

Uploaded to VFC Website August 2013

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton Tax ID #27-3820181 CA Incorporation ID #3340400 CA Dept. of Charities ID #: CT-0190794

If Veteran's don't help Veteran's, who will?

We appreciate all donations to continue to provide information and services to Veterans and their families.

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=WGT2M5UTB9A78

Note: VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

THE UNITED STATES AIR FORCE INSTALLATION RESTORATION PROGRAM

FINAL FIRST FIVE-YEAR REVIEW OF RECORD OF DECISION FOR MARBO ANNEX OPERABLE UNIT

ANDERSEN AIR FORCE BASE, GUAM

July 2004

THE UNITED STATES AIR FORCE INSTALLATION RESTORATION PROGRAM

FINAL FIRST FIVE-YEAR REVIEW OF RECORD OF DECISION FOR MARBO ANNEX OPERABLE UNIT

ANDERSEN AIR FORCE BASE, GUAM

July 2004

1 REPORT DOCUME	Form Approved OMB No 0704-0188		
gathering and maintaining the data needed, a of information, including suggestions for red	nd completing and reviewing the collection of ducing this burden to Washington Headquart	Ir per response, including the time for reviewing information. Send comments regarding this burd ers Services, Directorate for Information Operatio ork Reduction Project (0704-0188), Washington, D	en estimate or any other aspect of this collection ons and Reports, 1215 Jefferson Davis Highway,
1. AGENCY USE ONLY (Leave blai	-	3. REPORT TYPE AND DATES CO	VERED
	July 2004	First Five-Year Review of	·
		02 March 1989 to 02 Marc	ch 2004
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
	of Record of Decision for M	IARBO Annex Operable	F-41624-03-D-8052-002
Unit,			Task Order 02
Andersen Air Force Bas	e, Guam		
6. AUTHOR(S)			
	aj Ghofrani, P.E., and Jeff N	Morrell	
(EA Engineering, Sciend	ce, & Technology, Inc.)		
7. PERFORMING ORGANIZATION			8. PERFORMING ORGANIZATION
EA Engineering, Sciend			REPORT NUMBER
• •	en AFB, Yigo, Guam 96929	0-4355	N/A
1.0. Dox +355, macrs	ch 111 D, 1150, Ouum 70727	-355	
9. SPONSORING/MONITORING AG	SENCY NAME(S) AND ADDRESS(ES	6)	10. SPONSORING/MONITORING
Air Force Center for En	wironmental Excellence		AGENCY REPORT NUMBER
HQ AFCEE/ERD			N/A
3207 North Road, Bldg.			
Brooks Air Force Base,	Texas 78235-5363		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILIT	STATEMENT		12b. DISTRIBUTION CODE
Approved for public rel			
13. ABSTRACT (Maximum 200 wo	,		
	<i>v v</i>	<i>D)</i> presents the results of the in	
	-	x Operable Unit. This docum	-
	0	1998 to determine the current	· · · · · ·
U 1	edies in protecting the hume	an health and the environment	
14. SUBJECT TERMS			15. NUMBER OF PAGES
- Andersen AFB		uman Health Risk Assessment	
	• •	cological Risk Assessment	
- Public Involvement - Excavation and Offsite disposal			
- Record of Decision	-Ins	titutional Control	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL
NSN 7540-01-280-5500	Cherussyleu	Cherassylva	Standard Form 298 (Rev 2-89) Prescribed by ANSI Std 239-18
USAF-223-R			298-102

This page is intentionally left blank

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION IX 75 Hawthorne Street San Francisco, CA 94105

July 6, 2004

Gregg Ikehara 36 CES/CEVR Unit 14007 APO AP 96543-4007

Re: EPA Concurrence with the Air Force's First Five-Year Review of the Record of Decision for MARBO Annex Operable Unit at Andersen Air Force Base.

Dear Mr. Ikehara,

EPA has reviewed the First Five-Year Review of the Record of Decision for MARBO Annex Operable Unit at Andersen Air Force Base. This Five-Year Review addresses completed and ongoing remedial actions taken pursuant to the Record of Decision ROD for the MARBO Annex signed in July, 1998. The remedies specified in the ROD included soil removal actions at three sites, a soil cover and institutional controls at one site, and monitored natural attenuation, wellhead treatment and institutional controls for the groundwater.

EPA agrees that the soil remedial actions at the MARBO Laundry and Landfill 29 have been successfully completed and that these sites are suitable for unrestricted access. The remedial action at Waste Pile 6 is still underway because of the discovery of additional contamination. This remedial action of soil removal should be completed in the summer of 2004, and the site should then be suitable for unrestricted access. Access to the site is currently restricted during the remedial process.

The soil cover for Waste Pile 7 was properly installed in the spring of 2000. However, as the report notes, and as EPA observed during the field inspection in February, 2004, a wild pig has wallowed at the site. While the wallow did not breach the cover and has been successfully repaired, such activities do pose an increased risk for a breaching of the cover in the future. As suggested in the Five-Year Review, the Operations and Maintenance (O&M) plan for this site should be amended to include quarterly monitoring of the cover integrity, with repairs as necessary. Also as suggested in the Five-Year review, warning notices should be posted to implement the institutional controls specified in the ROD.

EPA is not convinced that monitored natural attenuation, the groundwater remedy specified in the ROD, is remediating the site in a timely manner. EPA agrees with the Air Force that human health is currently protected because no one is exposed to the water. We also agree that the provisions in the ROD calling for the Air Force to provide treatment if water is produced from

the contaminated portion of the aquifer will protect human health in the future. However, we require additional proof that the current remedy will actually remediate the aquifer to drinking water quality within the 45 year time frame stated in the ROD. Recognizing the hydrogeologic complexities of a karst aquifer with a fresh water lens overlying basal salt water, we agree with the Air Force's recommendations to acquire additional data through new borings and monitoring wells. We will reevaluate the current remedy during the next Five Year Review, and will require a ROD Amendment if monitored natural attenuation is not proven to be effective. The ROD Amendment would specify either an active remediation system or a technical impracticability (TI) waiver.

Please submit to EPA a workplan to further investigate the groundwater at MARBO by 11/30/2004. Please also submit the modified O&M Plan for Waste Pile 7 by 9/30/2004. Finally, please submit copies of the written implementation (Base Operating Plan, deed restrictions, etc.) of the institutional controls for Waste Pile 7 and the groundwater by 9/30/2004.

Please call Mark Ripperda of my staff if you have any questions regarding the Five-Year Review

Sincerely,

gh Chent for

Kathleen Johnson, Chief Federal Facility and Site Cleanup Branch Superfund Division

cc Mike Cruz. GEPA

TABLE OF CONTENTS

		Page
LIST	OF TAI	BLESvi
LIST	OF FIG	URES vii
LIST	OF PHO	DTOS ix
LIST	OF AC	RONYMS AND ABBREVIATIONSx
5-YEA	AR REV	/IEW SUMMARY FORM
EXEC	CUTIVE	E SUMMARYES-1
1.0	INTR	ODUCTION
	1.1	The Purpose of the Five-Year Review1-1
	1.2	Overview of the Five-Year Review Process
	1.3	Site Location1-2
	1.4	Site Physical Characteristics
	1.5	Land and Resource Use
	1.6	Andersen AFB Operable Units 1-4
		1.6.1 Sites Covered under the MARBO OU1-6
	1.7	Site Chronology1-7
	1.8	Public Involvement at Andersen AFB
		1.8.1 Community Relations
		1.8.2 Public Notices/Public Meetings
		1.8.3 Restoration Advisory Board
		1.8.4 Interviews
	1.9	Organization of Report1-11
	1.10	Next Five-Year Review
2.0	MAR	BO ANNEX SITES WITH NO REMEDIAL ACTION NEEDED 2-1
	2.1	First Five-Year Review of IRP Site 23/Waste Pile 5
		 2.1.1 IRP Site 23/Waste Pile 5 Background
		2.1.3 Protectiveness Statement for IRP Site 23/Waste Pile 5
		2.1.5Flotectiveness statement for IKF Site 25/ waster file 52.1.4Next Review of IRP Site 23/Waste Pile 5
	2.2	First Five-Year Review of IRP Site 37/War Dog Borrow Pit

			IRP Site 37/War Dog Borrow Pit Background	. 2-2
		2.2.2	Technical Assessment of Remedial Action at IRP Site 37/War Dog	
			Borrow Pit	
		2.2.3	Protectiveness Statement for IRP Site 37/War Dog Borrow Pit	
		2.2.4	Next Review of IRP Site 37/War Dog Borrow Pit	. 2-3
3.0	MARE	BO ANN	NEX SITES WITH COMPLETED REMEDIAL ACTIONS	. 3-1
	3.1	First F	ive-Year Review of IRP Site 22/Waste Pile 6	. 3-1
		3.1.1	IRP Site 22/Waste Pile 6 Background	. 3-1
		3.1.2	History of Contamination at IRP Site 22/Waste Pile 6	. 3-1
		3.1.3	Initial Response at IRP Site 22/Waste Pile 6	. 3-2
		3.1.4	Basis for Taking Action at IRP Site 22/Waste Pile 6	
		3.1.5	Remedial Action at IRP Site 22/Waste Pile 6	
		3.1.6	Remedial Action Implementation at IRP Site 22/Waste Pile 6	
		3.1.7	Document and Data Review for IRP Site 22/Waste Pile 6	
		3.1.8	Site Inspection of IRP Site 22/Waste Pile 6	. 3-4
		3.1.9	Technical Assessment of Remedial Action at	
			IRP Site 22/Waste Pile 6	
			Technical Assessment Summary of IRP Site 22/Waste Pile 6	. 3-6
		3.1.11	Issues, Recommendations, and Follow-up Actions for	
			IRP Site 22/Waste Pile 6	
			Protectiveness Statement for IRP Site 22/Waste Pile 6	
		3.1.13	Next Review of IRP Site 22/Waste Pile 6	. 3-6
	3.2	First F	ive-Year Review of IRP Site 24/Landfill 29	. 3-6
		3.2.1	IRP Site 24/Landfill 29 Background	. 3-6
		3.2.2	History of Contamination at IRP Site 24/Landfill 29	. 3-7
		3.2.3	Initial Response at IRP Site 24/Landfill 29	. 3-8
		3.2.4	Basis for Taking Action at IRP Site 24/Landfill 29	
		3.2.5	Remedial Action at IRP Site 24/Landfill 29	. 3-8
		3.2.6	Remedial Action Implementation at IRP Site 24/Landfill 29	. 3-9
		3.2.7	Document and Data Review for IRP Site 24/Landfill 29	. 3-9
		3.2.8	Site Inspection of IRP Site 24/Landfill 29	. 3-9
		3.2.9	Technical Assessment of Remedial Action at IRP Site 24/Landfill 29	. 3-9
		3.2.10	Technical Assessment Summary of IRP Site 24/Landfill 29	3-10
		3.2.11	Issues, Recommendations, and Follow-up Actions for	
			IRP Site 24/Landfill 29	
			Protectiveness Statement for IRP Site 24/Landfill 29	
		3.2.13	Next Review of IRP Site 24/Landfill 29	3-11
	3.3	First F	ive-Year Review of IRP Site 38/MARBO Laundry	3-11

