

Uploaded to the VFC Website

▶ ▶ 2020 ◀ ◀

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

If Veterans don't help Veterans, who will?

Note: VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

Riverside County, California

Study of Health Outcomes in Aircraft Maintenance Personnel (SHOAMP)

Phase I

Literature Review

Final Report July 2003

TABLE OF CONTENTS

Table of Contentsi
List of Tablesiii
List of Appendicesiv
Synopsis1
Acknowledgments3
Background4
Study organisation and administration6
The issue of occupational exposure8
Aim of this report10
Research question and hypotheses12
Research question and hypotheses12 Methods
Methods13
Methods
Methods
Methods 13 Construction of search terms 13 Identification of search facilities 16 Expert Review 17
Methods 13 Construction of search terms 13 Identification of search facilities 16 Expert Review 17 Results 19
Methods 13 Construction of search terms 13 Identification of search facilities 16 Expert Review 17 Results 19 Yield of literature review 19
Methods 13 Construction of search terms 13 Identification of search facilities 16 Expert Review 17 Results 19 Yield of literature review 19 Associations between exposure and health outcomes 20
Methods 13 Construction of search terms 13 Identification of search facilities 16 Expert Review 17 Results 19 Yield of literature review 19 Associations between exposure and health outcomes 20 Cancer 20
Methods. 13 Construction of search terms. 13 Identification of search facilities. 16 Expert Review 17 Results 19 Yield of literature review 19 Associations between exposure and health outcomes 20 <i>Cancer</i> 20 Multiple Sclerosis, Motor Neurone Disease and Other Neurological

Reproductive Health Effects	54
Other health effects	56
Health and the Manufacture and Maintenance of Aircraft	62
Measurement of exposure and outcomes	73
Bio-markers	73
Measurement of Neuropsychological Deficits	81
Summary of Results and Implications for General Health and Medical Study	/ 85
Cancer	85
Multiple Sclerosis, Motor Neurone Disease and other Neurological Effects	85
Birth Defects	86
Neuropsychology	86
Other Health Effects	87
Biomarkers	87
References	88
Appendices	. 117

LIST OF TABLES

Table 1 :	Literature search results	20
Table 2 :	Summary of chemicals and cancer classifications	24
Table 3 :	Summary of cancer studies not included in IARC and EPA classification	าร
		30
Table 4 :	Summary table of neurotoxic and neurobehavioural efects of organic	
	solvents	38
Table 5 :	Summary of Multiple Sclerosis and Motor Neurone Disease literature	
	review	39
Table 6 :	Summary of Neuropsychological literature review	46
Table 7 :	Summary of Birth Defects and Chemical Exposure	55
Table 8 :	Summary of other health effects	58
Table 9 :	Studies involving health, exposure and aircraft maintenance	67
Table 10 :	Summary of Assay Information	79
Table 11 :	Summary of Tests Used for Neuropsychological Assessment	83

LIST OF APPENDICES

Appendix A :	List of chemical products	118
Appendix B :	Search terms representing chemical substances to which F-111 DS	SRS
	workers were potentially exposed	129
Appendix C :	Search terms for indicators of adverse outcomes of occupational	
	exposure	130
Appendix D :	List of resources used for literature search	131
Appendix E :	Silica and other substances in relation to malignancies	132
Appendix F :	Benzene exposure in relation to malignancies	143
Appendix G :	Mitochondrial disease and solvent exposure	147

SYNOPSIS

The Study of Health Outcomes in Aircraft Maintenance Personnel (SHOAMP) represents a retrospective cohort study of health differences between particular work groups of interest. Commissioned by the Department of Defence, the study aims to investigate the health of individuals involved in any of the F-111 aircraft fuel tank Deseal/Reseal programs (DSRS) conducted at RAAF Base Amberley from 1975 to 1999 to answer the questions –

Is there an association between adverse health status and an involvement in F-111 Deseal/Reseal activities? If so, what is the nature and strength of those associations?

The study is to be conducted in three phases, the first phase of which included an extensive review of the scientific literature for evidence of adverse health affects from occupational exposure. This report summarises the literature review process and evidence found for associations between specific exposures relevant to SHOAMP and outcomes of interest.

A systematic and wide-ranging literature review was conducted to ensure that all appropriate outcomes and exposures, as well as important confounders and effect modifiers are considered and assessed. It also ensured that the most appropriate measures are used based on evidence for valid and reliable testing procedures and instruments.

The overall yield of occupational exposure and chemical literature was high. The bulk of the published literature consisted of toxicology summaries for specific chemical components, health hazard reports for individual organisations and small case study reports detailing symptoms where exposure intoxication had occurred, which could have been a reflection of the search style and database facilities utilised.

Ensuing search techniques concentrated on references quoted within published literature; search terms using specific authors; and known journals. Greater attention was directed towards identification of case-control and cohort studies that investigated associations between adverse health outcomes and exposure, which were more in line with the aims and hypotheses of the Study of Health Outcomes.

Based on the scientific literature reviewed for this report the following key recommendations were made for the Study of Health Outcomes in Aircraft Maintenance Personnel –

- Conduct a study of mortality and cancer incidence to further investigate the development of cancer by workers involved in the F-111 DSRS programs compared with appropriate comparison groups;
- As part of the General Health and Medical Study:
 - → Include screening items suitable for questionnaire or interview administration for identification of previous diagnoses particularly involving depression, dementia, cancer, multiple sclerosis, and motor neurone disease;
 - → Include screening items suitable for questionnaire or interview administration for identification of alcohol and smoking habits, and opportunity for occupational exposure to hazardous substances outside of the F-111 DSRS programs;
 - → Administrate a battery of tests to assess neuropsychological abilities for both exposed and comparison cohorts, giving consideration to brevity of tests and reducing repetition;
 - → Collect data on the reproductive health of female workers involved in the F-111 DSRS programs and also female partners of male workers; and
 - → Include tests for chromosomal aberrations and storage of blood samples for future analysis.

ACKNOWLEDGMENTS

We would like to take this opportunity to thank members of the Scientific Advisory Committee (SAC) and Consultative Forum, representatives from the Departments of Veterans' Affairs (DVA) and Defence for their contributions to this Report.

Also many thanks to Amanda Wilson for her writing and research skills, and to Rowena Brown for her tireless work searching and retrieving documents and proof reading.

BACKGROUND

Ordered from the United States in the early 1960s, the F-111 aircraft are an important part of Australia's defence. The advantage of these aircraft is that they can fly long distances at high speed. This requires the ability to carry a large quantity of fuel and the fuel tanks to be sealed in such as way as to avoid leakage under such extreme conditions. F-111s have numerous fuel tanks of varying size. At the time of manufacture sealant was put between the overlapping metal surfaces in the tanks. Over time the sealant used deteriorated and needed to be replaced. This involved removing the original sealant inside the fuel tanks (desealing) and replacing it with new sealant (resealing). Removal of the sealant required firstly the use of chemicals, then physical removal using water jets and then manual removal using hand tools. For the fuselage fuel tanks the process of desealing and resealing required physical entry to the tanks; while for wing tanks actual entry was not required.

There were four F-111 Deseal/Reseal programs conducted over the period 1975 to 1999, involving RAAF personnel and some contracted civilian workers, in addition to routine maintenance activities carried out in between programs as necessary. Methods used during each program varied over time; however there was evidence that neither respiratory protection nor skin protection requirements were complied with. Moreover, there may have been a multiplication effect on health when DSRS practices were combined with confined working space and high temperatures.

Some concerns have been reported regarding adverse health effects as a direct result of participation in the F-111 DSRS programs. These concerns have included neurological and psychological problems and possible increased rates of cancer and multiple sclerosis. In response to this, a Board of Inquiry (BOI) was conducted into the chemical exposure of F-111 DSRS workers to clarify exactly what happened.

Simultaneously, the (then) Chief of the Air Force also decided that an epidemiological study be conducted into the health of personnel involved in the F-111 DSRS programs compared with appropriate comparison personnel.

This study, known as the Study of Health Outcomes in Aircraft Maintenance Personnel (SHOAMP), is being undertaken by researchers from The University of Newcastle Research Associates (TUNRA Ltd) and the Hunter Medical Research Institute. The Study consists of three Phases:

- a) Phase I involved a detailed literature review to explore evidence of relationships between exposures potentially encountered during F-111 DSRS activities and adverse health outcomes, a qualitative study to obtain in-depth information on activities and exposures of individuals involved in DSRS, finalisation of definitions of the exposed and comparison cohorts and development of a detailed protocol manual for the General Health and Medical Study.
- b) Phase II is a Mortality and Cancer Incidence Study, based on record linkage with data from the National Death Index and all State and Territory Cancer Registries.
- c) Phase III of SHOAMP is a General Health and Medical Study involving a detailed postal questionnaire and a series of health and neuropsychological examinations to assess exposure and outcomes for individuals involved in F-111 DSRS activities and comparisons.

The task faced by the SHOAMP is to determine if there is evidence to support anecdotal reports of adverse health problems in personnel involved in the F-111 DSRS programs. Because of the variety and complexity of the different exposures it was determined that a detailed literature review should be undertaken to obtain the most recent information on the relationship between exposures potentially encountered during DSRS activities and possible outcomes. This would then inform measures required for the General Health and Medical Study examinations to be undertaken as Phase III of SHOAMP.

STUDY ORGANISATION AND ADMINISTRATION

The Study of Health Outcomes in Aircraft Maintenance Personnel is a collaborative study conducted by researchers from The University of Newcastle Research Associates (TUNRA Ltd) and the Hunter Medical Research Institute. The study is administered by the Department of Veterans' Affairs on behalf of the Department of Defence.

The Scientific Advisory Committee (SAC) oversees the scientific aspects of the study. In terms of specific health tests to be administered as part of the General Health and Medical Study (Phase III), the SAC provided valuable recommendations and support for the research team. The SAC standing members are:

- Professor Judith Whitworth (SAC Chair), Director John Curtin School of Medical Research, Australian National University;
- Professor Michael Moore, Director National Research Centre for Environmental Toxicology;
- Dr David Roder, Anti Cancer Foundation of South Australia;
- Dr Deborah Glass, Department of Epidemiology and Preventative Medicine, Monash University; and
- Emeritus Professor Scott Henderson, AO, Centre for Mental Health Research, The Australian National University; Clinical Advisor in Mental Health, Commonwealth Department of Health and Ageing.

In addition to standing members, the SAC is also regularly attended by participants and observers representing a number of other organisations:

- Department of Veterans' Affairs
- TUNRA study team
- Defence Health Services Branch

- Defence Workplace Safety Project
- F-111 Advocate's Office
- Australian Institute of Health and Welfare
- Health Services Australia
- SHOAMP Consultative Forum

A Consultative Forum provides a link between the SAC and interested parties. Members receive regular briefings on proposals in relation to the conduct of the study and provide a forum for feedback from members on issues such as privacy, storage of information and selection of control groups. Organisations represented by the Consultative Forum include:

- Department of Veterans' Affairs
- TUNRA study team
- Defence Health Services Branch
- Defence Workplace Safety Project
- F-111 Advocate's Office
- SHOAMP SAC
- Warrant Officer of the Air Force
- Australian Veterans and Defence Services Council
- Armed Forces Federation of Australia
- Regular Defence Force Welfare Association
- Royal Australian Air Force Association
- Defence Community Organisation
- Returned and Services League of Australia Limited (RSL)
- SERCO Defence Services
- Repatriation Medical Authority
- Queensland Workcover
- Representatives from Deseal Reseal programs
- Health Services Australia

THE ISSUE OF OCCUPATIONAL EXPOSURE

Defined as contact that occurs during the performance of job duties, occupational exposure can potentially have both acute and chronic implications for poor health that is experienced by workers carrying out certain activities. In terms of the Study of Health Outcomes in Aircraft Maintenance Personnel, an occupational exposure that may place a worker at risk of developing adverse health outcomes was defined as having an involvement in any of the F-111 fuel tank DSRS programs or F-111 DSRS related activities.

Occupational exposure standards are concentrations of substances that are given as guidance in assessing the risk from exposure. In Australia, The National Occupational Health and Safety Commission (NOHSC) establishes the standards to be used as guides for control of hazardous substances. They are based on exposures to which most workers might be subjected to day after day during their working lives without suffering adverse consequences. The exposure limits are set by reviewing epidemiological and clinical studies of workers, over both short and long-term exposures to see if they indicate any adverse health effects. The long-term effects are particularly important for diseases with long latency periods (eg; cancer and dust diseases). Animal and in vitro studies have also been used, as have some human volunteer exposure experiments.

A large proportion of the literature investigating occupational exposure concerns the impact on the health of workers of exposure to organic solvents (eg; methyl-ethyl-ketone, toluene, xylene and benzene), organic chemicals that differ widely in structure (1). The topic of solvent toxicity is broad, and has been investigated by researchers seeking evidence of associations between exposure and outcomes.

Research areas have included central nervous system dysfunction (2, 3, 4), disorders of pregnancy, menstruation and paternal reproduction (5, 6, 7, 8, 9, 10), increased psychiatric symptomatology (11, 12), toxic encephalopathy (13, 14) and cancer (15, 16, 17).

There are a number of methodological issues that need to be considered when exploring the area of exposure and adverse health reactions, such as selection bias, matching of control subjects, acute versus chronic effects and the influence of confounders on test performance.

Recently, there has been a move towards "harmonisation of (investigative) methods" (18) employed for the purposes of assessing the effects of occupational exposure on body systems. Although not promoted as standardisation, the move towards harmonisation of approaches to risk assessment is envisaged to increase understanding of the methods used in order to increase confidence when using difference approaches. This includes planned efforts towards reproductive and developmental toxicity, carcinogenicity and neurotoxicity (19). The scope of the current literature review was to inform the decisions about which health outcomes to investigate during the General Health and Medical Study (Phase III).

In summary, chemicals have become an indispensable part of life. However, despite their benefits, there may be an association between some chemicals and adverse effects on human health, a suggestion supported within the epidemiological literature. Moreover, there have been a variety of techniques employed to assess exposure and to evaluate the effects of that exposure on health, which have important implications for the conduct of the SHOAMP General Health and Medical Study.

AIM OF THIS REPORT

The Final Report on the SHOAMP literature review has been prepared as per the Services Agreement between the Commonwealth Department of Veterans' Affairs and the Repatriation Commission and TUNRA Ltd.

The aim of the literature review was to provide a synthesis of the evidence of relationships between exposures and outcomes. Evidence of associations would provide a rationale for the conduct of the General Health and Medical Study by the identification of *a priori* areas for investigation.

It was not the purpose of this review to conduct a systematic appraisal of the evidence, nor conduct a meta-analysis. As such, this Report will not provide a detailed critique of issues such as quality assessment of studies, heterogeneity of effects and publication bias, which would normally be included as part of a systematic review. This review concentrated instead on bringing together the wide variety of information that exists regarding occupational exposure with particular emphasis on the needs and objectives of the Study of Health Outcomes.

With reference to the original aims and objectives of the SHOAMP literature review, the aims of this Report are to:

- Describe the processes used during the literature review;
- Provide details of search terms utilised for both exposure and outcomes of interest;
- Provide a full bibliography of all references and sources of information;
- Describe the yield of the search;
- Provide a summary of search results in terms of evidence for associations between exposure and health outcomes; and
- Provide a summary of search results in terms of measurement of exposure and outcomes.

The Results section of the Final Report is separated into two areas -

- 1) A description of the evidence for <u>associations</u> between exposure and SHOAMP specific outcomes, and
- 2) A description of the evidence for specific measurement techniques.

Given the different questions being addressed by this Report, the aims for each outcome-specific literature review differs across topics.

RESEARCH QUESTION AND HYPOTHESES

The General Health and Medical Study aims to answer the questions – Is there an association between adverse health status and an involvement in F-111 Deseal/Reseal activities? If so, what is the nature and strength of those associations?

The hypotheses of the study are that Australian Defence Force and contracted civilian personnel involved in any of the F-111 Deseal/Reseal programs, will have, relative to an appropriate comparison group –

- A higher rate of mortality;
- A higher rate of incidence of cancer;
- A higher prevalence of specific neurological disorders;
- A higher prevalence of neuropsychological impairment;
- A higher rate of reproductive outcomes;
- A higher rate of genetic damage; and
- Poorer general health and quality of life.

The literature review aimed to investigate and describe evidence of associations between occupational chemical exposure and adverse health outcomes. Specific health outcomes identified by the F-111 Deseal Reseal Interim Health Care Scheme were treated as priority areas during the literature search process. However, searches were not limited to these fields, and evidence for associations between exposure and other health conditions were also examined.

METHODS

Construction of search terms

Chemical search terms

A preliminary list of all F-111 Deseal/Reseal program activities was developed based on information provided within Volumes I and II of the Board of Inquiry Report. Against each activity type, according to program, were listed the main chemical substances used, where they were used and by whom.

Using the Board of Inquiry Volume I and II, other reports compiled by Defence as part of the Inquiry, toxicology web-sites and RAAF Material Safety Data Sheets for individual chemical types, the original list of chemicals was further expanded to include all chemical "brand" names, individual chemical components, synonyms and CAS (Chemcial Abstract Service) registry numbers (refer to Appendix A). Chemical substances not included within any of the F-111 Deseal/Reseal programs were not investigated further. The Chemical Spreadsheet then served as a tool for expert review, to enable the literature review to focus only on those substances most relevant to SHOAMP, and more likely to be related to adverse health outcomes in aircraft maintenance personnel assisting with Deseal/Reseal activities.

In order to rationalise the extensive list of chemical products and synonyms into a succinct list to crosscheck with other literature search terms, an expert review was conducted. Three experts were asked to review and justify the inclusion of specific chemical terms for use during the literature search, from the original list of chemicals reported to have been involved in the F-111 Deseal/Reseal programs.

The three experts who assisted with the review were -

- Professor Michael Moore SAC standing member, Director of the National Research Centre for Environmental Toxicology and Queensland Health Scientific Services and Professor of Medicine at the University of Queensland;
- Dr Anthony Brown Director of Population Health and Planning, Macquarie Area Health Service, Conjoint Associate Professor, Environmental and Occupational Health, The University of Newcastle; and
- Dr Diana Oakes Postdoctoral Fellow in Reproductive Toxicology Laboratory, University of Sydney.

Each expert reviewed de-sealants and sealants, solvents and cleaners, adhesion promoters and primers, to exclude all unnecessary or incorrect terms and to highlight those terms that would facilitate an efficient and effective literature search. Appendix B provides a summary of all chemical search terms following expert review.

The word "solvent" had been excluded from the original search term list. The term had been thought too inclusive and would result in terminology artifact. However, it became apparent that searches limited by "title" would not identify many specific chemical terms. Therefore "solvent" was included in all database searches, and served to produce in particular, relevant papers for specific health symptoms/conditions (eg; corneal reflex, pulse rate).

Outcome search terms

The six main areas of interest were negotiated between members of the study team, representatives from the Department of Defence, Department of Veterans' Affairs and members of the Scientific Advisory Committee. These included:

- Bio-markers
- Toxicology
- Neuropsychology

- Cancer
- Birth defects, and
- Multiple Sclerosis and Motor Neurone Disease

Each Study Investigator took responsibility for one of the review topics and generated a series of terms considered most representative of each health outcome of interest for SHOAMP. These terms were used to best capture relevant literature when crosschecked against each chemical term.

To assist the generation of search terms within each topic of interest, items were entered into The University of Newcastle's Medline search facility and checked against extended "tree" alternate search terms for the same topic (ie; search on "brain disease" also identified "encephalon diseases" and "intracranial CNS disorders"). Refer to Appendix C for the full list of outcome search terms.

Based on health symptoms reported by workers by the F-111 Deseal Reseal Interim Health Care Scheme, and health problems discussed during the Phase I qualitative interviews, several purposeful searches were conducted to explore the literature with regards to the following:

"pulse rate", "proprioception", "hypertension", "body fat", "caffeine", "olfactory nerve", "colon", "respiratory function", "neuropsychiatric", "neurobehavioural", "health condition", "mood", "neuropathy", "ischemic heart disease", "psoriasis", "nystagmus", "optic disk", "corneal reflex", "colour vision", "visual field disorder" and "neuropsychological".

This complementary search satisfied the need to explore scientific evidence for health complaints raised by individuals.

Identification of search facilities

Search facilities and resources utilised for SHOAMP included:

- Mainstream databases of peer-reviewed journals (ie; Medline, Cochrane Library, Toxline);
- General key-word searches using a variety of Internet search engines (ie; Google, AOL, Yahoo);
- Manual reviews of the reference lists of published papers;
- Local occupational health resources (ie; Environmental and Occupational Health, School of Health Sciences, The University of Newcastle); and
- Occupational Health and chemical-specific web-sites (ie; Environmental Protection Agency sites, National Toxicology Program).

The time frame employed for database search was 1970 to 2002. Initial search techniques included all studies, whether human or animal based. Secondary searches targeted "English" and "Human" publications only, especially during Toxline and Medline searches where the number of papers identified for each search regularly exceeded 1000. A list of resources used for identification of search terms and toxicology information in general is provided in Appendix D.

For the information of each investigator, "all fields" searches and "title only" limitations were conducted. The "title only" criterion was applied once the number of resulting papers and reports exceeded 1000 per single search (ie; "toluene" and "cancer"). In order to explore a wide variety of study types and review articles, an inclusive approach was taken, with each outcome search term matched against each chemical search term systematically.

Expert Review

A full list of all search result abstracts was presented to the Study Investigator or Consultant responsible for reviewing evidence of associations relevant to their area of expertise. Depending upon the health outcome of interest, different inclusion and exclusion criteria were applied by each investigator. However, across all areas of investigation, the following steps were applied:

- Agreement on the question being dealt with and the aim of the review;
- Identification of relevant works each abstract had to include the search terms specific to the health topic of interest;
- Exclusion of abstracts which did hold relevant search terms but were not appropriate for the Study of Health Outcomes; and
- Priority ordering of remaining abstracts based on the type of literature (research paper versus hazard report), reliability of source (peer reviewed journal versus general web-site), type of study (single case study versus RCT etc), use of reliable and valid measures and methodology, and general overall quality of reporting.

In addition to these generalised steps the following issues were considered:

- Whether the study had been conducted using human populations: animal studies provided useful information but needed supplementation;
- Whether the exposures of interest had been identified within the paper: whether the appearance of the exposure preceded the health outcome; whether the study provided data on exposure;
- Whether the study specified *a priori* the hypotheses being tested; and
- Whether the study controlled for possible confounding factors.

The SHOAMP literature review aimed to explore the existing scientific evidence for associations between targeted adverse health outcomes and exposure to hazardous substances applicable to the issue of F-111 Deseal/Reseal maintenance. No meta-analyses were conducted, based on the aim of the review and the variety of published styles identified. A meta-analysis can only be done if the biases and confounding factors are adequately addressed in each study, and if the studies being reviewed measured the same exposures in the same way and compared risk between or among similar levels of exposure. No data combining was conducted as part of this review. Individual abstracts and reports were reviewed individually and summarised into table matrix format.

RESULTS

Yield of literature review

Table 1 provides summary information of the total number of papers identified using SHOAMP literature review procedures. Results are described according to each health outcome of interest, the total yield and the final number of papers and reports collected in full by the research team for further review.

A large number of toxicology reports and health hazard reports for individual organisations were identified during the search process. This may have been due to the nature of the chemical search terms used in combination with certain databases. Epidemiological studies published in peer reviewed journals did not necessarily specify the same level of detail in terms of exact chemical names and components, as toxicology reports, and therefore were not identified as readily.

Given the potential for toxicological artifact, articles identified using search facilities on the Toxnet web-site (20) were cross-checked against Medline and PubMed for completeness, to ensure that all relevant papers and reports were being found. This proved an invaluable step in the overall search process, given that Toxnet often reported zero papers, depending on the order of search terms entered. A rearrangement of the search terms was often necessary, which then yielded many relevant results.

Also included in the overall search results were articles identified by individual study Investigators/Consultants, based upon their own professional knowledge and access to on-line journal information. This adjunct to the initial inclusive search technique proved very successful in identifying more recent papers which contained exposure and measurement data relevant to SHOAMP.

Table 1	:	Literature	search results	
---------	---	------------	----------------	--

Search Domain	Overall Search	Final Reviewed
	Result	Papers
Bio-markers	723	58
Birth defects	57	10
Toxicology	751	59
Cancer	19,420	124
MS & MN Disease	152	69
Neuropsychology	321	166
Health and Aircraft Maintenance	60	24
	Total N = 21,484	Total N = 510

Literature search results for the "toxicology" terms served to validate findings within other domains of interest, and were incorporated accordingly into those reviews. Therefore "toxicology" is not presented in this Report as a separate area of review.

Associations between exposure and health outcomes

Cancer

The aim of the current review was to identify substances associated with F-111 Deseal/Reseal programs and assess their association to cancer. From an initial yield of 19,420 a more relevant 838 papers were reviewed, of which 124 were deemed to be relevant by the reviewers and full text versions were requested. There were two major sources of data on chemicals, which are carcinogenic or possibly carcinogenic. These were the International Agency for Research on Cancer (IARC) and US Environment Protection Authority (EPA). There are some differences between the IARC and EPA in terms of their classifications of substances as to whether they were "known", "probable" and "possible" carcinogens. In addition to presenting information on substances which have been classified, we also explored substances not identified by either organisation.

The International Agency for Research on Cancer (IARC) is part of the World Health Organisation. IARC conducts research on the causes of human cancer, the mechanisms of carcinogenesis, and the development of scientific strategies for cancer control. There is an ongoing evaluation of products and their carcinogenicity to humans and this information is published on the IARC Web-site. The last update for this IARC was 26 August 2002. The information in this list reflects the findings of current literature.

The US EPA has been working for more than 30 years with the mission to "protect human health and safeguard (the) community". Part of the work of the EPA is the Integrated Risk Information System (IRIS) an electronic data base containing information on the possible effects of exposure to various chemicals on humans. Information contained in IRIS represents a consensus opinion of EPA health scientists. All new scientific data is reviewed and the IRIS files are revised as appropriate.

Published literature was reviewed independently in addition to IARC and EPA findings. Table 2 provides cancer classifications for those substances most relevant to SHOAMP. While the IARC and EPA reviews included results from numerous studies, some literature was not included. Table 3 provides a summary of studies involving cancer and exposure not included in IARC and EPA classifications. In addition, Appendices E and F report additional exposure articles.

There is good evidence that benzene, chromic trioxide, strontium chromate, zinc chromate (all of which contain the hexavalent form of chromium), ethylbenzene and crystalline silica are all carcinogenic to humans.

Benzene is known to cause acute and chronic nonlymphocytic leukaemia, chronic lymphocytic leukaemia and haematologic neoplasms. Hexavalent chromium is known to cause lung cancer.

White spirits, naphtha and Stoddard solvent are probable carcinogens and are associated with cancers of the lung and prostate as well as Hodgkin's lymphoma. Carbon black is possibly carcinogenic to humans and there is evidence that solvent extracts are carcinogenic to humans and can be linked to cancers of the lung and oesophagus. Lead chromate is also possibly carcinogenic in humans and is associated with cancers of the lung, stomach and kidney.

Acetone, chromic oxide (trivalent chromium – insoluble salts), manganese compounds (manganese dioxide), methyl ethyl ketone, toluene, isopropanol, bisphenyl A, 2-xylene and 3-xylene were not able to be classified as to their potential to cause cancer in humans.

Substances that have not been evaluated as to their cancer causing potential in humans include butoxyethanol ester, ethyl acetate, propylene glycol monomethyl ether and sodium hydroxide. The literature review did not identify any other substances that might be identified as carcinogenic.

To summarise, known carcinogens relevant to the SHOAMP, reported within the literature are benzene, strontium chromate, zinc chromate (hexavalent chromium) and silica. A number of case reports described associations between leukaemia and benzene, particularly myelogenous and lymphocytic.

Relevant to SHOAMP is the evidence for an association between exposure to benzene and the appearance of chromosomal aberrations following high levels of exposure. Strontium chromate, zinc chromate and silica have been related to pulmonary cancers, which may have implications for personnel involved in the F-111 spray seal program and the potential for inhalation effects. Probable carcinogens include white spirit, naphtha and stoddard solvent. Possible carcinogens are carbon black and lead chromate. Not classifiable were acetone, ethyl benzene, isopropanol, manganese, methyl ethyl ketone, toluene, xylene and iron oxide. Not evaluated were bisphenyl A, butoxyethanol ester, ethyl acetate, propylene glycol monomethyl ether and sodium hydroxide.

Given that some of the exposures associated with the F-111 Deseal/Reseal programs and activities are known human carcinogens, the importance of undertaking the Mortality and Cancer Incidence Study was confirmed. A variety of cancers are likely to be associated with the DSRS exposures, although lung, other respiratory and hematopoietic cancers are commonly reported. It is recommended that participants taking part in the General Health and Medical Study examinations be asked to provide details of any cancers previously diagnosed. In addition, since breast and colon cancer have been linked to some exposures, and because of specific concerns regarding these outcomes, breast examination is suggested, and provision of a take home Faecal Occult Blood Test (FOBT) kit.

