

Uploaded to VFC Website

~ October 2012 ~

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a 501(c)(3) Non-Profit Corporation Tax ID #27-3820181

If Veteran's don't help Veteran's, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd= s-xclick&hosted button id=WGT2M5UTB9A78

Note

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members.

iteer IV Number	01749
Action	
Corporate Author	Center for Environmental Health and Injury Control, CD
Report/Article Title	Health Status of Vietnam Veterans, III. Reproductive Outcomes and Child Health, The Center for Diseaso
	Control Vietnam Experienco Study
Journal/Book Title	JAMA
OQL IQL/ BOOK 1100	
Year	1988
Month/Day	May 13
	[]
Color	1 1
Munior of Images	5
Descriptes Nates	

Monday, June 11, 2001 Page 1750 of 1793

Health Status of Vietnam Veterans

III. Reproductive Outcomes and Child Health

The Centers for Disease Control Vietnam Exportance Study

The Vietnam Experience Study was a multidimensional assessment of the health of Vietnam veterans. From a random sample of enlisted men who entered the US Army from 1965 through 1971, 7924 Vietnam and 7364 non-Vietnam veterans participated in a telephone interview; a random subsample of 2490 Vietnam and 1972 non-Vietnam veterans also underwent a comprehensive medical examination. During the telephone interview, Vietnam veterans reported more adverse reproductive and child health outcomes than did non-Vietnam veterans. However, children of Vietnam veterans were not more likely to have birth defects recorded on hospital birth records than were children of non-Vietnam veterans. The rates of total, major, minor, and suspected defects were similar among children of Vietnam and non-Vietnam veterans (odds ratios, 1.0, 1.1, 1.0, and 0.9, respectively). These results are consistent with the findings of three epidemiologic studies conducted since 1981 on the relationship of Vietnam service and birth defects in children of male veterans.

(JAMA 1988;259:2715-2719)

THE CENTERS for Disease Control has undertaken a congressionally mandated health study of Vietnam veterans called the Vietnam Experience Study (VES). In the VES, the health of a sample of male US Army Vietnam veterans

8ee also pp 2701 and 2708.

was compared with that of a similar group of Victnam-era veterans who served elsewhere. This is the third of three reports in this issue of THE JOURNAL summarizing the results of the VES. In it, we present data on reproductive outcomes and child health, including adverse pregnancy outcomes, birth defects, major childhood health

problems, cancer, and mortality. The first report¹ focuses on the psychosocial characteristics of the veterans after discharge from the army and the second report² describes their physical health.

SUBJECTS AND METHODS Data Collection and Study Participants

In the VES, we identified a random sample of men who met certain eligibility criteria based on data from military records, traced them to their present locations, conducted telephone interviews, and invited a random sample of interviewees to participate in an extensive physical, laboratory, psychological, and neuropsychological examination. Subject selection, participation rates, and comparability of the study cohorts are described in the first article.

Two sources of data were used to examine reproductive outcomes and child health: reports by veterans during

the telephone interview and hospital birth records of selected veterans' children. During the telephone interview. veterans were asked questions about their offspring covering the following areas: (1) pregnancies that ended early, including miscarriages, induced abortions, and tubal pregnancies; (2) date of birth, sex of child, and status for all births (live birth or stillbirth); (8) types of birth defects; (4) types of major health problems or impairments occurring in the first five years of life; (5) leukemia or other type of cancer; and (6) infant and child mortality. The 15 288 veterans who completed the telephone interview reported fathering 28 724 pregnancies, 24 698 of which resulted in a birth (Table 1). Reported pregnancies that were conceived before the veteran was assigned to Vietnam or another duty location are not included in Table 1 or in the analyses presented herein.

An interim analysis of preliminary VES interview data showed differences in the rates of total birth defects and cerebrospinal malformations (CSMs) (anencephaly, spina bifida, and hydrocephalus) between children of Vietnam and non-Vietnam voterans. As a result of these findings, two substudies were added to the VES at the time of the interim analysis. The objective of the main substudy was to compare the rates of total birth defects recorded on hospital birth records for children of Vietnam and non-Vietnam veterans to verify the reported cohort differences found in the interview data, All veterans whose medical examinations were scheduled from Jan 1, 1986, to Sept 30, 1986, were asked to participate in this substudy. The interview results were not used in selecting veterans or offspring. In addi-

From the Center for Environmental Health and Injury Centrel, Centers for Disease Centrel, Public Health Service, Department of Health and Human Services, Allenta.