		3.3.10 3.3.11 3.3.12	IRP Site 38/MARBO Laundry Background History of Contamination at IRP Site 38/MARBO Laundry Initial Response at IRP Site 38/MARBO Laundry Basis for Taking Action at IRP Site 38/MARBO Laundry Remedial Action at IRP Site 38/MARBO Laundry Remedial Action Implementation at IRP Site 38/MARBO Laundry Document and Data Review for IRP Site 38/MARBO Laundry Site Inspection of IRP Site 38/MARBO Laundry Technical Assessment of Remedial Action at IRP Site 38/MARBO Laundry Technical Assessment Summary of IRP Site 38/MARBO Laundry Issues, Recommendations, and Follow-up Actions for IRP Site 38/MARBO Laundry Protectiveness Statement for IRP Site 38/MARBO Laundry Next Review of IRP Site 38/MARBO Laundry	3-11 3-12 3-12 3-12 3-13 3-13 3-13 3-13
4.0	MARE	BO ANN	NEX SITES WITH OPERATING REMEDIAL ACTIONS	4-1
	4.1	First F	ive-Year Review of Site 20/Waste Pile 7	4-1
		4.1.114.1.12	Site 20/Waste Pile 7 Background History of Contamination at Site 20/Waste Pile 7 Initial Response Basis for Taking Action at Site 20/Waste Pile 7 Remedial Action at Site 20/Waste Pile 7 Remedial Action Implementation at Site 20/Waste Pile 7 Document and Data Review for Site 20/Waste Pile 7 Site Inspection of Site 20/Waste Pile 7 Technical Assessment of Remedial Action at Site 20/Waste Pile 7 Technical Assessment Summary of Site 20/Waste Pile 7 Issues, Recommendations, and Follow-up Actions for Site 20/Waste Pile 7 Protectiveness Statement for Site 20/Waste Pile 7 Next Review of Site 20/Waste Pile 7	4-1 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-4 4-4 4-4
5.0			ES IN MARBO ANNEX SCHEDULED FOR NVESTIGATION UNDER THE BASEWIDE OPERABLE UNIT	5-1
	5.1	IRP Si	te 52 (Formerly AOC 54) Operational Support Buildings	5-1
		5.1.1 5.1.2 5.1.3	IRP Site 52/Operational Support Buildings Background History of Contamination at IRP Site 52/Operational Support Buildings Upcoming Field Investigation at IRP Site 52/Operational Support Buildings	5-1

	5.2	IRP S	ite 53 (Fo	rmerly.	AOC 55) Operational Support Buildings
		5.2.1 5.2.2	History	of Cont	berational Support Buildings Background
		5.2.3	Upcomi	ng Field	ngs
			Support	Buildir	ngs
	5.3	IRP S	ite 54 (Fo	rmerly .	AOC 56) Operational Support Buildings5-3
		5.3.1 5.3.2		-	erational Support Buildings Background
		5.5.2			pport Buildings
		5.3.3	Upcomi	ng Field	d Investigation at IRP Site 54/Operational ngs
6.0	MAR	BO AN	NEX GRO	JUND	WATER
	6.1	First	Five-Year	Review	w of MARBO ANNEX Groundwater
		6.1.1	MARBO) Annez	x Groundwater Background6-1
		(6.1.1.1	Phase	II, Stage 1 Activities
		(6.1.1.2		II, Stage 2 Activities
			6.1.1.3		Term Groundwater Monitoring Program
			6.1.	1.3.1	Post-ROD LTGM Program
				1.3.2	1998 Technical Memorandum
				1.3.3	2003 Technical Memorandum
		(6.1.1.4	Auxili	ary Groundwater Data
			6.1.	1.4.1	Pre-LTGM Program Data for MW-1 and MW-2 6-5
			6.1.	1.4.2	Rock Boring EX-6
			6.1.	1.4.3	GWA Production Wells
			6.1.	1.4.4	GEPA Harmon Monitoring Wells
			6.1.	1.4.5	Tumon Bay Springs
			6.1.	1.4.6	The Tumon-Maui Well
		(6.1.1.5		Survey and Re-Survey of MARBO Annex Monitoring
		6.1.2	History		camination of the MARBO Annex Groundwater
		(6.1.2.1		e and Extent of TCE and PCE6-9

Page

	6.1.2.1.1 N	IARBO Annex 6-9
	6.1.2.1.2 H	armon Wells 6-12
	6.1.2.1.3 T	umon Bay Springs 6-13
	6.1.2.1.4 T	he Tumon-Maui Well 6-13
	6.1.2.2 Fate and	Transport of TCE and PCE 6-13
		onceptual Site Model
		roundwater Flow 6-14
	6.1.2.2.3 D	echlorination Processes
	6.1.3 Initial Response	
		Action at MARBO Annex Groundwater
		for MARBO Annex Groundwater 6-15
	• 1	ntation at MARBO Annex Groundwater
		ta Review for MARBO Annex Groundwater
	-	the MARBO Annex Groundwater 6-16
		nent of Remedial Action for the MARBO Annex
		nent Summary of the MARBO Annex
		idations, and Follow-up Actions for the
		broundwater 6-17
		tement for the MARBO Annex Groundwater
	6.1.13 Next Review of th	e MARBO Annex Groundwater 6-18
7.0 REFEREN	NCES	
Appendix A	Andersen Air Force Base	Administrative Record Index
Appendix B	First Five-Year Interviews	s For MARBO Record of Decision
Appendix C	Historical Groundwater M Monitoring (LTGM) Prog	Ionitoring Results for Long-Term Groundwater ram at MARBO Annex
Appendix D	Historical Groundwater A MARBO Annex	nalytical Results for Sampling Points Downgradient of
Appendix E	Long-Term Groundwater	Monitoring Program Technical Memoranda
Appendix F	Cross Sectional Information	on and Contaminant Migration Pathways
Appendix G	Public Comments on the I	First Five-Year Review

LIST OF TABLES

Table

- 1-1 Operable Unit Designations for Andersen Air Force Base, Guam
- 1-2 Summary Status of Sites Covered Under First-Five Year Review of MARBO OU.
- 5-1 IRP Site 52 (Former AOC 54) Soil Sample Results
- 5-2 IRP Site 53 (Former AOC 55) Soil Sample Results
- 5-3 IRP Site 54 (Former AOC 56) Soil Sample Results
- 6-1 Historical Reduction of Groundwater Monitoring and Production Wells for MARBO Annex, Andersen AFB, Guam
- 6-2 MARBO Annex Monitoring Well Survey Coordinates and Elevations

LIST OF FIGURES

Figure

- 1-1 Location Map of Guam
- 1-2 Location Map of Andersen Air Force Base on Guam
- 1-3 Volcanic Structure Contours
- 1-4 Installation Restoration Program Sites in MARBO Annex Operable Unit
- 1-5 MARBO Annex Operable Unit Land Use Disposition Since the 1998 Record of Decision and Proposed Areas for Excess Land
- 1-6 Location Map of Andersen Air Force Base Operable Units on Guam
- 2-1 Features of Site 23/Waste Pile 5, MARBO Annex, Andersen Air Force Base, Guam
- 2-2 Features of Site 37/War Dog Borrow Pit, MARBO Annex, Andersen Air Force Base, Guam
- 3-1 Before and After Remedial Action, IRP Site 22/Waste Pile 6, MARBO Annex, Andersen AFB, Guam
- 3-2 Before and After Remedial Action, IRP Site 24/Landfill 29, MARBO Annex, Andersen AFB, Guam
- 3-3 Before and After Remedial Action, IRP Site 38/MARBO Laundry, MARBO Annex, Andersen AFB, Guam
- 4-1 Before and After Remedial Action, IRP Site 20/Waste Pile 7, MARBO Annex, Andersen AFB, Guam
- 5-1 IRP Site 52 (Former AOC-54) Soil Sample Locations and Results at MARBO Annex
- 5-2 IRP Site 52 (Former AOC-54) Proposed Surface and Subsurface Investigation at MARBO Annex
- 5-3 IRP Site 53 (Former AOC-55) Soil Sample Locations and Results at MARBO Annex
- 5-4 IRP Site 53 (Former AOC-55) Proposed Surface and Subsurface Soil Sample Locations at MARBO Annex
- 5-5 IRP Site 54 (Former AOC-56) Soil Sample Locations and Results at MARBO Annex
- 5-6 IRP Site 54 (Former AOC-56) Proposed Surface and Subsurface Soil Sample Locations at MARBO Annex
- 6-1 Historical Reduction of Groundwater Monitoring and Production Wells for MARBO Annex, Andersen AFB, Guam
- 6-2 Theoretical Groundwater Flow Direction from MARBO Annex to Tumon Bay
- 6-3 Location of Monitoring Wells HMW-1, HMW-2 and HMW-3
- 6-4 Groundwater Sampling Points in Tumon Bay and Surrounding Area
- 6-5 Fall 1998 Potentiometric Surface, MARBO Annex, Andersen AFB, Guam
- 6-6 Changes in Survey Elevations for Groundwater Monitoring Wells in MARBO Annex, Andersen AFB, Guam
- 6-7 Fall 2003 Potentiometric Surface for MARBO Annex, Andersen AFB, Guam
- 6-8 Historical Groundwater Analytical Results for MARBO Annex, Andersen AFB, Guam
- 6-9 Profile of Groundwater Monitoring Wells near TCE and PCE Impacted Groundwater at MARBO Annex, Andersen AFB, Guam
- 6-10 Historical Trichloroethene Analytical Results, MARBO Annex, Andersen AFB, Guam

LIST OF FIGURES (continued)

Figure

- 6-11 Historical Tetrachloroethene Analytical Results in IRP-14, IRP-29, and IRP-31, MARBO Annex, Andersen AFB, Guam
- 6-12 Analytical Results for Monitoring Wells HMW-1, HMW-2, and HMW-3
- 6-13 Profile of Auxiliary Groundwater Monitoring Points Downgradient from MARBO Annex, Andersen AFB, Guam
- 6-14 Location of Fault at MARBO Annex, Andersen AFB, Guam.

LIST OF PHOTOS

Photo

- 3-1 Area 2 at Waste Pile 6 After Completion of Remedial Action During February 2004 Site Inspection.
- 3-2 Area 4 at Waste Pile 6 After Completion of Remedial Action During February 2004 Site Inspection.
- 3-3 Landfill 29 After Completion of Remedial Action During February 2004 Site Inspection.
- 3-4 South Side of MARBO Laundry After Completion of Remedial Action During February 2004 Site Inspection.
- 3-5 North Side of MARBO Laundry After Completion of Remedial Action During February 2004 Site Inspection.
- 3-6 Remnant of Former Transformer at MARBO Laundry After Completion of Remedial Action During February 2004 Site Inspection.
- 4-1 Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.
- 4-2 Waste Pile 7 Drainage Area After Completion of Remedial Action During February 2004 Site Inspection.
- 4-3 Soil Cover Damaged by Pig Wallow at Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.
- 4-4 Small Tree Growing on Soil Cover at Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.
- 4-6 Sign of Truck Traffic at Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection
- 4-6 Waste Pile 7 Entrance Sign During February 2004 Site Inspection.