Table 2 : Summary o	of chemicals and cancer classifications
---------------------	---

Substance	Program	IARC classification	EPA classification	Type of cancer	Comments		
Acetone	Wing Program		D: Not classifiable as to				
			human carcinogenicity				
Bisphenyl A	Spray seal,	3: Not classifiable as	Has not undergone		See below		
	Wing Program	to carcinogenicity in	complete evaluation				
		humans					
	Comments –						
				diglycidyl ether were availab	e. There is limited evidence in experimental		
	animals for the	carcinogenicity of bispher					
2, 4, 5-t			Has not undergone		-		
Butoxyethanol Ester			complete evaluation				
Benzene	Wing Program	1: Carcinogenic to	A: Known human	Acute & Chronic	See below		
		humans	carcinogen	nonlymphocytic			
				leukaemia, Chronic			
				lymphocytic leukaemia			
				Haematoligc neoplasm			
	Comments –						
	Workers and the general public are exposed to benzene as a result of a variety of activities in which it is processed, generated or used. Major						
	contributors to benzene emissions into air include (1) gasoline production, storage, transport, vending and combustion; (2) production of other						
	chemicals from benzene; and (3) indirect production of benzene (eg; in coke ovens). The last is the major source of benzene emissions into						
	water. Chronic human exposure to benzene results in leucopenia, thrombocytopenia, anaemia or combinations of these. At early stages of						
	such blood dyscrasias, these effects appear to be reversible. Exposure to high doses for longer periods of time may lead to pancytopenia,						
	which results from aplasia of the bone marrow and is considered to be an irreversible stage of the disease. Benzene crosses the human						
	placenta. There is a clear correlation between exposure to benzene and the appearance of chromosomal aberrations in the bone marrow and						
	peripheral lymphocytes of individuals exposed to high levels of benzene (>100 ppm). Such levels of exposure usually lead to clinical symptoms						
	of benzene-induced blood dyscrasias. These aberrations may persist for many years after exposure and after manifestations of						
	haematotoxicity. The results are not so clear with lower levels (<100 ppm). Although aberrations have been reported following chronic						
	exposures to as little as 10 ppm, this has not been a consistent finding. Environmental factors and exposure to other agents may have						
	interacted with benzene in these studies of low exposure. Many case reports and case series have described the association of leukaemia with						
	exposure to benzene, either alone or in combination with other chemicals. Most cases were acute myelogenous leukaemia, although some						
	were monocytic, erythroblastic or lymphocytic; and some lymphomas have been noted. Two follow-up studies showed high incidences of						
					ogical studies, both cohort and case-control,		
					occupational exposure to benzene and		
					ndustries. In the epidemiological studies of		
	people exposed	l primarily to benzene, sta	tistically significant excesses	s of leukaemia were observed			

Substance	Program	IARC classification	EPA classification	Type of cancer	Comments			
Carbon Black	Program 1	2B: Possibly		Lung, oesophagus	See below			
	Program 2	carcinogenic to						
	Spray seal	humans, sufficient						
	Wing program	evidence that solvent						
		extracts carcinogenic						
		to humans						
	Comments –							
					ind in the United Kingdom. Interpretation of the			
					cohort and in the definition and completeness of			
					hort, but the follow-up was probably complete. In			
					y in the United States, this may in part have			
					The study in the United States found no excess			
					ere deficits for some types of cancer. The study			
					tio, 1.5, 95% confidence interval, 1.0-2.2).			
	A nested case-o	A nested case-control study within the United States cohort was hampered by small sample size and problems with interpretation. Most cases						
		were of non-melanoma skin cancer. Neither for all cancers combined nor for skin cancers alone was there evidence that cases had higher						
		cumulative exposure to carbon black than controls.						
		A cohort study was carried out among workers in the United States to assess cancer risks due to exposure to formaldehyde. Ten participating						
	plants were spread across several industries in which workers may have experienced exposure to formaldehyde. To control for confounding							
	and modification of effect by other exposures, workers' exposures to various other chemicals, including carbon black, were assessed by							
	industrial hygienists. For all assessed levels and duration of exposure to carbon black combined, there was a slight non-significant excess of							
	lung cancer. There was no clear trend by duration of exposure. Carbon black-exposed workers in this cohort may also have been exposed to							
		nd other substances.						
					ancer sites. For cancers of the urinary bladder,			
		phagus, isolated results i			pport an evaluation of human carcinogenicity.			
Chromic Oxide	Program 1		D: Not classifiable as to		Trivalent chromium (insoluble salts)			
	Program 2		human carcinogenicity					
	Spray seal							
.	Wing program							
Chromic trioxide	Program 1	1: Carcinogenic to	A: Known human	Pulmonary / lung	Hexavalent chromium			
	Program 2	humans	carcinogen	Nasal, pharyngeal,				
	Spray seal			gastrointestinal,				
	Wing program			sinuses				

Substance	Program	IARC classification	EPA classification	Type of cancer	Comments	
Ethyl Acetate	Program 1 Program 2		Has not undergone complete evaluation			
Ethylbenzene	Program 1 Program 2 Wing program	2B: Possibly carcinogenic to humans. There is evidence that solvent extracts are carcinogenic to humans	D: Not classifiable as to human carcinogenicity		See below	
	study, no excess	s of cancer incidence was		methods was insufficient to al	merisation plant were available. In the first low proper evaluation of this finding. In the	
Iron Oxide	Wing			No evidence of association in one study in factory workers	See below	
	Comments – On the basis of epidemiological evidence, exposure to haematite dust may be regarded as increasing the risk of lung cancer development in man. The risk is manifest in underground workers but not surface workers, and it is not known whether the excess risk is due to radioactivity in the air of mines, the inhalation of iron oxide or silica, or to a combination of these or other factors. There is no evidence that iron-ore dust (haematite) or iron oxide influences the incidence of cancers at sites other than the lungs.					
Isopropanol	Program 1 Program 2 Wing program	3: Not classifiable as to carcinogenicity in humans			See below	
	Comments – An increased incidence of cancer of the paranasal sinuses and laryngeal cancer was observed in workers at factories where isopropar manufactured by the strong-acid process. One case–control study investigated the risk associated with occupational exposure to isopr but for none of the investigated cancer sites was a significant increase in risk observed.					
Lead Chromate	-	2B: Possibly carcinogenic in humans	B2: Possible human carcinogen	Lung, stomach, kidney	A small study in the UK of workers producing lead chromate pigments showed no overall excess risk for lung cancer, but a nonsignificant excess risk for lung cancer was seen in a subgroup of workers with lead poisoning.	

Substance	Program	IARC classification	EPA classification	Type of cancer	Comments
Manganese compounds (Manganese dioxide)	Program 1 Program 2 Spray seal Wing program		D: Not classifiable as to human carcinogenicity		
Methyl ethyl ketone	Program 1 Program 2 Spray seal Wing program		D: Not classifiable as to human carcinogenicity		Ketones generally unclassifiable by IARC
Propylene glycol monomethyl ether	Spray seal		Has not undergone complete evaluation		
Crystalline Silicia	Spray seal	1: Carcinogenic to humans (crystalline silica)		Lung cancer	There is sufficient evidence in humans for the carcinogenicity of inhaled crystalline silica in the form of quartz or cristobalite from occupational sources. There is inadequate evidence in humans for the carcinogenicity of amorphous silica.
Sodium hydroxide	Program 1 Wing program	No data on carcinogenicity			
Strontium chromate	Spray seal	1: Carcinogenic to humans		Pulmonary / lung Nasal, pharyngeal, gastrointestinal, sinuses	Hexavalent chromium

Substance	Program	IARC classification	EPA classification	Type of cancer	Comments
Toluene	Program 1 Program 2 Spray seal Wing program	Toluene is not classifiable as to its carcinogenicity to humans (Group 3).	D: Not classifiable as to human carcinogenicity		See below
	and one involver as nested case- and particularly were probably c cancer mortality other studies, ar and in the Swed elevated in the S the shoe manufa numbers. Consi	d several types of cancer. -control studies of one or a that of Swedish rotogravu oncomitant exposures. Ca was significantly elevated and it was not associated a lish cohort of rotogravure Swedish rotogravure printe acturer cohort. While resu	Of the six industry-based stua a few types of cancer. In two re printers, it was believed th ancers of most sites were not d in the Swedish rotogravure t all in a fourth. Rates of lung printers, but was not associat ers' study and in the Canadia lts on leukaemia and lymphot ure circumstances in most stu	idies, three were analysed as of the studies, that of shoe-m at toluene was the predomina significantly associated with printers' study, it was slightly, cancer were significantly ele red at all in two other studies. n case–control study, and co ma generally showed no asso	studies, one of which involved brain cancer a cohort studies and three were configured hanufacturing workers in the United States ant exposure; in the other studies, there toluene exposure in any study. Stomach , though not significantly, elevated in two vated in the cohort of shoe manufacturers Colorectal cancer was significantly lon cancer was non-significantly elevated in pociation, these were based on small cy of findings, these results are not strong
Zinc chromate	Program 1 Program 2 Spray seal Wing program	1: Carcinogenic to humans		Pulmonary / lung Nasal, pharyngeal, gastrointestinal, sinuses	Hexavalent chromium
2-Xylene 3-Xylene	Spray seal Wing program	3: Not classifiable	D: Not classifiable as to human carcinogenicity		No data were available to the Working Group.
White spirit, naphtha, Stoddard solvent	Program 1 Program 2 Wing Program			Lung, prostate Hodgkins lymphoma	In a single case-control study of cancer at many sites, potential long, high exposure to 'mineral spirits' was associated with increased risks for squamous-cell lung cancer and prostatic cancer. In two case- control studies, one of primary liver cancer and one of Hodgkin's disease, an association with organic solvents, including white spirits, was seen. The results of these studies could not be evaluated with regard to petroleum solvents themselves.

IARC: International Agency for Research on Cancer classifications -

- 1: Carcinogenic to humans based on: sufficient evidence in humans and sufficient evidence in animals
- 2A: Probably carcinogenic to humans
- 2B: Possible carcinogen to humans, limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals
- 3: Not classifiable

EPA classifications -

- A: Human carcinogen
- B: Probable human carcinogen
- B1 Indicates limited human evidence
- B2: Indicates sufficient evidence in animals and inadequate or no evidence in humans
- C: Possible human carcinogen
- D: Not classifiable as to human carcinogenicity
- E: Evidence of non-carcinogenicity for humans

Author / Year	Study type	No.	Population	Exposure	Site of Cancer	Results
Chen, 1996	Meta-analysis	55	Organic solvent	Solvents	All cancer	Significant associations for:
(21)		published	exposed workers		mortality,	Leukaemia (SMR122.2; CI101.6-146.9)
		mortality			Leukaemia,	Liver & biliary passages (SMR119.7; CI104.4-
		studies			Liver cancer	137.2)
Ojarjarvi,	Meta-analysis	92 studies	Studies with verified	Substance exposure	Pancreatic Cancer	Increased meta-risk ratios include (RR, 95% CI):
2000 (22)			exposures	based on FINJEM job		chlorinated hydrocarbon solvent, (1.0; 1.0-1.8)
				exposure matrix.		chromium & chromium compounds (1.4;0.9-2.3)
				Substances		polycyclic aromatic hydrocarbons (1.5;0.9-2.5)
				investigated included		silica dust (1.4;0.9-2.0)
				organic solvents.		aliphatic and alicyclic hydrocarbons (1.3;0.8-2.8)
Ojarjarvi,	Meta-analysis	N/A	Studies which	Chlorinated	Pancreatic Cancer	Weak excesses were found for some
2001 (23)			addressed occupational	hydrocarbons		substances however no statistically significant
			exposure directly	_		excesses were observed.
Hayes, 2001	Review article	106 papers	Various	Benzene exposure	Lymphohema-	Association between benzene exposure and
(24)					topoietic	haematopoietic disorders including cancer.
					malignancies in	
				2	humans	
Cocco, 1998	Population	1219,	10% sample of all	Socio-economic status	Breast cancer in	Link with solvent exposure not significant,
(25)	Based case-	(178	reported breast cancer	Occupational high	males	insufficient power.
	control	cases)	mortality in US	temperatures		Low exposure (OR 0.8; CI 0.4-1.4)
				PAH's and solvents		Medium exposure (OR 0.8; CI 0.5-1.5)
		47 50 4	D : 1	Electro-magnetic fields	D (High exposure (OR 0.7; CI 0.2-2.1)
Hansen,	Matched	17,534	Danish women, 20-55	Investigated	Breast cancer	An association of breast cancer in women
1999 (26)	case-control		years, employed in	employment in		employed in these industries.
	study		industries with	industries with		Employed > 1 year (OR 1.43; CI 1.24-1.67)
			_	extensive use of organic		Employed > 10 years (OR 1.97; Cl 1.39-2.79)
			solvents.	solvents. Metal		
				products, wood and		
				furniture, printing,		
				chemical, and textile		
				and clothing industries.		

Table 3 : Summary of cancer studies not included in IARC and EPA classifications

Author / Year	Study type	No.	Population	Exposure	Site of Cancer	Results
Cocco, 1998	Population	142,080	Deaths in 24 states of	Increased risk by	Central Nervous	Elevated Odds Ratio for a number of
(27)	based case		US, 84-92	industry & occupation	System	occupations including
	control					Aircraft engine mechanics (OR 1.7; CI 1.1-2.6)
						Exposure to solvents (OR 1.0; CI 1.0-1.1)
Cocco, 1999	Population	142,080	Deaths in 24 states of	Increased risk by	Central Nervous	Elevated Odds Ratio for solvent exposure (OR
(28)	based case-	(28,416	US	industry & occupation	System	1.1; CI 1.1-1.2)
	control	cases)	1984-1992			Chlorinated aliphatic hydrocarbons (OR 1.1; CI
			Women only			1.1-1.2)
						Poly aromatic hydrocarbons (OR 1.1; CI 1.0-1.3)
						Nitrosamines (OR 1.1; CI 1.0-1.3)
						Benzene (OR 1.1; CI 1.0-1.2)
Gerin, 1998	Population	4263 (3730	Population-based	Benzene, toluene,	Colon, rectum,	Increased Odds Ratio between (at 95% CI):
(29)	based case-	cases)	ascertainment of cases	xylene, styrene	prostate,	Oesophagus – toluene (OR 1.9; 0.9-4.2)
	control		with diagnosed cancer		oesophagus,	Colon – xylene (OR 5.8;1.5-22.0)
			in Montreal		lymphoma	Rectum – benzene (OR 2.0; 1.1-3.6)
						Rectum – toluene (OR 3.2; 1.3-8.0)
						Rectum – xylene (OR 1.5; 1.0-2.3)
		10.000			<u> </u>	Rectum – styrene (OR 5.1;-1.4-19.4)
Wong, 1999	Nested case-	18,000	Petroleum distribution	Gasoline, benzene	Leukaemia,	No increased Odds Ratio identified
(30)	control study		workers exposed to		multiple myeloma,	Leukaemia (OR 0.8; CI 0.56-1.07)
			gasoline containing 2-		kidney cancer	Multiple myeloma (OR 0.79; Cl 0.46-1.24)
			3% benzene			Kidney cancer (OR 0.73; CI 0.47-1.09)
Latendresse,	Animal case-	640 rats,	Rats & Hamsters	Hydrazine	Nasal	Duration of exposure is a more significant factor
1995 (31)	control study	340				than concentration in hydrazine induced nasal
		hamsters				tumorigenesis
Dosemeci,	Case-control	438 cases,	Population based in	Investigated association	Renal cell	Significant association for women exposed to
1999 (32)	investigating	687	Minnesota	with organic solvents-	carcinoma	All organic solvents combined (OR 2.3; CI 1.3-4.2)
	gender	controls		combined, all		chlorinated aliphatic hydrocarbons-combined
	difference			chlorinated aliphatic		(OR 2.1; CI 1.1-3.9)
				hydrocarbons-		and trichlorethylene(OR 2.0; CI 1.0-4.0)
				combined, nine		No significant excess risk observed in men
				individual chlorinated		All organic solvents combined (OR 0.93; CI 0.7-
				aliphatic hydrocarbons.		1.3)

Author / Year	Study type	No.	Population	Exposure	Site of Cancer	Results
McCredie, 1993 (33)	Population based case- control	1,159	Cases were all incident cases in 1989-90 of cancer or the kidney cancer	Occupational exposure to particular chemicals chosen because of suspected association with kidney cancer	Kidney cancer	Increased association observed for the following occupations: Dry cleaning industry (OR 4.68; 1.32-16.56) iron and steel industry (OR 2.13; 1.04-4.39)
Hu, (16)	Population based case- control	6,659	Cases were newly diagnosed, histologically confirmed renal cell carcinoma cases	Occupational exposure to 17 chemicals	Kidney cancer	Increased association observed with exposure to the following (at 95% Cl): Benzene (OR 1.8; 1.2-2.6) Benzidine (OR 2.1; 1.3-3.6) Cadmium (OR 1.7;1.0-3.2) Isopropyl oil (OR 1.6; 1.0-2.6) vinyl chloride (OR 2.0; 1.2-3.3)
Siemiatycki, 1994 (34)	Population based case- control	2,363	Cases were pathologically confirmed cases of bladder cancer	Occupational exposure in 19 occupations, 11 industries, and 23 substances	Bladder cancer	Increased association observed in: Natural gas combustion products, aromatic amines, cadmium compounds, photographic products, acrylic fibres, polyethylene, titanium dioxide, and chlorine.
Hours, 1994 (35)	Hospital based case- control	348	Bladder cancer patients in Lyon, France	Occupational exposure a number of substances including inks	Bladder cancer	No increased risks observed.
Krstev, 1998 (36)	Case-control	60,878	Death in 24 states of US of prostate cancer	Usual occupation and industry	Prostate Cancer	The role of occupation was unclear. Authors suggested that classification of occupation by description on death certificate might be problematic.
Cordier,1993 (37)	Hospital based case- control	1,530	Patients presenting at urology departments of university hospitals in several regions of France where different industrial activities were represented.	Histologically verified bladder cancer	Bladder Cancer	Statistically increased risk for exposure to Chlorinated hydrocarbons (OR 1.86; CI 1.19- 2.90) Industrial oils & greases (OR 1.44; CI 1.1-1.89) Metallic oxide dust (OR 2.99; CI 1.12-8.01)

Author / Year	Study type	No.	Population	Exposure	Site of Cancer	Results
Dement, 1998 (38)	Proportionate mortality study	2,985	Oil refinery workers from 3 Texan facilities	Solvent exposure in petroleum refineries	Cancer mortality	Proportionate Mortality Ratios were significantly increased for: (CI not reported) Lip (384), Stomach (142), Liver (238), Pancreas (151), connective tissues (243), prostate (135), eye (407), brain (181), leukemia (175), benign & unspecified neoplasms (289)
Bulbulyan, 1999 (39)	Cohort	3,473	Russian women employed for minimum 2 years in printing industry	Solvent exposure in the printing industry is high. Substances include organic pigments, PAH's, benzene, toluene, xylene, ethylene glycol and carbon tetrachloride.	Cancer mortality	Significant increase in Relative Risk in: Oesophageal (RR 2.7; Cl 1.1-5.4) Ovarian (RR 2.9; Cl 1.5-5.0) Stomach (RR 2.2; Cl 1.0-4.2)
Teta, 1992 (40)	Historical cohort	1031	Ethanol and isopropanol production workers	All cause mortality	All cancer mortality	The following increased risks were observed: Larynx, buccal cavity, and pharynx
Lundgerg, 1998 (41)	Cohort	411	Swedish paint industry workers with long-term exposure to organic solvents (particularly xylene)	Cancer Incidence	All cancers	Increased risks observed in the following: Prostatic cancer Lymphatic & haematopoietic cancers Multiple myeloma
Berlin, 1995 (42)	Cohort	5,791	Population were patients with suspected solvent-related disorders	Exposure to organic solvents	All cause cancer incidence & mortality	Increased risk of cancer Lymphohematopoietic system and uterine cervix
Garland, (38, 43)	Cohort	2,275,829 person years	All enlisted US Navy personnel 1974-79	A confirmed discharge diagnosis of testicular cancer	Testicular Cancer	Increased relative risk of cancer in the following job descriptions: Aviation support equipment technician (RR 6.2; CI 1.9-13.0) Engineman (RR2.6; CI 1.2-4.8) Automobile mechanic (RR3.4 ; CI 1.9-5.6)

Table 3	continued
---------	-----------

Author / Year	Study type	No.	Population	Exposure	Site of Cancer	Results
Ducatman, 1986 (44)	Cohort	153	maintenance of exterior surfaces and electrical	3	of the testicle	, ,
Axtell, 1998 (45)	Cohort	1,384	Persons employed in chemical plant with exposure to benzidine (an aromatic amine)	amines	All cause mortality	Significant associations (with 95% CI) for : All malignant neoplasms (RR1.30; 1.05-1.60) Respiratory system (RR 1.61; 1.16-2.17) Lung (RR 1.67; 1.2-2.26) Malt genital organs (RR2.01; 1.00-3.60) Prostate cancer (RR2.13; 1.06-3.80)

Multiple Sclerosis, Motor Neurone Disease and Other Neurological Examinations

The purpose of the Multiple Sclerosis and Motor Neurone Disease literature search was to explore evidence of associations between exposure to solvents, and effects on the peripheral nervous system (PNS) and central nervous system (CNS), particularly multiple sclerosis and motor neurone disease. Tables 4 and 5 provide a summary of the literature in this area.

Motor Neurone Disease

Two studies looked at Motor Neurone Disease (MND) as an outcome. The first was a case control study undertaken in Sweden (46) which showed a significant association between exposure to any solvent and MND for men aged 45-59 (OR 3.2). In the second, Schulte (47) conducted a proportionate mortality study in the US over a 10 year period in an endeavour to identify usual occupation associated with early mortality due to neurodegenerative diseases including MND. The study found increased proportionate mortality ratios for firefighters, military personnel, janitors, or others with large exposures to potential toxins.

Multiple Sclerosis

Twelve studies and two meta-analysis papers were located and reviewed that explored the association between organic solvent exposure and multiple sclerosis. No study investigated associations between specific substances; but rather generic organic solvent exposure was explored. The two review papers were both by Landtblom (48, 49), who explored the association between solvent exposure and multiple sclerosis. Landtblom's review specifically targeted studies between 1966 and 1994 that explored if any association existed between occupational exposure to organic solvents and multiple sclerosis. Thirteen studies were reviewed with varying methodology that included information on solvent exposure of which ten showed an increased risk. Using the best-evidence synthesis techniques three studies were selected for both pooled analysis and metaanalysis. The relative risk point estimates obtained varied from 1.7 to 2.6. This evaluation is consistent with the hypothesis that organic solvents may contribute to multiple sclerosis.

Two studies reviewed were conducted after the Landtblom review. Reis (50) reported a case of multiple sclerosis triggered by exposure to organic solvents. Mortensen (51) conducted a register based case control study which linked occupational solvent exposure status from census data. After a follow-up period of 20 years no increase in incidence of MS was observed although the authors believed the study design had some potential for selection bias.

Other Neurological Outcomes

The major exposure implicated was toluene, of which there were 24 studies. Seven of these were case reports and there was one case series of three patients. The reported central and peripheral nervous system outcomes included: fatigue, irritability, reduced libido, headaches, urinary incontinence, impaired concentration, memory loss, cerebellar signs (intention tremor, gait ataxia, dysarthria) dysphasia, demyelination on Magnetic Resonance Imaging (MRI), myelofibrosis, and reduced nerve conduction velocity. One case described death following a faint and fall from a great height.

Two cohort studies showed differences in the prevalence of neurological and psychological symptoms between exposed and comparison groups. Five other cohort studies explored the association between exposure and performance on neurological and psycho-behavioural testing. These studies found significant differences in dexterity and reaction time prolonged latency and reduced amplitude of visual evoked potentials in the exposed group.

One study described a higher prevalence of organic brain syndrome in the exposed group. However, many of these cohort studies had small sample sizes and were subject to confounding in that there were often significant differences between exposed and unexposed groups.

Five studies involved experimental acute exposure of volunteers to toluene. As with the more chronic occupational exposures, these studies showed significant changes in neuropsychological testing following exposure including decreased manual dexterity, decreased colour discrimination, decreased accuracy in visual perception, adverse performance on digit span, reduced pattern recognition, pattern memory and critical tracking.

Exposures to other solvents were examined in 19 further studies. Three studies of m-xylene showed no significant alteration in neuropsychological performance following short-term experimental exposure. Two studies assessed effects following experimental exposure to methyl ethyl ketone (MEK). These studies reported no statistically significant effects associated with MEK. One study reported reduced performance on dual task and profile of mood states (POMS) on acute exposure to acetone, but not MEK.

Many studies of unspecified "solvents" varied in their findings. Cohort studies of occupational exposures reported more symptoms relating to memory, mood, equilibrium and sleep among those exposed, poorer performances on digit span, complex figures, working memory, dose response increases in dementia, dys-coordination, and cerebral atrophy. Table 4 is taken from a paper by Grasso (52) on the neurotoxic and neurobehavioural effects of organic solvents on the nervous system.

While there is evidence for an association between solvent exposure and both MS and MND, the very low prevalence of these conditions makes it unlikely that any statistically or clinically significant differences in these outcomes between exposure groups will be detectable. While a detailed neurological examination is not warranted, participants should be asked about previous diagnosis of MS and MND.

Table 4 : Summary table of neurotoxic and neurobehavioural efects of organicsolvents

Solvent	Observed Effect
n-Hexane	Peripheral neuropathy
Carbon Disulfide	Peripheral neuropathy
Trichloroethylene	Trigeminal nerve
	Memory and reflection
	Emotional status
CS2	Neurasthenic syndrome (fatigue, concentration,
	memory, irritability, alcohol intolerance)
	Impairment of personality and emotional instability
	Suicide
	WAIS sub tests
Toluene	Perception, reaction time - cerebellum and higher
	integrative functions
Styrene	Rombergs test for balance
	Manual dexterity
Jet Fuel	Nerve conduction velocity
	No serious injury to CNS
Painters	Memory, reaction time, intellectual capacity
	Fatigue, absent mindedness, "dementia", learning
	impairment
Wood and furniture	Neuropsychiatric disorder and "dementia"
MEK	Potentiates effects of other solvents (53)

Source : Modified from Grasso P. Occupational Medicine 1988;3(3):525-539.

Several other neurological effects have been linked to solvent exposure, such as peripheral neuropathy, neurasthenic syndrome, emotional instability, memory, reaction time, and intellectual capacity, and should be assessed as part of the General Health and Medical Study. Although there is some overlap between neurological and neuropsychological outcomes, the latter will be discussed more fully in the following section.

Table 5 : Summary of Multiple Sclerosis and Motor Neurone Disease literature review

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Takeichi, 1986 (54)	Case report	1	Painter	Toluene	Death from faint and fall	
Gupta, 1990 (55)	Cross	45	Electrical	Xylene Toluene	Psychological battery of Hanninen	Statistical differences in mean
	sectional		manufacturing		and Lindstrom: Visual retention	scores between exposed and non-
					test, Digit symbol test, mirror	exposed
					drawing test	
Welch, 1991 (56)	Case report	1	Painter	Toluene	Memory loss, impaired	N/A
					concentration, fatigue, irritability,	
					reduced libido, headaches, urinary	
					incontinence, tremor, ataxia, dysarthria	
Riihimaki, 1980 (57)	Experiment	8	Healthy male	m-xylene	Psychomotor (reaction time) and	Temporary increase body sway,
R(III)	Experiment	0	volunteers	П-хујене	vestibular function (balance and	prolongation of reaction times
			volunteers		nystagmus)	protongation of reaction times
De Rosa, 1985 (58)	Cross	504	504 workplaces	28 different	Frequency of encountering certain	Toluene most frequent solvent
	sectional			solvents. Mostly	neurotoxic solvents	used (79%), then n-hexane (53%)
				toluene, n-		and cyclohexane (47%).
				hexane.		
NA 1 (000 (50)				Including MEK		
Morck, 1988 (59)	Cohort	382	Photographic	Toluene	Symptoms, FEV1, FVC, Reaction	Correlation with memory,
			printing plant	Exposure index	time	dizziness, decreased
						concentration, sexual disturbance,
Cherry, 1985 (60)	Cohort	44/52	Painters and	Toluene and	Dotting test, trail making test,	gastro-intestinal symptoms Excess of symptoms but no
Cherry, 1965 (60)	Conort	44/52	joiners	paint solvents	visual search test, digit symbol	difference of importance on other
			Joiners	paint solvents	test, block design test, grooved	measures
					pegboard test, reaction time,	medaurea
					memory test, reading test. Clinical	
					neurological examination, motor	
					conduction velocity	
Gunnarsson, 1992	Case-control	112/500	Sweden	Any solvent	Motor Neurone Disease	Significant association only for men
(46)						aged 45-59

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Stollery, 1988 (4)	cohort	7,8&10	Female employees of tennis ball factory	Toluene and aliphatic hydrocarbons	Memory test	Slight impairment on resource- competing tasks
Baelum, 1985 (61)	Experiment	43/43	Printers	Toluene	Visuomotor coordination, perceptual speed, higher cortical functions (10 tests)	Decreased manual dexterity, decreased colour discrimination, decreased accuracy in visual perception
Mizutani, 1989 (62)	Case report	1	Solvent sniffer	Toluene	Myoglobinemia and Renal Failure	N/A
Doty, 1988 (63)	Case control	18/18	Volunteers	Multiple chemical sensitivity	Nasal resistance	No association
Ikeda, 1990 (64)	Case report	1	27 yr old man	Toluene	Dementia, cerebellar ataxia, dysarthria, pyramidal signs	N/A
Savolainen, 1985 (65)	Experiment	9	Healthy male volunteers	m-xylene	Body sway, reaction times	Negative correlation
Wennberg, 1981(66)	Cross sectional	NS	Printers	Toluene	Psychiatric interview, EEG, electroneurography, VER, neurological examination	No association
Welch, 1991(56)	Case report	1	38 yr old labourer	Toluene MEK	Impaired concentration, memory loss, cerebellar signs (intention tremor, gait ataxia, dysarthria)	N/A. But did suggest progressive symptoms once exposure was discontinued
Yin,1987 (67)	Cohort	300/130	China- solvent workers	Benzene, Toluene,	Clinical chemistry, Symptoms	No association with clinical chemistry, significantly more symptoms in exposed group
Kraut, 1988 (68)	Cohort	19	Sewage workers	Benzene, Toluene, other solvents	Embedded figures, digit symbol, block design, grooved pegboard, Benton memory test	Lower neurobehavioural scores with increasing years of working at the plant
Kildburn, 1985 (69)	Cohort	76	Histology technicians	Solvents and fixatives	Symptoms	More symptoms of memory, mood, equilibrium and sleep among exposed
Harris, 1987 (70)	Cohort	33/57	Exposed to water from hazardous waste disposal site	Carbon tetra chloride, toluene, benzene	Symptoms: Headache, faintness & dizziness, visual disturbance, tinnitus, loss of taste, paraesthesia, balance, weakness. Signs: hypertension, hepatolmegaly, optic atrophy, peripheral neurological changes	High incidence of abnormal physical symptoms and clinical signs

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Poungvarin, 1991	Case report	1	Lacquer sniffer	Toluene	Tremor, dysphasia, demyelination	N/A
(71)					on MRI	
Milanovic, 1990 (72)	Cohort	46		Solvents	Attention, visual retention, verbal	Poorer performance on digit span,
			in Yugoslavia		fluency, digit span, working memory	complex figures, working memory
Seppalainen, 1989 (73)	Experiment	9	Male volunteers	m-xylene	Evoked potentials (VEP)	Minor fluctuations
Hjelm, 1990	Experiment	8	Male volunteers	MIBK & Toluene	CNS symptoms: Swedish	Significant increase in symptoms,
(74)					Performance Evaluation System;	no effects on mood, no effects on
					Mood scale; Reaction time test and additions test	reaction time or additions
Ogawa, 1988 (75)	Case report	1	Paint thinner	Methyl alcohol	Optical disturbance, dysaesthesia,	N/A
	-		sniffer	-	psychiatric symptoms	
Mergler, 1992 (76)	Experiment	5	Volunteers	Toluene & xylene	Olfactory perception threshold	Significant shift following exposure
Iregren, 1982 (77)	Cohort	38/38	Printers	Toluene	Memory, reaction time, finger dexterity	Significant differences in dexterity and reaction time
Johnson, 1983 (78)	Cohort	233/156	Fibre	CS2, hydrogen	Nerve conduction velocity,	Decrease in amplitude and velocity
			manufacturers	sulphide, tin	neurological symptoms	of nerve conduction for peroneal
				oxide, zinc oxide		nerve, sural nerve, but not ulnar.
				and sulphate,		No difference in symptoms
				sodium		
				hydroxide,		
				sulfuric acid		
Dick, 1988 (79)	RCT	137	Volunteers (no	Acetone and	Eyeblink reflex, visual-vigilance,	Reduced performance on dual task
			other description	methyl ethyl	dual task, reaction time, memory	and POMS on exposure to acetone
			given)	ketone	scanning, postural sway, profile of mood states (POMS)	
Bosch,1989 (80)	Letter (Case	1	60-yr old man	Toluene	Myelofibrosis	N/A
	Report)					
Risberg, 1980 (81)	Case Series	3	Wharf workers	Toluene	Nerve conduction velocity	N/A
Larsen, 1988 (82)	Cohort	22/19	Rotogravure plant	Toluene	Psychiatric interview, arithmetic	Higher prevalence of organic brain
			workers		tasks, memory span, abstraction and visuospatial function	syndrome in exposed group

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Dick, 1988 (79)	Experiment	137	Volunteers	MEK acetone/MEK	Reaction time, visual vigilance, dual task, memory scanning, mood (POMS)	No statistically significant interpretable results
Echeverria, 1989 (83)	Experiment	42	College students	Toluene	Verbal and visual short term memory, perception, psychomotor skill, manual dexterity, mood (POMS) fatigue, verbal ability	Adverse performance digit span. Pattern recognition, pattern memory, critical tracking
Matikainen, 1985 (84)	Cohort	77	"Workers with long standing exposure to organic solvents"	Toluene	Cardiovascular reflex parameters	Lower parameters in exposed group
Foo, 1990 (85)	Cohort	30/30	Female electronic assembly work	Toluene	Visual retention, visual reproduction, trail making, grooved peg board, digit span, digit symbol, finger tapping, reaction time	Poorer performance (dose response) on all tests except reaction time and finger tapping
Urban, 1990 (86)	Cohort	54/46	Rotogravure print workers	Toluene	Visual Evoked Potentials	Prolonged latency and reduced amplitude in the exposed group
Echeveriia, 1991 (87)	RCT	84	Students	Toluene	Verbal skill, verbal short term memory, visual memory, perception, psychomotor skill, manual dexterity, mood (POMS), fatigue	Significant effect on digit span, pattern recognition, manual dexterity, pattern memory
Lash, 1991 (88)	Cohort	46	Airline mechanics	Methylene Chloride paint stripper	Symptoms, special senses, grip strength, event related potential, reaction time, motor speed, short term visual memory, short term verbal memory, attention (digit span, digit symbol, serial addition, trailmaking, STROOP, cancellation task) spatial ability	Solvent exposed group processed reaction time stimuli more slowly, and had lower scores on attention tasks
Peters, 1986 (89)	Cohort	10&5	Grain storage workers	CS2	Neuropsycological and neurobehavioural testing, EMG, nerve conduction velocity, EEG, VER, somatosensory and brainstem auditory responses	Dysfunction of peripheral axons, auditory nerve, optic nerve, extrapyramidal system, altered behaviour and cognitive changes

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Mikkelson, 1988 (90)	Cohort	85	Painters	Solvent exposure		Dose response increases in
					coordination, cerebral atrophy	dementia, dys-coordination, and cerebral atrophy. Non significant
						association on performance.
Amaducci, 1982 (91)	Cross-section	86	Patients with	Exposure to	Multiple sclerosis	Rate in shoe & leather workers
/			diagnosed MS,	glues containing		statistically significant.
			including Shoe &	organic solvents		, 5
			leather workers	-		
			using solvents			
Juntunen, 1989 (92)	Co-twin	27,100	Twins with known	Occupational	Multiple sclerosis	Results did not support causal
	control study	pairs, 21	zygosity in	history and		association between exposure to
		cases	Finland	estimation of		solvents and MS
				exposure to chemicals		
				including solvents		
Flodin, 1988 (93)	Case-referent	93/467	Sweden	Solvent	Multiple sclerosis in cases	Association between dog
				exposure,		ownership and MS in females,
				welding,		Solvent exposure, especially when
				pets, x-rays		also welding associated with MS in
						males
Gronning, 1993 (94)	Case-control	155/200	Norway	Solvent	Multiple sclerosis in cases	No association between MS &
				exposure,		organic solvents, organic solvents
				welding, other		& welding, organic solvents & other
				chemical compounds		chemical compounds
Landtblom, 1993 (48)	Case-referent	91/348	Sweden	Solvent, ionising	Multiple sclerosis in cases	Association between MS and
		01/010	eweden	radiation &		occupational solvent exposure
				animals		
Schulte, 1996 (47)	Proportion-ate	N/A	27 US states	Usual job	Underlying & contributing causes	Neurodegenerative diseases occur
	mortality study			description	of death due to presenile dementia,	more frequently in some
					Alzheimer's disease, Parkinson's	occupations with solvent
					disease and motor neurone	exposures.
					disease.	