Roponf request to Conters for Disease Central, 1600 Clifton Fld (F 16), Allanta, CA 30333 (Fugenia E. Calle, PhD)

Table 1.—Numbers of Veterans, Eligible Pregnancies and Briths, and Birth Records Received

Population	Vietnam	Non-Vietnam	Total
No of votorans	Interview Study 7924	7364	15 288
No. of eligible prognancies	16 009	13715	28724
No of eligible births	12788	11910	24 698
No. of uligible live births	12650	11 777	24 436
	Birth Defects Substi	udy	
No. of veterans	1237	1045	2262
No. of eligible births	1945	1738	3683
No. of birth records received	1791	1575	3366
-	Cerebrospinel Malformation	s Substudy	
No. of eligible births	154	140	294
No of birth records received	127	94	221

tion to studying total birth defects, we used this population to examine other outcomes, such as birth weight.

Of the 4462 veterans who participated in both the interview and the medical examination components of the VES, 2282 were examined after Jan 1, 1986, and were asked to give detailed birth and hospital information for each of their children (live born and stillborn) so that birth records could be obtained. The 2282 veterans reported a total of 4122 offspring (Table 1). We tried to obtain birth records for all reported offspring to confirm reported birth dates and determine eligibility for inclusion in the final substudy population. Of the 4122 reported offspring, 381 were conceived before the veterans' assignments to Vietnam or other primary duty locations, 41 were 18 years of age or older at the time of record retrieval (veterans' adult children were considered ineligible), six were not the biologic children of the veterans, and 11 were miscarriages (birth weight, <500 g). When these incligible offspring were omitted, the population for the main substudy of total birth defects was 3683 (1945 offspring of Vietnam veterans and 1738 offspring of non-Vietnam veterans).

In a second substudy, hospital birth records were sought for a small, select group of offspring with possible CSMs. Eligible offspring for this substudy were obtained from the entire VES interview population. Birth records for three types of children were sought: those with a reported CSM, so stated by the veteran; those with a reported condition that suggested a possible CSM; and all children reported as stillborn. These children were selected in un attempt to identify all CSM cases in the offspring of interviewed veterans and to verify those cases by using hospital birth records.

Of the children reported during the interview, 408 met one of the three criteria listed above for inclusion in the

CSM substudy. Veterans were recontacted by telephone and asked for additional birth and hospital information about these children so that records could be obtained. Of the 403 reported children, 58 were conceived before the veterans' assignments to Vietnam or other primary duty locations and 51 were miscarriages (birth weight, <500 g), resulting in an eligible group of 294 potential CSM cases (Table 1).

For both substudies, hospitals were asked to send a copy of the child's entire medical record, covering the birth and associated hospital stay. Medical records were abstracted by a team of nurses and physicians, and the quality of the abstraction process was closely monitored throughout the study. To minimize bias, staff members who obtained and abstracted medical records were blinded to the military history status of all veterans.

Hospital birth records were obtained for more than 91% of the 3683 births that were eligible for inclusion in the main substudy of total birth defects (Table 1). Among offspring of Vietnam veterans, 1791 birth records (92.1%) were obtained; among offspring of non-Vietnam veterans, 1575 birth records (90.6%) were obtained.

In the substudy of potential CSM cases, the success rates for retrieving hospital records varied considerably by cohort status (Table 1); records were obtained for 127 eligible children of Vietnam veterans (82.5%) and for 94 eligible children of non-Vietnam veterans (67.1%). Non-Vietnam veterans were more difficult to locate and contact and much more likely to refuse participation than were Vietnam veterans.

Definitions of Birth Defects

For all analyses, a birth defect was defined as a condition that was coded within the range of 740.0 to 759.9 of the ninth revision of the *International*

Classification of Diseases. In addition, we classified the birth defects documented on hospital records as major or minor, using the general method of Erickson et al. A third class, suspected defects, was used when a defect was described in the record as "suspected" or "rule out" but was not otherwise confirmed by available records. Details of this classification system are presented elsewhere.