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

AAFES	Army and Air Force Exchange Service
AFB	Air Force Base
AFI	Air Force Instruction
AOC	Area of Concern
AOI	Area of Interest
APEC	Allied Pacific Environmental Consulting
ARAR	Applicable or Relevant and Appropriate Requirement
ASHA	Andy South Housing Area
AST	aboveground storage tank
bcy	bank cubic yards
BEE	Bioenvironmental Engineering
bgs	below ground surface
BTV	Background Threshold Value
ca CERCLA CERCLIS COC COPC CRP CU CWA	cancer Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Comprehensive Environmental Response, Compensation, and Liability Information System Contaminant of Concern Contaminant of Potential Concern Community Relations Plan Consolidation Unit Clean Water Act
DAWR	Department of Aquatic and Wildlife Resources
DCE	dichloroethene
DO	Dissolved Oxygen
EA	EA Engineering, Science, and Technology, Inc.
EBS	Environmental Baseline Survey
EE/CA	Engineering Evaluation/Cost Analysis
EPC	Exposure Point Concentration
ERA	Ecological Risk Assessment
FFA	Federal Facility Agreement
GC/MS	Gas Chromatography/Mass Spectrometer
GEPA	Guam Environmental Protection Agency
GovGuam	Government of Guam
GPA	Guam Power Authority
gpm	gallons per minute
GPZ	Groundwater Protection Zone
GWA	Guam Waterworks Authority
GWMP	Groundwater Monitoring Plan

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

HHRA	Human Health Risk Assessment
HI	Hazard Index
IC	Institutional Control
IRP	Installation Restoration Program
lcy	loose cubic yard
LTGM	Long-Term Groundwater Monitoring
LTM	Long-Term Monitoring
MARBO	Marianas Bonins Command
MCL	Maximum Contaminant Level
mgd	million gallons per day
mg/kg	milligrams per kilogram
µg/L	Micrograms Per Liter
MLLW	mean lowest level water
msl	mean sea level
nc	non-cancer
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
ND	non-detect
NFA	No Further Action
NGL	Northern Guam Lens
NPL	National Priorities List
OEW	Ordnance and Explosives Waste
O&M	Operation and Maintenance
OU	Operable Unit
OSWER	Office of Solid Waste and Emergency Response
PA	Preliminary Assessment
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PCE	tetrachloroethene
PDB	passive diffusion bag
PRG	Preliminary Remediation Goal
PUAG	Public Utility Agency of Guam
RA	Remedial Action
RAB	Restoration Advisory Board
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RGO	Remedial Goal Objective
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RPM	Remedial Project Manager
RVR	Remedial Verification Report

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

SAP	Sampling and Analysis Plan
SARA	Superfund Amendments and Reauthorization Act of 1986
SDWA	Safe Drinking Water Act
SVOC	semivolatile organic compound
TBC	To Be Considered
TCE	trichloroethene
TI	technical infeasibility
TSCA	Toxic Substance Control Act
TSP	triple superphosphate
USAF	United States Air Force
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
USN	United States Navy
VOC	volatile organic compound

	Five-Year Revie	ew Summary Form
	SITE IDEN	NTIFICATION
Site name (from Waste La	AN): MARBO Annex Opera	ıble Unit
EPA ID (from Waste LAN	V): CERCLIS identification	number of GU6571999519
Region: Pacific Ocean	State: Guam	City/County: Yigo
	SITE	STATUS
NPL status: X Final	Deleted Othe	er (specify)
Remediation status (choo	ose all that apply): Under Co	Construction X Operating X Complete
Multiple OUs?* Yes X	No Construction comple	etion date: <u>07</u> / <u>17</u> / <u>1998</u>
Has site been put into reu	ise? Yes X No	
	REVIE	W STATUS
Lead agency: EPA	State Tribe X Other Fe	ederal Agency <u>United States Air Force</u>
Author name: Joel Lazzer	ri, P.G., Toraj Ghofrani, P.E.,	, and Jeff Morrell
Author title: Program Ma	nager	Author affiliation: USAF Contractor
Review period: ** <u>02</u> /	11/2004 to 0	<u>)4 / 11 / 2004</u>
Date(s) of site inspection:	<u>02</u> / <u>19</u> / <u>2004</u>	
Type of review:	Post-SARA Non-NPL Remedial Action Site Regional Discretion	Pre-SARA NPL-Removal only e X NPL State/Tribe-lead
Review number:	X1 (first) 2	e (second) 3 (third) other (specify)
Triggering Action: Actual RA Onsite Constru Construction completion X Other (specify)	Pr	Actual RA Start at OU # Previous Five-Year Review Report e cleanup of IRP Site 20/Waste Pile 07
Triggering action date (fi	rom WasteLAN):0	<u>3/02/_1999</u>
		3/02/2004

** [Review period should correspond to the actual start an end dates of the Five-Year Review in WasteLAN.]

OSWER No 9355.7-03B-P Five-Year Review Summary Form, Continued

Issues, Recommendations and Follow-up Actions, and Protectiveness Statement(s):

Based on human health and ecological risk assessments, there were no COCs associated with IRP Site 23/Waste Pile 5 and IRP Site 37/War Dog Borrow Pit and these sites were recommended for *No Further Action* in accordance with the 17 July 1998 ROD for MARBO OU. These sites should not be included in the future five-year reviews of MARBO OU.

Based on human health and ecological risk assessments, there were COCs associated with IRP Site 22/Waste Pile 6, IRP Site 24/Landfill 29, and IRP Site 38/MARBO Laundry. For these sites, *Soil Removal* was selected as the Remedial Action (RA), in accordance with 17 July 1998 ROD for MARBO OU. The RA implementation is completed at IRP Site 22/Waste Pile 6, IRP Site 24/Landfill 29, and IRP Site 38/MARBO and RA is protective of human health and the environment. These sites also should not be included in the future five-year reviews of MARBO OU.

Based on human health and ecological risk assessments, there were COCs associated with IRP Site 20/Waste Pile 7 and *Soil Cover* was selected as the RA, in accordance with 17 July 1998 ROD for MARBO OU. The RA implementation is completed at IRP Site 20/Waste Pile 7, but the RA is not functioning as designed. Pig wallowing and the growth of small trees have damaged a small area of the *Soil Cover* and there are truck track marks on the *Soil Cover*. If these effects continue the RA will may not be protective of human health and the environment. Quarterly Operation and Maintenance (O&M) and event driven O&M are recommended, in addition to the posting of warning signs around the periphery of the site to restrict any activities that may impact the structural integrity of the *Soil Cover*. The milestone is targeted for 01 October 2004. IRP Site 20/Waste Pile 7 should be included in the future five-year reviews of MARBO OU.

Based on human health and ecological risk assessments, the MARBO groundwater is impacted by TCE and PCE. In accordance with 17 July 1998 ROD for MARBO OU, *Natural Attenuation* was selected as RA in addition to three institutional controls (ICs): 1) *Land Use Restrictions*; 2) *Groundwater Monitoring*; and 3) *Existing Wellhead Treatment*.

Natural Attenuation has always been implemented and ICs were implemented in early 1998, with the exception of wellhead treatment. Wellhead treatment was discontinued shortly after its implementation, in early 1998, because it was no longer required to meet USAF water demands and the stripping tower that was being used to treat the water was fouling up too often to make operations cost effective. The RA, however, is functioning as intended and it is protective of human health and the environment. Overall the natural attenuation process is operating as intended at MARBO, though the process may not be proceeding at the rate estimated in the MARBO ROD. The overall timeframe for the remediation to go to completion, which was estimated at approximately 45 years, may take longer.

Several issues remain associated with RA for MARBO groundwater, including:

- Freshwater, transition and marine zones need better definition,
- PCE and TCE source(s) in MARBO Annex have not been identified,
- Fate and transport of TCE and PCE within MARBO at depth are poorly understood, and
- Tumon-Maui well is currently not being used, and as such no benefits are derived from either use of the water or the remedial effects.
- Natural attenuation may not be remediating the site in timely manner. If, during the next five-year review period, natural attenuation does not appear to be effective a ROD amendment may be required to either specify an active remediation or a technical infeasibility (TI) waiver.

In response to above listed issues, the following recommendations are made:

- Deep soil borings should be drilled at IRP Sites 52 and 54 to look for potential source areas,
- Additional open boreholes, penetrating the entire freshwater lens, should be considered to better understand hydrogeology and fate and transport of PCE and TCE at depth,
- Dye trace study, relevant to IRP-31 and IRP-29, should be considered, and
- Tumon-Maui well long-term use should be evaluated.

The milestone for most issues listed above is targeted for 31 December 2005 and later for items requiring additional funding (drilling). MARBO groundwater should be included in the future five-year reviews of MARBO OU.

Notes:

-Summarize issues (see Chapter 3).

-Summarize recommendations and follow-up actions (see chapter 3)

-Include individual operable unit protectiveness statements. For sites that have reached construction completion and have more than on OU, include an additional and comprehensive protectiveness statement covering all of the remedies at the site (see Chapter4).

Other Comments: None. *Make any other comments here.*

EXECUTIVE SUMMARY

This is the first five-year review to evaluate if remedies that were implemented for the Record of Decision (ROD) for the Marianas Bonins (MARBO) Command Annex Operable Unit (OU) are still protective of human health and the environment. The five-year review has been completed in accordance with the United States Environmental Protection Agency (USEPA) Comprehensive Five-Year Review Guidance, June 2001, USEPA 540-R-01-007, and Office of Solid Waste and Emergency Response (OSWER) No. 9355.77-03B-P. To complete this five-year review of the July 1998 Final MARBO OU ROD, all relevant activities that have been performed and data and documents that have been generated since the implementation of remedial action have been reviewed. Recommendations are provided to close any data gaps and improve the effectiveness of the remedial action in protecting human health and the environment.

A No Further Action ROD was approved for the Harmon OU. As the ROD resulted in site conditions that allowed for unlimited use and unrestricted exposure, no five-year review is required. Remedial Investigation (RI) and Remedial Action (RA) activities are ongoing at the Northwest Field and the Main Base OUs, and there are no RODs to discuss. The Urunao ROD has just been finalized and no five-year review is required. All RA activities at MARBO Annex, under the MARBO OU, have been completed. In addition, three Areas of Concern (AOCs), located in MARBO Annex (AOC 54, AOC 55, and AOC 56), have been added as Installation Restoration Program (IRP) Site 52, IRP Site 53, and IRP Site 54, respectively and will be managed in the Basewide OU. The USAF is programming funding for IRP Site 52, IRP Site 53, and IRP Site 54 engineering evaluations/cost analyses (EE/CAs) that will be conducted in 2004 or 2005. The EE/CAs will characterize the extent of potential Contaminants of Concern (COCs), and if there are unacceptable risks posed to human health or the environment the EE/CAs will provide recommendations for RAs based on risk-based cleanup goals. The RA should be completed in the next five years. Until the EE/CAs and RAs are completed warning signs should be posted around IRP Site 52, IRP Site 53, and IRP Site 54. The next five-year review should include verification that the EE/CAs and RAs were fully implemented and that they meet protectiveness standards.

This five-year review evaluates the MARBO OU ROD and related actions, and focuses on the MARBO OU and the new IRP Sites in the Basewide OU. The MARBO OU includes IRP Site 20/Waste Pile 7, IRP Site 22/Waste Pile 6, IRP Site 23/Waste Pile 5, IRP Site 24/Landfill 29, IRP Site 37/War Dog Borrow Pit, IRP Site 38/MARBO Laundry, and the groundwater beneath them.

According to MARBO OU ROD, there were no COCs at IRP Site 23/Waste Pile 5 or IRP Site 37/War Dog Borrow Pit that posed unacceptable risks to human health or the environment; therefore, a *No Further Action* (NFA) was recommended for these sites. A review of available documents and a site inspection confirm that the NFA is still functioning as intended and is still protective of human health and the environment. The nature of the source still remains unknown. Unless a new source of contamination is found at the in the interim, the site should not be included in future five-year reviews.

The RAs for IRP Site 22/Waste Pile 6, IRP Site 24/Landfill 29, and IRP Site 38/MARBO Laundry involved removal of all soils (*Soil Removal*) to levels below Remedial Action Objectives (RAOs). These sites are classified as *Completed RAs*. After reviewing available documents and conducting site visits, the *Soil Removals* are still functioning as intended and are still protective of human health and the environment. Unless a new source of contamination is found at the site in the interim, the site should not be included in future five-year reviews.

The RA for IRP Site 20/Waste Pile 7 is considered an *Operating RA*, as the selected remedy (Soil Cover) has been initiated, but must be maintained in perpetuity to be protective of human health and the environment. After reviewing available documents and performing a site inspection it was determined that the Soil Cover is functioning as intended by the ROD, and is protective of human health and the environment. However, several concerns were identified, that should be addressed to assure that the selected remedy is maintained optimally. Pig wallowing activity has damaged a small area of the Soil Cover and several small trees have been observed growing on the Soil Cover. If these activities are allowed to continue unchecked the structural integrity of the Soil Cover may be compromised. A regular quarterly Operation and Maintenance (O&M) program is recommended to verify and maintain the integrity of the Soil Cover. As part of the O&M program "event driven" inspections are recommended to check the integrity of the Soil Cover after natural disasters, such as typhoons or earthquakes. Furthermore, to prevent intrusive activities (such as driving trucks, trenching, or excavation) that would damage the Soil Cover, signs should be posted around the periphery of site. The next five-year review should include verification that signs are properly posted and that the O&M program is being implemented to meet protectiveness standards.