Neuropsychology

This aspect of the literature review aimed to explore the published evidence of exposure-related neuropsychiatric disorders, mental symptoms and neurobehavioural performance. A synthesis of the literature review information is shown in Table 6.

A historical background of the studies into the neurotoxic effects of organic solvents was provided by Arlien-Solbørg (95). He reported that occupational exposures to organic solvents have long been a cause of concern. Delpech described the first cases of acute intoxication in workers exposed to carbon disulphide (CS₂) in 1863. He also observed sub-chronic intoxication after weeks to months of occupational exposure, describing impairment of fluctuations in mood, insomnia, memory problems, loss of sensations from different parts of the body, and impotence.

In parallel with industrialisation, a marked increase in the consumption of organic solvents took place, together with an increased exposure of workers. During this period, particularly the 1970s and 1980s, the number of publications concerning neurotoxicity of organic solvents rose rapidly. The early 1970s reports, mainly from the Nordic countries, indicated that long-term, relatively low-level occupational exposure to a number of organic solvents and their mixtures could result in chronic toxic encephalopathy.

The initial reports of neuropsychological effects were seen after exposure to CS_2 , however later the neurotoxicity of styrene, white spirit, and other mixtures of solvents were evaluated. From 1964 onwards, hexacarbons were suspected of causing polyneuropathy, both in workers occupationally exposed and, from 1972, in individuals abusing these compounds. Epidemic occurrence of neuropathy was reported from the U.S., Japan, and Europe. This initiated intense studies of the acute and chronic neurotoxic effects of a number of hexacarbons. Some of the other solvents, in particular toluene, CS_2 , and acrylamide, have also been subjected to intense studies, and different theories on the mechanisms of their proven neurotoxic effects have been advanced. Most of these hypotheses are still to be tested although the toxic effects have repeatedly been demonstrated for toluene.

Many of the published papers concentrated on painters as the exposed cohort, seeking to describe and confirm the condition known as "painter's syndrome". The majority of studies were cross-sectional in design (as compared with retrospective or longitudinal) and examined relatively small samples of exposed subjects compared with non-exposed comparisons on a number of clinical, neurological, psychiatric and neuropsychological tests. There were a number of recent studies which reported significant differences between solvent-exposed subjects and non-exposed on measures of learning and memory, attention, visuospatial ability, mental flexibility and information processing. Morrow, in particular conducted further dissociative investigation of cognitive impairment and mood disorders (12, 96, 97, 98). In addition to highlighting the need for consideration of other symptomatoloy when studying exposure, the work by Morrow (98) has important implications for SHOAMP, in terms of utilising structured clinical interviews over self report questionnaires alone to obtain a fuller picture of cognitive abilities and mood.

To summarise, the issue of neurological deficit resulting from exposure to chemical substances has been extensively reported in the scientific literature. Based on the standard of studies which report significant differences between exposed and non-exposed cohorts, as well as reports of poor memory by workers to the F-111 Deseal Reseal Interim Health Care Scheme, assessment of neuropsychological function should be made as part of the SHOAMP health examination. Based on those studies included in this review, the minimum tests for inclusion should be tests of attention, information processing, visual construction and recall.

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between
					exposure and neuropsychological deficits
Morrow, 2001 (98)	Case-control study	N=38 solvent exposed N=39 non-exposed	3-year organic solvent exposure period vs non- exposure	Pittsburgh Occupational Exposure Test – consisting of learning/memory, visuospatial ability, attention/mental flexibility, psychomotor speed, general intelligence, and clinical interview for DSM-IV diagnoses.	Between groups analysis – statistically significant differences between exp and non- exp for learning/memory, visuospatial and psychomotor speed (p<0.05). Within groups analysis – no significant differences (p>0.05) between exposure levels and mood disorder diagnoses.
Morrow, 2000 (97)	Cross- sectional case-control	N=38 exposed (categorised into 3 levels of exposure) N=39 non-exposed (all participants were paid a nominal fee for taking part)	Organic solvents in the workplace – most commonly aromatic and halogenated hydrocarbons (eg: toluene, xylene, benzene and trichloroethylene).	Structured Clinical Interview for DSM-IV (interviewers were not blind to exposure status).	Significantly greater number of exposed subjects (71%) met axis 1 diagnosis for psychiatric disorder vs non-exposed (10%), p<0.001. Greatest differences existed between groups for anxiety and major depression.
Morrow, 1990 (96)	Cross- sectional case-control	N=32 exposed workers N=32 matched non- exposed controls	Toluene and trichloroethylene most commonly.	Pittsburgh Occupational Exposure Test battery (all subjects) described previously, Minnesota Multiphasic Personality Inventory (exposed only)	Between group analyses – Significantly poorer results for exposed group on learning/memory (p=0.006), visuospatial (p<0.01), psychomotor speed and manual dexterity (p<0.025) and attention and mental flexibility (p<0.001). No significant differences on general intelligence (p>0.20).
Morrow, 1992 (99)	Case-control study	N=40 exposed N=40 age matched comparisons	Subjects had a history of exposure to organic solvents – toluene, xylene, MEK, styrene.	Verbal-paired associate learning test Digit-paired associate learning test Wechsler Memory scale Visual reproductions WAIR-R digit span Short term memory test	Solvent exposed subjects scored significantly poorer on all paired associate learning tests, digit span test, short term memory and logical memories and visual reproductions (0.001 <p≤0.05).< td=""></p≤0.05).<>

Table 6 : Summary of Neuropsychological literature review

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between
Dick, 2000 (100)	Retrospective case-control	N=120 n=78 dockyard painters (consisting	Exposures to organic solvents and inorganic lead, from	Neurobehavioural Evaluation System – continuous performance, paired associate	exposure and neuropsychological deficits After adjustment for smoking, age and alcohol intake – - reported evidence of an association
		of two groups with different reported number of solvent neurotoxicity symptoms) n=42 community controls	working in paint shop at dockyards for at least one year	learning, symbol digit substitution, association recall. Trial Making tests, Benton Visual Retention Test, NART, plus physical testing. Genotyping of polymorphic enzymes involved in detoxification.	between increasing intensity of solvent exposure and poorer performance on some cognitive tests – including visual memory, verbal memory and planning tests. - significant reduction in grip strength in exposed group. - identification of some genetic significant associations with impairment.
Stollery & Flindt, 1988 (4)	Retrospective case-control investigation of memory sequelae	N=7 female factory workers suffering from acute solvent intoxication (occurring over 3 days) N=8 similar workers not suffering intoxication within the same environment N=10 unexposed	Organic solvents from adhesives (toluene and SBP7)	Two test sessions – a) Memory task, paired associate task, serial-position task, Brown- Peterson task. b) Memory task, Beck depression inventory, paired associate task, serial-position task, Brown- Peterson task.	Acute exposed group had higher depression scores (p<0.01), tended to learn few word pairs, recalled fewer words during the Brown-Peterson task (p<0.01) and errors of omission (p<0.01). Very small samples mean low power for the repeated measures analysis.
White, 1995 (101)	2-year prospective cohort study	Screen printers N=30 completed testing over 2 years Categorised as high/low acute exposure and high/low chronic exposure (4 groups)	Mixed solvents such as MEK, hexane, toluene, methanol and ethanol.	Two test sessions one year apart – verbal ability and reasoning, visual construction, reasoning and organisation, attention, motor speed, memory, attention, reaction time, mood and manual dexterity.	After accounting for age, education, gender: Higher acute exposure associated with poor performance on manual dexterity and speed (p=0.04) and visual reproductions (p=0.02). Higher chronic exposure associated with poor score on visual reproduction (p=0.02).

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between exposure and neuropsychological deficits
Baker, 1988 (102)	Intervention study of the impact of worker education and training program on workplace hazards	N=186 male painters	"solvent containing products"	Neurobehavioural tests – Verbal ability Psychomotor performance Symbol-digit substitution Memory Mood	Chronic mental symptoms correlated highly with higher/lifetime levels of exposure ($0.001).Arm/leg weakness associated with recentexposure (0.02).Finger/toe numbness associated withlifetime exposure (p=0.04)."Other symptoms" (ie; skin rash, nausea)were associated with recent exposure(0.0001).No clear description of "program of workereducation and training" or impact of program$
Nasterlack, 1999 (103)	Cross sectional study, with intended follow-up.	N=366 exposed painters N=193 non-exposed construction workers	Described as "solvent exposure" with no further detail of individual chemical components involved.	Questionnaire 16 (for CNS disturbances) Neurotoxic Symptom Score PSE-9 General medical and neurological examination Liver/kidney scans ECG, EEG, EMG, NCV Verbal and actual fluid intelligence, Organic brain dysfunction Concentration Reaction time	Significantly poorer result for vibration sensation at 3 sites for exposed subjects ($0.001).No between-group differences for ECG.Exposed subjects performed significantlyworse on visual retention and concentration(p < 0.01).Within-group differences for "high" versus"low" exposure reported poorer reactiontimes (0.01).$
Spurgeon, 1994 (104)	Cross- sectional study	N=110 paintmakers N=110 matched comparisons	White spirit, toluene, xylene, MEK, methyl isobutyl ketone, also acetone, isobutyl alcohol, n-butyl acetone and n-butyl alcohol.	Symbol-digit substitution Hand-eye coordination Digit span Associate learning Pattern memory Colour word vigilance Continuous performance Associate recall General health questionnaire Questionnaire 16	No difference in pre-morbid ability (0.13 <p<0.36). No significant differences between groups. Comparisons performed more poorly on continuous performance (p<0.05, CI –75.10 to –14.69) and colour word vigilance (p<0.05, CI –56.70 to –5.31).</p<0.36).

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between exposure and neuropsychological deficits
Triebig, 1992 (105)	Cross- sectional study	N=83 spray painters N=42 construction workers, electricians, plumbers with no exposure	Long term solvent exposure	Neurologic investigation Psychiatric analysis using the Present State Examination, psychological testing and CAT scan of the brain.	No significant differences between exposed and non-exposed for neurologic examination (reflexes, hypesthesia, paresis, tremor, vegetative signs) (p>0.05). Frequency of syndromes between groups showed significant increases in "special features of depression" and "loss of interest and concentration" (no p-value reported). Also no relationship between these syndromes and level of exposure.
Eller, 1999 (106)	Cross- sectional study	N=30 low exposure N=49 high exposure N=19 non-exposed All current workers in a rotogravure plant (printing magazines)	Toluene	Verbal learning and memory Non-verbal learning and memory Visuo-motor function Visuo-spatial function Attention and concentration Tremor CATSYS test SWAY test	No differences between non-exposed and low exposure groups on neurological tests. High exposure subjects were significantly poorer on finger tap (left hand) test (p=0.05) High exposure subjects were significantly poorer on retention test and Bourdon- Wiersman test (p=0.04, p=0.02).
Gregersen, 1984 (107)	Cross- sectional study	N=65 painters, dry cleaners, boat industry workers and photogravure industry N=33 non-exposed electricians and warehouse workers	Exposure was white spirit, perchloroethylene, stryrene and toluene.	Neurological examination – Tests of sensation, muscle strength, coordination, gait, vibratory perception threshold. Neuropsychological exam – Tests for learning/memory, concentration ability/attention and abstraction functions.	61 final exposed, 29 final non-exposed. No statistically significant differences between types of exposed subjects (ie: painters v's boat workers). "significantly more common" in exposed group were acute work-related symptoms and demential symptoms. No "outstanding symptoms and signs" of sensory and motor peripheral neuropathy between groups (0.05 <p≤0.10). Significantly poorer scores for exposed subjects on sentence recall 14 syllables, sorting tests, concentration/attention and abstraction test (0.01<p≤0.05).< td=""></p≤0.05).<></p≤0.10).

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between
Bleecker, 1991 (108)	Cross- sectional study to examine "painters syndrome"	N=187male production, maintenance and warehouse workers. No control group.	Toluene, xylene, other alipathic and aromatic hydrocarbons, MEK. Smaller amounts of mixed hydrocarbons (ie; octanes, decanes), and other solvents (ie; butanol, propanol), esters and ketones.	Neuropsychiatric evaluation – Present State Examination Zung Depression Scale Q16 Neuropsychological battery – Visual memory and construction, memory and learning, psychomotor speed, attention and	exposure and neuropsychological deficits 176 final subjects were categorised into 4 exposure groups. Linear regression to report which neurobehavioural outcome variables were significantly associated with solvent exposure – digit symbol substitution, serial digit learning, truncated reaction time, trail tests A & B and vibration sensation at toe. Study was testing the diagnostic criteria for "painters syndrome", not comparing symptoms with non-exposed.
Mitran, 1997 (109)	Cross- sectional comparative study	Workers from three factories N=71 exp, N=86 comp N=41 exp, N=63 comp N=75 exp, N=85 comp	Exposures were for each factory – Acetone MEK Cyclohexanone	Clinical examination Bio-markers Psychological tests – Reaction times Praga test for attention Woodworth-Mathews personality questionnaire Attention quality test	Exposed groups more likely to experience neurotoxic, irritation, rheumatic and digestive syndromes (frequencies presented only, no analyses). Nerve conduction significantly lower in all exposed groups (p<0.05). Psychological results poorly reported, two p- values only reported for – Acetone-exposed displayed delayed reaction time (p<0.001) and cyclohexanone- exposed had delayed reaction time to auditory stimuli (p<0.05).
Daniell, 1999 (110)	Cross sectional study	N=126 carpenters N=67 painters N=22 aerospace workers All retired, 62-74 yrs.	Solvents	Neuropsychological exam – WAIS-R Wisconsin card sorting test Halstead-Reitan battery WMS-R Rey auditory learning test Benton visual retention test Stroop test Pegboard test Reaction time Beck Depression Inventory	Compared to Carpenters - <u>Painters</u> were significantly lower on – WAIS-R block design test (p=0.03) Motor score (p=0.04) <u>Aerospace</u> workers were significantly lower on – Wisconsin card sorting test (p=0.02) Pegboard test (p<0.05) Verbal memory (p=0.03) Visuo-motor speed (p=0.008) Motor abilities (p=0.04)

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between
Rosenberg, 2002 (111)	Case control study	N=55 solvent abusers N=61 users of other drugs (cocaine, alcohol)	The most common abuse was from spray painting inhalation (toluene most prevalent solvent). Comparison subjects used cocaine (48%), marijuana (18%), alcohol (8%), amphetamines (10%), opiates (11%) and pain meds (2%).	WAIS-R Brown-Peterson test WMS-R Free recall Word learning test Delayed memory Trail Making Test Parts A & B Digit cancellation Stroop Test Boston Naming Test Boston Diagnostic Aphasia Examination Wisconsin Card Sorting Test Behavioural Dyscontrol Scale MRI's were conducted with both exposed and non-exposed subjects.	exposure and neuropsychological deficits Solvent abuse cohort performed poorly on 15 of the 26 measures, versus 1 of the 36 for comparisons. After adjustment for confounding, no between-group differences for Verbal and performance IQ, language/comprehension, information processing, delayed recall measures, Relative to comparison group, exposed were significantly different on digit forward test (p<0.01), recall for visual memory (p<0.05) and two executive function variables (0.011 <p≤0.028). Inhalers were also more likely to have abnormal MRI's than comparisons (p=0.05).</p≤0.028).
Cherry, 1984 (112)	Cohort study	Exposed – N=59 toluene exposed N=42 paint solvent exposed Non-exposed – N=59 matched for toluene N=42 matched for paint exposure	Exposure was to toluene, as part of the manufacture of rubber mats. Paint solvent exposure was from mainly white spirit, from naval dockyard work	NART Reaction time Pegboard test Trail Making Test A & B Digit symbol Visual search Block design Memory	Toluene cohort– Exposed subjects did significantly less well on reading test (p=0.05) and pegboard (p=0.05). Paint solvent cohort – Exposed subjects did significantly less well on reading test (p=0.001), reaction time (p=0.05), pegboard test (p=0.01), Trial Making B and block design (p=0.05) and all memory tests (p=0.05).

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between exposure and neuropsychological deficits
Hanninen, 1976 (113)	Case-control study	N=100 exposed car painters N=101 non-exposed railway workers	Toluene, xylene, buthyl acetate, white spirit, methyl isobuthyl ketone, isopropanol, ethyl acetate, acetone, ethanol	Psychological examination – WAIS Figure identification Wechsler Memory Scale Benton test for visual reproduction Santa Ana dexterity test Finger tapping Reaction times Psychomotor behaviour and ability (Mira test) Rorschach personality test	8 of the 19 tests showed significant differences between exposed and non- exposed (p<0.001). When controlled for initial intelligence, only 1 test remained highly significantly different between groups (block design test).
Chen, 1999 (114)	Nested cross- sectional study	N=953 exposed painters N=953 age matched controls	Dockyard paint shop exposures	Questionnaire format to collect symptoms of psychological and neurological disorders	260 final painter questionnaires and 539 controls. Prevalence rate ratios for individual neuropsychological symptoms were significantly higher among exposed subjects. Particularly neurological symptoms, problems buttoning and unbuttoning, hands trembling, and feeling weak/unsteady (p<0.0001)
Johnson, 1983 (78)	Cohort study	N=156 male workers from a viscose rayon plant (classified into 3 exposure groups – high, medium and low) N=233 male workers from a polyester- nylon filament plant	Rayon plant – carbon disulfide exposure, hydrogen sulfide, tin oxide, zinc oxide and sulfate, sodium hydroxide and sulfuric acid.	Measure of nerve conduction velocity, maximum motor conduction velocity, sensory conduction velocity. 12-item neurological symptom questionnaire	Significantly decreased nerve conduction in exposed group (0.01 <p≤0.03). No significant difference between-groups and within-exposed-group for PNS related symptoms.</p≤0.03).

Author / Year	Study type	Population	Exposure	Tests Administered	Evidence of associations between exposure and neuropsychological deficits
Tripathi, 1995 (115)	Cohort study	N=100 spray painters N=60 diesel shop workers as reference group N=75 non-exposed workers for controls	Spray painters used mineral spirit, thinner, benzene, toluene and xylene. Diesel workers used diesel oil, no paint. Controls were security workers.	5 psychological tests – Associative recall Critical flicker fusion Letter cancellation Muller-Lyer illusion Card sorting	Significant differences between controls and diesel group for letter cancellation test (p <0.05). Significant differences between controls and painter group for alternate critical flicker test, letter cancellation, Muller-Lyer illusion and card sorting design (0.01< p ≤0.05). Difference between diesel and painters for alternate critical flicker test (p <0.01).
Myers, 1999 (116)	Cross- sectional study	N=228 paint manufacturing workers from 2 factories	Organic solvents	Tests of motor speed Dexterity Clerical speed Attention Vigilance Visuo-spatial function Verbal and visual memory Cognitive flexibility Mood profile of mood states Subjective Symptoms Questionnaire	Weak and inconsistent associations only were reported.

Reproductive Health Effects

The aim of this review was to identify the plausibility of a link between exposures in the F-111 Deseal/Reseal program and birth defects, as well as to identify relevant information that should be collected about other possible perinatal outcomes.

Concern had been raised about the possibility of birth defects in the offspring of workers in the F-111 Deseal/Reseal programs. In view of the anticipated low incidence of such outcomes (0.9 in 1000 for cleft palate, 0.4 in 1000 for neural tube defects in New South Wales, 1993-99) (117) and the limited numbers of births in this cohort, as well as ethical considerations regarding child involvement, it may not be possible to address these concerns in the current study. However it is important to delineate what information could be collected in the current study to shed light on such a possibility.

The literature review yield for birth defects and chemical exposure was relatively low (n=57 papers). A detailed review was conducted using the 10 most relevant papers.

An excellent synthesis of the information was presented in a review article by Tas, (118) and is summarised in Table 7 for 3 major classes of exposures relevant to the deseal/reseal program.

The mechanisms proposed for these effects include:

- Toxin present in the seminal fluid
- Father bringing the toxin into the home environment on work clothes, shoes, skin, etc.
- Neuroendocrine effects in the male
- Genotoxicity (see review of bio-markers)

	Sperm abnormalities	Decreased fertility	Foetal loss	Birth defects
Organic	+/-	+	+	-
solvents				
Ethylene	+/-		+/-	
glycols				
Aromatic	+		+/-	+
hydrocarbons				

Table 7 : Summary of Birth Defects and Chemical Exposure

Legend: + = consistent positive association, +/- = conflicting results, - = consistent negative association, blank =no information

Source : Tas S, et al. Critical Reviews 1996;26(2):261-301.

Experience with Agent Orange in Vietnam veterans (119) indicates that genotoxicity is much more closely linked with childhood cancer than any of the perinatal outcomes above. In particular, genotoxins act differently than teratogens, the former being active later in pregnancy, the latter being active early in development. Several exposures in the F-111 Deseal/Reseal program have been consistently implicated in sperm abnormalities, infertility, foetal loss, and birth defects. It is recommended that the General Health and Medical Study not collect any sperm samples since this might decrease participation rates. This leaves information about fertility and foetal outcomes, which could easily be collected as part of the study. It has been established that husbands are not as reliable a source of information as wives for these sorts of outcomes; men tend to misreport the timing of events, and to underreport low birth weight, spontaneous abortions and induced abortions (120). Interpretation of these outcomes requires knowledge of maternal confounding factors, eg; age of mother, alcohol and smoking habits, and caffeine intake.

In conclusion, the following recommendations are proposed:

- 1. The inclusion of questions about the following outcomes, pertaining to the time when the participant was involved in the F-111 Deseal/Reseal program(s):
 - a) Number of pregnancies and outcomes (eg; spontaneous abortion, miscarriage, stillbirth, live birth).
 - b) Weeks of gestation
 - c) Birth weight
 - d) Maternal complications (eg; pre-eclampsia, eclampsia)
 - e) Fertility problems (ie; sub fecundity)
- 2. Information on confounders: maternal age, smoking and alcohol habits, caffeine intake, and medications during pregnancy.

This section should be filled out by female participants and the female partner of the male participants.

Other health effects

The aim of this section was to explore the evidence of associations between exposure to organic solvents and health effects other than those given *a priori* significance for this report. A separate database search was not performed for this section of the review. Based on information already collected on the health affects of occupational exposure, these studies were recognised as worthy of separate inclusion, and represent an adjunct to the priority health outcome areas. Whilst the main body of this literature review concentrated on cancer, neurologic, neuropsychological and reproductive effects of exposure to organic solvents, a number of other health effects have been reported in the literature. These include olfactory and vibration sensation threshold shift, occupational asthma and mucous membrane irritation, dermatitis, multiple chemical sensitisation, haematological, kidney and liver function changes, sight and hearing changes, and altered clinical and immunological responses. A total of sixteen papers were reviewed and are summarised in Table 8. Based on the literature and previous worker reports, liver function testing should be considered as part of the SHOAMP health examination process, as should symptoms indicative of respiratory irritation, colour vision deficit and tremor.

Table 8 : Summary of other health effects

Author / Year	Study type	No.	Population	Exposure	Health Effect	Results
Ravnskov, 2000 (121)	Meta-analysis of case control studies	18 studies	Various	Studies of hydrocarbon exposure in glomerulonphritis	Renal Function in glomerulonphritis	Hydrocarbon exposure in glomerulonphritis is associated with the advancement of the disease and inversely associated with renal function. Early elimination of the exposure may, therefore, prevent the process of renal failure in many patients
Paggiaro, 1990 (122)	Review	No specific number (29 references quoted)	Various (human and animal studies included)	Reviewed literature relating to mechanisms of occupational asthma due to low molecular weight compounds such as toluene diisocynate (TDI)	Bronchial hyper- responsiveness – Occupational Asthma	Suggested that while an IgG or IgE immunologic mechanism is not proven, the involvement of inflammatory cells and chemical mediators have been demonstrated in different stages of the disease.
Gralewicz, 1999 (123)	Review	No specific number (64 references quoted)	Animal and human studies	Acute & repeated exposures to some solvents, mainly toluene	Multiple chemical sensitisation as a manifestation of the time dependent sensitisation	Demonstrated from data in the literature reviewed that under circumstances of acute and repeated exposure, some solvents (mainly toluene) exert effect on behaviour and on the functional state of some neurotransmitters systems similar to that exerted by drugs known to induct time dependent sensitisation.
Lemasers, 1999 (124)	Prospective repeated measures study	50 unexposed men evaluated before 1 st exposure	US air force aircraft maintenance personnel	Solvent exposure during aircraft maintenance, exposure measured. Jobs were analysed by exposure groups. Exposures were low, below 6 ppm.	Male reproductive effects. Sperm production, structure, and function (sperm concentration, sperm motion, viability, morphology, morphometric, and stability of sperm chromatin)	For most sperm measures, mean values remained in the normal range throughout the 30 weeks of exposure. The paint shop group had a significant decline in motility of 19.5% at 30 weeks.

Author / Year	Study type	No.	Population	Exposure	Health Effect	Results
Tomei, 1999 (125)	Case control study	33 cases and 61 controls	Shoe repairers who work in supermarkets	Solvent mixtures in shoe repairers	Liver damage	Exposed workers had a higher prevalence of elevated mean alanine aminotransferase, aspartate aminotransferase, conjugated bilirubin (P= 0.0001), and alkaline phosphatase (P= 0.004) than controls did. The number of workers who had values outside the upper limit of normal for laboratory was significant (ALT P= 0.034, AST P= 0.037, conjugated bilirubin P= 0.014). Exposed workers all had a ration of ALT to AST greater than 1, with a mean of 1.5; it was > 1.6 in more than half the exposed workers.
Sliwinska- Kowalska, 2001 (126)	Case control study	517 divided into groups according to exposures to noise & solvents or both	Workers of 4 Polish paint and lacquer companies.	Exposure to organic solvents had been measured over the previous 5 years.	Hearing loss to assess the ototoxic effects of solvents at moderate exposure levels	Hearing loss in solvent only exposed group was significant. (RR 4.40) No additional risk in solvent + noise exposure group was found (RR 2.8) Hearing thresholds were significantly poorer in a wide range of frequencies for both groups exposed to solvents, when compared to reference group. The mean hearing thresholds at frequencies 2-4kHz were poorer for workers exposed to solvents + noise than for solvent-only group; Authors suggest this finding suggests an additional effect for noise which had been demonstrated in previous animal studies.
Boogaard, 1993 (127)	Case control study	73 exposed & 35 controls	Male operators employed for an average of 8.2 years in a chemical plant producing chlorinated hydrocarbons	Exposure to a number of chlorinated hydrocarbons. Exposures historically measured were below or near the current threshold limit values.	Kidney & liver function	Long term exposure to a number of chlorinated hydrocarbons at concentrations of below or near the TLV does not lead to clinically significant effects on kidney and liver
Qu, 2002 (128)	Case control study	130 exposed, 51 age/ gender matched controls	Benzene exposed workers	Personal benzene exposure measured by industrial hygienist. Ranged from 0.06 to 122ppm	Haematological Changes	Significant decreased in red blood cells, white blood cells, and neutrophils were observed and correlated with both personal benzene exposures and levels of urinary metabolites and albumin adducts of benzene oxide and 1,4-benzeoquinone

Author / Year	Study type	No.	Population	Exposure	Health Effect	Results
Mergler,	Experimental	5	5 healthy volunteers	7 hour exposure to	Olfactory	Study suggests that there is a substantial olfactory
1992 (76)	control trial	volunteers,		toluene and/or xylene in	perception	threshold shift during 7-hr period, specific to a
		own		inhalation chamber	threshold shift	particular solvent or family of solvents. Receptor-
		controls		Olfactory perception		specific saturation is proposed as the underlying
				thresholds measured		mechanism.
Little,	Controlled trial	20	More than half of the	Measured total	Clinical &	No significant difference in immunoglobulin G levels
1999		patients,	patients had histories of	immunologlobin G and	immunological	to the antigen in the 2 groups, but the levels of T-cell
(129)		16 controls	occupational exposure	T-cell antigen-binding	responses in	antigen-binding molecules against the para-
			to petroleum-based	molecules against an	subjects sensitive	aminobenzoic acid conjugates to human serum
			chemicals, particularly	antigen prepared by	to solvents	albumin were elevated significantly in subjects
			to solvents.	conjugation of para-		sensitive to toluene.
				aminobenxoic acid to		
				human serum albumin.		
Parkinson	Cohort study	567	Female blue collar	5 solvent exposure	Neurological	No difference among groups only for
1990		females	workers who were	categories were	performance,	neuropsychological performance. All other self
(130)			members of the	derived.	depression, severe	reported symptoms were significant after controlling
			International	Self-reported neurologic	headaches, light-	for the effect of 7 risk factors (age, smoking,
			Brotherhood of	and somatic symptoms	headedness, room	moderate-heavy alcohol consumption, severe
			Electrical Workers	as well as	spinning, appetite	obesity, history or physician-diagnosed chronic
				neuropsychological	difficulties, funny	illness, working in a clean room, and exposure to
				performance examined	taste in mouth,	other chemicals.)
					weakness/fatigue,	
					rashes, and	
					abdominal pain.	
Redlich,	Cross-	300		Exposure assessed with	Subclinical	No clinically apparent asthma cases identified.
2001	sectional	isocyanate	exposed to the	exposure matrix,	immunologic and	HDI-specific lymphocyte proliferation in 30% & HDI-
(131)	survey	body shop	5	questionnaire and diary.	physiologic	specific IgG in 34% of exposed. HDI-specific IgE
		workers	hexamethylene	In addition air, surface	responses	detected in 2. HDI-specific lymphocyte proliferation,
			diisocyanate (HDI)	and skin sampling data		increased methacholine responsiveness, and
				were obtained.		symptoms of chest tightness and shortness of breath
						were more common in the most heavily HDI-exposed
						workers, the painters. The finding demonstrate the
						presence of HDI-specific immune responses in a
						large proportion of healthy HDI-exposed workers.