Analysis

Crude rates of outcomes among veterans' offspring were computed. The denominator of the rates varied, depending on the outcome; total pregnancies, total births, and live births were the denominators most often used. The primary measure used to assess the association of the Vietnam experience with reproductive outcomes was the odds ratio (OR). The precision of the OR estimate was evaluated by computing 95% confidence intervals (CI). Odds ratios were adjusted simultaneously for the following veteran characteristics by using multiple logistic regression methods': age of the veteran at the birth of the child (or at the time of the adverse pregnancy outcome), race, year of entry into the army, enlistment status, generul technical aptitude test score, primary military occupational specialty, and number of years between enlistment and the birth of the child (or the time of the adverse pregnancy outcome). Two additional covariates were included in analyses of record-based outcomes: maternal age and gravidity. Interactions between Vietnam service and each of the covariates were assessed." If an interaction was found, a standardized OR was computed by using the covariate distribution of both cohorts combined.8

Since many veterans reported more than one pregnancy or child, we had to evaluate the possible impact of correlation among offspring within a family. We compared the results of the standard logistic regression method with results of a modified logistic method that accounted for correlation among the offspring. These comparisons indicated that intrafamily correlation had virtually no effect on our estimates of the regression coefficients or their SEs; consequently, standard logistic regression techniques are presented herein.

RESULTS Birth Defects

During the telephone interview, Vietnam veterans reported significantly more birth defects in their children than did non-Vietnam veterans; the

Table 2.—Birth Defects Reported in the Interview Study Among Children of Violinam and Non-Vietnam Volerens

		Children o	Voterans			
		Cilitation	A AAMIGIB			
00	Vietnam (N = 12 788)		Non-Violnam (N = 11910)			
Organ System (ICD-9 Codes*)	Rate	No.	Ratet	No.	Odds Ratio‡	95% Confidence Interval
Total anomalies (740-759)	64 6	826	49 6	590	1.3	1 2-1.4
Nervous (740-742)	26	33	1.1	13	2.3	1.2-4.5
Anencophaly (740.0)	0.2	3	00	0		
Spina brida (741.0-741.9)	0.7	9	0.4	5	1.7§	0.6-5.0
Hydrocephalus (742.3)	0.9	11	0.2	2	5.15	1.1-23.1
Eye (743)	1.6	20	1.1	13	1.3	0.7-2.8
Ear, face, and neck (744)	2.9	37	1.0	22	1.6	09-28
Circulatory (745-747)	6.7	86	61	73	11	0.8 1.6
Rospiratory (748)	1.2	15	0.8	10	1,5	0.6-3.5
Digostryo (749-751)	B.4	108	6.3	61	1.2	0.9-1.6
Geruital (752)	27	35	2.3	27	1.3	0 8-2.2
Urinary (753)	3.6	48	2.4	28	1.4	0.9-2.9
Musculoskeletal (754-756)	33.3	426	25 9	309	12	1.1-1 5
Integument (757)	32	41	1.4	17	2.2	1.2-4.0
Chromosomal (758)	0.8	10	1.0	12	0.8§	0.3-1.8
Other unspecified (759)	1.8	20	0.8	10	1.7	0.8-3.9

^{*}ICD-9 indicates International Classification of Diseases—Ninth Edition; the range of codes includes all the fourth digit codes contained within that range.

§Crude odds ratio presented because the number of cases is not sufficient for multivariate modeling.

Table 3.—Birth Defects Noted on Hospital Birth Records Among Children of Vietnam and Non-Vietnam Veterans

Type of Defect		Children o	Veterans			
	Viotnam (N = 1791)		Non-Vietnam (N = 1575)		044-	new AA
	Rate*	No.	Plate*	No.	Odds Ralio†	95% Confidence Interval
Major	28.5	51	23.5	37	1.1	0.7-1.8
Minor	32.4	5B	34 3	54	1.0	0.7-1.5
Suspected	117	21	13.3	21	0.9	0.5-1.7
Total	72.6	130	71.1	112	1.0	0 8-1.4

^{*}Crude rates per 1000 total births.

