıg/kg	ND	ND	ND	ND	ND	1.87	ND	ND	ND	МÐ
17	gamma-Chlordane µ	ug/kg	NĐ	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
18	Heptachlor μ	ug/kg	ND	ND	ND	NĐ	ND	NĐ	ND	ND	NĐ	ND
19	Heptachlor epoxide μ	ig/kg	ND									
20	Methoxychlor μ	ıg/kg	ND									
21	Toxaphene μ	ιg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	NÐ	ND

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

		Borehole ->	E11-160	E11-161	E11-161	E11-161	E11-161	E11-162	E11-162	E11-163	E11-163	E11-163
No		Sample ID →	S3	S1	S2	S3	S4	S1	52	S1	S2	S3
	Analyte↓	Depth, m →	~3.4	0.0~0.5	~2.0	^5.0	~7.9	0.0~0.5	~1.52	0.0~0.5	~2.0	~5.0
1	4,4'-DDD	μg/kg	ND	12.8	9	ND	ND	0.764 J	ND	1.02 J	91	ND
2	4,4'-DDE	μg/kg	ND	5.3	5.97	ND	ND	1.85 J	ND	6.05	44.9	ND
3	4,4'-DDT	μg/kg	ND	68.4	49.3	ND	ND	4.11	ND	11	134	2.43
4	Aldrin	μg/kg	ND	ND	NĐ	ND	ND	ND .	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND									
6	alpha-Chiordane	μg/kg	ND									
7	beta-BHC	μg/kg	ND									
8	delta-BHC	μg/kg	ND									
9	Dieldrin	μg/kg	ND	ВN	ND	ND						
10	Endosulfan I	μg/kg	ND									
11	Endosulfan II	μg/kg	ND	NĐ	ND	ND	NĐ	ND	ND	ND	ND	ND
12	Endosulfan sulfate	μg/kg	ND									
13	Endrin	μg/kg	ND									
14	Endrin aldehyde	μg/kg	ND	ND	NĐ	ND						
15	Endrin ketone	μg/kg	ND									
16	gamma-BHC (Lindane)	μg/kg	ND	12,6 J	ND							
17	gamma-Chlordane	μg/kg	ND									
18	Heptachlor	μg/kg	ND									
19	Heptachlor epoxide	μg/kg	ND	NĐ	ND							
20	Methoxychlor	μg/kg	ND									
21	Toxaphene	μg/kg	ND									

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Carth Nation 1 to Relation	orehole >	E11-163	E11-164	E11-164	E11-164	E11-164	E11-165	E11-165	E11-165	E11-165	E11-166
No	Sai	mple ID →	S4	S1	S2	S3	S4	S1	\$2	\$3	S4	S1
	Analyte↓ Do	epth, m →	~10,0	0,0~0.5	~2.0	~5.0	~11.0	0.0~0.5	~2.0	~5,0	~10.0	0.3~0,8
1	4,4'-DDD	μg/kg	ND	ND	21	- 1.28 J	ND	ND	6.11	261	3.89	1.81 J
2	4,4'-DDE	μg/kg	ND	ND	46	1.42 J	ND	1.35 J	8.04	58.3 J	1.8)	7.31
3	4,4'-DDT	μg/kg	2.96	1,24 J	134	18	ND	ND	68.6	643	15.7	18.7
4	Aldrin	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	0.887 J	ND
6	alpha-Chlordane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	NĐ	ND	ND	ND	ND	0.647 J	NĐ	0.732 J	NĐ
8	delta-BHC	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	1.16 J	ND
9	Dieldrin	μg/kg	ND	ND	3,24	ND	ND	ND	NĐ	ND	ND	ND
10	Endosulfan I	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	Endosulfan II	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	Endosulfan sulfate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	Endrin	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
14	Endrin aldehyde	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
15	Endrin ketone	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
16	gamma-BHC (Lindane)	μg/kg	ND	ND	1.99	ND	ND	ND	1.4)	56.4 J	43.8	ND
17	gamma-Chlordane	μg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
18	Heptachlor	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	Heptachlor epoxide	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND
20	Methoxychior	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	GN	ND
21	Toxaphene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Вс	orehole →	E11-166	E11-167	E11-167	E11-167	E11-168	E11-168	E11-169	E11-169	E11-170	E11-170
No	San	mple ID →	S2	S1	S2	S3	S1	S2	S1	S2	S1	S2
	Analyte↓ De	epth, m →	~2.7	0.0~0.5	~2.0	~5.5	0.0~0.5	~3.0	0.0~0.5	~1.8	0.0~0.5	~2.0
1	4,4'-DDD	μg/kg	ND	645	617	46.5	356	5.63	183 J	95.9	1130	2.19 J
2	4,4'-DDE	μg/kg	NĐ	428 J	297 J	54	198	4.57	248	47,1	2830	3.18
3	4,4'-DDT	μg/kg	0.807 J	8160	9150	225	814	29.7	1020	145	3780	4.97
4	Aldrin	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND	10.9 J	47.8	ND	ND	ND	ND	ND	ND	ND
6	alpha-Chlordane	μg/kg	ND	6.77 J	3.29 1	ND	19.7	1,26 J	9.3	1.21 J	ND	NĐ
7	beta-BHC	μg/kg	ND	11.9 J	24.3	NĐ	ND	ND	3.04 J	ND	ND	ND
8	delta-BHC	μg/kg	ND	26.5	56.5	ND	ND	ND	ND	ND	ND	ND
9	Dieldrin	μg/kg	ND	60,3	52.9	ND	16.5 J	ND	16.5	ND	ND	ND
10	Endosulfan I	μg/kg	В	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
11	Endosulfan II	μg/kg	ND	ND	ND	В	ND	ND	ND	ND	ND	NĐ
12	Endosulfan sulfate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	Endrin I	μg/kg	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Endrin aldehyde j	μg/kg	NĐ	МÐ	ND	ND	ND	NĎ	ND	ND	ND	ND
15	Endrin ketone	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	gamma-BHC (Lindane)	μg/kg	0.925 J	388	870	47.9	ND	ND	ND	ND	4.32 J	. ND
17	gamma-Chlordane j	μg/kg	ND	8.2 J	3.69 J	ND	20,5	1,25 J	9.82	1.17 J	2.72 J	ND
18	Heptachlor j	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND
19	Heptachlor epoxide 1	μg/kg	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND	NĐ
20	Methoxychlor ,	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Toxaphene ;	μg/kg	ND	ND	ND	NĐ	ŅD	ND	ND	ND	ND	ND

1: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

349	Во	orehole →	E11-170	E11-170	E11-171	E11-171	E11-171	E11-172	E11-172	E11-172	E11-172	E11-173
No	San	nple ID →	S3	S4	S1	S2	S3	S1	S2	S 3	S4	S1.
	Analyte↓ De	epth, m →	~5.0	~7.5	0.0~0.5	~2.0	~6.5	0.0~0.5	~2.0	~5.0	~8.7	0.0~0.5
1	4,4'-DDD	μg/kg	1.25 J	ND	45.1	1880	333	174	704 J	1,29 J	1.68 J	115
2	4,4'-DDE	μg/kg	1.28 J	ND	23.6	491 J	59.8	145	205	0.703 J	D.805 J	158
3	4,4'-DDT	μg/kg	ND	ND	208	5340	63.4	436	11200	5.4	11.3	198
4	Aldrin	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	9.04
5	aipha-BHC	µg/kg	ND	ND	ND							
6	alpha-Chlordane	μg/kg	ND	ND	NĐ	78.7	ND	15,6 J	NĐ	ND	ND	1.15)
7	beta-BHC	μg/kg	ND ND	ND	ND	2,96 J	ND	NĐ	ND	ND	ND	ND
8	delta-BHC	μg/kg	ND	ND	ND							
9	Dieldrin	μg/kg	ND	ND	NĐ	ND	ND	ND	48.3	ND	ND	61.7
10	Endosulfan I	μg/kg	ND	ND	ND							
11	Endosulfan II	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
12	Endosulfan sulfate	μg/kg	ND	ND	ND							
13	Endrin (μg/kg	ND	ND	NĐ							
14	Endrin aldehyde	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND
15	Endrin ketone	μg/kg	ND	ND	ND							
16	gamma-BHC (Lindane)	μg/kg	1.69 J	ND	ND	4.5 J	ND	ND	72.9	0.723 J	ND	ND
17	gamma-Chlordane ı	μg/kg	ND	ND	2.64 J	93	ND	16.6 J	ND	ND	ND	1.57 J
18	Heptachlor J	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND
19	Heptachlor epoxide ;	μg/kg	ND	ND	ND	8,27 J	ND	ND	МD	ND	ND	ИD
20	Methoxychlor p	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND
21	Toxaphene ,	μg/kg	ND	ND	ND							

 $f\colon$ Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Bore	ehole →	E11-173	E11-173	E11-173	E11-174	E11-174	E11-174	E11-174	E11-175	E11-175	E11-175
No	Samp	ple ID →	52	S3	S4	S1	S2	\$3	S4	S1	S2	S3
	Analyte ↓ Dept	th, m →	~2.0	~5.0	~10.0	0.3~0.8	~2,3	2.3~5.3	~8.9	0.0~0.5	~2.0	~5.0
1	4,4'-DDD με	g/kg	23.4	4.04	ND	211	577.1	1.14]	3.29	364	267	6.54
2	4,4'-DDE με	g/kg	14.1	2.51	NĐ	55.6	ND	0,747 J	0.959 J	186	12,4	1.61 J
3	4,4'-DDT με	g/kg	62.6	1.1 j	ND	2270	1850	9.84	7,95	110	52,2	12.7
4	Aldrin με	g/kg	ND	ND	ND	ND	NĐ	ND	ND	NĐ	ND	ND
5	alpha-BHC με	g/kg	ND	ND	1.71 J	417	209 J	1.03 J	0.851 J	NĐ	ND	ND
6	alpha-Chlordane με	g/kg	3.15	ND	ND	ND	ND	ND	ND	33.4	1.04)	ND
7	beta-BHC με	g/kg	ND	NĎ	ND	112	ND	0.817 J	0.684 J	1.18 J	ND	ND
8	delta-BHC με	g/kg	NĐ	ND	0.911 J	427	301 J	1.88	1.58 J	0.69 J	ND	ND
9	Dieldrin με	g/kg	ND	1.87 J	ND	ND	ND	ND	ND	13	1,76 J	ND
10	Endosulfan I με	g/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND
11	Endosulfan II με	g/kg	ND	ND	ND	ND						
12	Endosulfan sulfate με	g/kg	ND	ND	ND	ND						
13	Endrin μg	g/kg	ND	ND	ND	ND						
14	Endrin aldehyde µg	g/kg	ND	GN	ND	ND	ND	ND	ND	ND	ND	ND
15	Endrin ketone µg	g/kg	ND	ND	ND	ND						
16	gamma-BHC (Lindane) μg	g/kg	ND	ND	9.08	13900	4010	16.8	8.97	2.62	0.559 J	ND
17	gamma-Chlordane µg	g/kg	3.98	ND	ND	ND	ND	ND	ND	35.7	ND	NĐ
18	Heptachlor µg	g/kg	ND	ND	ND	ND						
19	Heptachlor epoxide μg	g/kg	ND	3.07	ND	ND						
20	Methoxychlor μg	/kg	ND	ND	ND	ND						
21	Toxaphene µg	/kg	ND	ND	ND	ND						