Author / Year	Study type	No.	Population	Exposure	Health Effect	Results
Nijem,	Cross-	137 shoe-	Workers from 20	Exposure to different	Neuropsychiatric &	Workers reported high prevalence of
2001	sectional	factory	manual leather shoe	solvents including	Mucous Membrane	neuropsychiatric and mucus membrane complaints:
(132)	survey	workers	factories in Hebron City,	dichloromethane, n-	Irritation	headache 65%, mental irritability 53%, tingling of
			Israel. Workers with	hexane, toluene,		limbs 46%, sore eyes 43%.
			less than 1 year	diisocyanate & PVC.		
			employment were	Factories generally		
			excluded	lacked effective		
				ventilation systems.		
				Workers rarely used		
				personal protective		
				equipment.		
				Health outcomes		
				questionnaire.		
Bosch,	Case report	1 patient		Had been working 50h	Myelofibrosis	Myelofibrosis not previously reported with toluene
1989 (80)			working in direct contact	a week with a glue		exposure. Patient had other previously reported
			with toluene for 40	made up of 90%		toluene-related complications (neurologic
			years	toluene		abnormalities and chromosomal aberrations)
Donoghue	Case series	16 solvent	Patients previously	Mixture of organic	Vision – contrast	Contrast sensivity was significantly depressed.
1995		exposed	diagnosed as having	solvents for an average	sensitivity	
(133)		patients	organic solvent induced	of 5.6 years		
			chronic toxic			
			encephalopathy			
Dick,	Case series	5 painters	Dockyard painter	Xylene, white spirit,	Colour vision,	Colour vision – blue-yellow deficits
2000		with	population with solvent	MEK, 2-ethoxyethanol,	Tremor	Tremor – course tremor
(100)		neurologic	exposure between 16-	dichloromethane &	Vibration sensation	Vibration sensation – impaired vibration sensation in
		symptoms	45 years	acetone		legs

Health and the Manufacture and Maintenance of Aircraft

This section provides a review of studies undertaken in the aircraft manufacturing and maintenance industry (refer to Table 9). Aircraft manufacture has been included as a relevant area of interest in this report, as the exposures occurring in this industry are to a large number of solvent mixtures, zinc chromate paints and resins. This is similar to those used generally in aircraft maintenance and in the SHOAMP study population.

Cancer

The literature reports that some workers involved in the manufacture and maintenance of both civilian and military aircraft experience adverse health effects as a result of occupational exposure. The main concern has been increased incidence of various cancers.

Mortality of aircraft manufacturing workers has been described in a number of studies. Garabrant (134) in a cohort of 14,067 subjects employed between 1958 and 1982 found non-significant excesses of cancer of the oesophagus, pancreas, and bladder. The study found no excess of melanoma, mesothelioma, or tumours of the central nervous system. The surveillance study of proportional mortality by occupation in Washington State showed significant excesses for all malignant neoplasms and for some cancer sites (including some digestive organs, haematolymphopoietic system, and melanomas) among aeronautical engineers of different companies and among Boeing officials, managers, and supervisors (135). Aeroplane mechanics, repairmen, and electricians, not necessarily employed at the Boeing Company, showed a significant excess risk of Central Nervous System tumours.

A preliminary investigation of central nervous system neoplasms in Los Angeles County (another US state area of high density of aircraft industry) showed excess risk among aircraft manufacturing employees, in particular engineers (136). A mortality cohort study in a north Italian aircraft factory found no excess either of oesophageal cancer of central nervous system tumours although the authors were concerned that the study follow-up period of 15 years was not sufficient for cancer with long latency periods (130). More recently Boice (137) has reported on a retrospective cohort mortality study of 77,965 employed since 1960 in a California aircraft manufacturing factory. Once again no significant increases in risk were observed for any of the 40 specific causes of death investigated. In all the studies, one of the principal concerns was believed to be the workers' exposure to large numbers and quantities of solvent mixtures.

The use of zinc chromate paints and exposure to chromium was investigated by Dalager (138) in a population of workers at two military aircraft maintenance facilities where spray painting utilised zinc chromate paint. Painters were found to have a significant excess of respiratory tract cancers and elevated rates for cirrhosis of the liver and cerebrovascular disease. Another group of reports investigated the all cause mortality and cancer incidence for aircraft maintenance workers on Hill Air Force Base, Utah between 1952-1956. This group had been working with a mixture of solvents, particularly trichlorethylene. The initial study by Spirtas (139) found some significant excesses of mortality for non-Hodgkin's lymphoma in women and liver and biliary passages in men, however a follow-up study by Blair (17) found no major cancer or mortality excesses.

More recently, concern has surrounded the exposure of those workers with exposure to jet fuels. Lemasters has published a series of papers reporting on various aspects of a study where she looked at exposure to JP-8 jet fuel now used by the United States Air Force and its effects on the sperm of aircraft maintenance personnel. The study found that low levels of exposure containing as little as 6 parts per million (ppm) of benzene, one of the constituents of JP-8, reduced the motility of sperm (124) and an increase in the frequency of sister-chromatid exchanges in a group of painters also exposed to mixtures of solvents (140).

In summary, a number of studies have looked at aircraft maintenance and cancer, although a statistically significant association has not been observed. However, a number of studies have seen non-significant increases in risk. It is therefore likely that a number of cancers will be observed in the SHOAMP population.

Reproductive Effects

The literature also demonstrates that aircraft maintenance, particularly on United States military bases has been of concern for some time. Ducatman (44) investigated a cluster of germ cell tumours of the testicle in a small cohort of aircraft maintenance workers and found a significant association. The men had been engaged in the maintenance of exterior surfaces and electrical components using solvents and paints.

Puhala (141) used industrial hygiene sampling techniques to measure jet fuel exposures on three domestic United States Air Force installations where JP-8 jet fuel was used. He reported that mean exposure concentration in parts per million for aircraft maintenance workers is 0.01ppm. The current Australian time weighted average (TWA) exposure level for benzene of 5ppm is equal to those levels that the Lemasters' studies on male reproductive effects found to have adverse effects. This perhaps means that if the exposures to benzene and naphthas in the fuel tanks were approaching the permissible TWA, adverse reproductive effects could be observed in the SHOAMP study population.

Other Health Effects

A number of other adverse health effects have been recognised in aircraft maintenance personnel. Smith (142) showed a significant association between solvents (benzene, toluene, and xylene) and increased postural sway response, implying subtle influence on vestibular/proprioception functionalities. Hackett (143) reported a case series of 43 aircraft manufacturing workers who reported to him with contact allergic dermatitis on their hands, forearms and faces following the use of resin systems used to seal interstices of aircraft components. Recently a number of animal studies have been conducted to look at exposures to JP-8 jet fuel as "occupational and environmental exposures... have become a source of public and regulatory concern" (p485) in the United States (144). The studies reviewed, on behalf of the US Air Force Office of Scientific Research, looked at various exposure levels on the cutaneous toxicity (144), nephrotoxicity (145) and long term immunotoxicity (146). The exposures tested were to simulate military occupational exposure. These rates were found to significantly effect protein expression in the kidneys of mice, produce long-term changes in immune status in mice, and increase cutaneous erythema, oedema, epidermal thickness and rete peg depth in the skin of pigs.

Working in Confined Spaces

The civilian aircraft maintenance industry has been concerned about entry to aircraft fuel tanks particularly since TWA Flight 800 exploded shortly after take-off from New York's John F. Kennedy International Airport. The investigations pinpointed concerns with the 747's centre-wing fuel tank. As a result the US Federal Aviation Administration issued mandated inspection and maintenance programs for fuel tanks. Whilst the aim of the directives was to make flying safer in the jumbo in the long term, in the short term it presents additional hazards on the ground for aircraft maintenance technicians because the inspection, repair, and maintenance procedures for 747 fuel tanks and other large passenger and cargo planes require that technicians physically enter them. The concern is that a fuel tank is an enclosed or partially enclosed space which, due to its design, has restricted means for entry and exit. It is not intended as a normal place of work; and may have a harmful atmosphere with elevated levels of contaminant or oxygen deficiency (147).

In Australia, changes to Australian Standard 2865-1995, Safe Working in a Confined Space (148) in early 1995 lead Qantas to review working methods in aircraft fuel tanks of its fleet. Yeung (149) conducted a large scale audit to assess procedures for aircraft fuel tank work, with due consideration of factors such as the nature of confined space, method of work, hazards involved, plant used, and emergency response and rescue procedures.

Air monitoring of fuel tank atmosphere showed oxygen remained at 21 percent throughout the test, lower explosive limit levels dropped substantially in a few hours even without purging due to the low evaporation rate of Jet A-1. High airborne concentrations of hydrocarbon vapour were detected in the tank. The level of benzene in the air dropped from 1.3 to 0.1 ppm in the sampling period. Yeung suggested that atmospheric purging of the tank would be necessary to control it to acceptable levels and that additional precautions needed to be taken when hot work, spray painting, or any work that utilises volatile organic solvents is performed inside the fuel tanks.

Co-exposure to several substances

The F-111 Deseal/Reseal program required the use of other volatile organic compounds to be used such as cleaning solvents, sealants, adhesion promoters and isocyanate, zinc chromate and glycol ester paints which may have had an additive or synergistic effect with the benzene exposure from jet fuel.

Table 9 : Studies involving health, exposure and aircraft maintenance

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Carlton, 2000	Industrial	77	US Air Force maintenance	Exposures to jet fuel &	Quantitative	Highest eight-hour time-weighted average (TWA)
(150)	hygiene	workers	personnel at 12 US air		measures of	fuel exposure was 1304 mg/m ³
	survey report	monitored	force bases	tank repair through the	exposures to	Highest 15-minute short-term exposure (STEL) was
				collection of breathing zone	benzene & jet	10,295 mg/m ³
				samples	fuel	(US air force TWA exposure limit is 350 mg/m ³)
						Levels of exposure depended on type of aircraft;
						wether tank contained explosion suppression foam,
						purging method, ease of efficient ventilation of
						tank.
						Study concluded that workers exposure to JP-8 jet
						fuel are substantial during aircraft fuel tank entry
						and repair.
Spirtas,	Retro-	14,457	Workers employed in the	Working with solvents,	All cause	Significant mortality for:
1991 (139)	•		aircraft maintenance facility	particularly trichlorethylene	mortality	Non-Hodgkin's lymphoma in white women SMR
	cohort		on Hill Air Force Base,			212 (102-390)
	mortality		Utah between 1952-56.			Liver & biliary passages in white men SMR 358 (116-836)
Ctowart	Detre	14 457	Markers employed in the	Marking with columnts	Accomment of	· · · · · · · · · · · · · · · · · · ·
Stewart, ,	Retro-	14,457	Workers employed in the aircraft maintenance facility	Working with solvents,	Assessment of	Established exposures with the use of job titles and
1991 (151)	spective cohort		on Hill Air Force Base,	particularly trichlorethylene	exposures	an exposure matrix and estimates of levels of exposure from historical industrial hygiene data.
	mortality		Utah between 1952-56.			exposure from historical industrial hygiene data.
Blair, 1998	Retro-	14,457	Follow-up of workers	Working with solvents,	All cause	No major cancer or mortality excess demonstrated.
(17)	spective	14,457	employers in the aircraft	particularly trichlorethylene	mortality and	Non-significant excesses of non-Hodgkin's
(17)	cohort		maintenance facility on Hill	particularly themoretrylene	incidence	lymphoma, multiple myeloma, and breast cancer
	mortality		Air Force Base, Utah		molachoc	among workers with exposures to various solvents
	mortanty		between 1952-56.			among workere with expective to various converte
Boice, 1999	Retro-	77,965	Workers employed for at	Exposure to chromate,	Mortality in 40	No significant increases in risk were found for any
(137)	spective		least 1 year at a large	trichlorethylene,	specific cause	of the 40 specific cause of death category
. ,	cohort		aircraft manufacturing	perchlorethylene, and	categories.	
	mortality		facility in California on or	mixed solvents.	-	
	study		after 1/1/1960			

Author /	Study type	No.	Population	Exposure	Outcome	Results
Year						
Garabrant,	Retro-	14,067	Men & women employed \geq	Estimated to prevalence of	All cause	Based on 1,804 deaths where 2,399 were
1988 (134)	spective	mean	4 years, 1958-1982 at an	exposure to a variety of	mortality,	expected. No excesses of mortality had occurred.
	cohort	duration	aircraft manufacturing	materials including:		Non significant excesses were noticed for
	mortality	of	company in San Diego		of the testes,	oesophagus, pancreas, and bladder
	study	employ-	County.	Methyl ethyl ketone,	brain & nervous	Study had power to find excesses greater than two
		ment	Male 85%, Female 15%		system,	fold for all but testicular cancer that had low power
		15.8y		trichloroethane, methylene	malignant	(28%) of detecting a risk greater than two-fold.
				chloride	melanoma,	Authors note that the study would not have been
						adequate to detect excess risk that would not have
						been detectable with less than 20-30 yr of follow-
						up.
Ducatman,	Retro-	153	Men engaged in the			Statistically significant result. No point estimates
1986 (44)	spective		exterior surfaces and	testicular germ cell cancer	tumours of the	provided.
	cohort		electrical components of	o ,	testicle	
	incidence		aircraft	working at an airframe		
	study					
Dalager,	Retro-	997 male	Painters and electroplaters	•	Cancer	Electroplaters had no relative excess of cancer.
1980 (138)	spective	painters,	from 2 large US	paints and electroplating in	mortality	Painters had a significant excess of cancer,
	cohort	276 male	government-owned		measured as	particularly of the respiratory tract (PMR 1.84).
	mortality	electro-	(military) aircraft		proportionate	PMR's elevated for cirrhosis of the liver, and for
	study	platers	maintenance bases where		cancer mortality	cerebrovascular disease, and depressed for
			spray painting utilised zinc			cardiovascular disease.
			chromate primer paint.			
			Both bases had			
			electroplating operations.			

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Costa, 1989	Retro-	8626	Workers employed	Aromatic nitro & amino	All cause	All cause SMR was 85 (n=685 deaths). No excess
(152)	spective		between 1954 and 1981 in	organic compounds in	mortality	for either oesophageal cancer for CNS tumours.
~ /	cohort study		a aircraft-manufacturing	cutting fluids and as		The study had 56% and 71% power to detect any
	of Mortality		factory in northern Italy.	constituents of rubber	on Italian	significant risk greater than twofold at the 5%
	-		Median duration of follow	plastic paint dye. Other	national	significance level for these two cancer sites
			up from the date of first	aromatic and halogenated	mortality rates.	respectively.
			employment was 16 years	organic compounds in	Particular focus	There was a significant excess of mortality for
				solvents; chromates and	on oesophageal	melanoma, SMR 561. This was recognised in the
				other heavy metal salts in	cancer & CNS	younger workers, employed more recently and
				paints and welding fumes.	tumours.	working in manufacturing areas. Exposure to a
				Epoxy resins, other plastics		specific chemical or other cause was difficult given
				with amine hardeners in		that multiple exposures existed.
				fibre sheet preimpregnated		No specific excess of mortality was found in
				materials, in paints &		specific jobs or work areas.
				enamels, in adhesive		
				materials; fibres (asbestos,		
				man-made mineral fibres) in		
				insulating materials,		
				composite materials;		
				ionising radiation in non-		
				destructive testing.		
Lemasters,	Prospective	50 un-	US air force aircraft	Solvent exposure during	Male	For most sperm measures, mean values remained
1999(124)	repeated	exposed	maintenance personnel	aircraft maintenance,	reproductive	in the normal range throughout the 30 weeks of
	measures	men		exposure measured.	effects. Sperm	exposure.
	study	evaluated		Jobs were analysed by	production,	The paint shop group had a significantly decline in
		before 1 st		exposure groups.	structure, and	motility of 19.5% at 30 weeks.
		exposure		Exposures were low, below	function (sperm	
		8 controls		6 ppm.	concentration,	
					sperm motion,	
					viability,	
					morphology,	
					morphometric,	
					and stability of	
					sperm	
					chromatin)	

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Lemasters,	Prospective	50 un-	US air force aircraft	Solvent exposure during	Genotoxic	A small but statistically significant increase in the
1997 (140)	repeated	exposed	maintenance personnel	aircraft maintenance,	changes, sister-	frequency of SCE occurred after 30 weeks of
. ,	measures	men		exposure measured.	chromatid	exposure for sheet metal workers (p=0.003) and for
	study	evaluated		Jobs were analysed by	exchanges	painters (p=0.05). The MN frequency in the sheet
		before 1 st		exposure groups.	(SCE) and	metal workers initially showed a statistically
		exposure		Exposures were low, below	micronuclei	significant increase but by 30 weeks had
		8 controls		6 ppm.	(MN) frequency	decreased.
					were measured	Authors feel findings suggest that small increases
						in SCE's in particular may serve as a sensitive
						biologic indicator of low level hydrocarbon
						exposure in as much as statistically significant
						changes occurred in the highest exposed groups
						but not in the low or no exposure groups.
Lemasters,	Full shift	8 volun-	US air force aircraft		Comparison of	Industrial hygiene air samples and internal breath
1999 (153)		teers with	maintenance personnel at	xylene, toluene, methyl	internal dose	measures taken on the same day were highly
		job duties	Hill air force base.	ethyl ketone (MEK) and	measures of	correlated for measuring TCA (r=0.93) and toluene
	sampling	involving		methylene chloride.	solvents in	(r=0.90) but was not as well correlated for other
		use of			breath, blood &	compounds. Breath measures were more sensitive
		solvents			urine &	for measuring low level exposure than were either
					genotoxic	analyses in blood or 23-hr urine samples; these
					changes	,
						detection.
Puhala, 1997	Industrial	3 US AF	At 3 USAF installations	Naphtas, benzene,	Quantified	Aircraft maintenance
(141)	hygiene	install-	breathing zone samples	heptane, m-Xylene, o-	exposures	Benzene = 0.01 ppm, naphthas/jet fuels = 1.33
	report	ations	collected from 3 general	Xylene, p-Xylene, toluene.		ppm.
			job categories at each			Fuel handling
			location: aircraft			Benzene = 0.01 ppm, naphthas/jet fuels = 0.61
			maintenance, fuel			ppm
			handling, and flightline			Flightline positions
			positions			Benzene = 0.004 ppm, naphthas/jet fuels = 0.33
						ppm

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Smith, 1997	Case control	27 / 25	USAF employees at 2	Cases exposed to jet fuels	Postural	Showed a statistically significant association
(154)	study		bases.	for an average of 12 years.	Balance	between solvents (benzene, toluene, and xylene)
	-			Results interpreted with		and increased postural sway response.
				mean cumulative exposure		For all solvent exposures, the "eyes closed, on
				levels.		foam" test provided the strongest association
						between sway length and JP-8 benzene, implying
						subtle influence on vestibular/proprioception
						functionalities.
Pleil, (155)	Case control	63	Various groups of air force	JP-8 exposure	Assessment of	Found a demonstrable JP-8 exposure for all
(from	study	controls,	personnel	Ambient air & collected	exposure levels	subjects, ranging from slight elevations as
abstract)		215 JP-8		breath		compared to control group to > 100 [multiple] the
		related				control values.
Hackett,	Case series	43	Workers who reported to	Aircraft manufacture.	Allergic contact	Most of the patients were associated with resin
1999 (156)		patients	workplace occupational		dermatitis on	systems used to fabricate aircraft components or
			physician with allergic		hands, forearms	resins used in sealing interstices of assembled
			contact dermatitis		& face	components.
Witzmann,	Animal study	30 mice	Male Swiss-Webster mice	1 5	Nephrotoxicity	Demonstrated significant but comparatively
2000 (145)	to simulate			days to aerosolised JP-8		moderate JP-8 effects on protein expression in the
	JP-8 jet fuel			jet fuel at a concentration		kidney and provides novel molecular evidence of
	exposure			of 1000 mg/m3, simulating		JP-8 nephrotoxicity. Human risk is suggested by
				military occupational		these data but conclusive assessment awaits a
				exposure		noninvasive search for biomarkers in JP-8 exposed
						humans.

Author / Year	Study type	No.	Population	Exposure	Outcome	Results
Harris, 1997 (146)	Animal study to simulate JP-8 jet fuel exposure	Not specified	Female mice	Mice exposed for 1h/day for 7 days to moderate (1000 mg.m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel for 28 days	Long term immunotoxicity	It was observed that decrease in viable immune cell numbers and immune organ weights found at 24h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analysed by mitogenesis assays which persisted for up to 4 weeks post-exposure. Thus short-term exposure to mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due toJP-8 exposure. Such long-term changes in immune status may have significant effects on the health of the exposed individuals.
Monteiro- Riviere, 2001 (144)	Animal study (pigs) to simulate jet fuel exposure	16 female Yorkshire pigs	Pigs were used as they are an accepted animal model for human skin.	Exposed to low-dose (25 μl) or high-dose 335 μl Jet A, JP-* and JP-*+100 under occluded (Hill Top or cotton fabric) and non- occluded conditions for 5h, 24h and 5 days. To mimic occupational exposure, fuel-soaked fabric (high dose) was used.	toxicity of three fuels used in	The high-dose fabric soaked exposure at 5 days to all fuels caused the greatest increase in cutaneous erythema, oedema, epidermal thickness and rete peg depth compared with high dose non-occluded or low-dose exposure under Hill Top occluded conditions.

Measurement of exposure and outcomes

Bio-markers

The aim of this review was to identify the best bio-marker of pre-clinical cancerous disease. It was anticipated that with the limited sample size and young ages of those involved in the F-111 Deseal/Reseal programs, the numbers of clinically overt cancers, even for the most common types (eg; colon) would not allow sufficient power to detect statistically significant differences between exposed and comparison groups. A literature review was conducted to identify a quantitative bio-marker that would indicate an increased risk of cancer at a population level, and which could be used with the SHOAMP population. The main requirement was that such a bio-marker should be measurable in blood and not be invasive, eg; colonoscopy. The paradigm used was that of genotoxicity, i.e. the underlying mechanism of cancer is fundamentally DNA damage and mutations.

Synthesis of the information was organised according to the matrix shown in Table 10. This table differs in format and content to previous tables and will therefore be described in detail. Along the left hand side are the criteria judged to be necessary for a bio-marker to be suitable as a marker of pre-clinical cancer:

- a) Blood assay reflects tissue damage: this refers to the fact that DNA damage to the susceptible organ, ie; the organ in which cancer is likely to develop, has been correlated to DNA damage in the peripheral blood cells. For example, DNA adduct levels in peripheral blood lymphocytes reflect DNA adduct levels in lung tissue for the risk of lung cancer.
- b) Related to cancer: this refers to the minimum criteria that the presence of the bio-marker has been shown to be related to the future risk of cancer in a cohort or longitudinal design.

- c) Related to environmental toxins: that the bio-marker has been shown to relate to exposure levels of environmental toxins of the kind that were used in the Deseal/Reseal program, eg; organic solvents, etc.
- Related to radiation: related either to major exposure, eg; Hiroshima,
 Chernobyl, or occupational exposure, eg; radiation workers in industry or hospital.
- e) Ability to discriminate exposed versus non-exposed: this refers to the spread of values of the bio-markers between exposed and non-exposed persons, and the amount of overlap in the 2 sets of values. In other words, is the spread of bio-marker values tight enough that one can use the bio-marker to define the exposure groups?
- f) Level of mutation: refers to the absolute value of the bio-marker.
- g) Ease of assay: a subjective grading from easy (+) to difficult (+++).
- Persistence over years: a key criterion is that exposure in the remote past should cause a bio-marker that persists to the present time. For example, DNA-adducts are markers for acute exposure, but the adducts are either repaired by DNA repair enzymes or cause cell death; in either case, the adducts do not persist beyond a few months.

Along the top of the graph are the various bio-markers considered.

- a) Chromosomal aberrations: these reflect chromosome deletions, translocations, duplications, etc. and are seen at the cytogenetic level, eg; using a light microscope. Lymphocytes are obtained and grown in culture, then a spread of chromosomes are obtained on a slide.
- b) Micronuclei: these are extra bits of chromosomes that are sequestered apart from the rest of the cell nucleus and are observable by light microscopy.
- c) Sister chromatid exchange: this refers to the fact that each member of a chromosome pair exchanges some bits of DNA with its "sister" chromosome.
 For this to be observed, live lymphocytes need to be cultured in radioactive material to tag the strands of DNA.
- Adducts: refers to chemical cross-linking of a toxin to DNA or protein, eg; benzo-a-pyrene adducts in DNA.

- e) GPA: Glycophorin A is a protein on the surface of red blood cells and comes in 2 isoforms, M and N. Approximately 50% of people have both forms on the surface of their red blood cells (RBC). Mutagens can knock out one or the other of the M or N gene, causing a sub-population of RBCs which are only M or N, in a background of predominantly MN cells. Results are expressed as variant frequency.
- f) HPRT: is a gene involved in DNA synthesis. In the presence of functional copies of HPRT, the cells can take up a toxin which kills them. Those that have mutations in the HPRT gene (which knock out function), can grow in the presence of the toxin.
- g) TCR: refers to the T Cell Receptor which in principle is the same as the GPA but is expressed on the surface of lymphocytes.
- h) p21 or p53 or p185: these are oncogenes. Oncogenes are proteins involved in the cell cycle, which have been found to be mutated in tumour tissue; they are in the pathogenic pathway of cancerous growth. Although the proteins are usually found in tumour tissue, cells may make excess protein which can be detected in the serum.

Only one marker meets the essential criteria of being related to cancer in cohort studies and of persistence: chromosomal aberrations. In a series of papers pooling thousands of subjects in Nordic countries and Italy, the presence of chromosomal abnormalities were linked to a ~3 fold risk in all cancers. This risk was graded, and present despite the bio-marker being graded in various labs with no standardisation. This risk was found on long-term follow-up of the cohort (10-15 years) and the bio-marker was measured at a fixed point in time, often many years after the exposure of interest. This bio-marker has been well linked to environmental exposures and has the advantage of being standard methodology in any genetic pathology lab. Although the methodology used standard cytogenetics and Giemsa staining, the advent of Fluorescence In-Situ Hybridisation (FISH) has the potential to make this method even more sensitive.

Some of the other markers which may potentially be useful:

a) Serum Oncogenes:

These have only been related to PVC exposure, and most of the work relating them to cancer (lung, breast, colon) has been in people with clinically overt cancer. Only a fraction (up to 25% at most) of cancer patients have circulating levels of oncogenes, but in these people remission and recurrence seems to correlate with oncogene levels. Establishing the presence of the oncogene many months or years before the clinically overt presentation of cancer has not been reported in the literature. Verbal communication with a leader in the field confirmed that it would be premature to use this bio-marker in the SHOAMP project (Brandt-Rauf, personal communication).

b) GPA

The advantages of this assay are that it is easy to perform, well established, and there are groups with the expertise in Australia. The negatives are that data will only be available on half of the sample, and the association with environmental toxins is somewhat contradictory. Most of the work has been with radiation exposure and in this case the GPA variant frequency is statistically related and persists for years. Most of the work with environmental toxins has been with chemotherapeutic agents, and it appears that GPA levels with this exposure do not persist beyond 6 months. The relation to cancer has only been established in genetic cancer syndromes, eg; Bloom's syndrome, where people with this condition have higher levels of GPA than controls.

Recommendations

A bio-marker with the desired properties is at the cutting edge of the field of molecular epidemiology and needs to be considered experimental. Nevertheless:

 Chromosomal aberrations are the most suitable marker at present. Aberrations may be detected using two different methods:

- Karyo-typing: Giemsa staining is used to stain chromosomes into bands, and a trained technician looks for any translocations, deletions or duplications etc. The resolution of the bands is in the range of 10-30 million base pairs.
- Fluorescence In-Situ Hybridisation (FISH): DNA probes with various fluorescent dyes are hybridised to a chromosome spread and an interferometer is used to collate the coloured hybridisation pattern. Various filters are used so that each chromosome is "painted" a different colour. The resolution is at least one order of magnitude greater, in the range of 0.5-2 million bases.

Traditional karyo-typing costs ~\$180 per person and is a Medicare Benefits Scheme listed item. FISH would be closer to \$400-500 per person and is still a research method. The increased resolution obviously allows for greater sensitivity, such that "micro" deletions, translocations and duplications, missed by karyo-typing can be detected by FISH. There are hundreds of reports in the literature using FISH in prenatal diagnosis, tumour histology, and hematological malignancies, showing that it has greater sensitivity than traditional karyo-typing, however these are all case reports or small series, and to date no-one has reported a head to head comparison in a large series of samples; hence it is difficult to quantify the advantage of the newer methods in terms of percentage gain in the number of aberrations detected, or indeed if there is any advantage. Bayani reviewed recent advances in the detection of chromosomal aberrations using spectral karyotyping (157).

- 2. We recommend that samples should be stored for future analysis, in the event that new bio-marker assays are developed. This involves two considerations
 - Storage of samples for possible future processing. Although limited in amount, serum and DNA may be stored for a limited number of future analyses.
 - Immortalisation of lymphocytes. This would enable a renewable and unlimited source of DNA, should future analyses or tests be required. This

needs to be performed with fresh lymphocytes and hence needs to be incorporated into the present protocol if desired.

3. The SAC may wish to consider funding the development of a new bio-marker of cancer risk, such as mitochondrial DNA mutations (refer to Appendix G).

Table 10 : Summary of Assay Information

CRITERIA	Chromosomal Aberrations	Micronuclei	SCE	Adducts	GPA	HPRT	TCR	P21, P53 or P185
Blood assay reflects tissue damage	+ Bonassi (158, 159)		+	+			-	
Related to cancer	+ Bonassi (158, 159); Liou (160)	- Bonassi (158)	- Bonassi (158)		- / + cancer prone syndrome, At/Bloom Cole (161)	+ / - cancer prone syndromes Albertini (162)	+ / - cancer prone syndrome Albertini (162)	+ / - Brandt-Rauf (163) Small numbers, no cohort, silicosis
Related to environmental toxins	+ Sorsa (164)	+ / - Tucker (165) Surralles (166)	+ Sorsa (167); Tucker (165)	+	+ / - Smith (168)	+ Albertini (169)		+ (PVC) Wong (170)
Related to radiation	+ Tucker (165)	+ Muller (171)	+	-	+ Ha (172)	+ Akiyana (173)	+ Akiyana (173)	
Ability to discriminate exposed v's non-exposed	- Liou (160)	- Muller (171)	- Sorsa (167)	-	- Lots of variability Bigbee (174); CV ~ 30-40% Cole (161)	- 2 – 8 fold variation Cole (161)		+ / -
Level of mutation	10 ⁻² – 10 ⁻³ Liou (160) (chromatid); Bender (175) (chromosome)		1 – 10 ¹	1 x 10 ⁶⁷ nucleotides	1 – 10 x 10 ⁶ Bigbee (174)	1 – 5 x 10 ⁶ Morley (176)	10 ⁴ Akiyana (173)	~ 10% - 20% Wong (170)

CRITERIA	Chromosomal Aberrations	Micronuclei	SCE	Adducts	GPA	HPRT	TCR	P21, P53 or P185
Ease of assay**	++ cultured 48-72 hrs Bonassi (159)	+	+++	+	+	++	+	+
Persistence over years	+ Bonassi (159)	- Muller (171)	-	-	+ / - Ha (172); Akiyama (173); Langlois (177); Wones (178); Cole (161	- Albertini (169) (1-4 yrs) Compton (179)	- 1-4 yrs Compton (179); Cole (161)	
Additional comments		Neg may be due to lab variability. Currently being standardised, only useful in splenectomized people for red blood cells.	Theoretically unknown mechanism. Link to cancer can be induced by non- mutagens.		Radiation effect persists but chemo reverses after 3 months.			Case control +/- for serum p21 and lung, colon and breast cancer.