The selected alternative for the MARBO Annex Groundwater consisted of *Natural Attenuation with Institutional Controls*. This alternative included natural attenuation to achieve the remediation goal of decreasing trichloroethene (TCE) and tetrachloroethene (PCE) concentrations in the aquifer to levels below Maximum Contaminant Level (MCLs). The natural attenuation of the TCE and PCE would be due primarily to the physical processes of dispersion and dilution, and not to dechlorination processes. The timeframe to achieve cleanup goals (MCLs) was estimated at 10 to 40 years, assuming a continued source of PCE and TCE did not exist. Supplemental to the natural attenuation were three institutional controls (ICs), that included: 1) *Land Use Restrictions* to monitor and restrict groundwater access in areas impacted by TCE/PCE); 2) *Groundwater Monitoring* (to monitor TCE/PCE and confirm the stability of TCE/PCE plumes in the MARBO Annex); and 3) *Existing Wellhead Treatment* (to ensure public health risk is within acceptable range at existing USAF production wells).

The selected alternative is classified as an *Operating Remedial Action*, as the RA has been implemented but residual COCs have been left in place at concentrations that do not allow for unrestricted use of or unlimited access to the land. The *Operating RA* may require many more years before cleanup levels can be fully achieved.

Since approval of the MARBO OU ROD, significant new data has been collected in both the MARBO Annex and down gradient locations in Harmon and Tumon. In addition a re-survey of monitoring wells indicated that several well elevations used to generate potentiometric surface maps were in error. A newly generated groundwater potentiometric surface map for the

MARBO Annex, based on the re-surveyed elevations and the Fall 2003 groundwater elevations, reveal a much "flatter" groundwater gradient in the vicinity of IRP-31 and IRP-12 than previous believed. This new information significantly changes the potential relationship between the PCE and TCE observed at the MARBO Laundry wells (IRP-14 and IRP-29) and those observed in IRP-31.

The ICs specified in the MARBO OU ROD were fully implemented with the exception of wellhead treatment for MW-2. MW-2 was taken off production in early 1998 as it was no longer required to meet USAF water demands and the stripping tower that was being used to treat the water was fouling up too often to make operations cost effective. The remedy, however, is functioning as intended, in that it is still protective of human health and the environment. Overall the natural attenuation process is operating as intended at MARBO, despite ambiguous TCE trends in IRP-31, though the process may not be proceeding at the rate estimated in the MARBO ROD. The overall timeframe for the remediation to go to completion, which was estimated at approximately 45 years, may take longer. The primary limitation to these estimates includes the uncertainty of the total TCE/PCE mass that may exist in the subsurface. As the source(s) of the PCE and TCE have never been positively identified the estimated cleanup times should take this in to consideration, with the understanding that actual cleanup times may exceed the high end of the range (45 years). The EE/CAs and RAs that are programmed for the three new IRP sites, will be designed to explore for possible TCE and PCE sources. If, during the next five-year review period, natural attenuation does not appear to be effective in remediating the site in timely manner, a ROD amendment may be required to either specify an active remediation or a technical infeasibility (TI) waiver.

The next five-year review of MARBO ROD is scheduled after 02 March 2009, five years from this review, and should include a full review of the groundwater at MARBO Annex. The related review period would be from 02 March 2004 to 02 March 2009.

This page is intentionally left blank

1.0 INTRODUCTION

On 14 October 1992, the United States Environmental Protection Agency (USEPA) Region IX formally listed Andersen Air Force Base (AFB) on the National Priorities List (NPL) with a Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) identification number of GU6571999519. By 30 March 1993, the United States Air Force (USAF) entered into a Federal Facility Agreement (FFA) with the USEPA and the Guam Environmental Protection Agency (GEPA) and began its Superfund clean-up program in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

Under the CERCLA, Andersen AFB is required to conduct a Record of Decision (ROD) review every five years. This Five-Year ROD review has been prepared for the Marianas Bonins (MARBO) Command Annex in accordance with the USEPA Comprehensive Five-Year Review Guidance, June 2001, USEPA 540-R-01-007, and Office of Solid Waste and Emergency Response (OSWER) No. 9355.77-03B-P.

1.1 The Purpose of the Five-Year Review

The purpose of a five-year review is to evaluate if remedies implemented at Andersen AFB are protective of human health and the environment. To do this, all relevant activities that have been performed and data and documents that have been generated since the implementation of remedial action are reviewed. If necessary, recommendations are provided to close any data gaps and improve the effectiveness of the remedial action in protecting human health and the environment.

1.2 Overview of the Five-Year Review Process

This Five-Year ROD Review is mandated as part of the Superfund Amendments and Reauthorization Act of 1986 (SARA), which amended the CERCLA. A five-year review is applicable to sites that a ROD, or a Decision Document, was signed on or after the 17 October 1986, the effective date of the SARA. According to CERCLA §121(c), as amended:

"a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgement of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the congress a list of facilities for which such review is required, the results of all such reviews, and any action taken as a result of such reviews."

This requirement is further defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP); 40 C.F.R Part 300.430(f)(4)(ii), and states that:

"If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after initiation of the remedial action."

According to USEPA guidelines (USEPA, 2001), a five-year review is triggered when a remedial action (RA) results in residual hazardous materials, pollutants, or contaminants remaining at a site above concentrations that would allow unlimited use and unrestricted exposure of the site. For the MARBO ROD, the remedial action that has left residual contaminants in place that restrict unlimited use is the mobilization for the cleanup of Installation Restoration Program (IRP) Site 20/Waste Pile 7. This mobilization was initiated on 02 March 1999. This is the first five-year review of the MARBO ROD and covers the period of 02 March 1999 through 02 March 2004.

The USAF is the lead agency that is conducting this five-year review for the MARBO Annex ROD. EA Engineering Science and Technology Inc. (EA) has been contracted by the USAF to conduct the site inspection and prepare this five-year review for Andersen AFB. The review team includes the USAF, USEPA Region IX, and GEPA.

1.3 Site Location

Guam is the largest of the Mariana Islands and is located in the western Pacific Ocean between 13°15' and 13°39' north latitude and 144°37' and 144°57' east longitude, approximately halfway between Japan and New Guinea (Figure 1-1). The island has an area of nearly 209 square miles and is approximately 30 miles long and 4 to 8 miles wide.

Andersen AFB is located in the northern half of the island and it consists of several parcels of land in the northern half of the island (Figure 1-2). The largest contiguous portion of Andersen AFB property consists of the Main Base and Northwest Field, which together are approximately 8 miles wide, 2 to 4 miles long, and 24.5 square miles in area. The active base operations are located at the Main Base. Northwest Field has been generally inactive since the mid-1950s (EA, 1997a). The Main Base and Northwest Field are bounded by the Rota Channel to the north, the Philippine Sea to the west, and the Pacific Ocean to the east (Figure 1-2).

Additional Andersen AFB properties include smaller, non-contiguous areas to the south, such as the Harmon Annex and the MARBO Annex (Figure 1-2). The Harmon Annex, comprising 1,817 acres, is located approximately 4 miles south of Northwest Field. The MARBO Annex, comprising 2,432 acres, lies approximately 4 miles south of the Main Base.

1.4 Site Physical Characteristics

MARBO Annex is located on a broad, uplifted limestone plateau that is underlain by volcanic rocks. The limestone plateau includes numerous sinkholes and ranges in elevation from 300 to over 500 feet above mean sea level (msl). The sinkholes are very porous and provide rapid infiltration of surface water to the underlying fresh water aquifer, rendering no permanent surface water bodies at MARBO Annex.

The surface of the limestone plateau is interrupted by two volcanic peaks, Mount Santa Rosa and Mataguac Hill, that are located northeast and north of the MARBO Annex, respectively (Figure 1-3). These low-permeability volcanic outcrops extend into the subsurface to form a lateral barrier that directs the groundwater flow towards the Tumon Bay (Figure 1-3). According to groundwater monitoring data (FWENC/EA, 2003a), the groundwater at MARBO Annex is encountered at approximately 281 feet to 400 feet below ground surface (bgs). Based on the 2001 Guam Water Quality Standards, the groundwater at MARBO, whether fresh or saline, is categorized as a G-1 Resource Zone for potable water (GEPA, 2001). Consequently, any wastewater discharges within the G-1 Resource Zone is regarded as tributary to the potential potable groundwater supply and must be free of pollutants.

Water extracted from production wells in the MARBO Annex area is blended with water produced in other locations, and distributed to Dededo, Yigo, Barrigada, Mangilao, and Andersen AFB, where the water usage is approximately 17 million gallons per day (mgd) (Barrett, 1992). Currently, seven of the eight Andersen AFB production wells (MW-series wells), located on the MARBO Annex (Figure 1-4), are used for water production, and can yield approximately 2.1 mgd, to meet the average Base consumption of 1.6 mgd (Andersen AFB, 2003a).

There are no residential areas within the MARBO Annex. The nearest populated areas are in the nearby villages of Dededo and Yigo located west, north, and east of the MARBO Annex. As of 2000, the combined population of Dededo and Yigo is approximately 62,000, which is approximately 40 percent of the island's population (United States Census Bureau, 2001). Dispersed, low-density populations characterize the area between these villages and the MARBO Annex.

MARBO Annex is located in the interior of Guam, away from the coastal cliff line and marine environments. Therefore, MARBO Annex is not within the range of the critical habitats of threatened or endangered species such as the Mariana crow (*Corvus Kubaryi*), the Mariana fruit bat (*Pteropus mariannus*), the Fire tree (*Serianthes nelsonii*), and the Ufa-Halomtano tree (*Heritiera longipetiolata*) (USAF, 1994 and Department of Aquatic and Wildlife Resources [DAWR], 1988).

1.5 Land and Resource Use

Presently, MARBO Annex properties are inactive. According to the Andersen AFB archives, MARBO Annex was developed for military housing, warehouses, industrial support facilities, and operational facilities (FWENC/EA, 2002a). From 1944 through 1950, MARBO Annex was under the jurisdiction of the Naval Government of Guam. Following the Organic Act of 1950, the United States Government took control of MARBO Annex and was administered by the United States Navy (USN). By 1956 all operations at MARBO Annex had ceased, except for the USN Power Plant and the water production wells. On 25 June 1958, the USAF assumed control of MARBO Annex. Based on review of available Real Estate Property records at Andersen AFB, all temporary buildings on the MARBO Annex were removed prior to June 1960.

Subsequent to finalization of the MARBO ROD in 1998 various land parcels have been transferred or have been proposed for transfer to other federal agencies or the Government of Guam (GovGuam). Two parcels, covering 81 acres and 395 acres (Figure 1-5) have been transferred to GovGuam. The 81-acre parcel (Figure 1-5; green) contains an active Guam Waterworks Authority (GWA) production well (Y-20) and includes the planned construction of a High School. The 231-acre parcel (Figure 1-5; magenta) contains a fire station and an active GWA production well (Y-19), and future land use plans include construction of a police station. Another 1,569-acre parcel was offered to the United States Marines, for training facilities, however in the fall of 2003 the Marines indicated that they are not interested in acquiring the property. The Air Force is currently considering alternate plans for future disposition of this parcel. Another 224-acre parcel (Figure 1-5; blue) is being retained by the Air Force for a variety of purposes. An area, near IRP Site 20, is being retained to ensure institutional controls (ICs) are maintained for the MARBO ROD. Several linked areas are being retained to support the Air Force groundwater production and distribution system at MARBO. Two areas (MARBO Laundry and Army and Air Force Exchange Service [AAFES] Warehouse) are being retained for Air Force warehousing activities.