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

4415	Во	rehole ->	E11-175	E11-176	E11-176	E11-176	E11-176	E11-177	E11-177	E11-177	E11-177	E11-178
No	San	nple ID →	S4	S1	S2	\$3	S4	51	S2	S3	S4	S1
	Analyte↓ De	pth, m →	~7.25	0.0~0.5	~2.0	~5.0	~10.0	0.4~0.9	~2.4	~5.4	~9.0	0.0~0.5
1	4,4'-DDD	μg/kg	ND	320	90	8.72	0.839 J	122	128	ND	ND	7400
2	4,4'-DDE	μg/kg	ND	228	52.2	2.62	ND	66.2	78.7	ND	ND	1600
3	4,4'-DDT	μg/kg	ND	454	226	1.5)	ND	214	207	ND	0.755 J	26900
4	Aldrin	μg/kg	ND	9.27	4.3	ND	ND	ND	ND	NĐ	NĐ	ND
5	alpha-BHC	μg/kg	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND
6	alpha-Chlordane	μg/kg	ND	1.6 J	2.44	ND	ND	ND	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	ND	1.99	ND	ND	ND	7,54 J	ND	ND	10.7
8	delta-BHC j	μg/kg	ND	ND	ND							
9	Dieldrin	μg/kg	ND	87	31.1	2.12 J	ND	ND	9,51 J	NĐ	ND	336 J
10	Endosulfan i	μg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	NĐ	CIN
11	Endosulfan II J	μg/kg	ND	ND	ND							
12	Endosulfan sulfate	μg/kg	ND	ND	ND							
13	Endrin ;	µg/kg	ND	NĐ	ND	ND	ND	ND	ND	NĐ	ND :	ND
14	Endrin aldehyde	μg/kg	ND	ND	ND							
15	Endrin ketone	μg/kg	ND	ND	NĐ	NĐ	ND	ND	ND	ND	NĐ	ND
16	gamma-BHC (Lindane)	μg/kg	ND	ND	ND	ND	ND	ND	12.8)	0.923 J	ND	5,26 J
17	gamma-Chlordane 1	μg/kg	ND	2.18	3,08	ND	ND	ND	ND	ND	ND	ND
18	Heptachlor μ	μg/kg	ND	NÐ	ND	ND	ND	ND	ND	NĐ	ND	4 J
19	Heptachlor epoxide p	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	NĐ	11.1
20	Methoxychlor μ	μg/kg	ND	ND	ND	ND	ND	ND	ND :	ND	ND	ND
21	Toxaphene µ	μg/kg	ND	NĐ	ND	ΝĐ						

 \pm . Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Borehold	: → E11-178	E11-178	E11-178	E11-179	E11-179	E11-179	E11-179	E11-180	E11-180	E11-180
No	Sample II) → S2	S3	S4	S1	S2	S3	S4	S1	S2	S 3
	Analyte↓ Depth, n	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0	^5.0
1	4,4'-DDD μg/kg	74.7	11.6	8.36	13500	459	212	129	27	6.67	59.3
2	4,4'-DDE μg/kg	29.2	2,39	2.46	1620	15.4	6.04	4.28	80.2	9.76	7,7
3	4,4'-DDT μg/kg	243	36	18.1	70200	111	44.9 J	29 J	74	61.6	18
4	Aldrin μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
5	alpha-BHC μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	NĐ	0.765 J
6	alpha-Chlordane μg/kg	ND	ND	ND	111	0.768 J	ND	ND	ND	ND	0.761 J
7	beta-BHC µg/kg	0.6 J	ND	ND	34.4	1.23 J	ND	ND	ND	ND	1.79
8	delta-BHC µg/kg	ND	ND	ND	29.9	ND	ND	ND	ND	ND	5.57
9	Dieldrin μg/kg	3,13	0.851 J	ND	127	ND	1.52 J	ND	ND	ND	ND
10	Endosulfan I µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	Endosulfan II μg/kg	ND	NĐ	ND							
12	Endosulfan sulfate μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	Endrin μg/kg	ND	ND	NĐ	ND						
14	Endrin aldehyde µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Endrin ketone μg/kg	ND	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND
16	gamma-BHC (Lindane) μg/kg	1.9	4.11	ND	32	0.897 J	ND	ND	ND	ND	ND
17	gamma-Chlordane μg/kg	ND	ND	ND	13.1 J	0.84 J	ND	ND	ND	ND	1.16 J
18	Heptachlor µg/kg	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	Heptachlor epoxide μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Methoxychlor µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Toxaphene μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

1: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Borel	hole →	E11-180	E11-181	E11-181	E11-181	E11-182	E11-182	E11-182	E11-182	E11-183	E11-183
No	Sampl	e ID →	S4	S1	S2	S3	S1	S2	53	\$4	S1	S2
	Analyte↓ Depth	ı, m →	~10.0	0.0~0.5	~2,0	~5.0	0.0~0.5	~2.0	~5.0	~10,0	0.0~0.5	~2.0
1	4,4'-DDD μg/	/kg	3.99	210	9.35 1	13	6.09	190	4180	0.981 J	ND	1.15 J
2	4,4'-DDE μg/	/kg	ND	216	11.2 J	6.94	36.5	78.8	308	ND	ND	2.84
3	4,4'-DDT μg/	/kg	1.73 J	1970	89.1	48	22.9	730	7470	1.71 J	ND	12.2
4	Aldrin µg/	/kg	ND									
5	alpha-BHC µg/	/kg	ND	ND	ND	ND	ND	ND	7.23	ND	ND	ND
6	aipha-Chlordane µg/	/kg	ND	6.46	ND	0.55 J	ND	ND	1.66 J	ND	ND	ND
7	beta-BHC μg/	/kg	ND	ND	ND	0.841 J	ND	ND	9.11	ND	ND	ND
8	delta-BHC μg/	/kg	ND	ND	ND	0.573 J	ND	ND	84.7	ND	ND	ND
9	Dieldrin μg/	/kg	DM	16.3	ND	ND	ND	ND	21.8	ND	ND	ND
10	Endosulfan Ι μg/	'kg	ND									
11	Endosulfan II µg/	'kg	ND	NĐ	ND							
12	Endosulfan sulfate μg/	kg	NĐ	ND								
13	Endrin μg/	kg	ND									
14	Endrin aldehyde µg/	kg	ND									
15	Endrin ketone µg/	kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
16	gamma-BHC (Lindane) µg/	kg	ND	ND	ND	0.818 J	ND	19.7	305	ND	ND	ND
17	gamma-Chlordane μg/	kg	ND	5,92	ND	ND	ND	ND	2,03	ND	ND	ND
18	Heptachlor μg/	kg	ND									
19	Heptachlor epoxide μg/	kg	ND	1.36 J	ND							
20	Methoxychior µg/	kg	ND									
21	Toxaphene μg/	kg	ND	NĐ	ND							

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	В	orehole 🔿	E11-183	E11-183	E11-184	E11-184	E11-184	E11-184	E11-185	E11-185	E11-185	E11-185
No	Sai	mple ID >	S3	S4	S1	S2	S3	54	S1	Ş2	53	S4
	Analyte↓ De	epth, m →	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~8.75	0.0~0.5	~2.0	~5.0	~8.8
1	4,4'-DDD	μg/kg	150	ND	124	341 J	2,06 J	ND	427	257	2.61	ND
2	4,4'-DDE	μg/kg	17.2	ND	97.9	. 142	1.08 J	В	134	99.5	1.78 J	ND
3	4,4'-DDT	μg/kg	89.7	0.726 J	620	3840	4.36	0.926 J	1510	422	11.2	ND
4	Aldrin	μg/kg	ND	ND	ND	ИÐ	ND	ND	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND	ND	ND	МÐ	ND	ND	ND	ND	ND	ND
6	alpha-Chlordane	μg/kg	ND	ND	6.43 1	ND	ND	NĐ	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	0.607 1	ND							
8	delta-BHC	μg/kg	ND	1.11 J	ND							
9	Dieldrin	μg/kg	ND	ND	10.2 J	ND	ND	ND	34.1 J	ND	ND	ND
10	Endosulfan I	μg/kg	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND
11	Endosulfan II	μg/kg	ND									
12	Endosulfan sulfate	μg/kg	ND	ND	ND	NĐ	NĐ	ND	ND	ND	NĐ	ND
13	Endrin	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
14	Endrin aldehyde	μg/kg	ND									
15	Endrin ketone	μg/kg	NĐ	ND								
16	gamma-BHC (Lindane)	μg/kg	3.07	1.21 J	ND	ND	ND	ND	ND	DM	ND	ND
17	gamma-Chiordane	μg/kg	ND	ND	5.17 J	NĐ	ND	ND	ND	ND	ND	ND
18	Heptachlor	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
19	Heptachior epoxide	μg/kg	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND
20	Methoxychior	μg/kg	ND									
21	Toxaphene	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND

 ${\cal F}$. Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

		Borehole →	E11-186	E11-186	E11-186	E11-186	E11-187	E11-187	E11-187	E11-187	E11-188	E11-188
No		Sample ID 🔿	S1	S2	S3	54	S1	S2	S3	S4	S1	S2
	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5,0	~8.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	4,4'-DDD	μg/kg	121	22.2	3.38	0.974 J	570 J	1750	3.21	1.34 J	2670	1640
2	4,4'-DDE	μg/kg	72.1	18,7	2,32	ND	ND	217	0.953 J	ND	435 J	297 J
3	4,4'-DDT	μg/kg	1130	178	18.4	4,57	1920	4570	8.04	ND	8020	4450
4	Aldrin	μg/kg	ND	ND	ND	ND	ND	ND	ND :	ND	ND	ND
5	alpha-BHC	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	2,16	11.4 j
6	alpha-Chlordane	μg/kg	NĐ	0.703 J	ND	ND	2.63	11.3 J	0.632 J	ND	5.23	9,91
7	beta-BHC	μg/kg	ND	0.654 J	ND	ND	1.14 J	16.8	0.633 J	ND	6.46	9.76 J
8	delta-BHC	μg/kg	ND	ND	ND	ND	ND	17.5	ND	ND	12,7	19.3
9	Dieldrin	μg/kg	16,91	2.92	ND	ND	6.79	74,3	0.684 J	ND	ND	61.2
10	Endosulfan I	μg/kg	ND	ND	ND	В	ND	ND	NĐ	ND	ND	ND
11	Endosulfan II	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	Endosulfan sulfate	μg/kg	ND	ND	ND	ND	ND -	ND	ND	ND	ND	ND
13	Endrin	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ -	ND
14	Endrin aldehyde	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
15	Endrin ketone	μg/kg	ND	NĐ	ND	ND	ND	ND	NĐ	ND	2,31 J	ND
16	gamma-BHC (Lindane)	μg/kg	ND	ND	ND	ND	2.17	49.7	ND	ND	ND	190
17	gamma-Chlordane	μg/kg	ND	0.744 J	ND	ND	2.54	15 J	ND	ND	6.89	12.6 J
18	Heptachlor	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	Heptachlor epoxide	μg/kg	ND	ND	ND	ND	0.943 J	ND	NĐ	ND	ND	ND
20	Methoxychior	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
21	Toxaphene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

 $J_{\mathbb{C}}^{\ast}$ Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

-31.535		Borehole →	E11-188	E11-188	E11-189	E11-189	E11-189	E11-189	E11-190	E11-190	E11-190	E11-190
No	Sample ID →		S3	S4	S1	`S2	S3	S4	51	S2	53	S4
	Analyte↓	Depth, m →	~5.0	~9.6	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~10.0
1	4,4'-DDD	μg/kg	5.69	1.43 J	465	13.8	0.9.1	ND	ND	ND	ND	ND
2	4,4'-DDE	μg/kg	1.63 J	0.768 J	122	11.5	0.762 J	ND	ND	0,773 J	ND	ND
3	4,4'-DDT	μg/kg	17.6	ND	1340	85.7	ND	ND	ND	1.51 J	25.8	1.87 J
4	Aldrin	μg/kg	ND	ИD	ND	NĐ						
5	aipha-BHC	μg/kg	ND									
6	alpha-Chlordane	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	ND	13.5 J	1,25)	1.18 J	ND	ND	NĐ	ND	ND
8	delta-BHC	μg/kg	NĐ	ND								
9	Dieldrin	μg/kg	ND	ND	ND	ND -	ND	ND	ND	ND	ND	NĐ
10	Endosulfan I	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
11	Endosulfan II	μg/kg	ND									
12	Endosulfan sulfate	μg/kg	ND									
13	Endrin	μg/kg	ND	NĐ	ND	ND .	ND	ND	ND	ND	ND	ND
14	Endrin aldehyde	μg/kg	ND	NĐ								
15	Endrin ketone	μg/kg	ND									
16	gamma-BHC (Lindane)	μg/kg	0.934 J	NĐ	56.5	2.41	ND	ND	ND	ND	ND	1.11
17	gamma-Chlordane	μg/kg	ND ND	ND	ND	DM	ND	ND	ND	ND	NĐ	ND
18	Heptachlor	μg/kg	ND									
19	Heptachlor epoxide	μg/kg	ND	ИD								
20	Methoxychlor	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	NĐ	ND	ND
21	Toxaphene	μg/kg	ND									

 \mathcal{F} . Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

	Boreho	e → E11-191	E11-191	E11-191	E11-191	E11-192	E11-192	E11-192	E11-192	E11-193	E11-193
No	Sample I) → S1	S2	S3	S4	\$1	S2	S3	S4	S1	S2
	Analyte↓ Depth, i	1 → 0.0~0.5	~2.0	~5.0	~7.7	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	4,4'-DDD µg/kg	2.46	4560	23.8	207	ND	1.4 J	12.7	0.972 J	2.64	7.34
2	4,4'-DDE µg/kg	2.58	ND	0,925 J	8.51	ND	1.37 J	21.8	ND	4.88	10.2
3	4,4'-DDT μg/kg	5.39	20000	129	1220	ND	3.04	95.9		16	41
4	Aldrin µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
5	alpha-BHC μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	alpha-Chlordane μg/kg	ND	ND	ND	ND	ND	NĐ	0,607 J	ND	NĐ	ND
7	beta-BHC µg/kg	ND	ND	NĐ	ND						
8	delta-BHC μg/kg	ND	1,29 J	ND	ND	ND.	ND	ND	. NĐ	ND -	ND
9	Dieldrin μg/kg	ND	ND	ND	ND	ND	ND	0.772)	ND	ND	ND
10	Endosulfan I µg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
11	Endosuifan II µg/kg	ND	NDR	ND	ND -	ND	ND	ND	NĐ	ND	ND
12	Endosulfan sulfate μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	Endrin µg/kg	ND	ND R	ND							
14	Endrin aldehyde µg/kg	NĐ	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
15	Endrin ketone µg/kg	NĐ	ND								
16	gamma-BHC (Lindane) μg/kg	ND	2.88	ND	0.778 J	ND	ND	0.987 J	ND	ND	ND
17	gamma-Chlordane µg/kg	ND	ND	ND	ND	ND	ND	0.709 J	ND	ND	ИÐ
18	Heptachlor µg/kg	NĐ	NĐ	ND	NĐ	ND	ND	ND	ND	В	ND
19	Heptachlor epoxide μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Methoxychlor µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
21	Toxaphene µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

		Borehole ->	E11-193	E11-193	E11-194	E11-194	E11-194	E11-194	E11-195	E11-195	E11-195	E11-195
No		Sample ID →	S3	S4	S1	S2	·S3	S4	S1	S2	S3	S4
	Analyte↓	Depth, m →	~5.0	~8.5	0.3~0.8	~2.0	~5.0	~10.0	0.3~0.8	~2.0	~5.0	~10.0
1	4,4'-DDD	μg/kg	ND	ND	1.49 J	ND						
2	4,4'-DDE	μg/kg	ND	ND	2.09 J	ND	ND	ND	1.41)	ND	ND	ND
3	4,4'-DDT	μg/kg	1.11 J	ND	ND	ND	ND	ND	1.31)	ND	ND	ND
4	Aldrin	μg/kg	ND									
5	alpha-BHC	μg/kg	ND									
6	alpha-Chiordane	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	ND	NĐ	ND						
8	delta-BHC	μg/kg	ND	NĐ	ND	ND						
9	Dieldrin	μg/kg	ND									
10	Endosulfan I	μg/kg	NĐ	ND	NĐ	ND						
11	Endosulfan II	μg/kg	ND									
12	Endosulfan sulfate	μg/kg	ND	NĐ	ND	ND						
13	Endrin	μg/kg	ND	ND	NĐ	ND						
14	Endrin aldehyde	μg/kg	ND									
15	Endrin ketone	μg/kg	ND .	ND								
16	gamma-BHC (Lindane)	μg/kg	ND	0.761	ND	NĐ	ND	ND ·	ND	NĐ	ND	NĐ
17	gamma-Chlordane	μg/kg	ND	ND	NĐ	ND						
18	Heptachlor	μg/kg	ND									
19	Heptachlor epoxide	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
20	Methoxychlor	μg/kg	ND	NĐ	ND							
21	Toxaphene	μg/kg	ND									

 $[\]ensuremath{\mathrm{J}}\xspace$ Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 5. Continued

M		Borehole →	E11-196	E11-196	E11-196	E11-196
No		Sample ID →	S1	S2	\$3	S4
Wij	Analyte↓	Depth, m →	0.3~0.8	~2.3	~5.3	~10.3
1	4,4'-DDD	μg/kg	3.86	ND	ND	ND
2	4,4'-DDE	μg/kg	9,1	ND	ND	ND
3	4,4'-DDT	μg/kg	21.1	ND	ND	ND
4	Aldrin	μg/kg	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND	ND	ND	МÐ
6	alpha-Chlordane	μg/kg	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	ND	ND	ND
8	delta-BHC	μg/kg	ND	ND	ND	ND
9	Dieldrin	μg/kg	ND	ND	ND	ND
10	Endosulfan I	μg/kg	ND	ND	ND R	ND
11	Endosulfan II	μg/kg	NĐ	ND	ND	ND
12	Endosulfan sulfate	μg/kg	ND	ND	ND	ND
13	Endrin	μg/kg	ND	ND	. ND	ND
14	Endrin aldehyde	μg/kg	ND	ND	ND	ND
15	Endrin ketone	μg/kg	NĐ	ND	ND	ND
16	gamma-BHC (Lindane)	μg/kg	ND	ND	ND	NĐ
17	gamma-Chlordane	μg/kg	ND	ND	ND	ND
18	Heptachlor	μg/kg	ND	ND	ND	ND
19	Heptachlor epoxide	μg/kg	ND	ND	ND	NĐ
20	Methoxychlor	μg/kg	ND	ND	ND	ND
21	Toxaphene	μg/kg	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 6. Summary of Organophosphorus Pesticide Results for Phase II and IIb Soil Samples