** For "ease of assay" criteria only - + easy, ++ moderate, +++ difficult, - Does not meet criteria, + Does meet criteria, + / - Equivocal

Measurement of Neuropsychological Deficits

The published scientific literature identified through the current review provided evidence for the assessment of neurological deficit following a period of exposure to organic solvents. While there were some studies which reported conflicting or nonsignificant results in terms of between-groups differences following exposure, the data did not entirely refute the view that exposure to solvents does not lead to chronic organic or functional damage. Therefore, we recommend that the issue be explored by comprehensive assessment as part of SHOAMP.

As part of the General Health and Medical Study, neuropsychological testing is recommended for all consenting individuals from both the exposed and comparison cohorts. A number of individuals previously involved in the F-111 Deseal/Reseal programs have reported cognitive difficulties, and the Scientific Advisory Committee for the study support the assessment of cognitive functioning, motor functioning, mood and personality assessment and behavioural effects. Therefore the issue of how best to assess neuropsychological function also needed to be reviewed as a separate topic to whether there was evidence for adverse neuropsychological affects alone.

The literature supported the use of a battery of tests, rather than use of symptom questionnaires alone (180, 181). A report by the World Health Organisation (1986) in conjunction with the United Nations Environment Programme and the International Labour Organisation outlined principles for the assessment of neurotoxicity associated with chemical exposure. In addition to descriptions of animal investigations, they discussed the issue of applying a battery of tests to assess various aspects of behavioural, neurological and autonomic status. The literature reviewed as part of the neuropsychological aspect of SHOAMP also supported the use of a battery of tests for completeness. Table 11 provides a summary of the tests employed by different researchers to assess cognitive abilities.

Neuropsychological search terms were cross-checked against chemical terms, in order to establish evidence for the most appropriate domains for testing and the best measures to use. Each participant in the study should undergo a series of examinations, selected specifically to detect and report meaningful differences between exposure and comparison cohorts. For this review of neuropsychological measurement literature, the main points for attention were:

- Important confounders such as pre-morbid intellect, age and alcohol consumption;
- Domains most commonly affected being memory/learning (verbal/non-verbal), psychomotor speed, and manual dexterity;
- Frontal/executive domain did not seem to be consistently affected, at least using tests currently used; and
- Primary language function seemed resistant, but some caution about the true stability of "hold tests" were dependent on this.

Moreover, additional issues important for consideration when evaluating neuropsychological measurement for the SHOAMP General Health and Medical Study were:

- Consideration of the brevity of each test and the overall battery of tests together, so that study participants could combine their nursing and medical examinations in similar time periods;
- Establishment of pre-morbid intellect where possible (very few papers reviewed included any mention or conduct of tests for pre-morbid ability);
- The potential for inclusion as part of the overall examination of susceptibility factors, including indication of alcohol intake, family medical history (particularly of depression and/or dementia), APOE, and slow/fast metabolisers; and
- With regard to Psychopathology the value of probing for past history.

Table 11 : Summary of Tests Used for Neuropsychological Assessment
--

NEUROPSYCHOLOGICAL DOMAINS IMPAIRED	AUTHOR / YEAR	AGENTS	COMMENTS	INSTRUMENT / MEASURE
Auditory Verbal Memory	Baker (19)	Trichlorethylene, toluene, other	Case report (CR)	WMS
	Baker (19)	Perchlorethylene	CR	WMS
	White (182)	Mixed solvents	CR 'Chronic encephalopathy'	WMS
	Hanninen (113)	Mixed solvents	Premorbid data from military	WMS, Benton
	Morrow (98)	Solvents	Community Controls	Verb pair`assoc, Del verbal
	Bowler (183)	Organic solvents	Munitions workers	WMS (log memory, word list)
	Reinvang (184)	Organic solvents	Exposed vs non-exposed	Paired associate learning
	Ng (2)	Organic solvents	Depression, irritability also	Paired associate learning
	Hanninen (185)	Mixed solvents	Monozygotic twins	Paired associate learning
	Welch (56)	Toluene, methylethylketone	CR 2-d exp, chronic sequelae	WMS
Working Memory	Stollery (4)	Toluene aliphatic hydrocarbons	Post acute intoxication	Brown Petersen task
	Reinvang (184)	Organic solvents	Exposed vs non-exposed	Digit span
	Chia (186)	Mixed solvents	Select from cohort	Digit span
	Hanninen (185)	Mixed solvents	Monozygotic twins	Digit span
Visual Memory	White (101)	Toluene + others	2-yr prospective	WMS visual reproduction
-	Morrow (98)	Solvents	Community controls	WMS-R visual reproductions
	Chia (186)	Mixed solvents	Select from cohort	WMS visual reproduction
Psychomotor Speed	Hanninen (113)	Mixture of solvents	Premorbid data from military.	Santa Anna Dexterity Test
	Bowler (183)	Organic solvents	Munitions workers	Digit symbol grooved pegboard
	Reinvang (184)	Organic solvents	Exposed/non-exposed	Digit symbol
	Kishi (187)	Organic solvents	Age education matched	Digit symbol
	Chia (186)	Mixed solvents	Selected from cohort	Digit symbol, Santa Anna
	Ng (2)	Organic solvents	Depression, irritability also	Digit symbol
	Bleecker (108)	Organic solvents	Life time weighted av exp	Digit symbol, Trails A

NEUROPSYCHOLOGICAL DOMAINS IMPAIRED	AUTHOR / YEAR	AGENTS	COMMENTS	INSTRUMENT / MEASURE	
Executive Functioning	Hanninen (113)	Mixture of solvents	Premorbid data from military	Block design, similarities	
	Bleecker(108)	Organic Solvents	Life time weighted ave	Trails B	
Malingering in Memory	-	_	-	-	
Subjective Memory	Ng (188)	Spray paint	Headache also	'often need to go back and check on things' Endorsed by	
	Rammussen(189)	Halogenated hydrocarbons	Metal workers	check on things'. Endorsed by exposed in both studies	
Mood / Depression	Chen (114)	Dockyard solvents	Dose effect with #symptoms	Single item	
	White (101)	Toluene, + others	2-yr prospective study	Profile of mood states (POMS)	
	Capurro (190)	Solvent vapours	case reports	clinical evaluation	
	Morrow (97)	Organic solvents	exposed-non-exposed	SCID	
	Dryson (191)	Solvents	adverse prognostic feature	Clinical	
	Condray (192)	Organic solvents	Well controlled	SCID	
	Daniell (110)	Solvents	Comparison of occ groups	Structured interview	
	Kishi (187)	Organic solvents	Exposed v nonexposed	'easily depressed without	
	Morrow (12)	Organic solvents	Comparison of instruments	reason' SCL-90, POMS,BDI	
Anxiety	Chen (114)	Dockyard solvents	Dose effect with #symptoms	Single item	
	Morrow (97)	Organic solvents	Depression and anxiety	SCID	
Somatoform and	Rassmussen (189)	Halogenated hydrocarbons	Metal workers	Somatic complaints	
Dissociative Disorders	Chen (114)	Dockyard solvents	Symptoms proport to exposure	questionnaire	

SUMMARY OF RESULTS AND IMPLICATIONS FOR GENERAL HEALTH AND MEDICAL STUDY

This Section summarises the main findings from the literature review in terms of the implications for the SHOAMP General Health and Medical Study. The summary is presented separately for each of the outcomes, and includes the most appropriate method of measurement of outcomes where relevant.

Cancer

Among exposures examined, known carcinogens were benzene, strontium chromate, zinc chromate (hexavalent chromium) and silica. Probable carcinogens included white spirit, naphtha and stoddard solvent. Possible carcinogens were carbon black and lead chromate. It is important to include cancer incidence and mortality as an endpoint. Although record linkage should be a quick way to investigate this outcome, we highlight the fact that low power, long latency and insufficient control of confounders will make the result of such a study difficult to interpret. It is recommended that participants be asked, in the postal questionnaire, to provide information on previous diagnosis of cancer. A breast examination should be included as part of the General Health and Medical Examination, and participants be provided with a take home self administered Faecal Occult Blood Test kit. Assessment of chromosomal aberrations is also suggested.

Multiple Sclerosis, Motor Neurone Disease and other Neurological Effects

Solvent exposure has been linked to Multiple Sclerosis, Motor Neurone Disease and other neurological outcomes such as peripheral neuropathy, neurasthenic syndrome, emotional instability, memory, reaction time, and intellectual capacity. It is recommended that a full neurological examination NOT be undertaken as part of the General Health and Medical Study, but instead that participants be asked about previous diagnosis of these conditions.

Birth Defects

It is recommended that information on number of pregnancies and outcomes (eg; spontaneous abortion, miscarriage, stillbirth, live birth), weeks of gestation, birth weight, maternal complications (eg; pre-eclampsia, eclampsia), fertility problems, maternal age, smoking and alcohol habits, caffeine intake, and medications be obtained for pregnancies which occurred during the participant's involvement in F-111 Deseal/Reseal. It is further suggested that, in the case of male participants, this information be obtained from the female partner.

Neuropsychology

Neurological deficit resulting from exposure to chemical substances has been extensively reported in the scientific literature. The minimum outcomes which should be measured as part of the General Health and Medical Study should reflect attention, information processing, visual construction and recall.

The suggested domains to be measured are Auditory Verbal Memory, Working Memory, Visual Memory, Psychomotor Speed, Executive Functioning, Malingering in Memory, Subjective Memory, Mood and Depression, Anxiety, Somatoform and Dissociative Disorders. Measures include WMS, Paired Associated Learning, Digit Span, Santa Anna Dexterity Test, Digit Symbol, Pegboard, Trails A and B, Block Design and CIDI. Where possible a measure of pre-morbid intellect should be obtained. Susceptibility factors, including indication of alcohol intake, family medical history (particularly of depression and/or dementia), APOE, and slow/fast metabolisers; and should be included, in addition to report of past history of psychopathology.

Other Health Effects

Based on the literature and previous worker reports of poor health symptoms, liver function testing should be considered as part of the SHOAMP General Health and Medical Examination process, as should symptoms indicative of respiratory irritation, colour vision deficit and tremor.

Biomarkers

Chromosomal aberrations are the most suitable marker at present. Aberrations may be detected using Karyo-typing or Fluorescence In-Situ Hybridisation (FISH). It is recommend that blood samples should be stored for future analysis, in the event that new bio-marker assays are developed. This should involve Immortalisation of lymphocytes to enable a renewable and unlimited source of DNA.

REFERENCES

- 1. White RF, Proctor SP. Solvents and neurotoxicity. The Lancet 1997;349:1239-1243.
- 2. Ng TP, Ong CN, Lam WK, Jones GM. Neurobehavioural effects of industrial mixed solvent exposure in Chinese printing and paint workers. Neurotoxicity and Teratology 1990;12(6):661-664.
- Morrow LA, Ryan C, Goldstein G, Hodgson MJ. A distinct pattern of personality disturbances following exposure to mixtures of organic solvents. Journal of Occupational Medicine 1989;31(9):743-746.
- 4. Stollery BT, Flindt ML. Memory sequelae of solvent intoxication. Scandinavian Journal of Work and Environmental Health 1988;14:45-48.
- Eskenazi B, Bracken MB, Holford TR, Grady J. Exposure to organic solvents and hypertensive disorders of pregnancy. American Journal of Industrial Medicine 1988;14:177-188.
- Cai SX, Bao YS. Placental transfer, secretion into mothers milk of carbon disulphide and the effects on maternal function of female viscose rayon workers. Industrial Health 1981;19:15-29.
- Taskinen H, Anttila A, Lindbohm M, Sallmen M, Hemminki K. Spontaneous abortions and congenital malformations among the wives of men occupationally exposed to organic solvents. Scandinavian Journal of Work and Environmental Health 1989;15:345-352.
- 8. Whorton MD, Krauss RM, Marshall S, Milby TH. Infertility in male pesticide workers. Lancet 1977;2:1259.
- 9. Brender JD, Suarez L. Paternal occupation and anencephaly. American Journal of Epidemiology. 1990;131(3):517-21.

- Whelan EA, Grajewski B, Wild DK, Schnorr TM, Alderfer R. Evaluation of reproductive function among men occupationally exposed to a stilbene derivative: II. Perceived libido and potency. American Journal of Industrial Medicine 1996;29:59-65.
- 11. Hakkola M. Neuropsychological symptoms among tanker drivers with exposure to solvents. Occupational Medicine (Oxford) 1994;44(5):243-6.
- Morrow LA, Kamis H, Hodgson M. Psychiatric symptomatology in persons with organic solvent exposure. Journal of Consulting & Clinical Psychology 1993;61(1):171-174.
- Arlien-Sobørg P, Bruhn P, Gyldensted C, Melgaard B. Chronic painters' syndrome. Chronic toxic encephalopathy in house painters. Acta Neurologica Scandinavica 1979;60(3):149-56.
- Soderkvist P, Ahmadi A, Akerback A, Axelson O, Flodin U. Glutathione Stransferase M1 null genotype as a risk modifier for solvent-induced chronic toxic encephalopathy. Scandinavian Journal of Work, Environment & Health. 1996;22(5):360-3.
- Lundberg I, Sollenberg J. Correlation of xylene exposure and methyl hippuric acid excretion in urine among paint industry workers. Scandinavian Journal of Work and Environmental Health 1986;12:149-153.
- Hu J, Mao Y, White K, Group TCCRER. Renal cell carcinoma and occupational exposure to chemicals in Canada. Occupational Medicine 2002;52(3):157-164.
- 17. Blair A, Hartge P, Stewart PA, McAdams M, Lubin J. Mortality and cancer incidence of aircraft maintenance workers exposed to trichloroethylene and other organic solvents and chemicals: extended follow up. Occupational & Environmental Medicine 1998;55:161-171.
- Spurgeon A, Gray CN, Sims J, Calvert I, Levy LS, Harvey PG, et al. Neurobehavioural effects of long-term occupational exposure to organic solvents: two comparable studies. American Journal of Industrial Medicine 1992;22(3):325-335.
- 19 Baker EL, White RF, Murawaski BJ. Clinical evaluation of neurobehavioural effects of occupational exposure to organic solvents and lead. Int J Med Health 1985;14:135-158.

- 20 Toxnet. Internet, <u>http://www.toxnet.nlm.nih.gov</u>. In: National Library of Medicine, Specialist Information Service, 2002.
- 21. Chen R, Seaton A. A meta-analysis of mortality among workers exposed to organic solvents. Occupational Medicine (London) 1996;46(5):337-344.
- Ojajarvi A, Partanen T, Ahlbom A, Boffetta P, Hakulinen T, Jourenkova N, et al. Occupational exposures and pancreatic cancer: a meta-analysis.
 Occupational & Environmental Medicine 2000:316-324.
- Ojajarvi A, Partanen T, Ahlbom A, Boffetta P, Hakulinen T, Jourenkova N, et al. Risk of pancreatic cancer in workers exposed to chlorinated hydrocarbon solvents and related compounds: a meta-amalysis. American Journal of Epidemiology 2001;153(9):841-850.
- Hayes RB, Songnian Y, Dosemeci M, Linet MS. Benzene and lymphohematopoietic malignancies in humans. American Journal of Industrial Medicine 2001;40:117-126.
- Cocco P, Figgs L, Hayes R, Linet MS, Hsing AW. Case-control study of occupational exposures and male breast cancer. Occupational & Environmental Medicine 1998;55:599-604.
- 26. Hansen J. Breast cancer risk among relatively young women employed in solvent-using industries. American Journal of Industrial Medicine 1999;36:43-47.
- 27. Cocco P, Dosemeci M, Heineman EF. Occupational risk factors for cancer of the central nervous system; a case-control study on death certificates from 24 U.S. states. American Journal of Industrial Medicine 1998;33:247-255.
- Cocco P, Heineman EF, Dosemeci M. Occupational risk factors for cancer of the central nervous system (CNS) among US women. American Journal of Industrial Medicine 1999;36:70-74.
- 29. Gerin M, Siemiatycki J, Desy M, Krewski D. Associations between several sites of cancer and occupational exposure to benzene, toluene, xylene, and styrene: results of a case-control study in Montreal. American Journal of Industrial Medicine. 1998;34(2):144-56.

- 30. Wong O. A critique of the exposure assessment in the epidemiologic study of benzene-exposed workers in China. Conducted by the Chinese Academy of Preventive Medicine and the US National Cancer Institute. Regulatory Toxicology and Pharmacology 1999;30:259-267.
- Latendresse JR, Marit GB, Vernot EH, Haun CC, Flemming CD. Oncogenic potential of inhaled hydrazine in the nose of rats and hamsters after 1 or 10 1hr exposures. Fundamental & Applied Toxicology. 1995;27(1):33-48.
- Dosemeci M, Cocco P, Chow WH. Gender differences in risk of renal cell carcinoma and occupational exposures to chlorinated aliphatic hydrocarbons. American Journal of Industrial Medicine 1999;36:54-59.
- 33. McCredie M, Stewart J. Risk factors for kidney cancer in New South Wates.IV. Occupation. British Journal of Industrial Medicine 1993;50:349-354.
- Siemiatycki J, Dewar R, Nadon L, Gerin M. Occupational risk factors for bladder cancer: results from a case-control study in Montreal, Quebec, Canada. American Journal of Epidemiology 1994;140(12):1061-1080.
- 35. Hours M, Dananche B, Fevotte J, Bergeret A, Ayzac L, Cardis E, et al. Bladder cancer and occupational exposure. Scandinavian Journal of Work and Environmental Health 1994;20:322-330.
- Krstev S, Baris D, Stewart PA, Hayes RB, Blair A, Dosemeci M. Risk for prostate cancer by occupation and industry: a 24-state death certificate study. American Journal of Industrial Medicine 1998;34:413-420.
- Cordier S, Clavel J, Limasset JC, Boccon-Gibod L, Le Moual N, Manderiau L, et al. Occupational risks of bladder cancer in France: a multicentre casecontrol study. International Journal of Epidemiology 1993;22(3):403-411.
- Dement JM, Hensley L, Kieding S, Lipscomb H. Proportionate mortality among union members employed at three Texas refineries. American Journal of Industrial Medicine. 1998;33(4):327-40.
- Bulbulyan MA, Ilychova SA, Zahm SH, Astashevsky SV, Zaridze DG. Cancer mortality among women in the Russian printing industry. American Journal of Industrial Medicine. 1999;36(1):166-71.
- 40. Teta MJ, Perlman GD, Ott MG. Mortality study of ethanol and isopropanol production workers at two facilities. Scandinavian Journal of Work and Environmental Health 1992;18:90-96.

- Lundberg I, Milatou-Smith R. Mortality and cancer incidence among Swedish paint industry workers with long-term exposure to organic solvents. Scandinavian Journal of Work and Environmental Health 1998;24(4):270-275.
- 42. Berlin K, Edling C, Persson B, Ahlborg G, Hillert L, Hogstedt B, et al. Cancer incidence and mortality for patients with suspected solvent-related disorders. Scandinavian Journal of Work and Environmental Health 1995;21:362-367.
- 43. Garland GC, Gorham ED, Garland CF, Ducatman A. Testicular cancer in US navy personnel. American Journal of Epidemiology 1988;127(2):411-414.
- 44. Ducatman A, Conwill DE, Crawl J. Germ cell tumors of the testicle among aircraft repairmen. The Journal of Eurology 1986;136:834-836.
- 45. Axtell CD, Ward EM, McCade P, Schulte PA, Stern FB, Glickman LT. Underlying and multiple cause mortality in a cohort of workers exposed to aromatic amines. American Journal of Industrial Medicine 1998;34:504-511.
- 46. Gunnarsson LG, Bodin L, Soderfeldt B, Axelson O. A case-control study of motor neurone disease: its relation to heritability, and occupational exposures, particularly to solvents. British Journal of Industrial Medicine 1992;49:791-798.
- 47. Schulte PA, Burnett CA, Boeniger MF, Johnson J. Neurodegenerative diseases: occupational occurrence and potential risk factors, 1985 through 1991. American Journal of Public Health 1996;86(9):1281-1288.
- 48. Landtblom AM, Flodin U, Karlsson M, Palhagen S, Axelson O, Soderfeldt R.
 Multiple sclerosis and exposure to solvents, ionising radiation and animals.
 Scandinavian Journal of Work, Environment & Health 1993;19:399-404.
- 49. Landtblom AM, Flodin U, Soderfeldt B, Wolfson C, Axelson O. Organic solvents and multiple sclerosis a synthesis of the current evidence [Review]. Epidemiology 1996;7(4):429-433.
- 50. Reis J, Dietemann JL, Warter JM, Poser CM. A case of multiple sclerosis triggered by organic solvents. Neurological Sciences 2001;22(2):155-158.
- 51. Mortensen JT, Bronnum-Hansen H, Rasmussen K. Multiple sclerosis and organic solvents. Epidemiology 1998;9(2):168-171.
- Grasso P. Neurotoxic and neurobehavioural effects of organic solvents on the nervous system. State of the Art Reviews - Occupational Medicine 1988;3(3):525-539.

- 53. Seppalainen AM. Solvents and peripheral neuropathy. Progress in Clinical and Biological Research 1986;220:247-253.
- 54. Takeichi S, Yamada T, Shikata I. Acute toluene poisoning during painting. Forensic Science International 1986;32:109-115.
- 55. Gupta BN, Kumar P, Srivastava AK. An investigation of the neurobehavioural effects on workers exposed to organic solvents. Journal of the Society of Occupational Medicine 1990;40:94-96.
- Welch L, Kirshner H, Heath A, Gilliland R, Broyles S. Chronic neuropsychological and neurological impairment following acute exposure to a solvent mixture of toluene and methyl ethyl ketone. Clinical Toxicology 1991;29(4):435-445.
- 57. Riihimaki V, Savolainen K. Human exposure to m-xylene. Kinetics and acute effects on the central nervous system. The Annals of Occupational Hygiene 1980;23:411-422.
- 58. de Rosa E, Bartolucci GB, Brighenti F, Gori GP, Sigon M, Toffolo D. The industrial use of solvents and risk of neurotoxicity. The Annals of Occupational Hygiene 1985;29(3):391-397.
- 59. Morck HI, Winkel P, Gyntelberg F. Health effects of toluene exposure. Danish Medical Bulletin 1988;35(2):196-200.
- Cherry N, Hutchins H, Pace T, Waldron HA. Neurobehavioural effects of repeated occupational exposure to toluene and paint solvents. British Journal of Industrial Medicine 1985;42:291-300.
- Baelum J, Andersen I, Lundqvist GR, Molhave L, Federsen OF, Vaeth M, et al. Response of solvent-exposed printers and unexposed controls to six-hour toluene exposure. Scandinavian Journal of Work and Environmental Health 1985;11:271-280.
- Mizutani T, Oohashi N, Nalto H. Myoglobinemia and renal failure in toluene poisoning: a case report. Veterinary and Human Toxicology 1989;31(5):448-450.
- Doty RL, Deems DA, Frye RE, Pelberg R, Shapiro A. Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Archives of Otolaryngology - Head and Neck Surgery 1988;114:1422-1427.

- 64. Ikeda M, Tsukagoshi H. Encephalopathy due to toluene sniffing. European Neurology 1990;30:347-349.
- 65. Savolainen K, Riihimaki V, Muona O, Kekoni J, Luukkonen R, Laine A. Conversely exposure-related effects between atmospheric m-xylene concentrations and human body sense of balance. Acta Pharmacologica et Toxicologica 1985;57:67-71.
- 66. Wennberg A. Effects on the nervous system of exposure to a single solvent (toluene) in industrial work - a comparison with the effects of exposure to a mixture of solvents. In. Electroencephalography and Clinical Neurophysiology; 1981. p. S90-S91.
- 67. Yin S, Li G, Hu Y, Zhang X, Jin C, Inoue O, et al. Symptoms and signs of workers exposed to benzene, toluene or the combination. Industrial Health 1987;25:113-130.
- Kraut A, Lilis R, Marcus M, Valciukas JA, Landrigan PJ. Neurotoxic effects of solvent exposure on sewage treatment workers. Archives of Environmental Health 1988;43(4):263-268.
- Kilburn KH, Seidman BC, Warshaw R. Neurobehavioural and respiratory symptoms of formaldehyde and xylene exposure in histology technicians. Archives of Environmental Health 1985;40(4):229-233.
- 70. Harris RH, Rodricks JV, Clark CS, Papadopulos SS. Adverse health effects at a Tennessee hazardous waste disposal site. In: Andelman JB, Underhill DW, editors. Health effects from hazardous waste sites. Chelsea, Michigan USA: Lewis Publishers Inc; 1987. p. 221-240.
- Poungvarin N. Multifocal brain damage due to lacquer sniffing: The first care report of Thailand. Journal of the Medical Association of Thailand 1991;74(7):296-300.
- Milanovic L, Spilich G, Vucinic G, Knezevic S, Ribaric B, Mubrin Z. Effects of occupational exposure to organic solvents upon cognitive performance. Neurotoxicology and Teratology 1990;12:657-660.
- 73. Seppalainen AM, Laine A, Salmi T, Riihimaki V, Verkkala E. Changes induced by short-term xylene exposure in human evoked potentials. International Archives of Occupation and Environmental Health 1989;61:443-449.

- Hjelm EW, Hagberg M, Iregren A, Lof A. Exposure to methyl isobutyl ketone: toxicokinetics and occurrence of irritative and CNS symptoms in man. International Archives in Occupational and Environmental Health 1990;62:19-26.
- 75. Ogawa Y, Takatsuki R, Uema T, Seki Y, Hiramatsu K, Okayama A, et al. Acute optic neuropathy induced by thinner sniffing: Inhalation of mixed organic solvent containing methyl alcohol and methyl acetate. In. Industrial Health; 1988. p. 239-244.
- 76. Mergler D, Beurvais B. Olfactory threshold shift following controlled 7-hour exposure to toluene and/or xylene. NeuroToxicology 1992;13:211-216.
- 77. Iregren A. Effects on psychological test performance of workers exposed to a single solvent (Toluene) a comparison with effects of exposure to a mixture of organic solvents. Neurobehavioural Toxicology and Teratology 1982;4:695-701.
- Johnson BL, Boyd J, Burg JR, Lee ST, Xintaras C, Albright BE. Effects on the peripheral nervous system of workers' exposure to carbon disulfide. NeuroToxicology 1983;4(1):53-66.
- Dick RB, Brown WD, Setzer JV, Taylor BJ, Shukla R. Effects of short duration exposures to acetone and methyl ethyl ketone. Toxicology Letters 1988;43:31-49.
- 80. Bosch X, Ma Campistol J, Montoliu J, Cervantes F, Revert L. Toluene associated myelofibrosis. In. Blut; 1989. p. 219-220.
- Risberg J. Regional cerebral blood flow measurements by 133Xe-inhalation: methodology and applications in neuropsychology and psychiatry. Brain & Language. 1980;9(1):9-34.
- Larsen F, Lasse Leira H. Organic brain syndrome and long term exposure to toluene: A clinical psychiatric study of vocationally active printing workers. Journal of Occupational Medicine 1988;30(11):875-878.
- Echeverria D, Fine L, Langolf G, Schork A, Sampaio C. Acute neurobehavioural effects of toluene. British Journal of Industrial Medicine 1989;46:483-495.

- Matikainen E, Juntunen J. Examination of the peripheral autonomic nervous system in occupational neurology. In: Neurobehavioural Methods in Occupational and Environmental Health: Second International Symposium, WHO.; 1985 August 6-9; Copenhagen, Denmark: World Health Organisation, Copenhagen, Denmark.; 1985. p. 57-60.
- 85. Foo SC, Jeyaratnam J, Koh D. Chronic neurobehavioural effects of toluene. British Journal of Industrial Medicine 1990;47:480-484.
- 86. Urban P, Lukas E. Visual evoked potentials in rotogravure printers exposed to toluene. British Journal of Industrial Medicine 1990;47:819-823.
- 87. Echeverria D, Fine L, Langolf G, Schork T, Sampaio C. Acute behavioural comparisons of toluene and ethanol in human subjects. British Journal of Industrial Medicine 1991;48:750-761.
- Lash AA, Becker CE, So Y, Shore M. Neurotoxic effects of methylene chloride: Are they long lasting in humans? British Journal of Industrial Medicine 1991;48:418-426.
- 89. Peters HA, Levine RL, Matthews CG, Sauter S, Chapman L. Synergistic neurotoxicity of carbon tetrachloride/carbon disulfide (80/20 fumigants) and other pesticides in grain storage workers. Acta Pharmalogica et Toxicologica Supplement 1986;59(7):535-546.
- Mikkelsen S, Jorgensen M, Browne E, Gyldensted C. Mixed solvent exposure and organic brain damage. Acta Neurologica Scandinavica 1988;78(Supplement # 118):7-143.
- 91. Amaducci A, Arfaioli C, Inzitari D, Marchi M. Multiple sclerosis among shoe and leather workers: an epidemiological survey in Florence. Acta Neurology Scandinavia 1982;65:94-103.
- 92. Juntunen J, Kinnunen E, Antti-Poika M, Koskenvuo M. Multiple sclerosis and occupational exposure to chemicals: a co-twin control study of a nationwide series of twins. British Journal of Industrial Medicine 1989;46:417-419.
- Flodin U, Soderfeldt B, Noorlind-Brage H, Fredriksson M, Axelson O. Multiple sclerosis, solvents, and pets: a case-referent study. Archives of Neurology 1988;45:620-623.

- 94. Gronning M, Albrektsen G, Kvale G, Moen B, Aali JA, Nyland H. Organic solvents and multiple sclerosis: a case-control study. Acta Neurologica Scandinavia 1993;88:247-250.
- 95. Arlien-Sobørg P. Solvent Neurotoxicity. Boca Raton: CRC Press; 1992.
- Morrow LA, Ryan CM, Hodgson M, Robin N. Alterations in cognitive and psychological functioning after organic solvent exposure. Journal of Occupational Medicine 1990;32(5):444-50.
- 97. Morrow LA, Gibson C, Bagovich GR, Stein L, Condray R, Scott A. Increased incidence of anxiety and depressive disorders in persons with organic solvent exposure. Psychosomatic Medicine 2000;62:746-750.
- Morrow LA, Stein L, Bagovich GR, Condray R, Scott A. Neuropsychological assessment, depression and past exposure to organic solvents. Applied Neuropsychology 2001;8(2):65-73.
- Morrow LA, Robin N, Hodgson MJ, Kamis H. Assessment of attention and memory efficiency in persons with solvent neurotoxicity. Neuropsychologia 1992;30(10):911-922.
- 100. Dick F, Semple S, Chen R, Seaton A. Neurological deficits in solvent-exposed painters: a syndrome including impaired colour vision, cognitive defects, tremor and loss of vibration sensation. Quarterly Journal of Medicine 2000;93:655-661.
- White RF, Proctor SP, Echeverria D, Schweikert J, Feldman RG. Neurobehavioural effects of acute and chronic mixed-solvent exposure in the screen printing industry. American Journal of Industrial Medicine 1995;28:221-231.
- 102. Baker EL, Letz RE, Eisen EA, Pothier LJ, Plantamura DL, Larson M, et al. Neurobehavioural effects of solvents in construction painters. Journal of Occupational Medicine 1988;30(2):116-123.
- 103. Nasterlack M, Dietz MC, Frank KH, Hacke W, Scherg H, Schmittner H, et al. A multidisciplinary cross-sectional study on solvent-related health effects in painters compared with construction workers. International Archives of Occupation and Environmental Health 1999;72(4):205-14.