1.6 Andersen AFB Operable Units

Andersen AFB elected to use an Operable Unit (OU) approach to manage the remedial investigations under their IRP. According to the 1993 FFA, the OUs were formed to:

- expedite the completion of environmental activities,
- evaluate sites with similar locations and potentially similar requirements as unique groups,
- complete remedial design investigations at sites where closure decisions have been previously reached with GovGuam, and
- provide a screening mechanism for evaluating newly or tentatively identified sites for inclusion in the Remedial Investigation/Feasibility Study (RI/FS).

Prior to 1996 the original OUs were designated numerically (ICF, 1994):

- OU-1 was designated for soils and potential contaminant sources associated with IRP Sites within the Main Base Landfill Complex (Table 1-1),
- OU-2 was designated for groundwater basewide (MARBO Annex, Main Base, Harmon Annex, and Northwest Field),
- OU-3 was designated for soils and potential contaminant sources associated with IRP Sites within the MARBO Annex (Table 1-1),
- OU-4 was designated for soils and potential contaminant sources associated with IRP Sites within the Harmon Annex, Northwest Field, and the Main Base, that lie inside the Groundwater Protection Zone (GPZ) (Table 1-1),

- OU-5 was designated for soils and potential contaminant sources associated with IRP Sites within the Harmon Annex, Northwest Field, and the Main Base, that lie outside the GPZ (Table 1-1), and
- OU-6 was designated for Basewide documents and any IRP Sites added to the IRP subsequent to execution of the FAA in 1994 (Table 1-1).

In 1996 the USAF, USEPA, and GEPA agreed that to effectively respond to projected property transfers (Harmon and MARBO Annexes) the criteria used to develop the original numerical OU designations were impractical for effective management of the IRP (Table 1-1). The increased focus on property transfers created the need for grouping sites into geographically distinct OUs that combined soil, potential contaminant sources, and groundwater (Andersen AFB, 2003b). An example of how the OU re-designation has benefited the IRP would be the three IRP Sites located in Harmon Annex: IRP Site 18/Landfill 23, IRP Site 19/Landfill 24, and IRP Site 39/Harmon Substation. Under the original OU classification scheme the groundwater under Harmon Annex was designated in OU-2 and IRP Sites 18, 19, and 39 (located inside the GPZ) were designated in OU-4. The creation of a geographically distinct Harmon OU, combining soil, potential contaminant sources, and groundwater, was useful in expediting the property transfer. The re-designated OUs are presented in Table 1-1 and illustrated in Figure 1-6:

- Harmon OU,
- MARBO OU,
- Main Base OU,
- Northwest Field OU,
- Urunao OU (Andersen AFB, 2003b), and
- Basewide OU.

Additionally, Andersen AFB is in process of initiating Preliminary Assessments (PAs) at 19 AOCs in 2004. These AOCs, located in the Northwest Field OU and Main Base OU, and are as follows:

- AOC-80 Clearing West of Housing,
- AOC-83 Tank Farm,
- AOC-84 Native Plantation,
- AOC-85 Building 8024,
- AOC-93 South Runway Approach Zone,
- AOC-94 Unexploded Ordnance,
- AOC-99 Service Apron "H" and Quonset Huts,
- AOC-105 Building 18006,
- AOC-106 Area Outside Landfill 14,
- AOC-I01 400-Foot Trench,
- AOC-I02 Cliff Line,
- AOC-I03 Waste Pile AOI-3,
- AOC-I04 Quarry,
- AOC-I05 Coral Dump Site,

- AOC-I06 Asphalt Drum Area,
- AOC-I07 Asphalt Drum Area and OEW Area,
- AOC-I08 Abandoned Sewage Disposal Sinkhole,
- AOC-I09 Quarry Cliff Line, and
- AOC-I10 Waste Pile.

1.6.1 Sites Covered under the MARBO OU

A *No Further Action* ROD was approved for the Harmon OU (FWENC/EA, 2002b). As the ROD resulted in site conditions that allowed for unlimited use and unrestricted exposure, no five-year review is required. RI and RA activities are ongoing at the Northwest Field and the Main Base OUs, and there are no RODs to discuss. The Urunao ROD has just been finalized (FWENC/EA, 2003b) and no five-year review is required. All RA and RA activity at MARBO Annex, under the MARBO OU, have been completed. In addition, three Areas of Concern (AOCs), located in MARBO Annex (AOC 54, AOC 55, and AOC 56), have been added as IRP Site 52, IRP Site 53, and IRP Site 54, respectively (Figure 1-4). As these are new IRP Sites they will be managed in the Basewide OU. Consequently, this five-year review evaluates the MARBO ROD and related actions, and focuses on the MARBO OU and the new IRP Sites in Basewide OU.

The MARBO OU includes the following six IRP Sites, along with the groundwater beneath them (Figure 1-4):

- IRP Site 20/Waste Pile 7,
- IRP Site 22/Waste Pile 6,
- IRP Site 23/Waste Pile 5,
- IRP Site 24/Landfill 29,
- IRP Site 37/War Dog Borrow Pit, and
- IRP Site 38/MARBO Laundry.

There were no contaminants of concern (COCs) at IRP Site 23/Waste Pile 5 or IRP Site 37/War Dog Borrow Pit that posed unacceptable risks to human health or the environment (EA, 1998a). Subsequently, a *No Further Action* was recommended for these IRP sites. As such, they will be briefly evaluated in this five-year review.

The four remaining IRP sites at MARBO Annex are grouped and presented together according to a common remedial action (RA). The RA for IRP Site 22/Waste Pile 6, IRP Site 24/Landfill 29, and IRP Site 38/MARBO Laundry are *Completed RAs*. The RAs for IRP Site 20/Waste Pile 7 and the groundwater beneath the MARBO Annex are considered *Operating RAs*, where the *RA* has been initiated but the cleanup levels have not been achieved. In the case of IRP Site 20, cleanup levels will never be achieved as protectiveness depends on implementation of engineering controls (cover) and land use controls.

Three AOCs (AOC 54, AOC 55, and AOC 56), located in MARBO Annex, were previously recommended for further investigation under the Phase II Environmental Baseline Survey (EBS) (EA, 1998b). These AOCs were not part of the MARBO OU and were not included in the

MARBO ROD. They have recently been re-designated as IRP Site 52, IRP Site 53, and IRP Site 54, respectively, and are scheduled for further environmental investigation in 2005, under the Basewide OU.

Furthermore, as presented in Figure 1-4, the following areas at MARBO Annex will not be discussed in this five-year review:

- The MARBO Power Plant and AAFES Warehouse are active facilities still operated by the Guam Power Authority (GPA) and Andersen AFB, respectively.
- Andy South Housing Area (ASHA) encompasses approximately 561 acres within the MARBO Annex and consists of 60 single-family housing units, 6 three-story buildings, 53 townhouses, and other support facilities. The United States Army Air Corps developed ASHA between 1946 and 1948 as part of MARBO Annex to house military personnel and administrative activities and to warehouse supplies. ASHA continued to be actively utilized for military housing and support services through the summer of 1996. Since then, several environmental investigations have been completed at ASHA in preparation for potential transfer of the property (FWENC/EA, 2002a). Typhoon Paka in December 1997 and Typhoon Chata'an in July 2002 severely damaged the structures at ASHA. In preparation for property transfer, ASHA is currently scheduled for remediation based on the results of the Phase I and II EBS (EA, 1998c and 1998d).

As presented in Table 1-2, a summary status of all sites covered under the first five-year review for MARBO OU is provided including a list all of the sites under review, their Contaminants of Potential Concern (COPCs) or COCs, their original selected RA, status of RA, current protectiveness status, and any recommendations for action or future review.

1.7 Site Chronology

Andersen AFB began investigating the MARBO Annex as early as 1985. A chronology of documents related to MARBO is presented in Appendix A, based on the Andersen AFB Administrative Record. These documents include work plans, quality assurance project plans, environmental investigation reports, groundwater monitoring reports, and the record of public involvement.

The chronology of events and documents that are most directly related to cleanup sites at MARBO for the five-year review are presented below:

10 March 1985	Phase I Record Search designated IRP sites at MARBO (ESE, 1985)
14 October 1992	FFA; Andersen Air Force Base was included on the USEPA NPL
February 1994	Sampling and Analysis Plan (SAP) Addendum to OU 6 for OU3 (for soil)
February 1994	Work Plan Addendum to OU 6 for OU3 (for soil)
March 1994	Sampling and Analysis Plan (SAP) Addendum to OU 6 for OU 2 (for groundwater)

March 1994	Work Plan Addendum to OU 6 for OU 2 (for soil)
December 1996	Final OU3 Remedial Investigation (for soil)
January 1997	Final OU3 Focused Feasibility Study (for soil)
March 1997	Final OU2 MARBO Annex Remedial Investigation (for groundwater)
October 1997	Final OU2 MARBO Annex Focused Feasibility Study (for groundwater)
October 1997	Final MARBO Annex Proposed Plan (for soil and groundwater)
24 October 1997	Public Meeting held for MARBO Annex Proposed Plan
17 July 1998	Final MARBO Annex OU Record of Decision (for soil and groundwater)
31 October 1998	Final Quality Program Plan and Remedial Action document, MARBO Annex OU
31 October 1998	Final Environmental Cleanup Plan and Remedial Action document, MARBO Annex OU
16 February 1999	Remedial mobilization began at Site 38/MARBO Laundry
23 February 1999	Remedial mobilization began at Site 22/Waste Pile 6
02 March 1999	Remedial mobilization began at Site 20/Waste Pile 7
10 May 1999	Remedial action completed at Site 38/MARBO Laundry
25 May 1999	Completed soil cover at Site 20/Waste Pile 7
31 May 1999	Completed phase 1 of Remedial Action (RA) at Site 22/Waste Pile 6
13 November 1999	Commenced phase 2 of RA at Site 22/Waste Pile 6
15 September 2000	Final Site 24/Landfill 29 Quality Program Plans
30 November 2000	Final Site 24/Landfill 29 Environmental Cleanup Plan
30 November 2000	Remedial mobilization began at Site 24/Landfill 29
31October 2000	Final Site 20/Waste Pile 07 Remedial Verification Report (RVR)
31 October 2000	Final Site 38/MARBO Laundry RVR
26 February 2001	Completed phase 2 RA at Site 22/Waste Pile 6
26 March 2001	Completed RA at Site 24/Landfill 29
04 May 2001	Interim Site 22/Waste Pile 06 Remedial Verification Report
02 October 2001	Final Site 24/Landfill 29 RVR
24 January 2003	Final Environmental Cleanup Plan, MARBO Annex OU
24 January 2003	Final Addendum to Quality Program Plan, MARBO Annex OU

24 January 2003	Interim Site 22/Waste Pile 06 Environmental Cleanup Plan
28 April 2003	Phase 3- Remedial Mobilization began at Site 22/Waste Pile 6
23 January 2004	Completed RA at Site 22/Waste Pile 6
25 June 2004	Final Site 22/Waste Pile 06 Remedial Verification Report (RVR)

1.8 Public Involvement at Andersen AFB

The USAF has been actively involved in soliciting public involvement and input regarding the decisions on environmental investigations and remedial activities for Andersen AFB sites. This has been done through Community Relations Plans (CRP), Public Notices and Meetings, and the Restoration Advisory Board (RAB), as follows.

1.8.1 Community Relations

In accordance with CERCLA Sections 113 and 117, an extensive community relations program was initiated to involve the community in the decision-making process. In August 1992, to inform and involve the local community, Andersen AFB conducted 67 interviews with local government officials, residents, and concerned citizens to determine the level of community concern and interest in the environmental investigations. These community interviews provided the basis for the 1993 CRP (ICF, 1993). The 1993 CRP described activities to keep the nearby communities informed of the progress of the environmental investigations at Andersen AFB sites and provide opportunities for input from residents regarding cleanup plans. In response to the USEPA request, Andersen AFB conducted 27 additional interviews in 1998, and updated the CRP (EA, 1998e).