		Borehole →	E11-154	E11-154	E11-155	E11-155	E11-156	E11-156	E11-156	E11-157	E11-157	E11-157
No		Sample ID →	S1	S2	S1	S2	S1	S2	S3	S1	S2	S3
Parking Parking	Analyte↓	Depth, m →	0.0~0.5	~2.3	0.0~0.5	~1.8	0.0~0.5	~2.0	~6.45	0.0~0.5	~2.0	~4.5
1	Bolstar	μg/kg	ND									
2	Chlorpyrifos	μg/kg	ND									
3	Coumaphos	μg/kg	ND									
4	Demeton	μg/kg	ND									
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ИÐ
6	Dichlorvos	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND	ND	ND	ND	ND	ND	, ND	ND	ND	ND
9	EPN	μg/kg	ND									
10	Ethoprop	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
11	Ethyl Parathion	μg/kg	ND									
12	Fensulfothion	μg/kg	ND	ND	ND	ND	ND	МD	ND	ND	ND	ND
13	Fenthion	μg/kg	ND									
14	Malathion	μg/kg	ND									
15	Methyl Azinphos(Guthion)	μg/kg	ND									
16	Methyl Parathion	μg/kg	ND									
17	Merphos	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
19	Monocrotophos	μg/kg	ND	ND R	ND							
20	Naled	μg/kg	ND									
21	Phorate	μg/kg	ND									
22	Ronnel	μg/kg	ND									
23	Sulfotep	μg/kg	ND	ИD								
24	Stirophos	μg/kg	NU	ND	ND	ND	ND	ND	ND	NĎ	ND	ND
25	TEPP	μg/kg	ND									
26	Tokuthion	μg/kg	NĐ	ND	NĐ	ND						
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-158	E11-158	E11-158	E11-158	E11-159	E11-159	E11-159	£11-159	E11-160	E11-160
No		Sample ID →	S1	S2	S3	S4	S1	S2	S3	S4	\$1	S2
Ç.	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5.0	~8.5	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	Bolstar	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	Chlorpyrifos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	Coumaphos	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
4	Demeton	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
6	Dichlorvos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	Dimethoate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	Disulfoton	μg/kg	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
9	EPN	μg/kg	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND
10	Ethoprop	μg/kg	ND	ND	ND	ND	ND	NÜ	ND	ND	NĐ	ND
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND :	ND	ND	ND	ND
12	Fensulfothion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	Methyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ
17	Merphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	МĐ	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	Monocrotophos	· μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND R
20	Naled	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ДN
21	Phorate	μg/kg	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND
22	Ronnel	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23	Sulfotep	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24	Stirophos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25	TEPP	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	Tokuthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27	Trichloronate	μg/kg	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 6. Continued

1000		Borehole →	E11-160	E11-161	E11-161	E11-161	E11-161	E11-162	E11-162	E11-163	E11-163	E11-163
Nο		Sample ID →	S 3	S1	S2	53	S4	:S1	S2	S1	S2	53
	Analyte↓	Depth, m →	~3.4	0.0~0.5	^2.0	~5.0	~7.9	0.0~0.5	~1.52	0.0~0.5	~2.0	~5.0
1	Bolstar	μg/kg	ND	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND
2	Chiorpyrifos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN
3	Coumaphos	μg/kg	ND	NĐ	ND							
4	Demeton	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
7	Dimethoate	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
	Disulfoton	μg/kg	NĐ	ND								
9	EPN	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	Ethoprop	μg/kg	ND	МÐ	ND	NĐ	ND	ND	ND	ND	ND	ND
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
12	Fensulfothion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	ND	ΝĐ	ND	ND	ND	ND	ND
16	Methyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	Merphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	Mevinphos	μg/kg	ND	NĐ	ND							
19	Monocrotophos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Naled	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Phorate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22	Ronnel	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
23	Sulfotep	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24	Stirophos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
_~	TEPP	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	Tokuthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27	Trichloronate	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-163	E11-164	E11-164	E11-164	E11-164	E11-165	E11-165	E11-165	E11-165	E11-166
No		Sample ID →	S4	S1	S2	53	54	51	S2	S3	S4	S1
	Analyte↓	Depth, m →	~10.0	0.0~0.5	~2.0	~5.0	~11.0	0.0~0.5	~2.0	~5.0	~10.0	0.3~0.8
1	Bolstar	μg/kg	ND	NO	ND	ND						
2	Chlorpyrifos	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
3	Coumaphos	μg/kg	ND									
4	Demeton	μg/kg	ND .	ND								
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	ND	· ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND	ND	ND	ND	ND	ΝĐ	NĐ	ND	ND	ND
8	Disulfoton	μg/kg	ND									
9	EPN	μg/kg	NĐ	ND								
10	Ethoprop	μg/kg	ND	ND	ND	ND	MD	ND	ND	ND	ND	ND
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND :	ND	ND	NĐ	ND	ND
12	Fensulfothion	μg/kg	ND	ND	ND .	ND						
13	Fenthion	μg/kg	ND									
14	Malathion	μg/kg	ND	ND	NĐ	ND						
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ЙN	ND
16	Methyl Parathion	μg/kg	ND									
17	Merphos	μg/kg	ND	NĐ	ND	ND						
18	Mevinphos	μg/kg	ND									
19	Monocrotophos	μg/kg	ND									
20	Naled	μg/kg	ND									
21	Phorate	μg/kg	ND									
22	Ronnel	μg/kg	ND									
23	Sulfotep	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
24	Stirophos	μg/kg	ND									
25	TEPP	μg/kg	ND									
26	Tokuthion	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-166	E11-167	E11-167	E11-167	E11-168	E11-168	E11-169	E11-169	E11-170	E11-170
No		Sample ID →	S2	S1	S2	\$3	S1	S2	S1	S2	S1	52
11111	Analyte↓	Depth, m →	~2.7	0.0~0.5	^2.0	~5.5	0.0~0.5	~3.0	0.0~0.5	~1.8	0.0~0.5	~2.0
1	Bolstar	μg/kg	ND	ND	NĐ	ND						
2	Chlorpyrifos	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
3	Coumaphos	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
4	Demeton	μg/kg	ND	NĐ								
5	Diazinon	μg/kg	ND									
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND									
	Disulfoton	μg/kg	ND	NĐ	ND							
9	EPN	μg/kg	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
10	Ethoprop	μg/kg	ND									
	Ethyl Parathion	μg/kg	ND	ND	NĐ	ND						
	Fensulfothion	μg/kg	ND									
	Fenthion	μg/kg	ND	NĐ	ND	ND						
	Malathion	μg/kg	ND									
	Methyl Azinphos(Guthion)	μg/kg	ND									
	Methyl Parathion	μg/kg	ND									
	Merphos	μg/kg	ND									
	Mevinphos	μg/kg	ND									
$\overline{}$	Monocrotophos	μg/kg	ND	ND	ND	ND	В	ND	ND	ND	ND	ND
	Naled	μg/kg	ND	DN	ND							
	Phorate	μg/kg	ND									
22	Ronnel	μg/kg	ND									
23	Sulfotep	μg/kg	ND									
	Stirophos	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	DN	ND
	TEPP	μg/kg	ND									
	Tokuthion	μg/kg	ND	NĐ	ND							
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		`Borehole →	E11-170	E11-170	E11-171	E11-171	E11-171	E11-172	E11-172	E11-172	E11-172	E11-173
No		Sample ID →	S3	S4	S1	S2	S3	S1	S2	S3	S4	S1
1000	Analyte↓	Depth, m →	~5.0	~7.5	0.0~0.5	~2.0	~6.5	0.0~0.5	~2.0	~5.0	~8.7	0.0~0.5
1	Bolstar	μg/kg	ND									
2	Chlorpyrifos	μg/kg	ND									
3	Coumaphos	μg/kg	ND	ND .	ND							
4	Demeton	μg/kg	ND	NĐ	ND	ND						
5	Diazinon	μg/kg	ND									
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND
9	EPN	μg/kg	NĐ	ND	NĐ	ND						
10	Ethoprop	μg/kg	ND									
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND
12	Fensulfothion	μg/kg	ND									
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND
14	Malathion	μg/kg	ND	NĐ	ND							
15	Methyl Azinphos(Guthion)	μg/kg	ND	NĐ	ND	ND						
16	Methyl Parathion	μg/kg	ND									
17	Merphos	μg/kg	ND									
18	Mevinphos	μg/kg	ND									
19	Monocrotophos	μg/kg	ND	ND R	ND							
20	Naled	μg/kg	ND									
21	Phorate	μg/kg	ND	NĐ	ND	ND						
22	Ronnel	μg/kg	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND
23	Sulfotep	μg/kg	ND									
24	Stirophos	μg/kg	ND	ND	ND	NÜ	NU	ND	ND	ND		ND
25	TEPP	μg/kg	ND	NĐ	ND R	ND						
26	Tokuthion	μg/kg	ND									
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-173	E11-173	E11-173	E11-174	E11-174	E11-174	E11-174	E11-175	E11-175	E11-175
No		Sample ID →	S2	S3	\$4	S1	S2	S3	S4	S1	S2	S3
	Analyte↓	Depth, m 🔿	~2.0	~5.0	~10,0	0.3~0.8	~2.3	2.3~5.3	~8.9	0.0~0.5	~2.0	~5.0
1	Boistar	μg/kg	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND	ND
2	Chlorpyrifos	μg/kg	ND	NĐ								
3	Coumaphos	μg/kg	ND	ND	ND	ND	ND	ND	ŊD	ND	ND	ND
4	Demeton	μg/kg	ND									
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND	NĐ	ND	NĐ						
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND									
9	EPN	μg/kg	ND									
10	Ethoprop	μg/kg	ND	ND	ND	ND	ND	ND	В	NĐ	ND	ND
11	Ethyl Parathion	μg/kg	ND									
12	Fensulfothion	μg/kg	ND	ND .	ND	ND	ND	ND	ND .	ND	ND	ND
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	DM	ND	ND	ND	ND
14	Malathion	μg/kg	ND									
15	Methyl Azinphos(Guthion)	μg/kg	ND									
16	Methyl Parathion	μg/kg	ND	ND .	ND							
17	Merphos	μg/kg	ND	ND	ND	NĐ	ND	NĐ	ND	ND	ND	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
19	Monocrotophos	μg/kg	ND	МD	ND	ND						
20	Naled	μg/kg	ND	ND	ND	ND	ND	В	ND	ND	ND	ND
21	Phorate	μg/kg	ND									
22	Ronnel	μg/kg	ND									
23	Sulfotep	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
24	Stirophos	μg/kg	ND	ND	ND	ND	ND	พบ	ทบ	NU	ND	ND
25	TEPP	μg/kg	ND									
26	Tokuthion	μg/kg	ND	ND	ΝĐ	ND						
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-175	E11-176	E11-176	E11-176	E11-176	E11-177	E11-177	E11-177	E11-177	E11-178
No		Sample ID →	S4	S1	S2	53	S4	S1	S2	S3	S4	S1
	Analyte↓	Depth, m →	~7.25	0.0~0.5	~2.0	~5.0	~10.0	0.4~0.9	~2.4	~5.4	~9.0	0.0~0.5
1	Bolstar	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
2	Chlorpyrifos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	Coumaphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	Demeton	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	Dimethoate	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
8	Disulfoton	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	GN
9	EPN	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
_	Ethoprop	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	NĐ	ND	ND
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD
12	Fensulfothion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
16	Methyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
17	Merphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND
19	Monocrotophos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Naled	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
21	Phorate	μg/kg	ND	ND	ND	ND	DU	ND	ND	ND	ND	ND
22	Ronnel	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
23	Sulfotep	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
	Stirophos	μg/kg	พย	ND	บบ	ИD	ND	ND	ND	ND	ND	ND
25	ТЕРР	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	Tokuthion	μg/kg	ND	ND	ND	ND	NĐ	NĐ	ND	ND	ND	ND
27	Trichloronate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 6. Continued