Adjusted for veloraris age at birth, race, year of entry into the army, enlishment status, general technical test score, primary military occupational specialty years between entry and birth, maternal age, and gravidity.

rates for each cohort are 64.6 and 49.5 per 1000 total births, respectively, and the adjusted OR is 1.3 (95% CI, 1.2 to 1.4) (Table 2). The excess is present for virtually every major organ system and does not seem to be explained by a single type (or category) of defect. The ORs for nervous system anomalies, hydrocephalus, anomalies of the integument, and musculoskeletal deformities are significantly greater than 1.0. While there was a positive association between Vietnam service and reported birth defects among children of both white and black veterans (adjusted ORs, 1.3 and 1.2, respectively), the reverse was true for children of Hispanic veterans and veterans of other races (OR = 0.7).

In the main substudy, the rates of

total birth defects recorded on hospital birth records were similar in the two cohorts. As shown in Table 3, the crude rates per 1000 total births are 72.6 and 71.1, respectively, and the adjusted OR is 1.0 (95% CI, 0.8 to 1.4). When defects were classified as major, minor, or suspected, the adjusted ORs are 1.1, 1.0, and 0.9, respectively.

An analysis of total, major, minor, and suspected defects stratified by race shows that ORs vary considerably. The adjusted OR for total defects among offspring of black veterans is 3.3 (95% CI, 1.5 to 7.5) compared with 0.9 (95% CI, 0.7 to 1.3) for offspring of white veterans and 0.4 (95% CI, 0.2 to 1.3) for offspring of Hispanic veterans and veterans of other races. This variability in the OR also is present for major and minor

defects. The OR is statistically significant for total and minor defects among offspring of black veterans.

We examined the types of abnormalities in black infants more closely. No single type of major defect occurred more than once in either veteran group. None of the infants with major defects had identical anomalies or any patterns of multiple anomalies suggestive of a syndrome. Of the 13 infants of black Vietnam veterans with minor defects, four had polydactyly (two of whom were siblings) and two other siblings had supernumerary nipples. No other minor anomalies occurred more than once.

The analysis of potential CSM cases was done separately for stillbirths and live births in each cohort (Table 4). Among reported stillbirths, birth records documented five CSMs in offspring of Vietnam veterans and six in offspring of non-Vietnam veterans. Ten of these 11 cases had no report of a defect by the veteran during the interview. Among live-born offspring, birth records documented 21 CSMs in children of Vietnam veterans and six in children of non-Vietnam veterans. Because record retrieval rates varied considerably by cohort status and because negative responses were not verified, we did not calculate or compare rates of CSM cases in the two cohorts; the results are expressed as numbers of verified cases.

Low Birth Weight-Hospital Birth Records Substudy

Rates of low birth weight (<2500 g) were similar in offspring of Vietnam and non-Vietnam veterans (5.6% and 5.5%, respectively; adjusted OR = 1.1; 95% CI, 0.8 to 1.4). The mean birth weights of offspring of Vietnam and non-Vietnam veterans were 3366 g and 3870 g, respectively.

Other Pregnancy and Child Health Outcomes—Interview Study

Vietnam veterans were more likely to report having fathered a pregnancy that ended in a miscarriage than were non-Vietnam veterans (adjusted OR = 1.3; 95% CI, 1.2 to 1.4). This relative excess appeared regardless of the trimester in which the miscarriage was reported to have occurred, and the magnitude of the ORs varied little across trimesters. The other reproductive outcomes examined-pregnancies ending in an induced abortion, tubal pregnancies, and stillbirths-were no more likely to be reported by Vietnam veterans than by non-Vietnam veterans.

Among children of Vietnam and non-Vietnam veterans, 25 and 17 cancers were reported, respectively (adjusted OR = 1.5; 95% CI, 0.8 to 2.8). When

hCrude rates por 1000 total births.

‡Adjusted for veterants age at birth, race, year of entry into the army, antistment status, general technical test score, primary military occupational specialty, and number of years between entry and birth.

	AJL\$	Stillbirths	Rep	Bible CSM*	Total	
	Vietnam	Non-Vietnam	Viotnam	Non-Vietnam	Vielnam	Non-Vietnam
No. reported in interview	99	114	55	26	154	140
No. of birth records received	78	74	49	20	127	94
CSM on record, No. Anencephaty		4	7	3	10	7
Spina bifida	1	0	8	2	9	2
Hydrocophalus	1	2	6		7	
Total	5		21	6	26	12

^{*}CSM indicates cerebrospinel mallormation.

childhood cancers were examined by site, the preponderant type reported among both groups of veterans was leukemia, with 12 cases among children of Vietnam veterans and seven cases among children of non-Vietnam veterans (crude OR = 1.6; 95% CI, 0.6 to 4.1).