- 104. Spurgeon A, Glass DC, Calvert I, Cunningham-Hill M, Harrington JM. Investigation of dose related neurobehavioural effects in paintmakers exposed to low levels of solvents. Occupational and Environmental Medicine 1994;51(9):626-630.
- 105. Triebig GB, A. Erbguth, F. Holl, R. Lang, C. Lehrl, S. Rechlin, T. Weidenhammer, W. Weltle, D. Neurotoxicity of solvent mixtures in spray painters, II. Neurologic, psychiatric, psychological, and neuroradiologic findings. International Archives of Occupational and Environmental Health 1992;64:361-372.
- Eller N, Netterstrom B, Laursen P. Risk of chronic effects on the central nervous system at low toluene exposure. Occupational Medicine (Oxford) 1999;49(6):389-95.
- 107. Gregersen P, Angelso B, Nielsen TE, Norgaard B, Uldal C. Neurotoxic effects of organic solvents in exposed workers: An occupational, neuropsychological, and neurological investigation. American Journal of Industrial Medicine 1984;5:201-225.
- 108. Bleecker ML, Bolla KI, Agnew J, Schwartz BS, Ford DP. Dose-related subclinical neurobehavioural effects of chronic exposure to low levels of organic solvents. American Journal of Industrial Medicine 1991;19(6):715-28.
- 109. Mitran E, Callender T, Orha B, Dragnea P, Botezatu G. Neurotoxicity associated with occupational exposure to acetone, methyl ethyl ketone, and cyclohexanone. Environmental Research 1997;73:181-188.
- 110. Daniell WE, Claypoole KH, Checkoway H, Smith-Weller T, Dager SR, Townes BD, et al. Neuropsychological function in retired workers with previous long term occupational exposure to solvents. Occupational and Environmental Medicine 1999;56(2):93-105.
- 111. Rosenberg NL, Grigsby J, Dreisbach J, Busenbark D, Grigsby P.
 Neuropsychologic impairment and MRI abnormalities associated with chronic solvent abuse. Journal of Toxicology Clinical Toxicology 2002;40(1):21-34.
- 112. Cherry N, Venables H, Waldron HA. British studies on the neuropsychological effects of solvent exposure. Scandinavian Journal of Work and Environmental Health 1984;10(Suppl 1):10-12.

- 113. Hanninen H, Eskelinen L, Husman K, Nurminen M. Behavioural effects of long-term exposure to a mixture of organic solvents. Scandinavian Journal of Work and Environmental Health 1976;4:240-255.
- 114. Chen R, Dick F, Seaton A. Health effects of solvent exposure among dockyard painters: mortality and neuropsychological symptoms. Occupational and Environmental Medicine 1999;56:383-387.
- 115. Tripathi SR, Bhattacharya SK, Kashyap SK. Neurobehavioural changes in workshop painters of a public transport network. Journal of Human Ergology 1995;24(2):153-160.
- 116. Myers JE, Nell V, Colvin M, Rees D, Thompson ML. Neuropsychological function in solvent-exposed South African paint makers. Journal of Occupational & Environmental Medicine 1999;41(11):1011-1018.
- 117. New South Wales Mothers and Babies 1999 Report. Sydney: New South Wales Department of Health; 2000.
- 118. Tas S, Lauwerys R, Lison D. Occupational hazards for the male reproductive system. Critical Reviews 1996;26(2):261-307.
- 119. MacPhee DG, Hall W. Long term hazards of exposure to environmental chemicals: The case of Vietnam veterans and agent orange. Search 1985;16(5-6):146-148.
- 120. Fikree FF, Gray RH, Shah F. Can men be trusted? A comparison of pregnancy histories reported by husbands and wives. American Journal of Epidemiology 1993;138(4):237-242.
- 121. Ravnskov U. Hydrocarbons may worsen renal function in glomerulonephritis: a meta-analysis of the case-control studies. American Journal of Industrial Medicine 2000;37:599-606.
- 122. Paggiaro PL, Bacci E, Dente FL, Talini D, Vagaggini B, Giuntini C. Mechanisms of bronchial hyperresponsiveness in occupational asthma due to isocyanates. Progress in Respiratory Research 1990;24:127-136.
- 123. Gralewicz S. Organic solvents and time-dependent sensitisation. International
- 124. Lemasters GK, Olsen DM, Yiin JH, Lockey JE, Shukla R, Selevan SG, et al. Male reproductive effects of solvent and fuel exposure during aircraft maintenance.

- Tomei F, Giuntoli P, Biagi M, Baccolo TP, Tomao E, Rosati MV. Liver damage among shoe repairers. American Journal of Industrial Medicine 1999;36(541-547).
- 126. Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, Kotyola P, Fiszer M, Dudarewicz A, et al. Hearing loss among workers exposed to moderate concentrations of solvents. Scandinavian Journal of Work and Environmental Health 2001;27(5):335-342.
- 127. Boogaard PJ, Rocchi PSJ, van Sittert NJ. Effects of exposure to low concentrations of chlorinated hydrocarbons on the kidney and liver of industrial workers. British Journal of Industrial Medicine 1993;50:331-339.
- 128. Qu Q, Shore R, Li G, Jin X, Chen LC, Cohen B, et al. Hematological changes among Chinese workers with a broad range of benzene exposures. American Journal of Industrial Medicine 2002;42:275-285.
- 129. Little CH, Georgiou GM, Shelton MJ, Simpson F, Cone RE. Clinical and immunological responses in subjects sensitive to solvents. Archives of Environmental Health 1999;54(1):6-13.
- 130. Parkinson DK, Bromet EJ, Cohen S, Dunn LO, Dew MA, Ryan C, et al. Health effects of long-term solvent exposure among women in blue-collar occupations. American Journal of Industrial Medicine 1990;17:661-675.
- 131. Redlich CA, Stowe M, Wisnewski AV, Eisen A, Karol MH, Lemus R, et al. Subclinical immunologic and physiologic responses in hexamethylene diisocyanate exposed auto body workers. American Journal of Industrial Medicine 2001;39:589-597.
- 132. Nijem K, Kristensen P, Al-Khatib A, Takrori R, Bjertness E. Prevalence of neuropsychiatric and mucous membrane irritation complaints among workers exposed to organic solvents and plastic compounds. American Journal of Industrial Medicine 2001;40:192-198.
- 133. Donoghue AM, Dryson EW, Wynn-Williams G. Contrast sensitivity in organicsolvent-induced chronic toxic encephalopathy. Journal of Occupational and Environmental Medicine 1995;37(12):1357-1363.
- 134. Garabrant DH, Held J, Langholz B, Bernstein L. Mortality of aircraft manufacturing workers in southern California. Am J Ind Med 1988;13(6):683-93.

- 135. Milham S. Occupational mortality in Washington State 1950-79. Cincinnati: US Department of Health and Human Services (National Institute of Occupational Safety & Health); 1983 1983. Report No.: Publ No 83-116.
- 136. Preston-Martin S, Henderson BE, Peters JM. Descriptive epidemiology of central nervous system neoplasms in Los Angeles County. Annals of the New York Academy of Sciences 1982;381:202-208.
- Boice JD, Marano DE, Fryzek JP, Sadler CJ, McLaughlin JK. Mortality among aircraft manufacturing workers. Occupational & Environmental Medicine 1999;56:581-597.
- Dalager NA, Mason TJ, Fraumeni JF, Hoover R, Payne WW. Cancer mortality among workers exposed to zinc chromate paints. Journal of Occupational Medicine 1980;22(1):25-29.
- 139. Spirtas R, Stewart PA, Lee JS, Marano DE, Forbes CD, Grauman DJ, et al. Retrospective cohort mortality study of workers at an aircraft maintenance facility. I Epidemiological results. British Journal of Industrial Medicine 1991;48:515-530.
- 140. Lemasters GK, Livingston GK, Lockey JE, Olsen DM, Shukla R, New G, et al. Genotoxic changes after low-level solvent and fuel exposure on aircraft maintenance personnel. Mutagenesis 1997;12(4):237-43.
- 141. Puhala E, Lemasters G, Smith L, Talaska G, Simpson S, Joyce J, et al. Jet fuel exposure in the United States air force. Applied Occupational & Environmental Hygiene 1997;12(9):606-610.
- 142. Smith LB, Bhattacharya A, Lemasters G, Succop P, Puhalla E. 2nd, Medvedovic M, et al. Effect of chronic low-level exposure to jet fuel on postural balance of US Air Force personnel. Journal of Occupational and Environmental Medicine 1997;39(7):623-32.
- 143. Hackett JP. Allergic contact dermatitis in American aircraft manufacture. American Journal of Contact Dermatitis. 1999;10(3):157-66.
- 144. Monteiro-Riviere N, Inman A, Riviere J. Effects of short-term high-dose and low-dose dermal exposure to Jet A, JP-8 and JP-8 + 100 jet fuels. J Appl Toxicol 2001;21(6):485-94.

- 145. Witzmann FA, Bauer MD, Fieno AM, Grant RA, Keough TW, Lacey MP, et al. Proteomic analysis of the renal effects of simulated occupational jet fuel exposure. Electrophoresis 2000;21(5):976-84.
- Harris DT, Sakiestewa D, Robledo RF, Witten M. Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity. Toxicol Ind Health 1997;13(5):559-70.
- 147. Vendetti VJ, Allen JW. Aircraft fuel tank maintenance: several atmospheric hazards are unique to the inside of these tanks, which are involved in a FAAmandated maintenance program. Occupational Health and Safety 1999;68(8):34-43.
- 148. Standards Australia. AS 2865-1995, Safety Working in a Confined Space.Homebush, NSW: Standards Association of Australia; 1995.
- 149. Yeung P, Rodgers A, Davies B. Safe working in aircraft fuel tanks: an Australian experience. Applied Occupational & Environmental Hygiene 1997;12(9):587-594.
- 150. Carlton GN, Smith LB. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force. Applied Occupational & Environmental Hygiene 2000;15(6):485-91.
- 151. Stewart PA, Lee JS, Marano DE, Spirtas R, Forbes CD, Blair A. Retrospective cohort mortality study of workers at an aircraft maintenance facility. II Exposures and their assessment. British Journal of Industrial Medicine 1991;48:531-537.
- 152. Costa G, Merletti F, Segnan N. A mortality cohort study in a north Italian aircraft factory. Br J Ind Med 1989;46(10):738-43.
- 153. Lemasters GK, Lockey JE, Olsen DM, Selevan SG, Tabor MW, Livingston GK, et al. Comparison of internal dose measures of solvents in breath, blood and urine and genotoxic changes in aircraft maintenance personnel. Drug Chem Toxicol 1999;22(1):181-200.
- 154. Smith LB, Bhattacharya A, Lemasters G, Succop P, Puhala E, 2nd,
 Medvedovic M, et al. Effect of chronic low-level exposure to jet fuel on postural balance of US Air Force personnel. J Occup Environ Med 1997;39(7):623-32.
- 155. Pleil JD, Smith LB, Zelnick SD. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases. Environ Health Perspect 2000;108(3):183-92.

- 156. Hackett JP. Allergic contact dermatitis in American aircraft manufacture. American Journal of Contact Dermatitis 1999;10(3):157-66.
- 157. Bayani J, Squire JA. Advances in the detection of chromosomal aberrations using spectral karyo-typing [Review]. Clinical Genetics 2001;95(2):65-73.
- 158. Bonassi S, Abbondandolo A, Camurri L, Dal Pra L, De Ferrari M, Degrassi F, et al. Are chromosome aberrations in circulating lymphocytes predictive of future cancer onset in humans? Cancer, Genetics and Cytogenetics 1995;79:133-135.
- 159. Bonassi S, Hagmar L, Stromberg U, Montagud AH, Tinnerberg H, Forni A, et al. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. Cancer Research 2000;60:1619-1625.
- 160. Liou SH, Lung JC, Chen YH, Yang T, Hsieh LL, Chen CJ, et al. Increased chromosome-type chromosome aberration frequencies as biomarkers of cancer risk in a blackfoot endemic area. Cancer Research 1999;59:1481-1484.
- 161. Cole J, Skopek TR. Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutation Research 1994;304:33-105.
- 162. Albertini RJ, Hayes RB. Somatic cell mutations in cancer epidemiology. In: Toniolo P, Boffetta P, Shuker DEG, Rothman N, Hulka B, Pearce N, editors. Application of Biomarkers in Cancer Epidemiology. Lyon, France: International Agency for Research on Cancer; 1997. p. 159-184.
- Brandt-Rauf PW. Oncogenes and oncoproteins in occupational carcinogenesis. Scandinavian Journal of Work Environ Health 1992;18(Suppl 1):27-30.
- 164. Sorsa M, Ojajarvl A, Salomaa S. Cytogenetic surveillance of workers exposed to genotoxic chemicals. Teratogenesis, Carcinogenesis and Mutagenesis 1990;10(3):215-221.
- 165. Tucker JD, Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges and cancer risk assessment. Mutation Research 1996;365:147-159.

- 166. Surralles J, Autio K, Nylund L, Jarventaus H, Norppa H, Veidebaum T, et al. Molecular cytogenetic analysis of buccal cells and lymphocytes from benzeneexposed workers. Carcinogenesis 1997;18(4):817-823.
- 167. Sorsa M, Maki-Paakkanen J, Vainio H. Identification of mutagen exposures in the rubber industry by the sister chromatid exchange method. Cytogenet Cell Genet 1982;33:68-73.
- 168. Smith MT, Zhang L. Biomarkers of leukemia risk: Benzene as a model. Environmental Health Perspectives 1998;106(Suppl 4):937-946.
- 169. Albertini RJ, Nicklas JA, Fuscoe JC, Skopek TR, Branda RF, O'Neill JP. In vivo mutations in human blood cells: Biomarkers for molecular epidemiology. Environmental Health Perspectives 1993;99:135-141.
- 170. Wong RH, Du CL, Wang JD, Chan CC, Luo JCJ, Cheng TJ. XRCC1 and CYP2E1 polymorphisms as susceptibility factors of plasma mutant p53 protein and anti-p53 antibody expression in vinyl chloride monomer-exposed polyvinyl chloride workers. Cancer Epidemiology, Biomarkers & Prevention 2002;11:475-482.
- Muller WU, Nusse M, Miller BM, Slavotinek A, Viaggi S, Streffer C.
 Micronuclei: A biological indicator of radiation damage. Mutation Research 1996;366:163-169.
- Ha M, Yoo KY, Cho SH. Glycophorin A mutant frequency in radiation workers at the nuclear power plants and a hospital. Mutation Research 2002;501:45-56.
- 173. Akiyama M, Nakamura N, Hakoka M, Kyoizumi S, Kushiro J, Hirai Y, et al. Somatic cell mutations in atomic bomb survivors. Journal of Radiation Research 1991;32 Suppl:278-282.
- 174. Bigbee WL, Jones IM, Moore MM, Jensen RH, Langlois RG, Grant SG. Population screening with the Glycophorin A assay reveals individuals with aberrantly high levels of in vivo somatic mutation at both GPA and HPRT loci. In. Environmental and Molecular Mutagenesis; 1992. p. 6.
- 175. Bender MA, Preston RJ, Leonard RC, Pyatt BE, Gooch PC, Shelby MD. Chromosomal aberration and sister-chromatid exchange frequencies in peripheral blood lymphocytes of a large human population sample. Mutation Research 1988;204:421-433.

- 176. Morley AA, Trainor KJ, R. S, Ryall RG. Measurement of in vivo mutations in human lymphocytes. Nature 1983;302:155-156.
- 177. Langlois RG, Bigbee WL, Jensen RH. The Glycophorin A Assay for somatic cell mutations in humans. Progress in Clinical & Biological Research 1990;340C:47-56.
- 178. Wones R, Radack K, Martin V, Mandell K, Pinney S, Buncher R. Do persons living near a uranium processing site have evidence of increased somatic cell gene mutations? A first study. Mutation Research 1995;335:171-184.
- Compton PJE, Hooper K, Smith MT. Human somatic mutation assays as biomarkers of carcinogenesis. Environmental Health Perspectives 1991;94:135-141.
- Checkoway H, Pearce N, Dement JM. Design and conduct of occupational epidemiology studies: I. Design aspects of cohort studies. American Journal of Industrial Medicine. 1989;15(4):363-73.
- 181. Ryan CM, Morrow LA, Bromet EJ, Parkinson DK. Assessment of neuropsychological dysfunction in the workplace: Normative data from the Pittsburgh Occupational Exposures Test Battery. Journal of Clinical and Experimental Neuropsychology 1987;9(6):665-679.
- 182. White RF. Differential diagnosis of probable Alzheimer's disease and solvent encephalopathy in older workers. Clin Neuropsychol 1987;1:153-160.
- Bowler RM, Lezak M, Booty A, Hartney C, Mergler D, Levin J, et al.
 Neuropsychological Dysfunction, Mood Disturbance, and Emotional Status of Munition Workers. Applied Neuropsychology 2001;8(2):74-90.
- 184. Reinvang I, Borchgrevink HM, Aaserud O, Lie V, Malt UF, Nakstad P, et al. Neuropsychological findings in a non-clinical sample of workers exposed to solvents. Journal of Neurology, Neurosurgery and Psychiatry 1994;57(5):614-6.
- 185. Hanninen H, Antti-Poika M, Juntunen J, Koskenvuo M. Exposure to organic solvents and neuropsychological dysfunction: a study on monozygotic twins. British Journal of Industrial Medicine 1991;48(1):18-25.
- 186. Chia SE, Ong CN, Phoon WH, Tan KT, Jeyaratnam J. Neurobehavioural effects on workers in a video tape manufacturing factory in Singapore. Neurotoxicity 1993;14(1):51-56.

- 187. Kishi R, Harabuchi I, Katakura Y, Ikeda T, Miyake H. Neurobehavioural effects of chronic occupational exposure to organic solvents among Japanese industrial painters. Environmental Research 1993;62(2):303-313.
- Ng TP, Lim LC, Win KK. An investigation of solvent-induced neuro-psychiatric disorders in spray painters. Annals of the Academy of Medicine, Singapore. 1992;21(6):797-803.
- 189. Rasmussen K, Sabroe S. Neuropsychological symptoms among metal workers exposed to halogenated hydrocarbons. Scandinavian Journal of Social Medicine 1986;14(3):161-8.
- 190. Capurro PU, Capurro C. Solvent exposure and mental depression. Clin Toxicol 1979;15(2):193-196.
- Dryson EW, Ogden JA. Organic solvent induced chronic toxic encephalopathy: extent of recovery and associated factors, following cessation of exposure. Neurotoxicity 2000;21(5):659-65.
- 192. Condray R, Morrow LA, Steinhauer SR, Hodgson M, Kelley M. Mood and behavioural symptoms in individuals with chronic solvent exposure. Psychiatry Research 2000;97(2-3):191-206.
- 193. McLaughlin JK, Chow WH, Levy LS. Amorphous silica: a review of health effects from inhalation exposure with particular reference to cancer. Journal of Toxicology and Environmental Health 1997;50:553-566.
- 194. Yamada H, Hashimoto H, Akiyama M, Kawabata Y, Iwai K. Talc and amosite/crocidolite preferentially deposited in the lungs of non-occupational female lung cancer cases in urban areas of Japan. Environmental Health Perspectives 1997;105(5):504-508.
- 195. Rood AS, McGavran PD, Aanenson JW, Till JE. Stochastic estimates of exposure and cancer risk from carbon tetrachloride released to the air from the Rocky Flats Plant. Risk Analysis 2001;21(4):675-695.
- 196. Boffetta P, Gaborieau V, Nadon L, Parent ME, Weiderpass E, Siemiatycki J. Exposure to titanium dioxide and risk of lung cancer in a population-based study from Montreal. Scandinavian Journal of Work and Environmental Health 2001;27(4):227-232.
- 197 Merryman JI, Park PG, Schuller HM. Carbon dioxide, an important messenger molecule for small cell lung cancer. Chest 1997;112(3):779-784.

- 198 Kerslake SM, Burnip E, Gohil S, Hicks R, Qayum S, Webb RJ, et al. Stage specific tumour promoting phorbol esters as pharmacological markers of macrophage activation status in an in vitro model of iron oxide particle toxicity. In. Human and Experimental Toxicology; 1997. P.66.
- 199. Fayerweather WE, Karns ME, Nuwayhid IA, Nelson TJ. Case-control study of cancer risk in tetraethyl lead manufacturing. American Journal of Industrial Medicine 1997;31:28-35.
- 200. Bansal A, Ramirez RD, Minna JD. Mutation analysis of the coding sequences of MEK-1 and MEK-2 genes in human lung cancer cell lines. Oncogene 1997;14:1231-1234.
- 201. Stober W, Abel UR. Lung cancer due to diesel soot particles in ambient air? A critical appraisal of epidemiological studies addressing this question. International Archives in Occupational and Environmental Health 1996;68(Suppl):S3-S61.
- 202. Ronneberg A, Andersen A. Mortality and cancer morbidity in workers from an aluminium smelter with pre-baked carbon anodes-Part II: cancer morbidity.
 Occupational and Environmental Medicine 1995;52:250-254.
- 203. Ronneberg A. Mortality and cancer morbidity in workers from an aluminium smelter with pre-baked carbon anodes-Part III: mortality from circulatory and respiratory diseases. Occupational and Environmental Medicine 1995;52:255-261.
- 204. Hagmar L, Stromberg U, Welinder H, Mikoczy Z. Incidence of cancer and exposure to toluene diisocyanate and methylene diphenyldiisocyanate: a cohort based case-referent study in the polyurethane foam manufacturing industry. British Journal of Industrial Medicine 1993;50:1003-1007.
- 205. Thomas DB. Male Breast Cancer. Epidemiologic Reviews 1993;15(1):220-231.
- 206. Sorahan T, Cathcart M. Lung cancer mortality among workers in a factory manufacturing chlorinated toluenes: 1961-84. British Journal of Industrial Medicine 1989;46:425-427.
- 207. Petrone R, Asal N, Coleman R. Cancer mortality among petroleum solventexposed Oklahoma dry cleaners. In. American Journal of Epidemiology; 1987.
 p. 743.

- 208. Sutton. Sodium fluoride as an oral carcinogen. In. New Zealand Medical Journal; 1985. p. 207.
- 209. Chulasiri MU, Picha P, Rienkijkan M, Preechanukool K. The cytotoxic effect of petroleum ether and chloroform extracts from ceylon cinnamon barks on tumor cells in vitro. International Journal of Crude Drug Research 1984;22:177-180.
- 210. Davies JM. Lung cancer mortality among workers making lead chromate and zinc chromate pigments at three English factories. British Journal of Industrial Medicine 1984;41:158-169.
- 211. Beirne OR, Mock S. Aryl hydrocarbon hydroxylase and oral cancer. In. Journal of Dental Research; 1982. p. 246.
- 212. Sheffet A, Thind I, Miller AM, Louria DB. Cancer mortality in a pigment plant utilising lead and zinc chromates. Archives of Environmental Health 1982;37(1):44-52.
- 213. Shabad LM. Circulation of carcinogenic polycyclic aromatic hydrocarbons in the human environment and cancer prevention. In. Journal of the National Cancer Institute; 1980. p. 405-410.
- 214. Axelson O, Sjoberg A. Cancer incidence and exposure to iron oxide dust. Journal of Occupational Medicine 1979;21(6):419-422.
- 215. Straif K, Keil U, Taeger D, Holthenrich D, Sun Y, Bungers M, et al. Exposure to nitrosamines, carbon black, asbestos and talc and mortality from stomach, lung and laryngeal cancer in a cohort of rubber workers. American Journal of Epidemiology 2000;152(4):297-306.
- Brockmann M, Fischer M, Muller KM. Exposure to carbon black: a cancer risk?
 International Archives in Occupational and Environmental Health 1998;71:85-99.
- 217. Liu N, Wang Z, Dong D, Chen K, Qin L. Cancer mortality among carbon workers in China: retrospective cohort study. Journal of Occupational Health 1997;39:325-330.
- 218. Parent ME, Siemiatycki J, Renaud G. Case-control study of exposure to carbon black in the occupational setting and risk of lung cancer. American Journal of Industrial Medicine 1996;30:285-292.

- 219. Valberg PA, Watson AY. Lung cancer rates in carbon-black workers are discordant with predictions from rat bioassay data. Regulatory Toxicology and Pharmacology 1996;24:155-170.
- 220. Moulin JJ, Wild P, Mur JM, Lafontaine M, Lefer M, Mercier-Gallay M, et al. Risk of lung, larynx, pharynx and buccal cavity cancers among carbon electrode manufacturing workers. Scandinavian Journal of Work and Environmental Health 1989;p15:30-37
- 221. Robertson J, Ingalls TH. A case-control study of circulatory, malignant and respiratory morbidity in carbon black workers in the United States. American Industrial Hygiene Association Journal 1989;50(10):510-515.
- 222. Park R, Rice F, Stayner L, Smith R, Gilbert S, Checkoway H. Exposure to crystalline silica, silicosis, and lung disease other than cancer in diatomaceous earth industry workers: a quantitative risk assessment. Occupational & Environmental Medicine 2002;59:36-43.
- 223. Steenland K, Mannetje A, Boffetta P, Stayner L, Attfield M, Chen J, et al. Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes and Control 2001;12:773-784.
- 224. Rice FL, Park R, Stayner L, Smith R, Gilbert S, Checkoway H. Crystalline silica exposure and lung cancer mortality in diatomaceous earth industry workers: a quantitative risk assessment. Occupational and Environmental Medicine 2001;58:38-45.
- 225. Sjogren B. Lung cancer among industrial sand workers exposed to crystalline silica. In. American Journal of Epidemiology; 2001. p. 785.
- 226. Steenland K, Sanderson W. Lung cancer among industrial sand workers exposed to crystalline silica. American Journal of Epidemiology 2001;153(7):695-703.
- 227. Tsuda T, Mino Y, Babazono A, Shigemi J, Otsu T, Yamamoto E. A casecontrol study of the relationships among silica exposure, gastric cancer, and oesophageal cancer. American Journal of Industrial Medicine 2001;39:52-57.

- 228. Cocco P, Rice CH, Chen JQ, McCawley MA, McLaughlin JK, Dosemeci M. Lung cancer risk, silica exposure, and silicosis in Chinese mines and pottery factories: the modifying role of other workplace lung carcinogens. American Journal of Industrial Medicine 2001;40:674-682.
- 229. Finkelstein MM. Silica, silicosis and lung cancer. In. Journal of Occupational and Environmental Medicine; 2001. P. 198-200.
- 230. McDonald C. Silica and lung cancer: hazard or risk. Annals of Occupational Hygiene. 2000;44(1):1-2.
- 231 Cocco P, Rice CH, Chen JQ, McCawley M, McLaughlin JK, Dosemeci M. Nonmalignant respiratory diseases and lung cancer among Chinese workers exposed to silica. Journal of Occupational and Environmental Medicine 2000;42(6):639-644.
- 232. Checkoway H, Franzblau A. Is silicosis required for silica-associated lung cancer? American Journal of Industrial Medicine 2000;37:252-259.
- 233. Bauer X, Latza U, Jockel KH. Silica dust and lung cancer. In. Thorax; 2000. p. 172-173.
- 234. Finkelstein MM. Silica, silicosis, and lung cancer: a risk assessment. American Journal of Industrial Medicine 2000;38:8-18.
- 235. Duffus J. Silica and lung cancer: hazard or risk. In. Annals of Occupational Hygiene 2000. P. 321-322.
- 236. Pan G, Takahashi K, Feng Y, Liu L, Liu T, Zhang S, et al. Nested case-control study of oesophageal cancer in relation to occupational exposure to silica and other dusts. American Journal of Industrial Medicine 1999;35:272-280.
- 237. Checkoway H, Hughes JM, Weill H, Seixas NS, Demers PA. Crystalline silica exposure, radiological silicosis, and lung cancer mortality in diatomaceous earth industry workers. Thorax 1999;54:56-59.
- 238. Ulm K, Waschulzik B, Ehnes H, Guldner K, Thomasson B, Schwebig A, et al. Silica dust and lung cancer in the German stone, quarrying and ceramics industries: results of a case-control study. Thorax 1999;54:347-351.
- 239. Fillmore CM, Petralia SA, Dosemeci M. Cancer mortality in women with probable exposure to silica: a death certificate study in 24 states of the U.S. American Journal of Industrial Medicine 1999;36:122-128.

- 240. de Klerk NH, Musk AW. Silica, compensated silicosis, and lung cancer in Western Australian goldminers. Occupational and Environmental Medicine 1998;55:243-248.
- 241. Gibbs GW. Dose-response associations of silica with non-malignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. In. American Journal of Epidemiology; 1998. p. 307.
- 242. Cherry NM, Burgess GL, Turner S, McDonald JC. Crystalline silica and risk of lung cancer in the potteries. Occupational and Environmental Medicine 1998;55:779-785.
- 243. Checkoway H, Heyer NJ, Seixas NS, Welp EAE, Demers PA, Hughes JM, et al. Dose-response associations of silica with non-malignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. American Journal of Epidemiology 1997;145(8):680-688.
- 244. Hnizdo E, Murray J, Klempman S. Lung cancer in relation to exposure to silica dust, silicosis and uranium production in South African gold miners. Thorax 1997;52:271-275.
- 245. Steenland K, Stayner L. Silica, asbestos, man-made mineral fibers, and cancer. Cancer Causes and Control 1997;8:491-503.
- 246. Seaton A. Silica exposure and risk of cancer. In. Thorax; 1997. p. 203.
- 247. Morgan WKC, Reger RB. Silica exposure and risk of lung cancer. In. Thorax; 1996. p. 772.
- 248. Weill H, McDonald JC. Exposure to crystalline silica and risk of lung cancer: the epidemiological evidence. Thorax 1996;51:97-102.
- 249. Klein AK, Christopher JP. Evaluation of crystalline silica as a threshold carcinogen. Scandinavian Journal of Work and Environmental Health 1995;21(Suppl 2):95-98.
- 250. Dong D, Xu G, Sun Y, Hu P. Lung cancer among workers exposed to silica dust in Chinese refractory plants. Scandinavian Journal of Work and Environmental Health 1995;21(Suppl 2):69-72.
- Partanen T, Jaakkola J, Tossavainen A. Silica, silicosis and cancer in Finland. Scandinavian Journal of Work and Environmental Health 1995;21(Suppl 2):84-86.

- 252. De Klerk NH, Musk AW, Tetlow S, Hansen J, Eccles JL. Preliminary study of lung cancer mortality among Western Australia gold miners exposed to silica. Scandinavian Journal of Work and Environmental Health 1995;21(Suppl 2):66-68.
- 253. Cocco PL, Carta P, Flore V, Picchiri GF, Zucca C. Lung cancer mortality among female mine workers exposed to silica. Journal of Occupational Medicine 1994;36(8):894-898.
- 254. Carta P, Cocco P, Picchiri G. Lung cancer mortality and airways obstruction among metal miners exposed to silica and low levels of radon daughters.
 American Journal of Industrial Medicine 1994;25(4):489-506.
- 255. Koskela RS, Klockars M, Laurent H, Holopainen M. Silica dust exposure and lung cancer. Scandinavian Journal of Work and Environmental Health 1994;20:407-416.
- 256. Ng TP. Silica and lung cancer: a continuing controversy. Annals of the Academy of Medicine Singapore 1994;23:752-755.
- 257. Nurminen M, Corvalan C, Leigh J, Baker G. Prediction of silicosis and lung cancer in the Australian labor force exposed to silica. Scandinavian Journal of Work and Environmental Health 1992;18:393-399.
- 258. McLaughlin JK, Jing-Qiong C, Dosemeci M, Rong-An C, Rexing SH, Zhien W, et al. A nested case-control study of lung cancer among silica exposed workers in China. British Journal of Industrial Medicine 1992;49:167-171.
- 259. Browne K. Do silica and asbestosis cause lung cancer? In. Archives of Pathology and Laboratory Medicine; 1992. P. 1103-1104.
- 260. Hnizdo E, Sluis-Cremer GK. Silica exposure, silicosis, and lung cancer: a mortality study of South African gold miners. British Journal of Industrial Medicine 1991;48:53-60.
- 261. Merlo F, Costanini M, Reggiardo G, Ceppi M, Puntoni R. Lung cancer risk among refractory brick workers exposed to crystalline silica: a retrospective cohort study. Epidemiology 1991;2(4):299-304.