Andersen AFB also made copies of the all-relevant IRP documents available to the public in both the Administrative Record and the Information Repository at the following locations:

Installation Restoration Program 36 CES/CEVR, Unit 14007, Andersen AFB, Guam APO AP 96543-4077 Telephone: (671) 366-5080 Contact: Mr. Gregg Ikehara, Installation Project Manager

Nieves M. Flores Memorial Library 254 Martyr Street, Hagatna, Guam 96910 Telephone: (671) 475-4751, 4752, 4753, or 4754 Contact: Christine Scott-Smith

University of Guam Federal Document Department, RFK Library, UOG Station Mangilao, Guam 96923 Telephone: (671) 735-2321 Contact: Walfrid C. Benavente

1.8.2 Public Notices/Public Meetings

In accordance with USEPA Guidelines (USEPA, 1999), notices of the availability for the final MARBO OU Remedial Investigation (ICF, 1996) and Focused Feasibility Study (EA, 1997) documents were published in the Guam *Pacific Daily News*, followed by a public meeting, and a comment period.

In October of 1997 the Proposed Plan for the MARBO OU was released to the public for review and comments, with a public comment period from 10 October to 10 November 1997. A public meeting was held in the Tumon Bay Hilton Hotel on 24 October 1997 where the Proposed Plan was presented and representatives from USEPA, GEPA, and Andersen AFB responded to public comments. All verbal and written comments were incorporated in the MARBO OU ROD, which was finalized in May 1998.

1.8.3 Restoration Advisory Board

The USAF has promoted community relations and encouraged public involvement in cleanup decisions through the RAB, established in 1995. Currently, the RAB is comprised of community members, elected officials, USAF officials, and representatives from regulatory agencies. The RAB meets on a quarterly basis to discuss program progress and to advise the community on the status and plans for the various IRP sites.

In addition to RAB meetings, in 1993 Andersen AFB provided a brochure that was prepared to respond to community concerns and to inform the public about Andersen AFB's IRP investigations (ICF, 1993). In February 1997, a fact sheet for the Harmon Annex was distributed to the community that explained the status of all IRP investigations, as well as, the status of P.L. 103-339 (EA, 1998e). A complete summary of the history and status of community involvement for the IRP at Andersen AFB is presented in the December 2000 *Final Management Action Plan* (Andersen AFB, 2000).

The five-year review is an important milestone for public involvement. The public will be informed of the Andersen AFB five-year review for MARBO ROD by distributing a notice of the five-year review to RAB members, who will be encouraged to disseminate this information to other community members. Also, a notice of the RAB meeting, which includes a discussion of the five-year review, will be published in the Guam *Pacific Daily News*.

1.8.4 Interviews

As part of the five-year review policy, representatives of Andersen AFB and EA interviewed key personnel, including representatives of regulatory agencies and the community of Guam. The key personnel included:

- the Honorable Senator Joanne M. Salas Brown,
- the Honorable Senator Larry F. Kasperbauer,
- Mr. Fred M. Castro, Administrator of the GEPA, and
- Mr. Victor Wuerch, Hydrogeologist with the GEPA.

For the most part, the above-referenced interviewees were satisfied with the status of MARBO Annex OU. Senator Brown and Mr. Fred Castro expressed concerns with regard to the continued shut down of the Tumon-Maui Well treatment system knowing that it is potentially a source of water for the island. Senator Brown was equally concerned about the Guam Waterworks Authority (GWA) taking over operation of the Tumon-Maui Well with contamination. Senator Brown stated that Andersen AFB should return properties to the community in their original condition and Mr. Fred Castro commented that the GEPA and Andersen AFB need to come up with a consensus as to what to do with the Tumon-Maui Well. Mr. Victor Wuerch expressed concerns with regard to the source of groundwater contamination at MARBO and its potential down gradient impact on Tumon Bay.

Senator Larry F. Kasperbauer emphasized that he would like to see Andersen AFB continue its cooperation with the GEPA and USEPA to resolve the groundwater problem at MARBO Annex. He also suggested that the RAB meetings should be held in the community environment to encourage public participations, and not in hotels where some of the public may feel intimidated.

The content of the interview was recorded, transcribed, and presented in Appendix B, using forms from the USEPA Guidance Document (USEPA, 2001).

1.9 Organization of Report

The remainder of this document is organized as follows:

- Chapter 2 presents the first five-year review for IRP Site 23/Waste Pile 5 and IRP Site 37/War Dog Borrow Pit where no *RA* was necessary at the site.
- Chapter 3 presents the first five-year review for IRP Site 22/Waste Pile 6, IRP Site 24/Landfill 29, and IRP Site 38/MARBO Laundry with *Completed RA*.
- Chapter 4 presents the first five-year review for IRP Site 20/Waste Pile 7 with Operating RA.
- Chapter 5 presents the first five-year review for former AOC 54, AOC 55, and AOC 56, that have been re-designated as IRP Site 52, IRP Site 53, and IRP Site 54.
- Chapter 6 presents the first five-year review of the MARBO Annex groundwater.
- Chapter 7 presents references cited in this report.

1.10 Next Five-Year Review

The next five-year review for Andersen AFB is required by 02 March 2009, five years from the date of this review. The relative review period would be from 02 March 2004 to 02 March 2009.

This page is intentionally left blank

TABLE 1-1. OPERABLE UNIT DESIGNATIONS FOR ANDERSEN AFB, GUAM.

Original OU Designation	Site Number	Site Name	Revised OU Designation
	1	Landfill 1	
	2	Landfills 2, 4, & 5	
OU-1	3	Waste Pile 3	Main Base (Landfill Complex)
	29	Waste Pile 2	
	35	Waste Pile 1	
OU-2	20	Basewide Groundwater	Groundwater linked to OUs
	20	Waste Pile 7	4
	22	Waste Pile 6	4
OU-3	23	Waste Pile 5	MARBO Annex
	24 37	Landfill 29 War Dog Borrow Pit	4
		MARBO Laundry	4
		Landfill 6	Main Base
	5	Landfill 7	Main Base
	7	Landfill 9	Northwest Field
		Landfill 21	Northwest Field
	10	Landfill 22	Northwest Field
	18	Landfill 23	Harmon Annex
	18	Landfill 24	Harmon Annex
OU-4	21	Landfill 26	Northwest Field
001	26	Firefighter Training Area 2	Main Base
	20	Hazardous Waste Storage Area 1	Main Base
	28	Chemical Storage Area 1	Main Base
	30	Waste Pile 4	Northwest Field
	31	Chemical Storage Area 4	Northwest Field
	32	Drum Storage Area 1	Main Base
	39	Harmon Substation	Harmon Annex
	6	Landfill 8	Main Base
		Landfill 10a (formerly Landfill 10)	
	8	Landfill 10b (formerly Landfill 11)	Main Base
		Landfill 10c (formerly Landfill 12)	1
	9	Landfill 13	Main Base
	10	Landfill 14	Main Base
	11	Landfill 15a (formerly Landfill 15)	Main Base
	11	Landfill 15b (formerly Landfill 16)	Walli Base
OU-5	12	Landfill 17	Main Base
	12	Pati Point Dump Site	
	13	Landfill 18	Main Base
	14	Landfill 19	Main Base
	15	Landfill 20	Main Base
	25	Firefighter Training Area 1	Main Base
	33	Drum Storage Area 2	Main Base
		PCB Storage Area	Main Base
	36	Ritidian Point Dump Site	Northwest Field
	40	Urunao Dumpsites 1 & 2	Urunao
	52	AOC-54	Basewide
	53	AOC-55	Basewide
No OU	54	AOC-56	Basewide
designation		AOC-65, AOC-67, AOC-68, AOC-69, AOC-80, AOC-83, AOC-84, AOC-	1
		85, AOC-93, AOC-94, AOC-99, AOC-105, AOC-106, AOC-101, AOC-102,	Basewide
	at this time	AOC-I03, AOC-I04, AOC-I05, AOC-I06, AOC-I07, AOC-I08, AOC-I09, and	Buse wide
		AOC-I10	

	Selected RA per 17 July 1998 Record of					veness? No
Site Name, COPCs, or COCs	Decision for MARBO OU	RA Status	Issues	Recommendations and Milestone Date	Current	Future
IRP Site 23/Waste Pile 5 COPCs = Aluminum, Antimony, Arsenic, Beryllium, Chromium, Lead, and Manganese. COCs = None, based on human health and ecological risk assessment results.	No Further Action	Not Applicable (N/A)	No issues and should not be included in future five- year reviews	None	Y	Y
IRP Site 37/War Dog Borrow Pit COPCs = Lead. COCs = None, based on human health and ecological risk assessment results.	No Further Action	Not Applicable (N/A)	No issues and should not be included in future five- year reviews	None	Y	Y
IRP Site 22/Waste Pile 6 COCs = Antimony, Arsenic, Cadmium, Chromium, Lead, Manganese, Benzo(a)pyrene, Benzo(b)fluoranthene, Indeno(1,2,3- cd)pyrene, based on human health and ecological risk assessment results.	Soil Removal	Completed in 3 phases from February-May 1999, November 2000-February 2001, and April- January 2004	No issues and should not be included in future five- year reviews	None	Y	Y
IRP Site 24/Landfill 29 COCs = Antimony and Lead, based on human health and ecological risk assessment results.	Soil Removal	Completed on 26 March 2001	No issues and should not be included in future five- year reviews	None	Y	Y

TABLE 1-2. SUMMARY STATUS OF SITES COVERED UNDER FIRST-FIVE YEAR REVIW OF MARBO OU.

Site Name, COPCs,	Selected RA per 17 July 1998 Record of Decision for				R# Protectiv Yes/	veness? No
or COCs	MARBO OU	RA Status	Issues	Recommendations and Milestone Date	Current	Future
IRP Site 38/MARBO Laundry COCs = Aroclor 1254 and Lead, based on human health and ecological risk assessment results.	Soil Removal	Completed on 31 October 2000	No issues and should not be included in future five- year reviews	None	Y	Y
IRP Site 20/Waste Pile 7 COCs = 4,4'-DDE, 4,4'-DDT, Dieldrin, Alpha chlordane, Gamma chlordane, Aroclor 1260, and Lead, based on human health and ecological risk assessment results.	Soil Cover	Completed on 25 May 1999	Several issues = Pig wallow and small trees has damaged small area of the <i>Soil Cover</i> and there are truck track marks on <i>Soil Cover</i> .	Recommendations = Quarterly Operation and Maintenance (O&M) and event driven O&M are recommended, in addition to posting warning signs around the periphery of the site to restrict any activities that may jeopardize the structural integrity of the <i>Soil Cover</i> . Milestone Date = 10/01/2004	N	Y
MARBO Annex Groundwater COCs = PCE and TCE, based on human health and ecological risk assessment results.	Natural Attenuation plus 3 three institutional controls (ICs): 1) Land Use Restrictions 2) Groundwater Monitoring 3) Existing Wellhead Treatment	Natural Attenuation Has always been implemented Additionally ICs were implemented in early 1998, with the exception of well head treatment	Several Issues = Lack of information to compare groundwater conditions in MARBO Annex with Harmon; Freshwater, transition and marine zones are poorly defined; PCE and TCE sources in MARBO Annex have not been identified; Fate and transport of TCE and PCE within MARBO in depth are poorly understood; No available Volatile Organic Compounds (VOC) data for newly installed GWA production well in MARBO Annex violates ICs; Additional downgradient data is required in the Harmon area;. Tumon-Maui Well is currently not being used, and as such no benefits are derived from either use of the water or the remedial effects.	Recommendations = HMW-1, HMW-2, HMW-3, and EX-6 wells should be sampled one more time using vertical profiling; Chloride data should be collected to determine extent of freshwater lens, transition zone, and marine water in the Harmon area; Deep soil borings should be drilled at IRP Sites 52 & 54 to look for potential source areas; Additional open boreholes through the entire freshwater lens should be considered better understand hydrogeology and fate and transport at depth; Dye trace study, relevant to IRP-31 and IRP- 29, should be considered ; VOC samples should be collected at GWA wells to verify compliance with ICs; Tumon Maui well long term use should be evaluated.	N	Y
	Restrictions 2) Groundwater Monitoring 3) Existing Wellhead	early 1998, with the exception of well head	TCE and PCE within MARBO in depth are poorly understood; No available Volatile Organic Compounds (VOC) data for newly installed GWA production well in MARBO Annex violates ICs; Additional downgradient data is required in the Harmon area;. Tumon-Maui Well is currently not being used, and as such no benefits are derived from either use of the	open boreholes through the entire freshwater lens should be considered better understand hydrogeology and fate and transport at depth; Dye trace study, relevant to IRP-31 and IRP- 29, should be considered ; VOC samples should be collected at GWA wells to verify compliance with ICs; Tumon Maui well long	N	

TABLE 1-2. SUMMARY STATUS OF SITES COVERED UNDER FIRST-FIVE YEAR REVIW OF MARBO OU.