More than half of the reported childhood health problems were attributed to respiratory diseases (mostly asthma and pneumonia) and diseases of the ear (primarily otitis media). The adjusted OR for all reported conditions is 1.3 (95% CI, 1.2 to 1.4). For most disease categories, Vietnam veterans reported more health problems in their children than did non-Vietnam veterans.

Analyses of reported infant mortality (the proportion of all live-born children who die before reaching their first birthday) and child mortality (the proportion of children surviving until 1 year of age who subsequently die) showed no appreciable differences between children of Vietnam and non-Vietnam veterans.

COMMENT

For most reproductive and child health outcomes studied, Vietnam veterans were more likely to report an adverse event than were non-Vietnam veterans. The exceptions to this pattern were induced abortions, tubal pregnancies, stillbirths, and mortality. The tendency to report more adverse events for their children is consistent with the Vietnam veterans' reporting more adverse events with regard to their own health status." For the many reproductive and child health outcomes (other than birth defects) examined in the interview, verification on this large sample using objective data sources was not feasible. Consequently, the possibility of differential recall and/or reporting must be considered when interpreting the interview results.

For birth defects, a second source of information not subject to differential reporting was available for a subgroup

Table 5.—Observed and Expected Numbers of Cerebrospinal Malformations Among Children of Vietnam and Non-Vietnam Voterans

		No. of Cerebrospi	nal Malformations		
	Vlet	vew.	Non-Vietnam		
Cerebrospinal Malformation	Observed	Expected*	Observed	Expected*	
Anoncophaly	10	5.0-9.0	7	4.6-8.4	
Spina bifida	. 9	7.2-12.2	2	6 7-11.4	
Hydrocephalus	7	6.1-11 2	3	5 7-10 5	
Total	26	10.3-32.4	12	17.0-30.3	

^{*}Expected numbers are based on total rates from the nationwide Brith Defects Menitering Program (lower estimates) and race-specific rates from the Metropolitan Atlanta Congenital Defects Program (upper estimates). 14,15

of children who were included in the main birth records substudy. This substudy had 80% power to detect a relative risk of 1.4 for total birth defects in the subgroup of children for whom birth records were received. However, the substudy was not large enough to assess cohort differences for specific birth defects. For all races combined, there were no differences between children of Vietnam and non-Vietnam veterans in the prevalence of total, major, minor, or suspected birth defects documented in hospital birth records. This finding supports the explanation of differential reporting in the interview and the conclusion that (at least for birth defects evident at birth) children of Vietnam veterans were not at increased risk.

The reasons for the apparent racial variation in the association between Vietnam service and total birth defects found in the hospital records substudy are unclear. The findings in black offspring may be explained, in part, by the multiple occurrence of polydactyly and supernumerary nipples in two families; both have been suggested to have a strong genetic component, most likely autosomal dominant inheritance. Also, the results are based on small numbers of offspring among black and Hispanic veterans and may be due to sampling variability.

The veterans in the main substudy of

total birth defects were selected from those veterans who completed the physical examination. Detailed analyses of the examination participants relative to the telephone interview participants did not show different characteristics or health histories. 13 In addition, participation in this substudy was high in both cohorts, and, moreover, the two cohorts were similar with respect to various demographic and military covariates." Thus, there is no evidence of selection bias or participation bias in this substudy. Also, the selection of participants in this substudy was independent of interview reports and, consequently, was unlikely to be biased by potential differential reporting among the two veteran cohorts.

One limitation of these studies is the lack of data about the mothers of the children studied. Only limited maternal information (age and gravidity) was uniformly recorded in the hospital birth records. Other maternal behaviors and exposures, such as tobacco, alcohol, and drug use, may be important for a more complete assessment of the outcomes studied. However, given the similarity of sociodemographic and behavioral characteristics between the fathers in the two cohorts, it seems unlikely that maternal characteristics would differ greatly. While we have extensive information on paternal characteristics in

this study, little is known about the association of paternal behaviors or exposures and birth defects in their children.