437		Borehole →	E11-178	E11-178	E11-178	E11-179	E11-179	E11-179	E11-179	E11-180	E11-180	E11-180
No		Sample ID →	S2	S3	S4	51	S2	S3	S4	S1	S2	S3
(Sittle	Analyte↓	Depth, m →	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0
	Bolstar	μg/kg	ND	ND	NĐ	ND						
2	Chlorpyrifos	μg/kg	ND	NĐ	ND	ND						
3	Coumaphos	μg/kg	ND									
4	Demeton	μg/kg	ND	ND	NĐ	ND						
5	Diazinon	μg/kg	ND	ND	ND	ND	МĐ	ND	ND	ND	ND	NĐ
6	Dichlorvos	μg/kg	ND	ND .	ND							
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND									
9	EPN	μg/kg	ND									
10	Ethoprop	μg/kg	ND	ND	ND ND	ND	ND	ND	ND	NĐ	ND	ND
11	Ethyl Parathion	μg/kg	ND									
*********	Fensulfothion	μg/kg	ND									
13	Fenthion	μg/kg	ND									
14	Malathion	μg/kg	ND	ND	NĐ	ND						
15	Methyl Azinphos(Guthion)	μg/kg	NĐ	ND								
~	Methyl Parathion	μg/kg	ND									
	Merphos	μg/kg	ND	NĐ								
18	Mevinphos	μg/kg	ND	ND	NĐ	ND						
	Monocrotophos	μg/kg	ND	ND	ND	ND	ND	ND	ND R	ND	ND	ND
	Naled	μg/kg	ND	ND	NĐ	ND	ND	NĐ	ND	ND	ND	ND
21	Phorate	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
	Ronnel	μg/kg	ND	ND	ND	ND	ND	ND	ND ·	ND	ND	ND
23	Sulfotep	μg/kg	ND	ND	NĐ	ND						
	Stirophos	μg/kg	ND	ND	พย	บท	ND	ND	ND	ND	ND	ND
	TEPP	µg/kg	ND									
	Tokuthion	μg/kg	ND									
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-180	E11-181	E11-181	E11-181	E11-182	E11-182	E11-182	E11-182	E11-183	E11-183
No		Sample ID →	S4	51	S2	S3	S1	S2	S3	S4	S1	S2
	Analyte↓	Depth, m →	~10.0	0.0~0.5	~2.0	~5.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	Bolstar	μg/kg	ND									
2	Chlorpyrifos	μg/kg	ND									
3	Coumaphos	μg/kg	ND									
4	Demeton	μg/kg	ND	NĐ	ND							
5	Diazinon	μg/kg	ND	NĐ	ND							
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND	NĐ								
9	EPN	μg/kg	ND	NĐ	ND							
10	Ethoprop	µg/kg	ND	NĐ	ND	ND						
11	Ethyl Parathion	μg/kg	ND									
12	Fensulfothion	μg/kg	ND	ND	ND	ND	ND	ND .	NĐ	ND	ND	ND
13	Fenthion	μg/kg	ND	ND	ND	ИD	ΝĐ	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND									
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	NĐ	ND	ND
16	Methyl Parathion	μg/kg	ND									
17	Merphos	μg/kg	ND	NĐ								
18	Mevinphos	μg/kg	ND									
19	Monocrotophos	μg/kg	ND									
20	Naled	μg/kg	NĐ	ND								
21	Phorate	μg/kg	ND									
22	Ronnel	μg/kg	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND
23	Sulfotep	μg/kg	ND	NĐ								
24	Stirophos	μg/kg	ND	UN	ND							
25	TEPP	μg/kg	ND	NĐ	ND	ND						
26	Tokuthion	μg/kg	ND									
27	Trichloronate	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 6. Continued

110		Borehole →	E11-183	E11-183	E11-184	E11-184	E11-184	E11-184	E11-185	E11-185	E11-185	E11-185
No		Sample ID →	S3	54	S1	52	S3	S4	S1	S2	S3	S4
100 (504	Analyte↓	Depth, m →	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~8.75	0.0~0.5	~2.0	~5.0	~8.8
1	Bolstar	μg/kg	ND	МĐ	NĐ							
2	Chlorpyrifos	μg/kg	ND									
3	Coumaphos	μg/kg	ND	ND	ОИ	ND						
4	Demeton	μg/kg	ND	NĐ								
5	Diazinon	μg/kg	ND									
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND									
9	EPN	μg/kg	ND	NĐ	NĐ							
10	Ethoprop	μg/kg	ND									
11	Ethyl Parathion	μg/kg	ND									
12	Fensulfothion	μg/kg	ND	NĐ	ND							
13	Fenthion	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND									
15	Methyl Azinphos(Guthion)	μg/kg	ND									
16	Methyl Parathion	μg/kg	ND									
17	Merphos	μg/kg	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	NĐ
18	Mevinphos	μg/kg	ND	NĐ	ND							
19	Monocrotophos	μg/kg	ND									
20	Naled	μg/kg	ND									
21	Phorate	μg/kg	ND	NĐ	ND	ND						
22	Ronnel	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
23	Sulfotep	μg/kg	ND									
24	Stirophos	μg/kg	ND									
25	TEPP	μg/kg	ND	ND	ND	NĐ	ND	ND	NĐ	ND	ND	ND
26	Tokuthion	μg/kg	ND									
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

Will		Borehole →	E11-186	E11-186	E11-186	E11-186	E11-187	E11-187	E11-187	E11-187	E11-188	E11-188
No		Sample ID →	S1	S2	S3	S4	S1	S2	.S3	54	S1	S2
15:11:	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5.0	~8.0	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	Bolstar	μg/kg	ND									
2	Chlorpyrifos	μg/kg	ND	, ND	ND	ND	ND	ND	ND	ND	ND	ND
3	Coumaphos	μg/kg	ND	NĐ								
4	Demeton	μg/kg	ND									
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND	ND .	ND	NĐ						
8	Disulfoton	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
9	EPN	μg/kg	ND									
10	Ethoprop	μg/kg	ND	ND	NĐ	ND						
11	Ethyl Parathion	μg/kg	ND									
12	Fensulfothion	μg/kg	ND									
13	Fenthion	μg/kg	ND	ND	ND	NĐ :	ND	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	μg/kg	ND									
16	Methyl Parathion	μg/kg	ND	NĐ	ND							
17	Merphos	μg/kg	ND	ΝĐ	ND							
18	Mevinphos	μg/kg	ND									
19	Monocrotophos	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
20	Naled	μg/kg	ND									
21	Phorate	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
22	Ronnel	μg/kg	ND									
23	Sulfotep	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	NĐ	ND
	Stirophos	μg/kg	ND	NĐ								
25	TEPP	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
26	Tokuthion	μg/kg	ND									
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole →	E11-188	E11-188	E11-189	E11-189	E11-189	E11-189	E11-190	E11-190	E11-190	E11-190
No		Sample ID ->	S3	S4	S1	S2	53	\$4	S1	S2	S3	\$4
	Analyte↓	Depth, m →	~5.0	~9.6	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0	~5.0	~10.0
1	Bolstar	μg/kg	ND									
2	Chlorpyrifos	μg/kg	ND									
3	Coumaphos	μg/kg	ND									
4	Demeton	μg/kg	ND	ND .	ND							
5	Diazinon	μg/kg	ND	NĐ	ND							
6	Dichlorvos	μg/kg	ND	ИD	ND							
7	Dimethoate	μg/kg	ND									
8	Disulfoton	μg/kg	ND									
9	EPN	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
10	Ethoprop	μg/kg	ND									
11	Ethyl Parathion	μg/kg	ND	ИÐ	ND							
12	Fensulfothion	μg/kg	ND									
13	Fenthion	μg/kg	ND	ИD	ND							
14	Malathion	μg/kg	ND									
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	NĐ	ND	NĎ	ND	ND	ND	NĐ
16	Methyl Parathion	μg/kg	NĐ	ND								
17	Merphos	μg/kg	ND									
18	Mevinphos	μg/kg	ND									
19	Monocrotophos	μg/kg	ND									
20	Naled	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
21	Phorate	μg/kg	ND	МĎ	ND							
	Ronnel	μg/kg	ND									
23	Sulfotep	μg/kg	ND									
	Stirophos	μg/kg	ND	NU	ND	ND						
	ТЕРР	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND R
26	Fokuthion	μg/kg	ND	NĐ	ND	ND	ND .	ND	ND	ND	ND	ND
27	Trichloronate	μg/kg	ND									

R: Data rejected ND: Not detected

Table 6. Continued

13000		Borehole →	E11-191	E11-191	E11-191	E11-191	E11-192	F11-192	E11-192	E11-192	E11-193	E11-193
No		Sample ID →	S1	S2	S3	S4	S1	S2	S3	S4	S1	52
estabili	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5.0	~7.7	0.0~0.5	~2.0	~5,0	~10.0	0.0~0.5	~2.0
1	Boistar	μg/kg	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND	ND
2	Chlorpyrifos	μg/kg	ND	ND	NĐ	ND						
3	Coumaphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	Demeton	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND
6	Dichlorvos	μg/kg	NĐ	ND								
7	Dimethoate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ΝĐ	ND
	Disulfoton	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
9	EPN	μg/kg	В	ND								
10	Ethoprop	μg/kg	ND	ND	ND	ND	ND :	ND	ND	ND	ND	ND
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND
12	Fensulfothion	μg/kg	NĐ	ND								
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
_	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Methyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Merphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Monocrotophos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Naled	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
21	Phorate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Ronnel	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
23	Sulfotep	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24	Stirophos	μg/kg	เยด	NU	NU	טא	ND	ND	ND	ND	ND	ND
25	TEPP	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Tokuthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27	Trichloronate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 6. Continued