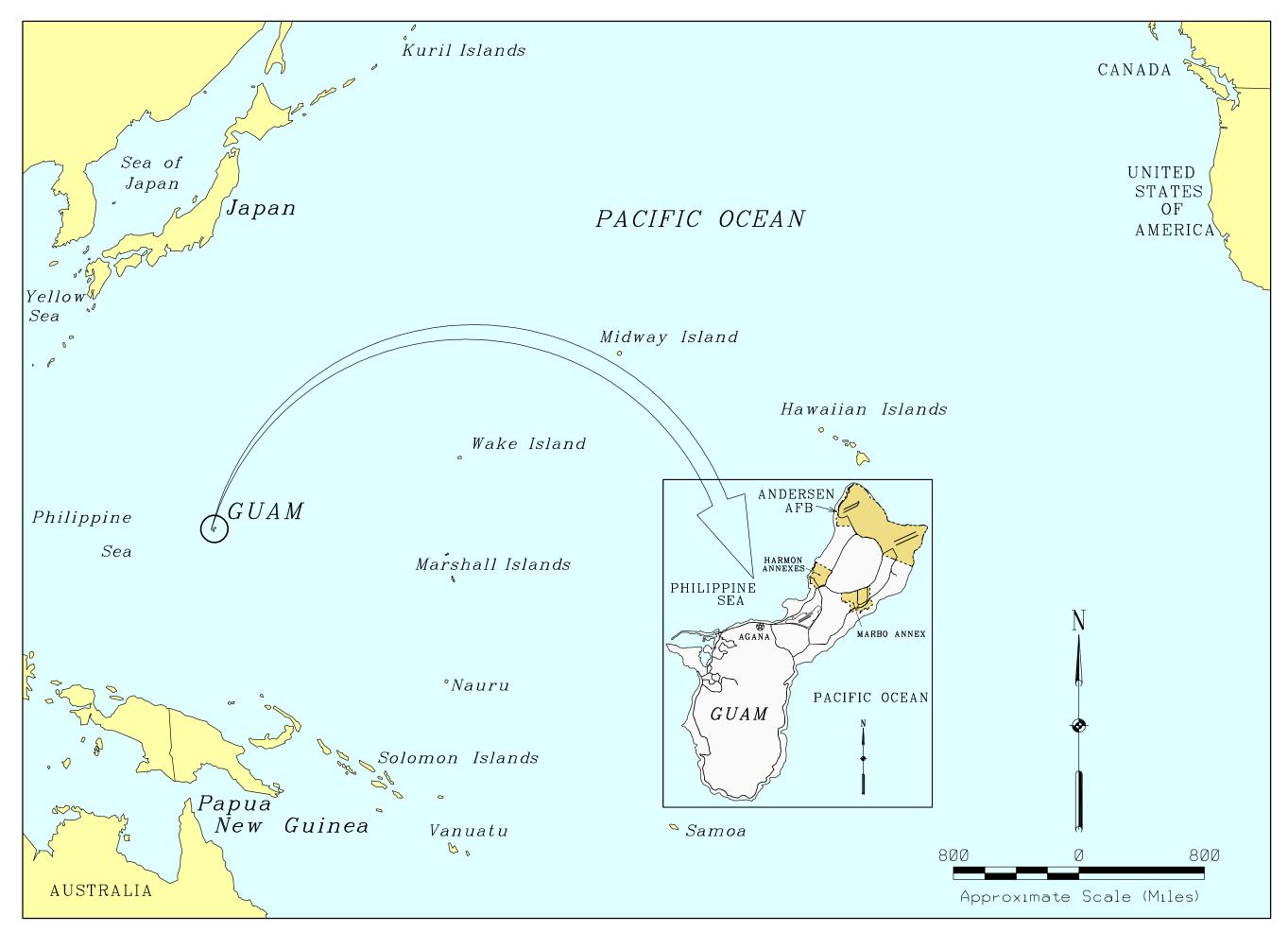


Figure 1-1. Location Map of Guam.

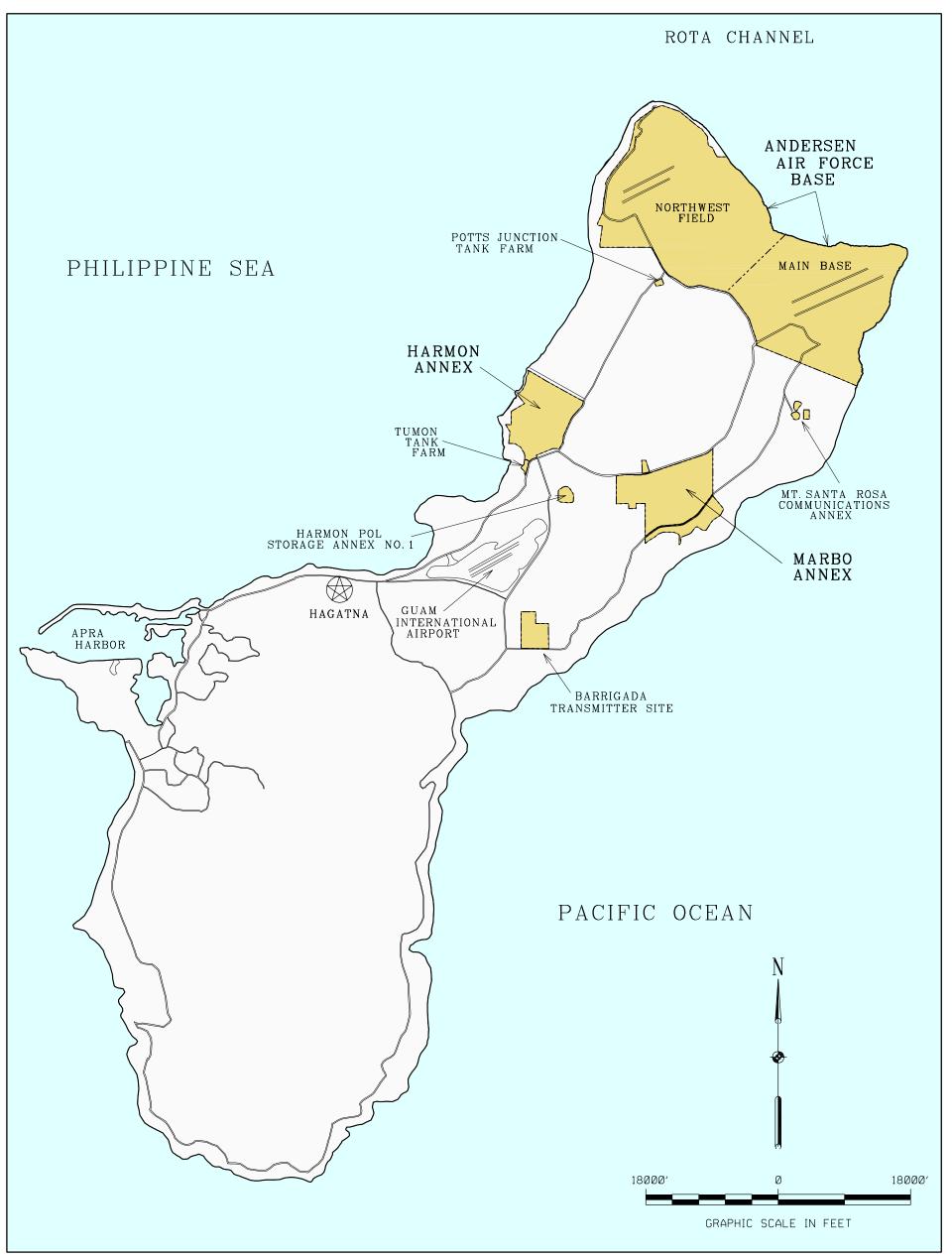


Figure 1-2. Location Map of Andersen Air Force Base on Guam.

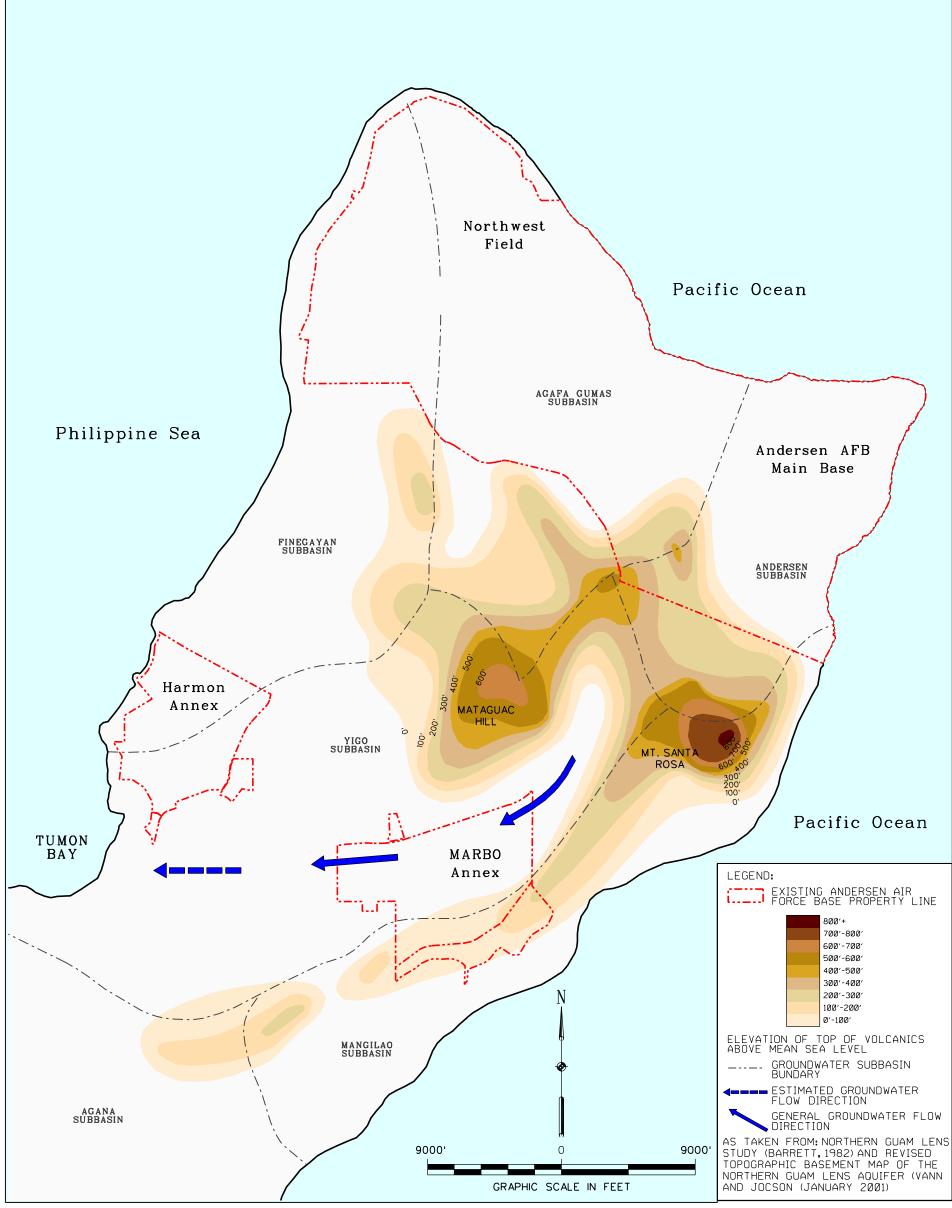
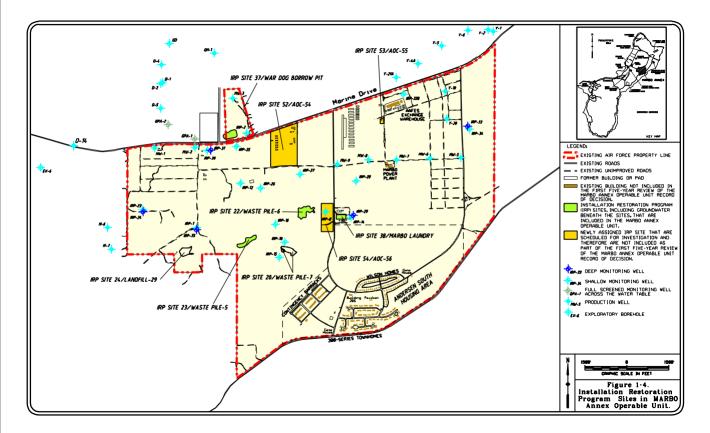
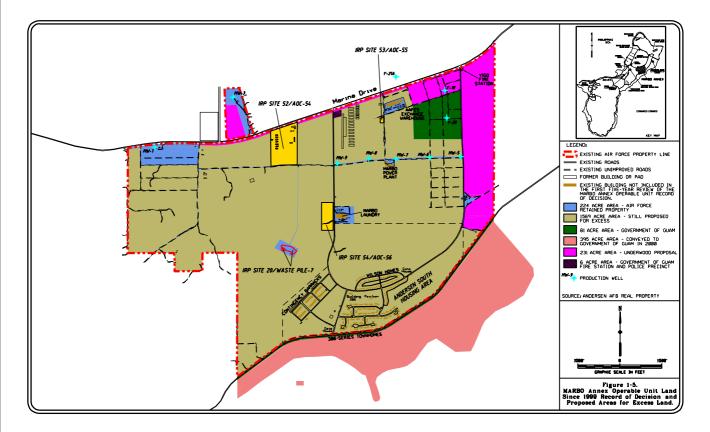