The CSM substudy was designed to identify possible CSM cases, based on interview reports, and to verify them using birth records. No attempt was made to verify negative responses (ie, children with no reported CSM) because these defects are rare, occurring at a rate of only 1.4 to 2.5 per 1000 total births. 44,45 The total number of verified CSMs in the Vietnam cohort is similar to the number that would be expected in the interview population on the basis of rates of these defects from two US birth defect surveillance systems (Table 5).16,15 In contrast, the number of record-based CSM cases among children of non-Vietnam veterans is much lower than would be expected. This suggests a deficit of ascertained CSMs among children of non-Vietnam veterans rather than an excess among children of Vietnam veterans. These data may reflect true differences between the cohorts or may be due to differences in the opportunity to identify and verify probable CSM cases. There is evidence to suggest the latter explanation, since selection of participants for this substudy was based on fathers' interview reports and, hence, was subject to differential reporting in the two cohorts. Also, there were appreciable differences in participation rates in this substudy: Vietnam veterans were much more likely to participate than were non-Vietnam veterans.

Our results for total birth defects can be compared with three previous epidemiologic studies of Vietnam service and reproductive outcomes of male veterans. The first two, conducted by the Australian government16 and the Centers for Disease Control,4.17 were large case-control studies of children born with congenital malformations. In the first study,[™] defects were identified through hospital and cytogenetic lab-oratories; in the second, 4.17 through a population-based registry. The third study was a cohort follow-up study of air force personnel who conducted the defoliation missions in Vietnam and a comparison cohort of cargo-mission personnel who flew to Vietnam but were not involved in spraying operations." Information about reproductive outcomes in this study was obtained mainly through spouse interviews. Both the Australian study and the Centers for Disease Control study showed no difference in the odds of Vietnam service among case and control fathers for all types of defects combined (ORs = 1.0 and 0.97, respectively). However, even these largescale studies could not adequately address whether Vietnam veterans, or a subgroup of Vietnam veterans, were at increased risk of fathering babies with specific rare malformations. In the air force cohort follow-up study, there was a significant excess of total reported birth defects among children of personnel conducting the defoliation missions. This reported excess prompted the collection of birth and medical records for all children, an effort that is currently ongoing.

In summary, Vietnam veterans reported more adverse reproductive and child health outcomes in the telephone interview than did non-Vietnam veterans. However, results of a substudy of birth defects documented on hospital birth records showed that Vietnam veterans were not at increased risk of fathering children with birth defects evident at birth. These results are consistent with the findings of three epidemiologic studies conducted since 1981 on the relationship of Vietnam service and birth defects in children of male veterans.

This report was prepared by the following: Eugenia E. Calle, PhD; Muin J. Khoury, MD, PhD; Linda A. Moyer, RN; Coleen A. Boyle, PhD; M. Itiduan Joescof, MD, PhD; and Robert J. Delaney.

The VES Reproductive and Child Health Team includes the following: Coleen A. Boyle, PhD; Eugenia E. Calle, PhD; Elizabeth A. Cochran; Robert J. Delancy; Patricia Holmgreen, MS; Martha J. Hunter; M. Riduan Joesoef, MD, PhD, Main J. Khonry, MD, PhD; Terryl J. Moranda, MS; Linda A. Moyer, RN; Mark J. Seally, MPA; and Robert M. Worth, MD, PhD.

Other VES staff members include the following: Charles L. Adams, MPI; Joseph L. Annest, PhD; Drue H. Barrett, MA; Andrew L. Baughman, MPI; Edward A. Brann, MD; Kuren S. Colberg; Pierre Decouffe, ScD; Frank DeStefano, MD, MPI; Owen J. Dovine, MS; Robert C. Diefenbach; Barbara Dougherty; Sandra S. Fenrich; W. Dans Planders, MD, DSc; Anthony S. Fowler; Robert R. Gorman; John M. Karon, PhD; Marcie-jo Kresnow, MS; Heather D. McAdoo; Brenda R. Mitchell; Robin D. Morris, PhD; Thomas R. O'Brien, MD, MPI; Joseph R. Smith; Nancy E. Stroup, PhD; and Scott F. Wetterhall, MD.