4(1)		Borehole →	E11-193	E11-193	E11-194	E11-194	E11-194	E11-194	E11-195	E11-195	E11-195	E11-195
No		Sample ID →	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4
	Analyte↓	Depth, m →	~5.0	~8.6	0.3^0.8	~2.0	~5.0	~10.0	0.3~0.8	~2.0	~5.0	~10.0
1	Bolstar	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	Chlorpyrifos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	Coumaphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	Demeton	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND :	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	Dimethoate	μg/kg	ND	ND	ND	ND	ND .	ND	ND	ND	ND	NĐ
8	Disulfoton	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	EPN	μg/kg	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	Ethoprop	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	Ethyl Parathion	μg/kg	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	Fensulfothion	μg/kg	ND	ND	ND	ND	ND	МÐ	ND	ND	ND	ND
13	Fenthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Malathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	Methyl Parathion	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	Merphos	μg/kg	ND	ND	NĎ	ND	ND	ND	ND	ND	NĐ	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	Monocrotophos	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Naled	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Phorate	μg/kg	ND	ND	ND	ŊD	ND	ND	ND	ND	ND	ND
22	Ronnel	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23	Sulfotep	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
	Stirophos	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
25	ТЕРР	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	NĐ
26	Tokuthion	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
27	Trichloronate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 6. Continued

		Borehole ->	E11-196	E11-196	E11-196	E11-196
No		Sample ID →	S1	S2	S3	S4
rations visite	Analyte↓	Depth, m 🔿	0.3~0.8	~2.3	~5.3	~10.3
1	Bolstar	μg/kg	ND	NĐ	ND	ND
2	Chlorpyrifos	μg/kg	ND	ND	ND	ND
3	Coumaphos	μg/kg	ND	ND	ND	NĐ
4	Demeton	μg/kg	ND	ND	ND	ND
5	Diazinon	μg/kg	ND	ND	ND	ND
6	Dichlorvos	μg/kg	ND	ND	ND	ND
7	Dimethoate	μg/kg	ND	ND	ND	ND
8	Disulfoton	μg/kg	ND	ND	ND	ND
9	EPN	μg/kg	ND	ND	ND	ND
10	Ethoprop	μg/kg	ND	NĐ	ND	ND
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND
12	Fensulfothion	μg/kg	ND	ND	ND	NĐ
13	Fenthion	μg/kg	ND	ND	NĐ	ND
14	Malathion	μg/kg	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	ND
16	Methyl Parathion	μg/kg	ND	ND	ND -	ND
17	Merphos	μg/kg	ND	ND	ND	ND
18	Mevinphos	μg/kg	ND	ND	ND	ND
19	Monocrotophos	μg/kg	ND	ON	ND R	ND
20	Naled	μg/kg	ND	ND	ND	ND
21	Phorate	μg/kg	ND	ND	NĐ	ND
22	Ronnel	μg/kg	ND	ND	ND	ND
23	Sulfotep	μg/kg	ND	ND	ND	ND
24	Stirophos	μg/kg	ND	ND	NĐ	ND
25	TEPP	μg/kg	ND	ND	ND	ND
26	Tokuthion	μg/kg	ND	ND	ND	ND
27	Trichloronate	μg/kg	ND	ND	ND	ND

R: Data rejected ND: Not detected

Table 7. Summary of Volatile Organic Compound Results for Phase II and IIb Soil Samples

	1	Borehole →	E11-154	E11-154	E11-155	E11-155	E11-156	E11-156	E11-156	£11-157	E11-157	E11-157
No	S	iample ID 🔿	S1	S2	S1	S2	S1	S2	S3	S1	S2	S3
	Analyte↓ I	Depth, m 🔿	0.0~0.5	~2.3	0.0~0.5	~1.8	0.0~0.5	~2.0	~6.45	0.0~0.5	~2.0	~4.5
1	1,1,1,2-Tetrachloroethane	μg/kg	ND	ND	ND	ND	МĐ	ND	ND	ND	ND	ND
2	1,1,1-Trichloroethane	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
3	1,1,2,2-Tetrachloroethane	μg/kg	ND	NĐ	ND	NĐ						
4	1,1,2-Trichloroethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	1,1-Dichloroethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	1,1-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	1,1-Dichloropropene	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
8	1,2,3-Trichlorobenzene	μg/kg	ND	ND	NĐ	ND						
9	1,2,3-Trichloropropane	μg/kg	NĐ	ND								
10	1,2,4-Trichlorobenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	1,2,4-Trimethylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	1,2-Dibromo-3-chloropropane	μg/kg	ND	NĐ	ND							
13	1,2-Dibromoethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
14	1,2-Dichlorobenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
15	1,2-Dichloroethane	μg/kg	ND	NĐ	ND							
16	1,2-Dichloropropane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	1,3,5-Trimethylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ΝĐ	ND	ND
18	1,3-Dichlorobenzene	μg/kg	ND	NĐ	ND	ND	ND	NĐ	В	ND	ND	ND
19	1,3-Dichloropropane	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
20	1,4-Dichlorobenzene	μg/kg	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND	ND
21	2,2-Dichloropropane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22	2-Butanone	μg/kg	ND	1.82 J	ND	9.61 J	ND	ND	ND	ND	ND	ND
-	2-Chlorotoluene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24	2-Hexanone	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25	4-Chlorotoluene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	4-Isopropyltoluene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27	4-Methyl-2-pentanone	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
28	Acetone	μg/kg	ND	ND	ND	42.5 J	16.9 J	20.7 J	7.36 J	ND	ND	ND
	Benzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30	Bromobenzene	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
31	Bromochloromethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
32	Bromodichloromethane	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
33	Bromoform	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
34	Bromomethane	μg/kg	NU	GN	ND	ND	ПD	ND	ND	ND	ND	ND

R: Data rejected

J: Estimated amount between the detection limit and reporting limit

Table 7. Continued

4390	Language and the second	Borehole →	E11-154	E11-154	£11-155	E11-155	E11-156	E11-156	Libraria incisi	I Strate Meta	Lineaurarenini	Cievana en
No		Sample ID →	S1	S2	S1	S2	S1 S1	S2	E11-156	E11-157	E11-157	E11-157
	Analyte↓	Depth, m →	0.0~0.5	~2.3	0.0~0.5	~1.8	0.0~0.5	~2.0	S3	S1	52	S3
35	Carbon disulfide	μg/kg	0,0 0.3 ND	0.976 J			100000000000000000000000000000000000000		~6.45	0.0~0.5	~2.0	~4.5
36	Carbon tetrachloride		ND		ND ND	ND ND	ND ND	ND	ND ND	ND	NĐ	ND
37	Chlorobenzene	μg/kg		ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
38	Chloroethane	μg/kg	ND ND	ND ND	ND	ND ****	ND	ND	ND	ND	ND	ND
39	Chloroform	μg/kg	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
40	Chloromethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
_	cis-1,2-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
41		μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
42	cis-1,3-Dichloropropene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
43	Dibromochloromethane	μg/kg	ND	ND	ND	NĐ	NĐ	ND	ND	ND	ND	ND
44	Dibromomethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
45	Dichlorodifluoromethane	μg/kg	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND
46	Ethyl Benzene	μg/kg	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND
	Hexachlorobutadiene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
	Isopropylbenzene (Cumene)	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	m,p-Xylene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Methyl iodide	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
	Methylene chloride	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Naphthalene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	n-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	n-Propylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	o-Xylene	μg/kg	ND	ND	ND	ΝĐ	ND	ND	ND	ND	NĐ	ND
56	sec-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
57	Styrene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND R
58	tert-Butyl methyl ether (MTBE)	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND
59	tert-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
60	Tetrachloroethene	μg/kg	ND	NĐ	ND	ND	ND	1.39 J	ND	ND	ND	ND
61	Toluene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
62	trans-1,2-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
63	trans-1,3-Dichloropropene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64	trans-1,4-Dichloro-2-butene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65	Trichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66	Trichlorofluoromethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67	Vinyl chloride	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

R. Data rejected

Table 7. Continued

		Borehole 🔿	E11-158	E11-158	E11-158	E11-158	E11-159	E11-159	E11-159	E11-159	E11-160	E11-160
No		Sample ID →	S1	S2	S3	S4	S1	S2	S3	54	S1	\$2
attrameter.	Analyte↓	Depth, m →	0.0~0.5	~2.0	~5,0	~8.5	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0
1	1,1,1,2-Tetrachloroethane	μg/kg	NĐ	ND	ND							
2	1,1,1-Trichloroethane	μg/kg	ND	NĐ	ND	ND	ND	ND	ND	ND	МĐ	ND
3	1,1,2,2-Tetrachloroethane	μg/kg	ND	ND								
4	1,1,2-Trichloroethane	μg/kg	NĐ	ND	ND							
5	1,1-Dichloroethane	μg/kg	ND	NĐ	ND							
6	1,1-Dichloroethene	μg/kg	ND	ND								
7	1,1-Dichloropropene	μg/kg	NĐ	ND	ND							
8	1,2,3-Trichlorobenzene	μg/kg	ND	ND								
9	1,2,3-Trichloropropane	μg/kg	ND	ND								
10	1,2,4-Trichlorobenzene	μg/kg	NĐ	ND	ND							
11	1,2,4-Trimethylbenzene	μg/kg	ND	ND								
12	1,2-Dibromo-3-chloropropane	μg/kg	ND	ND								
13	1,2-Dibromoethane	μg/kg	ND	ND								
14	1,2-Dichlorobenzene	μg/kg	ND	ND								
15	1,2-Dichloroethane	μg/kg	ND	ND								
16	1,2-Dichloropropane	μg/kg	ND	ND								
17	1,3,5-Trimethylbenzene	μg/kg	ND	ΝĐ	ND							
18	1,3-Dichlorobenzene	μg/kg	ND	ND								
19	1,3-Dichloropropane	μg/kg	NĐ	ND	ND							
20	1,4-Dichlorobenzene	μg/kg	ND	NĐ	ND							
21	2,2-Dichloropropane	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
22	2-Butanone	μg/kg	ND	24.2 J	ND	ND						
23	2-Chlorotoluene	μg/kg	ND	ИD	ND	ND						
24	2-Hexanone	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
25	4-Chlorotoluene	μg/kg	NO	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
26	1-Isopropyltoluene	μg/kg	ND	ND								
27	1-Methyl-2-pentanone	μg/kg	NĐ	ND	NĐ							
28	Acetone	μg/kg	ND	ND								
29	Benzene	μg/kg	ND	ND								
30 I	3romobenzene	μg/kg	ND	ND								
31	Bromochloromethane	μg/kg	ND	ND								
32	Bromodichloromethane	μg/kg	ND	ND								
33 l	Bromoform	μg/kg	ND	ND	ND	NĐ	ND	ND	ΝD	ND	CIN	ND
TES	Bromomethane	μg/kg	NO	ND	NĐ	NU	UN	ND	ND	ND	ND	ND