- 262. Lynge E, Kurppa K, Kristofersen L, Malker H, Sauli H. Occupational groups potentially exposed to silica dust: a comparative analysis of cancer mortality and incidence based on the Nordic occupational mortality and cancer incidence registers. In: Simonato L, Fletcher AC, Saracci R, Thomas TL, editors. Occupational Exposure to Silica and Cancer Risk. Lyon, France.: WHO Scientific Publications; 1990. p. 7-20.
- 263. Hessel PA, Sluis-Cremer GK, Hnizdo E. Silica exposure, silicosis, and lung cancer: a necropsy study. British Journal of Industrial Medicine 1990;47:4-9.
- 264. Neuberger M, Kundi M, Rutkowski A, Grundorfer W. Silica dust, respiratory disease and lung cancer - results of a prospective study. Archives of Geschwulstforsch 1990;60(6):449-453.
- 265. Meijers JMM, Swaen GMH, Volovics A, Slangen JJM, Van Vliet K. Silica exposure and lung cancer in ceramic workers: A case-control study. International Journal of Epidemiology 1990;19(1):19-25.
- 266. Spivack SD. Silica and lung cancer. In. The Lancet; 1990. p. 854-855.
- 267. Simonato L, Fletcher AC, Saracci R, Thomas TL. Occupational Exposure to Silica and Cancer Risk. Lyon, France.: World Health Organisation; 1990.
- 268. McDonald JC. Silica, silicosis and lung cancer. In. British Journal of Industrial Medicine; 1989. p. 289-291.
- 269. Mastrangelo G, Zambon P, Simonato L, Rizzi P. A case-referent study investigating the relationship between exposure to silica dust and lung cancer. International Archives of Occupational and Environmental Health 1988;60:299-302.
- Hessel PA, Sluis-Cremer GK. Silica, silicosis, and lung cancer among ceramic workers: A case-referent study. In. American Journal of Industrial Medicine; 1987. p. 219-220.
- 271. Thomas TL, Stewart PA. Mortality from lung cancer and respiratory disease among pottery workers exposed to silica and talc. American Journal of Epidemiology 1987;125(1):35-43.
- 272. Hessel PA, Sluis-Cremer GK, Hnizdo E. Case-control study of silicosis, silica exposure and lung cancer in white South African gold miners. American Journal of Industrial Medicine 1986;10:57-62.

- 273. Lynge E, Kurppa K, Kristofersen L, Malker H, Sauli H. Silica dust and lung cancer: results from the Nordic Occupational Mortality and Cancer Incidence Registers. Journal of the National Cancer Institute 1986;77(4):883-889.
- 274. Forastiere F, Lagorio S, Michelozzi P, Cavariani F, Arca M, Borgia P, et al. Silica, silicosis and lung cancer among ceramic workers: A case-referent study. American Journal of Industrial Medicine 1986;10:363-370.
- 275. Heppleston AG. Silica, pneumoconiosis, and carcinoma of the lung. American Journal of Industrial Medicine 1985;7:285-294.
- 276. Lebowitz MD. The relationship among silica, silicosis, and lung carcinoma. Arizona Medicine 1981;XXXVIII(8):596-598.
- Jarvholm B, Forsberg B. Childhood cancer and possible exposure to benzene from traffic and petrol stations. In. Occupational and Environmental Medicine; 2000. p. 500-501.
- 278. Budinsky RA, DeMott RP, Wernke MJ, Schell JD. An evaluation of modelled benzene exposure and dose estimates published in the Chinese-National Cancer Institute collaborative epidemiology studies. Regulatory Toxicology and Pharmacology 1999;30:244-258.
- 279. Zheng T, Holford TR, Mayne ST, Owens PH, Ward B, Carter D, et al. Bbenzene hexachloride in breast adipose tissue and risk of breast carcinoma. Cancer 1999;85(10):2212-2218.
- 280. Petralia SA, Vena JE, Freudenheim JL, Dosemeci M, Michalek A, Goldberg MS, et al. Risk of premenopausal breast cancer in association with occupational exposure to polycyclic aromatic hydrocarbons and benzene. Scandinavian Journal of Work and Environmental Health 1999;25(3):215-221.
- Smith MT. Benzene, NQO1, and genetic susceptibility to cancer. In.
 Proceedings of the National Academy of Sciences of the USA.; 1999. p. 7624-7626.
- 282. Ireland B, Collins JJ, Buckley CF, Riordan SG. Cancer mortality among workers with benzene exposure. Epidemiology 1997;8(3):318-320.
- 283. Hayes RB, Yin SN, Dosemeci M, Li GL, Wacholder S, Travis LB, et al.
 Benzene and the dose-related incidence of hematologic neoplasms in China.
 Journal of the National Cancer Institute 1997;89(14):1065-1071.

- 284. Rothman N, Smith MT, Hayes RB, Traver RD, Hoener B, Campleman S, et al. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 C-T mutation and rapid fractional excretion of chlorzoxazone. Cancer Research 1997;57:2839-2842.
- 285. Yin SN, Hayes RB, Linet MS, Li GL, Dosemeci M, Travis LB, et al. A cohort study of cancer among benzene-exposed workers in China: overall results. American Journal of Industrial Medicine 1996;29:227-235.
- 286. Yin SN, Hayes RB, Linet MS, Li GL, Dosemeci M, Travis LB, et al. An expanded cohort study of cancer among benzene-exposed workers in China. Environmental Health Perspectives 1996;104(Suppl 6):1339-1341.
- Linet MS, Yin SN, Travis LB, Li CY, Zhang ZN, Li DG, et al. Clinical features of hematopoietic malignancies and related disorders among benzene-exposed workers in China. Environmental Health Perspectives 1996;104(Suppl 6):1353-1364.
- 288. Schaller KH, Triebeg G. Active and passive air monitoring in comparison to biological monitoring in tetrachloroethylene and xylene exposed workers. In: Berlin A, Brown RH, Saunders KJ, editors. Diffusive Sampline: An Alternative Approach to Workplace Air Monitoring. Symposium.; 1986 September 22-26, 1986; Luxembourg.: Royal Society of Chemistry, London, England, UK.; 1986. p. 111-114.
- 289. Li GL, Linet MS, Hayes RB, Yin SN, Dosemeci M, al. e. Gender differences in hematopoietic and lymphoproliferative disorders and other cancer risks by major occupational group among workers exposed to benzene in China. Journal of Occupational Medicine 1994;36(8):875-881.
- 290. Steineck G, Plato N, Gerhardsson M, Norell SE, Hogstedt C. Increased risk of urothelial cancer in Stockholm during 1985-87 after exposure to benzene and exhausts. International Journal of Cancer 1990;45:1012-1017.
- 291. Paci E, Buiatti E, Seniori Costantini A, Miligi L, Pucci N, Scarpelli A, et al. Aplastic anemia, leukemia and other cancer mortality in a cohort of shoe workers exposed to benzene. Scandinavian Journal of Work and Environmental Health 1989;15:313-318.

- 292. Yin SN, Li GL, Tain FD, Fu ZI, Jin C, Chen YJ, et al. A retrospective cohort study of leukemia and other cancers in benzene workers. Environmental Health Perspectives 1989;82:207-213.
- 293. Cronkite EP, Inoue T, Hirabayshi Y, Bullis JE. Benzene induced hematopoietic neoplasms. In. Experimental Hematology; 1988. p. 557.
- 294. Nurminen M, Hernberg S. Cancer mortality among carbon disulfide-exposed workers. In. Journal of Occupational Medicine; 1984. p. 341.
- 295. Maltoni C, Conti B, Cotti G. Benzene: A multipotential carcinogen. Results of long-term bioassays performed at the Bologna Institute of Oncology. American Journal of Industrial Medicine 1983;4:589-630.
- 296. Aksoy M. Benzene: Leukaemia and malignant lymphoma. In: Roath S, editor. Topical Reviews in Haematology. Bristol, England, UK.: John Wright and Sons Ltd; 1982. p. 105-139.
- 297. Van den Berghe H, Louwagie A, Broeckaert-Van Orshoven A, David G, Verwilghen R. Chromosome analysis in two unusual malignant blood disorders presumably induced by benzene. Blood 1979;53(4):558-566.
- 298. Krekel S. Benzene. Cancer risk demands cancer control. Texas Reports on Biology and Medicine 1978;37:170-175.
- 299. Kubota N, Hayashi J, Inada T, Iwamura Y. Induction of a particular deletion in mitochondrial DNA by X rays depends on the inherent radiosensitivity of the cells. Radiation Research. 1997;148(4):395-8.

APPENDICES

Appendix A :	List of chemical products
Appendix B :	Search terms representing chemical substances to which F-111
	DSRS workers were potentially exposed
Appendix C :	Search terms for indicators of adverse outcomes of occupational
	exposure
Appendix D :	List of resources used for literature search
Appendix E :	Silica and other substances in relation to malignancies
Appendix F :	Benzene exposure in relation to malignancies
Appendix G :	Mitochondrial disease and solvent exposure

Appendix A : List of chemical products

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code **
SR-51	Petroleum Solvent (high flash aromatic)	Methacrylic Acid, Methyl Ester, 2-Methylacrylic Acid Methyl Ester, Methyl Methacrylate Monomer, Methyl Methylacrylate, Methyl Alpha-Methylacrylate, Methyl 2-Methyl-2-Propenoate, 2-Methyl-2- Propenoic Acid Methyl Ester, Diakon, Methyl Methacrylate Monomer Inhibited, Methyl Methacrylate Monomer Uninhibited, MME, "Monocite" Methacrylate Monomer, NA1247, NCI-C50680, RCRA Waste Number U162, UN1247, 2-Methyl-2-Propenoic Acid Methyl Ester, Acrylic Acid, 2-Methyl-, Methyl Ester, 2-Propenoic Acid, 2-Methyl-, Methyl Ester	80-62-6
	Thiophenol	Thiophenol (Benzenethiol)	108-98-5
	Dimethyl Acetamide	Acetdimethylamide, Acetic Acid Dimethylamide, Dimethylacetamide, N N-Dimethylacetamide, Dimethylacetone Amide, Dimethylamide Acetate, DMA, DMAC, NSC 3138, U-5954, Acetyldimethylamine	127-19-5
	Triethyl Phosphate	Phosphoric Acid Triethyl Ester, Ethyl Phosphase, TEP	78-40-0
SR-51A	Petroleum Solvent (aromatic)	Separate list for search results was provided.	
	Thiophenol	Previously described (page 1, under "SR51")	
	Dimethyl Acetamide	Previously described (page 1, under "SR51")	
	Triethyl Phosphate	Previously described (page 1, under "SR51")	

** CAS = Chemcial Abstract Service

Appendix A	continued
------------	-----------

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
AIRTECH 23	Octylphenol Ethoxylate	No results found using online National Toxicology Program	2315-62-0
	Sodium Dodecylbenzenesulfonate	List of synonyms too lengthy to include here	25155-30-0
	Alcohols C9-11 Ethoxylated	Detergent Range Alcohol Ethoxylate	68439-46-3
	Sodium Alkyl Carboxylate	Aminobenzene, Aminophen, Aniline Oil, Aniline Oil Liquid, Benzenamine, Benzidam, Blue Oil, CI 76000, CI Oxidation Base 1, Cyanol, Drystallin, Kyanol, NCI-C03736, Phenylamine, Anyvim, Benzene Amino, RCRA Waste Number U012, UN1547, Arylamine.	62-53-3
	Sodium Metasilicate (Anhydrous)	Disodium Metasilicate, Sodium Silicate, Sodium Metasilicate, 9- Hydrate, Sodium Metasilicate, Anhydrous Soluble Glass, Waterglass	6834-92-0
	Sodium Hydroxide	Separate list for search results was provided.	
	Sodium Nitrite	Nitrous Acid Sodium Salt, Anti-Rust, Diazoting Salts, Erinitrit, Filmerine, NCI-C0284	7632-00-0
ED-500	Ethyl Glycol Monobutyl Ether	BUCS, Butoxyethanol, N-Butoxyethanol, 2-Butoxyethanol, 2- Butoxy-1-Ethanol, Butyl Cellosolve, O-Butyl Ethylene Clycol, Butyl glycol, butyl oxitol, dowanol EB, ektasolve EB, ethylene glycol N- butyl, gafcol EB, glycol butyl ether, glycol ether EB, glycol ether EB acetate, glycol monobutyl ether, jerrersol EB, monobutyl ether of ethylene glycol, monobutyl glycol ether, 3-Oxa-1-heptanol, poly- solv EB, UN2369	111-76-2
	Monophenol Polyethylene Glycol	No results found using online National Toxicology Program	
	Sodium Dodecyl Benzene Sulfonate	List of synonyms too lengthy to include here	25155-30-0
	Distilled Water	Did not search	Not applicable

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
ME767 (Mil-Spec) also referenced as MIL-C-38736	Aromatic Naphtha	Naphthalin, Tar Camphor, Naphthene, Naphthaline, Moth Balls, Moth Flakes, White Tar, NCI-C52904, Camphor Tar, Mighty 150, Mighty RD1, RCRA Waste Number U165, UN1334, UN2304.	91-20-3
	Ethyl Acetate	Separate list for search results was provided.	
	Methyl Ethyl Ketone	2-Butanone, Butanone, Ethyl Methyl Ketone, Ketone Ethyl Methyl, Methyl Acetone, MEK, Meetco, RCRA Waste Number U159, UN1193, UN1232	78-93-3
	Isopropanol	Isopropyl Alcohol, Dimethylcarbinol, 2-Hydroxypropane, Propan-2- Ol, 2-Propanol, Sec-Propyl Alcohol, Alcojel, Alcosolve, Avantin, Avantine, Chromar, Combi-Schutz, Hartosol, Imsol A, Isohol, Lutosol, Petrohol, Pro, N-Propan-2-Ol, Propol, 2-Propyl Alcohol, Spectrar, Sterisol Hand Disinfectant, Takineocol, UN1219, Alcosolve 2.	67-63-0
MEK	Methyl Ethyl Ketone	Previously described (page 3, under "ME767")	
	Water	Did not search	Not applicable
T4460 (Mil-Spec)	Aromatic Naphtha	Previously described (page 3, under "ME767")	
also referenced as MIL-C-38736	Ethyl Acetate	Separate list for search results was provided.	
	Methyl Ethyl Ketone	Previously described (page 3, under "ME767")	
	Isopropanol	Previously described (page 3, under "ME767")	
ZI-400	Alkylbenzene sulfonic acid as dodecylbenzenesulfonic acid	List of synonyms too lengthy to include here	25155-30-0
	Organic Sulfonates (unspecified)	No results found using online National Toxicology Program	

Appendix A	continued
------------	-----------

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
ZI-400	Alcohol Ethoxylate as Alcohols C9-11 Ethoxylated	No result from online National Toxicology Program for C9-11 ethoxylated. For alcohol ethoxylate, list of synonyms too lengthy to include here.	9002-92-0
	Sodium Xylene Sulfonate	Dimethylbenzenesulfonic Acid Sodium Salt, Sodium Dimethylbenzenesulfonate, Sodium Xylenesulfonate, Conco SXS, Cyclophil SXS30, Eltesol SX 30, Hydrotrope, Naxonate, Naxonate G, Stepanate X, Surco SXS, Ultrawet 40SX, NCI-C55403, Sodium Xylene Sulfonate, Calsoft SXS 96, Alkatrope SX-40, Carsosulf SXS, Eltesol SX93, Reworyl NXS40, Richonate SXS, Witconate SXS, Benzenesultonic Acid Dimethyl- Sodium Salt	1300-72-7
	Nonionic Surfactant as Polyethylene Glycol Mono-P-Nonylphenyl Ether	No results found using online National Toxicology Program	
	Impurities (unspecified)	Did not search	
	Water (not specified)	Did not search	
MIL-P-23377	Toluene	Methylbenzene, Methacide, Phenylmethane, Methylbenzol, Toluol, Tolu-Sol, RCRA Waste Number U220, UN1294, Antisal 1A, NCI- C07272, Benzene Methyl, Methane Phenyl.	108-88-3
	Isopropanol 2-Propanol Dimethyl Carbinol	Isopropyl Alcohol, Dimethylcarbinol, 2-Hydroxypropane, Propan-2- Ol, 2-Propanol, Sec-Propyl Alcohol, Alcojel, Alcosolve, Avantin, Avantine, Chromar, Combi-Schultz, Hartosol, Imsol A, Iisohol, Lutosol, Petrohol, Pro, N-Propyl Alcohol, Spectrar, Sterisol Hand Disinfectant, Takineocol, UN1219, Alcosolve 2	67-63-0
	Xylene Dimethylbenzene Xylol	Component 1 – Xylenes, Dimethylbenzenes, Xylol Component 2 – Ethyl Benzene	1330-20-7
	Ethyl Benzene	EB, Ethylbenzol, Phenylethane, NCI C56393	100-41-4
	Polyamide Resin	Separate list for search results was provided.	
PR1560	Not specified.	Need advice on which term to search further on, if applicable	
DESOTO 823-707	Not specified.	Need advice on which term to search further on, if applicable	

Appendix A	continued
------------	-----------

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
Alodine 1200S	Chromium Trioxide	Chromium Oxide, Chromic Acid, Chromic Acid Solid, Chromic Acid Solution, Chromic Anhydride, Chromic Trioxide, Chromic VI Acid, Chromium (6+) Trioxide, 5 Chromium Trioxide Anhydrous, Chromium VI Oxide, Monochromium Oxide, Monochromium Trioxide, Puratronic	1333-82-0
	Potassium Fluoborate	Potassium Tetrafluoroborate, Potassium Borofluoride	14075-53-7
	Potassium Ferricyanide (III)	Potassium Ferricynate, Tripotassium Hexacyanoferrate, Ferrate (3-), Hexacyano, Tripotassium	13746-66-2
	Sodium Fluoride	List of synonyms too lengthy to include here	7681-49-4
	Potassium Fluozirconate	Zirconium Potassium Fluoride	16923-95-8
A3598	Not specified.	Need advice on which term to search further on, if applicable	
PR-148	Toluene	Previously described (page 5, under "MIL-P-23377")	
	Distillate Petroleum Solvent Dewaxed Light Naptha	No results found using online National Toxicology Program	
	Ethyl Acetate	Separate list for search results was provided.	
	MEK	Previously described (page 3, under "ME767")	
	Isopropanol	Previously described (page 3, under "ME767")	
	Tetraoctyl Titanate as Titanium(IV) 2- Ethylhexoxide	No results found using online National Toxicology Program	1070-10-6
EC-3580 B/A	Part A: Polyaminopolyamide	No results found using online National Toxicology Program	
	Ball Clay (Kaolin)	Separate list for search results was provided.	
	Aluminium Silicate	No results found using online National Toxicology Program	12141-46-7

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
EC-3580 B/A	Silica Dimethylsiloxane (treated)	No results found using online National Toxicology Program	
	Carbon Black	Separate list for search results was provided.	
	Part B: Bisphenol A/ Epichlorohydrin Resin Liquid	No results found using online National Toxicology Program	25068-38-6
	Ball Clay	Separate list for search results was provided.	
	Silica	Separate list for search results was provided.	
	dimethylsiloxane treated	No results found using online National Toxicology Program	
666-2003-427 (also referenced as MMS-425)	Bisphenol A/ Epichlorohydrin Resin, Solic	Bisphenol A – Araldite 6010, 2 2'-((1-Methylethylidene)Bis(4 1- Phenylenexymethylene)) Bisoxirane, 4 4-Isopropylidenediphenol Epichlorohydrin Resin, Bisphenol A-Epichlorohydrin Condensate, 2 2-Bis (P-(2,3-Epoxypropoxy) Phenyl) Propane, 2 2-Bis (4-(2,3- Epoxypropyloxy) Phenyl) Propane, Bis (4-Glycidyloxyphenyl) Dimethylmethane, 2 2-Bis (P-Glycidyloxyphenyl) Propane, 2 2-Bis (4-Hydroxyphenyl) Propane Diglycidyl Ether, Bis (4-Hydroxyphenyl) Dimethylmethane Diglycidyl Ether, 2 2-Bis (P-Hydroxyphenyl) Propane Diglycidyl Ether, D.E.R. 332, Diglycidyl Bisphenol A Ether, Diglycidyl Ether of 2 2-Bis (P-Hydroxyphenyl) Propane, Diglycidyl Ether of 2 2-Bis (4-Hydroxyphenyl) Propane, Diglycidyl Ether of 2 2-Bis (4-Hydroxyphenyl) Propane, Diglycidyl Ether of Bisphenol A, Diglycidyl Ether of 4 4'-Isopropylidenediphenol, 4 4'- Dihydroxydiphenyldimethylmethane Diglycidyl Ether, P P'- Dihydroxydiphenyldimethylmethane Diglycidyl Ether, Epi-Re2 510, Epoxide A, ERL-2774, 4 4'-Isopropylidenediphenol Diglycidyl Ether	1675-54-3

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
666-2003-427 (also referenced as MMS-425)	Bisphenol A/ Epichlorohydrin Resin, Solic	Epichlorohydrin – 1-Chloro-2 3-Epoxypropane, 3-Chloro-1 2- Epoxypropane, (Chloromethyl) Ethylene Oxide, Chloromethyloxirane, 2-(Chloromethyl) Oxirane, Chloropropylene Oxide, Gamma-Chloropropylene Oxide, 3-Chloro-1 2-Propylene Oxide, Alpha-Epichorohydrin, (DL)-Alpha-Epichlorohydrin, Epichlorophydrin, 1 2-Epoxy-3-Chloropropane, 2 3-Epoxypropyl Chloride, Glycerol Epichlorohydrin, ECH, RCRA Waste Number U041 Skekhg, UN2023	106-89-8
	Inert Pigments and Strontium Chromate	Chromic Acid Strontium Salt, CI Pigment Yellow 32, Strontium Yellow, Deep Lemon Yellow, Strontium Dichromate, Strontium Chromate (VI)	7789-06-2
	N-Butyl Acetate	Acetic Acid Butyl Ester, Acetic Acid N-Butyl Ester, N-Butyl Acetate, Butyl Acetate, 1-Butyl Acetate, Butyl Ethanoate, UN1123	123-86-4
	MEK	Previously described (page 3, under "ME767")	
	Toluene	Previously described (page 5, under "MIL-P-23377")	
EC-2216	Part A: Amine Terminated Polyether/Carboxylic Acid Reaction Produce	No results found using online National Toxicology Program	
	Kaolin	No results found using online National Toxicology Program	1332-58-7
	Carbon Black	Separate list for search results was provided.	
	Part B: Bisphenol A/ epichlorohydrin resin	Previously described (page 7, under "666-2003-427")	
	Liquid	Did not search	
	Kaolin	No results found using online National Toxicology Program	1332-58-7

Appendix A continued

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
EC-1945 B/A	Part A: Isopropyl Alcohol	See attached list for search results.	
	Toluene	Previously described (page 5, under "MIL-P-23377")	
	MEK	Previously described (page 3, under "ME767")	
	Xylenes (O-,M-,P-isomers)	Component 1 – Xylenes, Dimethylbenzenes, Xylol. Component 2 – Ethyl Benzene	1330-20-7
	Ethyl Benzene	Previously described (page 5, under "MIL-P-23377")	
	Ethylenediamine	1 2-Ethanediamine, 1 2-Diaminoethane, Dimethylenediamine, Ethylendiamine, 1 2-Ethylenediamine, Beta-Aminoethylamine, NCI- C60402, UN1604	107-15-3
	N-(3- (Trimethoxysilyl) Propyl)	No results found using online National Toxicology Program	1760-24-3
	2,4,6-Tris (Dimethylamino Methyl) Phenol	No results found using online National Toxicology Program	90-72-2
	Volatile Organic Content	Did not search	
	Part B: N-Butyl Acetate	Previously described (page 7, under "666-2003-427")	
EC-1945 B/A	Zinc Chromate	Hydroxyoctaoxodizincatedichromate(1-) Potassium, Buttercup Yellow, Chromic Acid Potassium Zinc Salt (2:2:1), Citron Yellow, Potassium Zinc Chromate Hydroxide, Zinc Chrome, Zinc Yellow	11103-86-9
	Talc (containing asbestos)	Talc (Non-Asbestos Form), Talc Non-Asbestos Form Silica, Talcum, French Chalk, Soapstone, Steatite, Hydrous Magnesium Silicate, Mineral Graphite, Non-Asbestiform Talc, Non-Fibrous Talc	14807-96-6
	Epichlorohydrin, Bisphenol A	Previously described (page 7, under "666-2003-427")	
	Toluenediisocyanate Polymer	Tolylene Diisocyanate, Diisocyanatotoluene, Isocyanic Acid Methyl- M-Phenylene Ester, 1 3-Diisocyanatomethylbenzene, Diisocyanatomethylbenzene, Methylphenylene Isocyanate, Tolylene Isocyanate, Isocyanic Acid Methyl Phenylene Ester, Methyl-Meta-Phenylene Diisocyanate, Desmodur T100, Niax Isocyanate TDI, TDI, UN2078, Mondur-TD, Mondur-TD-80, Nacconate-100, Rubinate TDI, Rubinate TDI 80/20, T100, TDI-80, TDI-80-20, Hylene-T, RCRA Waste Number U223	26471-62-5
	Titanium Dioxide	See attached list of synonyms, it's too lengthy to include all here	13463-67-7

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS					
EC-1945 B/A	MEK	Previously described (page 3, under "ME767")					
	2-Ethoxyethyl Acetate	2-Ethoxyethanol Acetate, Acetic Acid 2-Ethoxyethyl Ester, Cellosolve Acetate, Ethoxyethyl Acetate, 2-Ethoxyethylacetate, Ethylene Glycol Ethyl Ether Acetate, CSAC, Ektasolve EE Acetate Solvent, Ethoxy Acetate, 2-Ethoxyethanol Ester with Acetic Acid, Beta-Ethoxyethyl Acetate, Glycol Ether EE Acetate, Glycol Monoethyl Ether Acetate, Oxytol Acetate, Poly-Solv EE Acetate, UN1172	111-15-9				
	Lead Chromate	See attached list of synonyms, it's too lengthy to include all here	7758-97-6				
	Cyclohexane	Hexahydrobenzene, Cycloshexane (DOT), Hexamethylene, Hexanaphthene, Benzenehexahydride, Benzene Hexahydride	110-82-7				
	Volatile Organic Content	Did not search					
SS-4004	Benzene	Benzene (D6), D6-Benzene, (D6) Benzene, Benzal-D6, Cyclohexatriene-D6, Phene-D6, Phenyl Hydride-D6, Pyrobenzole- D6	1076-43-3				
	Tetraethyl Silicate	No results found using online National Toxicology Program					
	Acetone	See attached list for search results.					
	N-Butyl Alcohol	See attached list for search results.					
	Isopropyl Alcohol	See attached list for search results.					
	Toluene	Previously described (page 5, under "MIL-P-23377")					
	(C10-13) Alkylbenzenesulfonic Acid	No results found using online National Toxicology Program					
	Triethanolamine	Trihydroxytriethyl Amine, 2 2' 2''-Nitrilotrisethanol, 2 2' 2''- Nitrilotriethanol, 2 2' 2''-Nitriloethanol, Daltogen, Nitrilo-2 2' 2''- Triethanol, Sterolamide, Thiofaco T-35, Triaethanolamin-NG, Triethanolamin, 2 2' 2''-Trihydroxytriethylamine, Triethylolamine, Tri (Hydroxyethyl) Amine, Tris (2-Hydroxyethyl) Amine, Trolamine, Tea, T-35	102-71-6				
	Volatile Organic Compound	Did not search					

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
PRO-SEAL 899	Not specified.	Need advice on which term to search further on, if applicable	
PR-1750	Part A: Hydrogenated Terphenyls	No results found using online National Toxicology Program	61788-32-7
	Manganese Dioxide	See attached list for search results.	
	Diphenyl Guanidine	Diphenylguanidine, N N'-Diphenylguanidine, DPG, Melaniline, Sym-Diphenylguanidine, NCI-C60924, DPG Accelerator, USAF EK- 1270, USAF B-19, Vulcacid D, Vulkacit D/C, Vulkazit	102-06-7
	Carbon Black	See attached list for search results.	
	Part B: Limestone	No results found using online National Toxicology Program	
	Titanium Dioxide	See attached list of synonyms, it's too lengthy to include all here	
PR-1750	Toluene	Previously described (page 5, under "MIL-P-23377")	
	MEK	Previously described (page 3, under "ME767")	
	Trichloropropane/Sodium Polysulfide Copolymer (not specified).	No results found using online National Toxicology Program	
PR-2911	White Part A: Propylene Glycol Monomethyl Ether Acetate	No results found using online National Toxicology Program	
	Alpha-Isome	No results found using online National Toxicology Program	
	Diethyltoluenediamine	No results found using online National Toxicology Program	68479-98-1
	Silica	See attached list for search results.	
	Dimethylsiloxane (treated)	No results found using online National Toxicology Program	
PR-2911	Titanium Dioxide	See attached list of synonyms, it's too lengthy to include all here	13463-67-7
	White Part B: Polyurethane Repolymer as Polythioether Polymer with H12MDI	No results found using online National Toxicology Program	
	Monomeric Methylene Bis (4- Cyclohexylisocyanate)	No results found using online National Toxicology Program	
	Propylene Glycol Monomethyl Ether Acetate	No results found using online National Toxicology Program	

Appendix A continued

CHEMICAL PRODUCT	COMPONENTS	SYNONYMS	CAS Code
PR-2911	Alpha-Isome	No results found using online National Toxicology Program	
	Black Part A: Propylene Glycol Monomethyl Ether Acetate	No results found using online National Toxicology Program	
	Alpha-Isome	No results found using online National Toxicology Program	
PR-2911	Carbon Black	See attached list for search results.	
	Diethyltoluene-Diamine	No results found using online National Toxicology Program	
	Silica	See attached list for search results.	
	Dimethylsiloxane (treated)	No results found using online National Toxicology Program	
	Polyether Polyol (extended)	See attached list for search results.	
	Black Part B: Polyurethane Prepolymer as Polythioether Polymer with H12MDI	No results found using online National Toxicology Program	
	Monomeric Methylene Bis (4- Cyclohexylisocyanate)	No results found using online National Toxicology Program	
PR-2911	Propylene Glycol Monomethyl Ether Acetate,	No results found using online National Toxicology Program	
	Alpha-Isome	No results found using online National Toxicology Program	
PR-1826	Not specified.	Need advice on which term to search further on, if applicable	
QR-2817	Methyltrlacetoxysilane		
	Ethyltriacetoxysilane	No results found using online National Toxicology Program	17689-77-9
	Red Iron Oxide	See attached list for search results.	
	Hydrophobic Amorphous Fumed Silica	No results found using online National Toxicology Program	
	Methyl-3,3,3-Trifluoropropylsiloxane Hydroxy Termi	No results found using online National Toxicology Program	
94-002/9	Not specified.	Need advice on which term to search further on, if applicable	