Current and former Centers for Disease Control staff members who also made important contributions include the following: John J. Drescher; J. David Erickson, DDS, PhD; Melinda L. Flock, MSPH; John J. Gallagher; Jerry G. Gentry, MSPH; Marllyn L. Kirk; Michael F. Kafrissen, MD; Peter M. Layde, MD, MSc; Maurice E. Leveis, PhD; Peter McCumiskey; Daniel L. McGee, PhD; Daniel A. Pollock, MD; Melvin W. Ralston; Philip H. Rhodes, MS; Richard K. Rudy, MD; Paul D. Simpson, MS; and Domis M. Smith, MD.

Many other individuals and organizations have provided valuable support to the study. Those include the following: the Agent Orange Working Group and its Science Panel; the Congressional Office of Technology Assessment; the Army Reserve Personnel Center; US Army and Joint Services Environmental Support Group, Department of Defense; Equitax Ine; the General Services Administration; the Internal Revenue Service; Love lace Medical Foundation; the National Personnel Records Center, National Archives and Records Administration; the National Center for Health

Statistics; the Institute of Medicine, National Academy of Sciences; Research Triangle Institute, the Social Security Administration; the Veterans Administration; and other staff members of the Centers for Disease Control and outside consultants.

Leaders of Veterans Service Organizations provided important input and support to the study, and participation by Vietnam-era veterans made the study possible.

References

- Centers for Disease Control Vietnam Experionee Study: Health status of Vietnam veterans: I. Psychoeneial characteristics. JAMA 1989;259:2701-2707.
- Centers for Disease Control Victnam Experience Study: Health status of Victnam veteraos: II. Physical health. JAMA 1988;259:2708-2714.
- Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death, Geneva, World Health Organization, 1977, vols 1 and 2.
- Erickson JD, Mulinare J, McClain PW, et al: Vietnam Veterans' Risks for Fathering Babies With Birth Defects. Atlanta, Conters for Disease Control, 1984.
- Centers for Disease Control Vietnam Experience Study: Health Status of Vietnam Veterane: V. Reproductive Outcomes and Child Health. Atlanta, Centers for Disease Control, in press.
- 6. Harrell FE: The LOGIST procedure, in Joyner SP (ed): SUGI Supplemental Library User's Guide, Cary, NC, SAS Institute Inc, 1983, pp 181-202.
- Dixon WJ (ed): BMDP Statistical Software. Berkeley, University of California Press, 1983, pp 330-344.
- Wilcosky TC, Chambless LE: A comparison of direct adjustment and regression adjustment of epidemiologic measures. J Chronic Dis 1985;38:840-856.
- Flanders WD, Rhodes PH: Large sample confidence limits for regression standardized risks, risk ratios, and risk differences. J Chronic Dis 1987;40:697-704.
- Liang KY, Zeger SL: Longitudinal data analysis using generalized linear models. *Biometrika* 1986;73:13-22.
- Centers for Disease Control Vietnam Experience Study: Health Status of Vietnam Veterine: H. Telephone Interview. Atlanta, Centers for Disease Control. in press.
- Control, in press.
 12. McKusick VA: Mandelsan Inheritance in Man:
 Catalogs of Autonomat Dominant, Autonomal Recessive and X-Linkod Phenotypes, ed 7. Baltimore,
 The Johns Hopkins University Press, 1995.
- Centers for Disease Control Vietnam Experience Study: Health Status of Vietnam Veterans:
 Medical Examination. Atlanta, Centers for Disease Control, in press.
- Birth Defects and Genetic Diseases Branch: Birth Defects Monitoring Program: January 1970 to June 1987, data tapes. Atlanta, Centers for Discase Control.
- Rirth Defects and Genetic Diseases Branch: Metropolitan Atlanta. Congenital Defects Program: 1988 to 1985, data tapes. Atlanta, Centers for Disease Control.
- Donovan JW, Adena MA, Rose G, et al: Case-Control Study of Congenital Anomalies and Victnum Service. Canberra, Australia, Government Publishing Services, 1988.
- Publishing Services, 1988.
 17. Erickson JD, Mulinare J, McClain PW, et al: Victnam veterans risks for fathering babies with birth defects. JAMA 1984;252:903-912.
- 18. Lathrop GD, Wolfe WH, Albanese RA, et al: An Epidemiologic Investigation of Health Effects in Air Force Personnet Following Exposure to Herbicides: Baseline Morbidity Study Resulta San Antonio, Tex, United States Air Force School of Aerospace Medicine, 1984.