^{3:} Estimated amount between the detection limit and reporting limit

N: Data rejected

Table 7. Continued

	adie 7. Continued													
		Borehole →	E11-158	E11-158	E11-158	E11-158	E11-159	E11-159	E11-159	E11-159	E11-160	E11-160		
No	Si	ample ID →	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2		
	Analyte↓ C	Depth, m →	0.0~0.5	~2.0	~5.0	~8.5	0.0~0.5	~2.0	~5.0	~10.0	0.0~0.5	~2.0		
35	Carbon disulfide	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND		
36	Carbon tetrachloride	μg/kg	ND	NĐ	ND									
37	Chlorobenzene	μg/kg	ND											
38	Chloroethane	μg/kg	ND	ND	NĐ	ND								
39	Chloroform	μg/kg	NĐ	ND	ND	NĐ	ND	ND	ND	ND	ND	ND		
40	Chloromethane	μg/kg	ND											
41	cis-1,2-Dichloroethene	μg/kg	ND											
42	cis-1,3-Dichloropropene	μg/kg	ND											
43	Dibromochloromethane	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND		
44	Dibromomethane	μg/kg	ND											
45	Dichlorodifluoromethane	μg/kg	ND											
46	Ethyl Benzene	μg/kg	NĐ	ND										
47	Hexachlorobutadiene	μg/kg	ND											
48	Isopropylbenzene (Cumene)	μg/kg	ND											
49	m,p-Xylene	μg/kg	ND											
50	Methyl iodide	μg/kg	ND	5.23	ND									
51	Methylene chloride	μg/kg	5.26 J	ND	3.22 J	2.83 J	4,15 J	4.38 J	3.71 J	2.16 J	ND	ND		
52	Naphthalene	μg/kg	ND											
53	n-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND		
54	n-Propylbenzene	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND		
55	o-Xylene	μg/kg	ND											
56	sec-Butylbenzene	μg/kg	ND											
57	Styrene	μg/kg	ND	ND	ND	ND	ND	NĐ	NĐ	ND	ND	ND		
58	tert-Butyl methyl ether (MTBE)	μg/kg	ND	ND	ND	NĐ	ND	В	ND	ND	ND	ND		
59	tert-Butylbenzene	μg/kg	ND											
60	Tetrachloroethene	μg/kg	ND	0.931 J	ND									
61	Toluene	μg/kg	1.61 J	1.14 J	0.707 J	ΝĐ	2.33 J	3.97 J	6.01	1.09 J	ND	ND		
62	trans-1,2-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	MD	ND	ND	ND		
	trans-1,3-Dichloropropene	μg/kg	ND											
64	trans-1,4-Dichloro-2-butene	μg/kg	ND											
65	Trichloroethene	μg/kg	ND	ND	ND	NĐ	ND	NĐ	ND	ND	ND	ND		
66	Trichlorofluoromethane	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND		
67	Vinyl chloride	μg/kg	ND											

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 7. Continued

		Borehole →	E11-160	E11-161	E11-161	E11-161	E11-161	E11-162	E11-162	E11-163	E11-163	E11-163
No		Sample ID →	S3	S1	52	S3	S4	S1	S2	S1	S2	S3
	Analyte↓	Depth, m →	~3.4	0.0~0.5	~2.0	~5.0	~7.9	0.0~0.5	~1.52	0.0~0.5	~2.0	~5.0
1	1,1,1,2-Tetrachloroethane	μg/kg	ND									
2	1,1,1-Trichloroethane	μg/kg	ND									
3	1,1,2,2-Tetrachloroethane	μg/kg	ND									
4	1,1,2-Trichloroethane	μg/kg	ND									
5	1,1-Dichloroethane	μg/kg	ND	ND -	ND							
6	1,1-Dichloroethene	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
7	1,1-Dichloropropene	μg/kg	ND									
8	1,2,3-Trichlorobenzene	μg/kg	ND									
9	1,2,3-Trichloropropane	μg/kg	ND									
10	1,2,4-Trichlorobenzene	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
11	1,2,4-Trimethylbenzene	μg/kg	ND									
12	1,2-Dibromo-3-chloropropane	μg/kg	ND									
13	1,2-Dibromoethane	μg/kg	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND
14	1,2-Dichlorobenzene	μg/kg	NĐ	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
15	1,2-Dichloroethane	μg/kg	ND									
16	1,2-Dichloropropane	μg/kg	ND									
17	1,3,5-Trimethylbenzene	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
18	1,3-Dichlorobenzene	μg/kg	ND									
19	1,3-Dichloropropane	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
20	1,4-Dichlorobenzene	μg/kg	ND									
21	2,2-Dichloropropane	μg/kg	ND									
22	2-Butanone	μg/kg	ND	NĐ	ND							
2.3	2-Chiorotoluene	μg/kg	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND
24	2-Hexanone	μg/kg	ND									
25	4-Chlorotoluene	μg/kg	ND									
26	4-Isopropyltoluene	µg/kg	ND									
27	4-Methyl-2-pentanone	μg/kg	ND									
28	Acetone	μg/kg	ND	11.6 J	7.18.1	ND	5.23 J	12.5 J	ND	ND	ND	ND
29	Benzene	μg/kg	ND									
30	Bromobenzene	μg/kg	ND	NĐ	ND							
31	Bromochloromethane	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	NĐ	ND	ND
32	Bromodichloromethane	μg/kg	ND									
33	Bromoform	μg/kg	ND									
34 DTE	Bromomethane	μg/kg	NĐ	NĐ	ND	NĐ	ND	ND	NĐ	ND	ИÜ	NU

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 7. Continued

	e 7. Continueu											
		Borehole 🔿	E11-160	E11-161	E11-161	E11-161	E11-161	E11-162	E11-162	E11-163	E11-163	E11-163
No		Sample ID →	S3	S1	S2	S3	S4	S1	S2	S1	S2	S3
	Analyte↓	Depth, m →	^3.4	0.0~0.5	~2.0	~5.0	~7.9	0.0~0.5	~1.52	0.0~0.5	~2.0	~5.0
35	Carbon disulfide	μg/kg	ON	ND	ND	ND	ND	ND	ND	ND	ND	ND
36	Carbon tetrachloride	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
37	Chlorobenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
38	Chloroethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
39	Chloroform	μg/kg	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND
40	Chloromethane	μg/kg	ND	ND	ND	ND R	ND	ND	ND	ND	ND	ND
41	cīs-1,2-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
42	cis-1,3-Dichloropropene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
43	Dibromochloromethane	μg/kg	ND	ND	ND	ND	ND	ND	DM	ND	ND	ND
44	Dibromomethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
45	Dichlorodifluoromethane	μg/kg	UN	ND	ND	ND	ND	ND	ND	ND	ND	ND
46	Ethyl Benzene	μg/kg	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND
47	Hexachlorobutadiene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	МĐ	ND
48	isopropylbenzene (Cumene)	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
49	m,p-Xylene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
50	Methyl iodide	μg/kg	ND	ND	ND	ND	ΝĐ	ND	ND	ND	ND	ND
51	Methylene chloride	μg/kg	ND	ND	ND	ND	ND	ND	ND	6.27 J	3.83 J	3.34 J
52	Naphthalene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
53	n-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
54	n-Propylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
55	o-Xylene	μg/kg	ND	ND	ND	ND	ИÐ	NĐ	ND	ND	ND	ND
56	sec-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
57	Styrene	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
58	tert-Butyl methyl ether (MTBE)	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
59	tert-Butylbenzene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
60	Tetrachloroethene	μg/kg	ND	ND	ND	2.93 J	ND	ND	ND	ND	20.2	9.68
61	Toluene	μg/kg	ND	ND	ND	ND	NĐ	NĐ	ND	1.64 J	3.11 J	0,834 J
62	trans-1,2-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
63	trans-1,3-Dichloropropene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64	trans-1,4-Dichloro-2-butene	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
65	Trichloroethene	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	4.85	5.1
66	Trichlorofluoromethane	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67	Vinyl chloride	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

R. Data rejected

Table 7. Continued

	Borehole →	E11-163	E11-164	E11-164	E11-164	E11-164	E11-165	E11-165	E11-165	E11-165	E11-166
No S	ample ID →	S4	S1	S2	53	S4	S1	S2	S3	S4	S1
Analyte↓ [Depth, m →	~10.0	0.0~0.5	~2.0	~5.0	~11.0	0.0~0.5	~2.0	~5.0	~10.0	0.3~0.8
1 1,1,1,2-Tetrachloroethane	μg/kg	ND									
2 1,1,1-Trichloroethane	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
3 1,1,2,2-Tetrachloroethane	μg/kg	ND									
4 1,1,2-Trichloroethane	μg/kg	ND									
5 1,1-Dichloroethane	μg/kg	ND	33	ND							
6 1,1-Dichloroethene	μg/kg	ND									
7 1,1-Dichloropropene	μg/kg	ND	NĐ								
8 1,2,3-Trichlorobenzene	μg/kg	ND									
9 1,2,3-Trichloropropane	μg/kg	ND									
10 1,2,4-Trichlorobenzene	μg/kg	ND	NĐ								
11 1,2,4-Trimethylbenzene	μg/kg	ND									
12 1,2-Dibromo-3-chloropropane	μg/kg	ND									
13 1,2-Dibromoethane	μg/kg	ND									
14 1,2-Dichlorobenzene	μg/kg	ND									
15 1,2-Dichloroethane	μg/kg	ND									
16 1,2-Dichloropropane	μg/kg	ND									
17 1,3,5-Trimethylbenzene	μg/kg	ND									
18 1,3-Dichlorobenzene	μg/kg	ND									
19 1,3-Dichloropropane	μg/kg	ND	ND	ND	ND	ND	ΝĐ	ND	ND	ND	ND
20 1,4-Dichlorobenzene	μg/kg	ND	2.82 J	ND							
21 2,2-Dichloropropane	μg/kg	ND									
22 2-Butanone	μg/kg	ND	ND	ND	ND	ND	8.02 J	3.99 J	3.58 J	1,27 J	15.2 J
23 2-Chlorotoluene	μg/kg	ND	ND	ND	ND	23.3 J	ND	ND	NĐ	ND	ND
24 2-Hexanone	μg/kg	ND									
25 4-Chlorotoluene	μg/kg	ND	МÐ	NĐ	ND	52 J	ND	ND	ND	ND	ND
26 4-Isopropyitoluene	μg/kg	ND									
27 4-Methyl-2-pentanone	μg/kg	ND	NĐ	ND	ND						
28 Acetone	μg/kg	ND	ND	ND	ND	ND	33.7 J	12.3 J	21,4 J	9.04 J	61.1
29 Benzene	μg/kg	ND	1.52 J	ND							
30 Bromobenzene	μg/kg	ND									
31 Bromochloromethane	μg/kg	ND	NĐ	ND	ND						
32 Bromodichloromethane	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
33 Bromoform	μg/kg	ND									
34 Bromomethane	μg/kg	ND	NU	NU	ND						