- Other -	- C -	 - F, G - Fibrous Talc Glycol Butyl Ether - H, I, K, L - Iron Oxide Isopropanol Isopropyl Alcohol 	- N, O -	- S -	- T -
2-Butanone	Carbon		N N-Dimethylacetamide	Sec-Propyl Alcohol	Talc
2-Butoxy-1-Ethanol	Carbon Black		N N'-Diphenylguanidine	Silica	TDI
2-Butoxyethanol	Chromium 6+ Trioxide		N-Butoxyethanol	Silicate	TEA
2-Ethoxyethanol Acetate	Chromium Oxide		N-Butyl Acetate	Sodium Alkyl Carboxylate	TEP
2-Ethoxyethyl Acetate	Chromium Trioxide		N-Propan-2-O	Sodium	Tetraethyl
2-Hydroxypropane	Chromium VI Oxide		Naphtha	Dimethylbenzenesulfonate	Tetraethyl Silicate
2-Propanol	Cyclohexane		Octoxynol 9	Sodium Fluoride	Thiophenol
2-Propyl Alcohol - A - Acetic Acid Butyl Ester Acetone Alcohol Ethoxylate Aluminium Silicate Amorphous Silica - B - Benzene Benzene Methyl Benzenethiol Bisphenol A Epichlorohydrin Butanone Butoxyethanol Butyl Acetate	 D - Diethyltoluenediamine Dimethylacetamide Dimethylbenzeness Dimethylbenzenesulfonic Acid Sodium Salt Dimethylcarbinol Dimethylsiloxane Diphatic Petroleum Naphtha Diphenylguanidine Disodium Metasilicate Dodecylbenzenesulfonic Acid - E - Ethyl Acetate Ethyl Benzene Ethyl Benzene Ethyl Benzene Ethyl Glycol Monobutyl Ether Ethylenediamine Ethyltriacetoxysilane 	Kaolin Lead Chromate Limestone - M - Manganese Dioxide MEK Methane Phenyl Methyl Ethyl Ketone Methylbenzene Methyltriacetoxysilane Monobutyl Glycol Ether Monochromium Oxide Monochromium Trioxide Monochromium Trioxide Monophenol Polyethylene Glycol	- P - Petroleum Ether Petroleum Naphtha Petroleum Solvent Phenylmethane Phosphoric Acid Triethyl Ester Polyamide Resin Polyaminopolyamide Polyol Potassium Borofluoride Potassium Fluoroborate Potassium Fluorozirconate Potassium Tetrafluoroborate Propan-2-OI Propylene Glycol Monomethyl Ether Acetate	Sodium Hydroxide Sodium Metasilicate Sodium Monofluoride Sodium Nitrite Sodium Salt Sodium Xylene Sulfonate Sodium Xylenesulfonate Solvent Soot Strontium Chromate Strontium Chromate (VI) Strontium Dichromate Stoddard Solvent	Titanium Dioxide Toluene Toluenediisocyanate Triethanolamine Triethyl Phosphate Trihydroxytriethyl Amine Tripotassium - U, V, W, X, Y, Z - White Spirit Xylene Xylol Zinc Chromate Zirconium Potassium Fluoride

Appendix B : Search terms representing chemical substances to which F-111 DSRS workers were potentially exposed

Appendix C : Search terms for indicators of adverse outcomes of occupational exposure

BIOMARKERS	TOXICOLOGY	NEUROPSYCHOLOGY	CANCER	BIRTH DEFECTS	MS & MN DISEASE
Biological markers Mutation DNA damage Sister chromatid exchange Micronuclei Chromosome aberrations Ploidies Polyploidy Genes, P53 Genes, ras Hypoxanthine phosphoribosyl transferase Genes, suppressor, tumor Oncogenes Neoplasms Carcinogens Carcinogens, environmental Mutagenesis Tumor Neoplastic disease Cancer (text word)	Toxicology Toxic response Toxic effects Dose response Dose effect Metabolism Mixed function oxidases Cytochrome P450 Mono-oxygenases Enzyme Excretion Absorption Elimination Metabolite(s) Biological markers Biological monitoring Health effect(s)	Cognitive impairment Dementia Alzheimer's disease Memory Cognition Concentration Neuropsychology Neurobehaviour Depression Mood Anxiety Psychosis Fatigue Epilepsy Stroke Cerebrovascular disease Parkinson's disease	Cancer Neoplasm Tumour Carcinoma Sarcoma Carcinogen Malignant/malignancy	Congenital disease Birth defects Birth defects congenital disease Chromosomal abnormalities Birth Injuries	Demyelinating Autoimmune disease Multiple sclerosis, chronic progressive, relapsing- remitting Neuromyelitis optica Myelin dysfunction Polyradiculoneuritis Guillain-barre syndrome Chronic inflammatory poly-radiculoneuropthy Brain diseases Spinal cord diseases Paresthesias Dysarthria Spasticity Ataxia Myelitis, transverse Optic neuritis Demyelination Neurodegenerative diseases Amyotrophic lateral sclerosis Bulbar palsy, progressive Muscular atrophy Poliomyelitis Heredodegenerative disorders Nervous system Peripheral nervous system diseases Muscle hypertonia Amyotonia congenita Polioviruses human 1-3 Sarcoidosis

Appendix D : List of resources used for literature search

NAMES OF DATABASES / SEARCH FACILITIES

- Cumulative Index to Nursing and Allied Health http://www.library.ucsf.edu/db/cinahl.html
- ACP Journal Club
 <u>http://www.acpjc.org</u>
- Cochrane Database of Systematic Reviews <u>http://www.cochrane.org</u>
- Database of Abstracts of Reviews for Effectiveness (DARE) <u>http://nhscrd.york.ac.uk/darehp.htm</u>
- Medline <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- Australian Institute of Health and Welfare <u>http://www.aihw.gov.au</u>
- PsycINFO <u>http://www.apa.org/psycinfo</u>
- ClinPSYC
 <u>http://www.ovid.com/products/databases</u>
- NSW Health Clinical Information Access Program http://www.ciap.health.nsw.gov.au
- World Health Organisation <u>http://www.who.int</u>
- Epidemiology Information System <u>http://www.nlm.nih.gov/pubs/factsheets/toxlin</u> <u>fs.html</u>
- Hazardous Materials Technical Center <u>http://www.dscr.dla.mil/htis/htis.htm</u>
- Australian Bureau of Statistics <u>http://www.abs.gov.au</u>
- Newcastle Institute of Public Health <u>http://www.niph.org.au</u>
- Australian Federal Information <u>http://www.nla.gov.au/oz/gov/</u>

- Development and Reproductive Toxicology <u>http://www.nlm.nih.gov/pubs/factsheets/dartfs</u> <u>.html</u>
- Australian Chemical Trauma Alliance Inc. <u>http://members.ozemail.com.au/~actall</u>
- Swedish National Chemicals Inspectorate <u>http://www.kemi.se/default_eng.htm</u>
- Federal Research in Progress <u>http://www.nisc.com/factsheets/qfdr.htm</u>
- Toxic Substances Control Act Test Submissions <u>http://esc.syrres.com/efdb/TSCATS.htm</u>
- CANCERLIT
 <u>http://www.cancer.gov/search</u>
- Canadian Centre for Occupational Health and Safety <u>http://www.ccohs.ca</u>
- Center for Health Effects of Environmental Contamination <u>http://www.cheec.uiowa.edu</u>
- Poisonous Plants Bibliography <u>http://www.calacademy.org/research/library/b</u> <u>iodiv/biblio/poison.htm</u>
- Canadian Task Force on Preventive Care <u>http://www.ctfphc.org/</u>
- International Pharmaceutical Abstracts <u>http://www.silverplatter.com/catalog/ipab.htm</u>
- United Nations Environment Programme <u>http://www.unep.org/</u>
- Toxicological Aspects of Environmental Health <u>http://www.biosis.org/products_services/toxlin</u> <u>e.html</u>
- International Programme on Chemical Safety
 <u>http://www.who.int/pcs/</u>
- American College of Occupational and Environmental Medicine <u>http://www.acoem.org/</u>

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Axelson, 1979 (214)	Case-control study	2313	Various occupations in Helsingborg (Southern Sweden) an industrial city	Iron oxide dust	Cancer incidence	No excess of cancer has been observed with exposure to dust of iron oxide
Bansal, 1997 (200)	Genetic research	N/A	N/A	N/A	Genetic research	Maturation analysis of the coding sequences of MEK-1 and MEK-2 genes in human lung cancer cell lines
Bauer, 2000 (233)	Letter	N/A	N/A	Silica dust	Lung cancer	Remains unclear whether silica is on the causal pathway between exposure to silica and lung cancer.
Beirne, 1982 (211)	Abstract only	?	Cellular	Polycyclic aromatic hydrocarbons	Oral cancer	NA
Boffetta, 2001 (196)	Population based study	1066	Residents in Montreal Canada	Titanium dioxide	Risk of lung cancer	No association between exposure to titanium dioxide (paints) and increased risk of lung cancer
Brockman, 1998 (216)	Review of literature	N/A	N/A	Carbon black	Cancer	No increased risk
Browne, 1992 (259)	Letter	N/A	N/A	Silica and asbestos	Lung cancer	Non-smokers at greater risk if they have grade 3 asbestos
Carta, 1994 (254)	Review	N/A	Sardinian metal miners	Exposed to silica and low levels of radon daughters	Lung cancer mortality and airways obstruction	No relation between crystalline silica and lung cancer; slight association between lung cancer mortality and exposure to radon daughters

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Checkoway, 1997 (243)	Historical cohort mortality study	2342	Diatomaceous earth industry, California	Silica	Non-malignant respiratory disease and lung cancer	Strong dose-response relationship between silica and NMRD. Lung cancer less convincing.
Checkoway, 1999 (237)	Cohort analysis	2342	White males diatomaceous earth industry workers	Crystalline silica	Radiological silicosis, and lung cancer mortality	Suggests silicosis is not necessarily a co-condition for silica related lung carcinogenesis.
Checkoway, 2000 (232)	Review of epidemiologic literature (10 studies)	N/A	Exposed workers	Silica	Is silicosis required for associated lung cancer	Silicosis and lung cancer as distinct entities whose cause/effect relations are not necessarily linked
Cherry, 1998 (242)	Cohort	5115	Men born 1915-45 employed in the pottery, refractory and sandstone industries of Stoke	Crystalline silica	Risk of lung cancer	Positive association between silica and lung cancer
Chulasir, 1984 (209)	In vitro	N/A	Tumor cells in vitro	Petroleum ether and chloroform extracts from Ceylon Cinnamon barks	Carginogenic effects	Showed cytotoxic effects of KB and L1210 cells.
Cocco, 1994 (253)	Mortality cohort study	526	Female workers in two lead and zinc mines in sth/west Sardinia (Italy)	Exposed to silica	Lung cancer	Low statistical power of the study does not allow conclusion to be drawn on the aetiology
Cocco, 2000 (231)	A nested case- control study	1372	Chinese workers in mines and factories	Silica	Non-malignant respiratory diseases and lung cancer	Modest association of silica and cumulative exposure to silica with lung cancer
Cocco, 2001 (228)	A nest case- control study	1672	Workers in Chinese mines and pottery factories	Silica	Lung cancer risk and silicosis	Future studies should incorporate detailed information on exposure other than workplace to lung carcinogens.

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Dalager, 1980 (138)	Cohort	202	US, male, spray painters in the aircraft maintenance industry	Zinc chromate	Cancer mortality	Significant excess of cancer, primarily of the respiratory tract.
Davies, 1984 (210)	Cohort	1152	Workers at three English chromate pigments factories	Lead chromate and zinc chromate pigments	Lung cancer mortality	Results indicate that moderate or heavy exposure to zinc chromate may give rise to severe risk of lung cancer
De Klerk, 1995 (252)	Cohort	1971	Western Australian gold miners employed underground for greater than 40 years	Silica	Lung cancer mortality	Slight but non-significant increase in the lung caner risk
De Klerk, 1998 (240)	Cohort	2297	Western Australian goldminers	Silica	Silicosis and lung cancer	Silicosis clearly related to silica exposure and significant increase in risk for subsequent lung cancer
Dong, 1995 (250)	Retrospective cohort mortality study	6266	Chinese refractory plants	Silica dust	Lung cancer	Increased lung cancer risk attributed to the silicotics
Duffus, 2000 (235)	Letter	N/A	NA	Silica	Lung disease	Radon is carcinogenic, metallic nickel is not and possibly elemental arsenic is also not
Fayerweather, 1997 (199)	Case-control study	1160	Tetraethyl lead manufacturing plant in Deepwater, New Jersey	Tetraethyl lead	Cancer risk	Possible association between colorectal cancer and TEL manufacturing process at this plant

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Fillmore, 1999 (239)	A death certificate study	N/A	Women with probable exposure	Probable exposure to silica	Cancer mortality in women	Women had elevated proportional mortality ratios (PMRs) for thyroid ca, multiple myeloma, digestive organ cancers
Finkelstein, 2000 (234)	Quantitative review of literature	N/A	Variety of industries	Silica	Silicosis and lung cancer	A lifetime risk of silicosis and lung cancer at an exposure level of 0.1mg/m3 is high
Finkelstien, 2001 (229)	Letter	N/A	NA	Silica	Silicosis and lung cancer	Re Hessel and colleagues. "The authors have overlooked data from Ontario that clearly demonstrate a relationship between the presence of radiographic silicosis and the later diagnosis of lung cancer" (p199).
Forastiere, 1986 (274)	A case- referent study	391	Italian ceramic workers	Silica	Silicosis and lung cancer	Increased risk of lung cancer with silica exposure
Gibbs, 1998 (241)	Letter	N/A	N/A	Silica	Non-malignant respiratory disease and lung cancer	Re: Checkoway and asbestos – findings may be diluted and influenced the conclusion of no asbestos effect
Hagmar, 1993 (204)	A cohort based case-reference study	7023	9 Swedish polyurethane foam manufacturing plants.	Toluene diisocyanate and methylene diphenyldiiso- cyanate	Incidence of cancer	Negative or no association for high exposure and prostate, colon, non-Hodgkin's lymphoma or rectal cancer.
Heppleston, 1985 (275)	Comment piece	N/A	N/A	Silica	pneumoconiosis and carcinoma of the lung	Weight against evidence of carcinogenic role for uncombined silicon dioxide

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Hessel, 1986 (272)	Case-control study	399	White South African gold miners	Silica	Silicosis and lung cancer	No association
Hessel, 1987 (270)	Letter	N/A	NA	Silica	Silicosis and lung cancer	Re: Forastier - claimed an association between silica exposure and silicosis and lung cancer.
Hessel, 1990 (263)	A necropsy study (case control)	549	White South African gold miners	Silica	Silicosis and lung cancer	No association between lung cancer and silica exposure
Hnizdo, 1991 (260)	Mortality study	2209	South African gold miners	Silica and tobacco	Mortality from lung cancer	Association between lung cancer and silica dust effect modification by smoking
Hnizdo, 1997 (244)	Nest case- control study	2260	South African gold miners	Exposure to silica dust, silicosis and uranium	Lung cancer	Results cannot be interpreted definitively in terms of causal association
Kerslake, 1997 (198)	In vitro model	N/A	N/A	Phorbol esters	In vitro model – abstract only	In vitro model of iron oxide particle toxicity
Klein, 1995 (249)	Review	N/A	N/A	Crystalline silica	Threshold carcinogen	Insufficient evidence
Koskela, 1994 (255)	Cohort plus census-based target populations	1026 +	Finnish granite workers + census- based target populations from the same regions	Silica dust	Lung cancer	Increased lung cancer with silica exposure
Lebowitz, 1981 (276)	Review of extent of morbidity	N/A	N/A	Silica	Silicosis and lung carcinoma	No conclusive evidence of a definite relationship between silicosis and lung carcinoma
Liu, 1997 (217)	Retrospective cohort study	6635	Male factor workers in China	Carbon black	Cancer mortality	Numerous deaths correlated with cola tar pitch volatiles

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Lynge, 1986 (273)	Incidence register results	N/A	Nordic Foundry workers and Swedish miners	Silica dust	Lung cancer	Workers exposed to high concentrations of silica dust showed a significant excess lung cancer risk
Lynge, 1990 (262)	Comparative analysis	N/A	Nordic Foundry workers and Swedish miners	Silica dust	Cancer mortality and incidence	Excess lung cancer risk for foundry workers
Mastrangelo, 1988 (269)	A case- referent study	309	Belluon, Italy. Workers in quarrying, tunnelling and other occupations involving exposure to silica	Silica dust	Lung cancer	Exposure to silica appears to increase risk of lung cancer but only in the presence of silicosis.
McDonald, 1989 (268)	Editorial	N/A	N/A	Silica	Silicosis and lung cancer	Limited evidence for the carcinogenicity of crystalline silica in man
McDonald, 2000 (230)	Editorial on IARC	N/A	N/A	Silica	Lung cancer	"Crystalline silica in the form of quartz or cristobalite from occupational courses is carcinogenic to humans.
McLaughlin, 1992 (258)	Nested case- control study	1668	Workers in Chinese pottery workers, tungsten, copper- iron and tin miners	Silica	Lung cancer	Increasing trend of lung cancer with increased exposure to silica
McLaughlin, 1997 (193)	Book chapter	N/A	N/A	Amorphorous silica	Health effects with particular reference to cancer	Data on cancer outcomes associated with amorphorous silica are scanty and mostly negative.

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Meijers, 1990 (265)	A case control study	761	Male Dutch fine ceramic industry workers	Silica	Lung cancer	No association
Merlo, 1991 (261)	Retrospective cohort study	1022	Refractory brick workers, Genoa, Italy	Crystalline silica	Mortality from lung cancer	Mortality from lung cancer and resp disease elevated in workers employed longest
Merryman, 1997 (197)	Lab investigation	N/A	N/Á	N/A	Small cell lung cancer	Carbon dioxide an important messenger molecule
Morgan, 1996 (247)	Letter	N/A	N/A	Silica exposure	Lung cancer	Comment on Weills and McDonald
Moulin, 1989 (220)	Review of studies	2417	Carbon electrode manufacturing workers in France	Carbon Black	Lung, larynx, pharynx and buccal cavity cancers	No association
Neuberger, 1990 (264)	A prospective study	1621	Viennese men working in foundries, other metal, glass, ceramic, brick, stone and other dusty industries	Silica dust	Respiratory disease and lung cancer	Relation between exposure to respirable particles and mortality from lung cancer and chronic lung disease
Ng, 1994 (256)	Viewpoint	N/A	N/A	Silica	Lung cancer	Association between lung cancer in workers with occupational silica is confounded by exposures to cigarette smoke.
Nurminen, 1992 (257)	Risk estimation	N/A	N/A	Silica	Estimate risks of silicosis and lung cancer associated with lung cancer	Prediction formulas to predict occurrence of silicosis and lung cancer
Pan, 1999 (236)	Nested case- control study	375	Various Industrial workers	Silica and other dusts	Oesophageal cancer	Positive association between silica and

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Parent, 1996 (218)	Case-control study	3730	Various exposures	Carbon black	Lung cancer	Association between exposure to carbon black and lung cancer
Park, 2002 (222)	Quantitative risk assessment	?	California diatomaceous earth industry workers:	Crystalline silica	Silicosis and lung disease other than cancer	Crystalline silica risk lung disease other than cancer far in excess of what is considered acceptable.
Partenen, 1995 (251)	Review	N/A	Various hazardous industries	Silica	Silicosis and cancer	Suggests that silica dust also causes lung cancer
Petrone, 1987 (207)	Cohort mortality study	4000	Oklahoma commercial dry cleaning plants 1941-1985	Stoddard solvent	Mortality due to cancer	Increase in resp and pancreatic cancers
Rice, 2001 (224)	A quantitative risk assessment	2342	California diatomaceaous earth industry workers	Crystalline silica	Lung cancer mortality	There was significant risk of mortality from lung cancer that increased with cumulative exposure to respirable crystalline silica dust
Robertson, 1989 (221)	A case-control study	345	Carbon black workers in the United States	Carbon Black	Circulatory, malignant and respiratory morbidity	No association
Rønneberg, 1995 (203)	Cohort study of cancer incidence between 1953 and 1991	1137	Norwegian aluminium smelter workers	Prebaked carbon anodes	Mortality from circulatory and respiratory diseases	Data supports previous finding: increased IHD and support for increased resp mortality in potroom workers
Rønneberg & Anderson, 1995 (202)	Cohort study of cancer incidence between 1953 and 1991	1137	Norwegian aluminium smelter workers	Prebaked carbon anodes	Mortality and cancer morbidity	Increased bladder, lung, kidney cancer and exposure to tar pitch volatiles. Latency period of 30-40 years

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Rood, 2001 (195)	A Stochastic estimate	N/A	Rocky Flats Environmental Technology Site	Carbon tetrachloride	Cancer risk	Carbon tetrachloride considered a probably human carcinogen
Seaton, 1997 (246)	Letter	N/A	N/A	Silica exposure	Risk of cancer	– re Morgan and Reger.
Shabad, 1980 (213)	Guest editorial	N/A	N/A	Carcinogenic polycyclic aromatic hydrocarbons	Cancer prevention	Good historical background to chemical carcinogenesis
Sheffet, 1982 (212)	Cohort - 1296 white & 650 non-white men	(refer left)	Pigment plant workers in Newark	Lead and zinc chromates	Cancer mortality	Increased risk of lung, stomach and pancreatic cancer
Simonato, 1990 (267)	Not a study	N/A	N/A	Silica dust	Lung cancer	IARC – 3 main findings: 1) silica is carcinogenic in experimental systems (IARC 1987); 2) lung cancer risk is increased among workers exposed to silica; 3) when investigated separately, lung cancer risk is concentrated among the subpopulation of exposed workers who develop silicosis
Sjogren, 2001 (225)	Letter	N/A	US industrial sand workers	Crystalline silica	Lung cancer	Refers to Steenland re IHD.
Sorahan, 1989 (206)	Cohort	953	Workers in a factory, 1961-84	Chlorinated toluenes	Lung cancer mortality	Lung cancer may result from occupational exposure to certain chlorinated toluenes
Spivack, 1990 (266)	Letter	N/A	N/A	Silica	Comment	Re Rivard – "the implication of a causative role for silica exposure in the development of lung cancer must remain speculative"

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Steenland, 1997 (245)	Meta-analysis	N/A	Various industries	Silica, asbestos, man-made mineral fibers	Cancer	Little evidence for lung cancer for either glass wool or rock slag wool. Asbestos well established as carcinogen for lung and mesothelium.
Steenland, 2001 (223)	IARC multicentre study	65980	Various exposed workers – gold miners, diatomaceous earth, pottery and granite workers	Silica	Lung cancer	IARC to classify silica in occupational settings as a carcinogen.
Steenland, 2001 (226)	Cohort	4626	US industrial sand workers	Crystalline silica	Lung cancer	Supports the labelling by the International Agency for Research on Cancer of crystalline silica as a human carcinogen.
Stober, 1996 (201)	A critical appraisal of epidemiolog- ical studies	N/A	N/A	Diesel soot particles in ambient air	Lung cancer	No consistent association with lung cancer or bladder cancer
Straif, 2000 (215)	Cohort	8933	Rubber workers	Nitrosamines, carbon black, asbestos and talc	Mortality from stomach, lung and laryngeal cancer	Increased mortality from lung and stomach cancer associated with exposure to asbestos and dust respectively. No association between nitrosamines and stomach or lung cancer.
Sutton, 1985 (208)	Letter	N/A	N/A	Sodium fluoride	Oral carcinogen	Referring to Tsutsui (1984) on fluoride as a cause mouth cancer
Thomas, 1987 (271)	Cohort mortality study	2055	US pottery workers	Silica and talc	Lung cancer and respiratory disease	Talc and lung cancer association

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Thomas, 1993 (205)	Descriptive	N/A	N/A	N/A	Breast cancer in	Little evidence re chemical
	epidemiology				men	exposure
Tsuda, 2001 (227)	A case-control study	726	Deaths in the Tobi area of Japan	Silica	Gastric cancer and esophageal cancer	Results suggest gastric and oesophageal cancer were related to silica exposure and silicosis.
Ulm, 1999 (238)	Case-control study	1042	Workers in German stone quarrying and ceramic industries	Silica dust	Lung cancer	No association between exposure to crystalline silica and lung cancer
Valberg, 1996 (219)	Quantitative comparison	N/A rats	NA	Carbon-black	Lung cancer	Using rat inhalation bioassay data for carbon black to estimate lung tumor risk in humans must be seriously questioned
Weill, 1996 (248)	Review	N/A	N/A	Exposure to crystalline silica	Risk of lung cancer	Epidemiological evidence has become stronger in suggesting a link between exposure to silica and lung cancer.
Yamada, 1997 (194)	Case control	211	Non-occupational females in urban areas of Japan	Talc and amosite/ crocidolite	Non-occupational female lung cancer	Fibrous talc in urban environments may be a candidate for carcinogenic factors of female lung cancer

Appendix F : Benzene exposure in relation to malignancies

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Aksoy, 1982 (296)	Chapter 5	N/A	N/A	Benzene	Leukaemia and Malignant Lymphoma	Benzene capable of inducing a variety of haematology and lymphatic malignancies as well as damaging the bone marrow.
Budinsky, 1999 (278)	Evaluation of modelled benzene exposure and dose estimates	N/A	Workers in China	Benzene exposure	NA	Suggest increased risk of acute nonlymphocytic leukaemia at relatively low benzene concentrations and associations with cancers not previously associated with benzenes exposure.
Cronkite, 1988 (293)	Mice	N/A	N/A	Benzene	Induced hematopoietic neoplasms	Benzene causes and promotes malignant process in mice
Gerin, 1998 (29)	A case-control study	4236	Cancer patients and controls	Benzene, toluene, xylene and styrene	Several sites of cancer	Limited evidence of increased risk for associations of oesophagus-toluene, colon- xylene, rectum-toluene, rectum- xylene and rectum-styrene.
Hayes, 1997 (283)	Cohort study	110633	Industrial workers in 12 cities in China	Benzene	Hematologic neoplasms	Benzene known to cause leukamia, particularly acute nonlymphocytitic leukemia and perhaps other haematological neoplasms.
Ireland, 1997 (282)	Cohort mortality study	4172	Male workers at the Monsanto Company plant in Sauget.	benzene exposure	Cancer mortality	Elevated (albeit imprecise) rates of leukemia and multiple myeloma.

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Jarvholm, 2000 (277)	Letter	N/A	N/A	Benzene from traffic and petrol stations	Letter.	Disputes the conclusions reached in the Harrison study
Krekel, 1978 (298)	Presentation transcript	N/A	N/A	Benzene	Cancer Risk demands cancer control	Some history
Li, 1994 (289)	Cohort	110000	Benzene-exposed workers in China	Benzene	Gender differences in hematopoietic and lymphoproliferative disorders and other cancer risks by major occupations group	No significant differences in relative risks for total mortality between male and females benzene exposed workers. Both sexes had increased risk for all haematopoietic and lymphoproliferative (HLP) malignant and nonmalignant disorders.
Linet , 1996 (287)	Follow-up of Chinese cohort	110633	Benzene-exposed workers in China	Benzene	Clinical features of hematopoietic malignancies and related disorders	Validating diagnoses of leukemia and other haematopoietic and lymphoproliferative malignancies and related disorders (HLD)
Maltoni, 1983 (295)	Long term bioassays	N/A	N/A	Benzene	A multipotential carcinogen	There is the need for more research.
Nurmien, 1984 (294)	Cohort	?	Carbon disulfide- exposed workers	Carbon disulfide	Cancer mortality	Mortality rate not statistically significant
Paci, 1989 (291)	Cohort	2013	Male and female workers in a show manufacturing plant	Benzene.	Aplastic anaemia, leukaemia and other cancer mortality	Benzene is a well documented carcinogen for hematic and lymphopoietic system. Excess risk of aplastic anaemia for men observed.

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Petralia, 1999 (280)	Case-referent study	301	Women over 40 with premenopausal breast cancer in New York State.	Occupational exposure to polycyclic aromatic hydrocarbons and	Risk of premenstrual breast cancer	Association between risk and occupational exposure to benzene. However, low- response rates and small
Rothman, 1997 (284)	Case-control study	11177	Shanghai workers in benzene exposed jobs	benzene Benzene poisoning	Haematological malignancy	numbers of exposed persons Evidence of human susceptibility to benzene related disease
Schnatter, 1996 (288)	Nested case- control study	155	Canadian petroleum distribution workers	Benzenes	Lymphohaemato- poietic malignancies and quantitative estimates of exposure	No relation between lymphohaematopoietic cancer and long term, low level exposures to benzene
Smith, 1999 (281)	Commentary	N/A	N/A	Benzene NQO1	Genetic susceptibility to cancer	Possible link between lack of or lowered NQO1 activity may make individuals vulnerable to leukaemia secondary to chemical exposure.
Steineck, 1990 (290)	Population based case- referent study	541	Men born between 1911-45 living in the County of Stockholm	Benzene and exhausts	Increased risk of urothelial cancer	Exposure to benzene (any annal dose) gave a relative risk (with 95% CI) of 2.0 (1.0 – 3.8).
Van de Berghe, 1979 (297)	Two patients case study	2	Men with histories of working with benzene	Presumably by benzene	Chromosome analysis in two unusual malignant blood disorders	Generally accepted that chronic exposure to benzene may induce leukaemia in man. Early reports in 19 th century followed by "abundant literature" on the subject.
Wong, 1999 (31)	A critique of the exposure assessment	N/A	Workers in China	Benzene-exposed	NA	Believes many of the results in the CAPM-NCI study are unreliable.

Author	Study type	n=	Population	Exposure	Outcome	Results/Evidence
Yin, 1989 (292)	Retrospective cohort	28460 + 16621 controls	Benzene workers	Benzene	Study of leukemia and other cancers	For certain cancers increased mortality was noted among benzene exposed males
Yin, 1996 (285)	Cohort	110633	Benzene-exposed workers in China	Benzene	Cancers	Employment in benzene associated occupations in China associated with wide spectrum of myelogenous and lymphocytic malignant disease and related disorders.
Yin, 1996 (286)	Expanded cohort study	110633	Benzene-exposed workers in China	Benzene	Cancer	Results as above
Zheng, 1999 (279)	Case-control	490	Connecticut women with breast cancer	β-Benzene hexachloride in breast adipose tissue and risk of	Breast cancer	Results support the hypothesis that increasing adipose tissue levels of β -BHC area associated with an increased risk of breast carcinoma in females.

Appendix G : Mitochondrial disease and solvent exposure

As part of the F-111 DSRS Interim Health Care scheme, one RAAF member who had been involved in deseal/reseal activities was assigned a possible diagnosis of MELAS, a syndrome of mitochondrial encephalopathy, lactic acidosis, and stoke, that usually manifests in childhood or adolescence. The syndrome may be accompanied by psychosis, cardiac myopathy, or arrythmias, and in most cases (ie;over 80%) is due to a particular mutation in mitochondrial DNA. This created speculation that mitochondrial disease may be related to exposures during deseal/reseal activities. Hence, the TUNRA team was asked to examine this in its literature review.

The search was carried out as follows: the following MeSH headings were entered in MEDLINE (from 1966 to July 2003), joined by "OR":

Hydrocarbons

Hydrocarbons, acyclic Hydrocarbons, alicyclic Hydrocarbons, aromatic Hydrocarbons, brominated Hydrocarbons, chlorinated Hydrocarbons, cyclic Hydrocarbons, fluorinated Hydrocarbons, halogenated Hydrocarbons, iodinated Polycyclic hydrocarbons Polycyclic hydrocarbons, aromatic Solvents Environmental exposure Occupational exposure Organic chemicals And crossed with: MELAS

Fifty nine references were found, none of which were relevant to solvent exposure. In addition, the incidence of the most common mutation for MELAS is between 10-16 per 100,000 (299), and not all of these develop the clinical syndrome; this would lead to an expected number of MELAS cases in our exposed group (~1000) of 0.1. Thus, no evidence of a relationship between solvent exposure and mitochondrial disease has been found, and the rarity of this condition would not recommend it as a possible outcome in the General Health and Medical Study.