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 7. Continued

	ne 7. Continueu											
	· · · · · · · · · · · · · · · · · · ·	Borehole →	E11-163	E11-164	E11-164	E11-164	E11-164	E11-165	E11-165	E11-165	E11-165	E11-166
No		ample ID →	S4	S1	S2	S3.	S4	S1	\$2	S3	S4	S1
		Depth, m 🔿	~10.0	0.0~0.5	~2.0	~5.0	~11.0	0.0~0.5	~2.0	~5.0	~10.0	0.3~0.8
35	Carbon disulfide	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	0.721 J	ND
36	Carbon tetrachloride	μg/kg	ND									
37	Chlorobenzene	μg/kg	ND	6.86	ND							
38	Chloroethane	μg/kg	ND									
39	Chloroform	μg/kg	2,25 J	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
40	Chloromethane	μg/kg	ND									
41	cis-1,2-Dichloroethene	μg/kg	10,4	ND	ND	4.62	116	ND	ND	ND	20.7	ND
42	cis-1,3-Dichloropropene	μg/kg	МĐ	ND								
43	Dibromochloromethane	μg/kg	ND									
44	Dibromomethane	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
45	Dichlorodifluoromethane	μg/kg	ND									
46	Ethyl Benzene	μg/kg	ND									
47	Hexachlorobutadiene	μg/kg	ND									
48	isopropylbenzene (Cumene)	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	NĐ
49	m,p-Xylene	μg/kg	ND									
50	Methyl iodide	μg/kg	NĐ	ND	ND	ND	ND .	2.18 J	1.74 J	1.89 J	ND	6.78
51	Methylene chloride	μg/kg	2,44 J	4,34 J	5.47 J	2.86 J	38.2 J	1.1	ND	ND	ND	2.7 J
52	Naphthalene	μg/kg	ND	ND	ND	ND	17 J	ND	ND	ND	ND	ND
53	n-Butylbenzene	μg/kg	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND
54	n-Propylbenzene	μg/kg	ND									
55	o-Xylene	μg/kg	NĐ	ND	ND	ND	ND .	ND	ND	ND	ND	ND .
56	sec-Butylbenzene	μg/kg	ND									
57	Styrene	μg/kg	МĐ	ND								
58	tert-Butyl methyl ether (MTBE)	μg/kg	ND	ΝĐ								
59	tert-Butylbenzene	μg/kg	ND									
60	Tetrachloroethene	μg/kg	27.5	ND	ND	1,24 J	ND	ND	0.944 J	3.45 J	ND	ND
61	Toluene	μg/kg	1.61 J	1,71 J	2.73 J	NĐ	2960	ND	ND	ND	МD	NĐ
62	trans-1,2-Dichloroethene	μg/kg	ND	МĐ	1,65 J	ND						
63	trans-1,3-Dichloropropene	μg/kg	ND									
64	trans-1,4-Dichloro-2-butene	μg/kg	ND									
65	Trichloroethene	μg/kg	81.3	ND	1.28 J	ND						
66	Trichlorofluoromethane	μg/kg	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
67	Vinyl chloride	μg/kg	ND									

J: Estimated amount between the detection limit and reporting limit

R: Data rejected

Table 7. Continued

9.14 3.15 3.15		Borehole →	E11-166	E11-167	E11-167	E11-167	E11-168	E11-168	E11-169	E11-169	E11-170	E11-170
No	SE	ample ID →	S2	S1	S2	S3	S1	S2	S1	S2	S1	S2
1000	Analyte↓ D	epth, m →	~2.7	0.0~0.5	~2.0	~5.5	0.0~0.5	~3.0	0.0~0.5	~1.8	0.0~0.5	~2.0
1	1,1,1,2-Tetrachloroethane	μg/kg	ND									
2	1,1,1-Trichloroethane	μg/kg	ND									
3	1,1,2,2-Tetrachloroethane	μg/kg	ND									
4	1,1,2-Trichloroethane	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
5	1,1-Dichloroethane	μg/kg	ND									
6	1,1-Dichloroethene	μg/kg	ND									
7	1,1-Dichloropropene	μg/kg	ND									
8	1,2,3-Trichlorobenzene	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
9	1,2,3-Trichloropropane	μg/kg	ND									
10	1,2,4-Trichlorobenzene	μg/kg	ND									
11	1,2,4-Trimethylbenzene	μg/kg	ND									
12	1,2-Dibromo-3-chloropropane	μg/kg	ND									
13	1,2-Dibromoethane	μg/kg	ND									
14	1,2-Dichlorobenzene	μg/kg	ND									
15	1,2-Dichloroethane	μg/kg	ND									
16	1,2-Dichloropropane	μg/kg	ND									
17	1,3,5-Trimethylbenzene	μg/kg	ND									
18	1,3-Dichlorobenzene	μg/kg	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND
19	1,3-Dichloropropane	μg/kg	ND									
20	1,4-Dichlorobenzene	μg/kg	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND
21	2,2-Dichloropropane	μg/kg	ND	NĐ	ND							
22	2-Butanone	μg/kg	ND	3.86 J	4:48 J	NĐ	2.96 J	ND	17.2 J	ND	3.31 J	1.68 J
23	2-Chlorotoluene	μg/kg	ND									
24	2-Hexanone	μg/kg	ND .	ND								
25	4-Chlorotoluene	μg/kg	ND									
26	4-Isopropyltoluene	μg/kg	ND									
27	4-Methyl-2-pentanone	μg/kg	ND									
28	Acetone	μg/kg	ND	28.5 J	31.6 J	7.12 J	14,5 J	ND	87.1	5.2 J	21,9 J	10.3 J
29	Benzene	μg/kg	ND									
30	Bromobenzene	μg/kg	ND									
31	Bromochloromethane	μg/kg	ND									
32	Bromodichloromethane	μg/kg	ND	NĐ	ND							
33	Bromoform	μg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
34	Bromomethane S:	μg/kg	שטא	NU	ND	ND	ND	ND	ИD	ND	ND	ND

J: Estimated amount between the detection limit and reporting limit

A: Data rejected

Table 7. Continued

	В	orehole →	E11-166	E11-167	E11-167	E11-167	E11-168	E11-168	E11-169	£11-169	E11-170	E11-170
No	Sai	mple ID →	S2	S1	S2	S3	S1	S2	S1	S2	S1	S2
	Analyte↓ Do	epth, m 🔿	~2.7	0.0~0.5	~2.0	~5.5	0.0~0.5	~3.0	0.0~0.5	~1.8	0.0~0.5	~2.0
35	Carbon disulfide	μg/kg	ND	ND								
36	Carbon tetrachloride	μg/kg	ND	ND								
37	Chlorobenzene	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
38	Chloroethane	μg/kg	ND	ND								
39	Chloroform	μg/kg	ND	ND								
40	Chloromethane	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
41	cis-1,2-Dichloroethene	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	0.714 J.	31.1
42	cis-1,3-Dichloropropene	μg/kg	ND	ND								
43	Dibromochloromethane	μg/kg	ND	ND								
44	Dibromomethane	μg/kg	ND .	ND	ND							
45	Dichlorodifluoromethane	μg/kg	ND	ND								
46	Ethyl Benzene	μg/kg	ND	ND								
47	Hexachlorobutadiene	μg/kg	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
48	Isopropylbenzene (Cumene)	μg/kg	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND
49	m,p-Xylene	μg/kg	ND	ND								
50	Methyl iodide	μg/kg	ND	1.35 J	1.75 J	ND	ND	ND	0.894 J	ND	ND	ND
51	Methylene chloride	μg/kg	2,9 J	ND	ND	ND	ND	ND	ND	NĐ	NĐ	ND
52	Naphthalene	μg/kg	ND	ND	ND	ND	ND "	ND	ND	NO	ND	ND
53	n-Butylbenzene	μg/kg	ND	ND								
54	n-Propylbenzene	μg/kg	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND
55	o-Xylene	μg/kg	ND .	ND	ND	ND	₩D	ND	ND	ND	ND	ND
***************************************		μg/kg	ND	ND								
57	Styrene	μg/kg	ND	NĐ	ND	ND						
58	tert-Butyl methyl ether (MTBE)	μg/kg	ND	ND	ND	ND	ND	МĐ	ND	ND	ND	ND
59	tert-Butylbenzene	μg/kg	ND	ND								
60	Tetrachloroethene	μg/kg	ND	1.2 J	ND	ND	4.18 J	ND	4.26	ND ND	10.7	86.8
61	Toluene	μg/kg	ND	ND	ND	ND	0.698 J	ND	0.718 J	NĐ	ND	ND
62	trans-1,2-Dichloroethene	μg/kg	ND D	ND	ND							
		μg/kg	ND	ND								
64		μg/kg	ND	ND								
-		μg/kg	ND	0.768 J	7.97							
		μg/kg	ND	ΝD	ND							
67	Vinyl chloride	μg/kg	ND	NĐ								

1: Estimated amount between the detection limit and reporting limit

R: Data rejected