Figure 1-3. Volcanic Structure Contours.

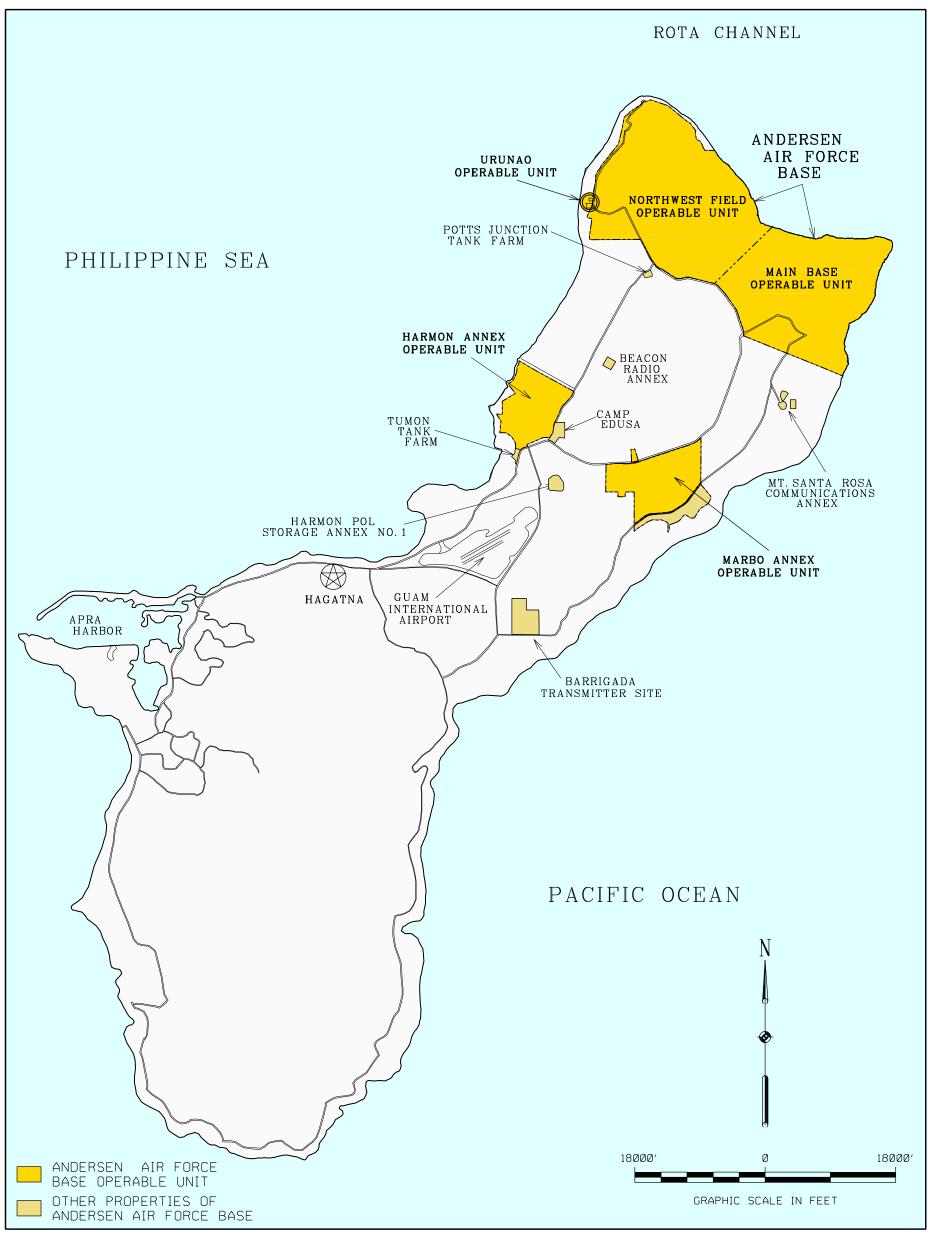


Figure 1-6. Location Map of Andersen Air Force Base Operable Units on Guam.

2.0 MARBO ANNEX SITES WITH NO REMEDIAL ACTION NEEDED

According to the MARBO ROD remedial actions (RAs) were not required at IRP Site 23/Waste Pile 5 and IRP Site 37/War Dog Borrow Pit because no COCs were identified.

2.1 First Five-Year Review of IRP Site 23/Waste Pile 5

2.1.1 IRP Site 23/Waste Pile 5 Background

IRP Site 23/Waste Pile 5 (Waste Pile 5) is located southwest of the MARBO Laundry (Figure 1-5). As presented in Figure 2-1, the site included a 2.17-acre landfill that consisted of seven large trenches filled with wire, fence material, bottles, cans, cardboard, kitchenware, and other municipal waste materials. The trenches ranged from 150 to 650 feet in length and 1.5 to 14.5 feet in depth (EA, 1997). The trench surfaces were covered with a mixture of soil, debris, and vegetation. Waste Pile 5 also included an 8-foot deep drainage ditch, located approximately 900 feet north of the trench landfill, which may have been used for disposal of sanitary sewage (Figure 2-1). Additionally, the site included several surface depressions and two deteriorated drums.

According results of the Human Health Risk Assessment (HHRA) and Ecological Risk Assessment (ERA), all target analytes were detected below concentrations that posed unacceptable risks to human health and the environment. As such no COCs were detected at Waste Pile 5 and no initial response or RA was required (EA, 1997).

2.1.2 Technical Assessment of Remedial Action at IRP Site 23/Waste Pile 5

Question A: Is the remedy functioning as intended by the ROD?

This question is not applicable for the Waste Pile 5.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

According to the RI/FS for Waste Pile 5 (ICF, 1996), Exposure Point Concentrations (EPCs) were calculated for the HHRA. All Constituents of Potential Concern (COPCs), except lead, had EPCs that were below their respective 1995 Residential Preliminary Remediation Goal (PRG) or Background Threshold Value (BTV). The 2002 Residential PRG (USEPA, 2002) for lead (400 mg/kg) is the same as 1995 Residential PRG (USEPA, 1995).

<u>COPCs</u>	<u>EPCs</u> (mg/kg)	<u>1995 Residential</u> PRGs or BTV (mg/kg)	<u>2002 Residential</u> <u>PRGs or BTV (mg/kg)</u>
Aluminum	123,894	173,500	173,500
Antimony	20.4	63	63
Arsenic	44.5	62	62
Beryllium	2.1	3.34	3.34
Chromium	623	1,030	1,080
Lead	602	400	400
Manganese	1,693	3,150	5,500

Consequently, the conclusions of the HHRA, as presented in 1996 RI/FS document (ICF, 1996), remain the same. Lead levels pose no unacceptable risks to human health or the environment.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

The land use at Waste Pile 5 has not changed. With the absence of any COCs, access to the site remains unrestricted and uses for the site are unlimited. No other information has come to light that could call into question the above-referenced condition of the site.

2.1.3 Protectiveness Statement for IRP Site 23/Waste Pile 5

Based on the review of existing data and site inspections, Waste Pile 5 is currently protective of human and the environment and will remain so into the future, unless a new source of contamination is discovered at the site.

2.1.4 Next Review of IRP Site 23/Waste Pile 5

The second five-year review of the MARBO ROD is scheduled after 02 March 2009, five years from this review. The second five-year review of MARBO ROD should not include Waste Pile 5, unless a new source of contamination is found at the site.

2.2 First Five-Year Review of IRP Site 37/War Dog Borrow Pit

2.2.1 IRP Site 37/War Dog Borrow Pit Background

IRP Site 37/War Dog Borrow Pit (War Dog Borrow Pit) is an abandoned quarry located in the northernmost portion of the MARBO Annex (Figure 1-5). As presented in Figure 2-2, the site included a 1.82-acre landfill within the quarry that contained construction debris and scrap automobile parts. The average thickness of fill material ranged from 2.5 feet to 8.5 feet above ground surface. Fill material within the trenches extended from 4.5 to 8.5 feet bgs. The fill layer within the trenches was covered with approximately 2 feet of re-cemented limestone. The re-cemented limestone was fully exposed in some areas, whereas in other areas it was covered with surface soil and vegetation. Miscellaneous trash and debris were widely scattered on the ground surface, along with several soil mounds (EA, 1997).

According to HHRA and ERA, all target analytes were detected below levels that posed unacceptable risks to human health and the environment. As such no COCs were detected at the War Dog Borrow Pit and no initial response or *RA* was required (EA, 1998a). Subsequently, no initial response or remedial action was necessary at the site (EA, 1997).

2.2.2 Technical Assessment of Remedial Action at IRP Site 37/War Dog Borrow Pit

Question A: Is the remedy functioning as intended by the ROD?

This question is not applicable for the War Dog Borrow Pit.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

According to the OU3 RI/FS (ICF, 1996), the only COPC identified at the War Dog Borrow Pit was lead. This was based on an EPC (833 mg/kg) that exceeded the 1995 Residential PRG (400 mg/kg), but was less than the 1995 Industrial PRG (1,000 mg/kg). However the EPC was based on one subsurface soil sample, collected at a depth of 11 feet bgs. Due to the isolated nature and depth of the sample it was not considered to pose unacceptable risks to human health or the environment (EA, 1998a). As presented below, the 1995 and 2002 Residential PRG for lead remains unchanged (400 mg/kg) however the 2002 Industrial PRG has dropped to 750 mg/mg. Regardless, the conclusions of the HHRA (ICF, 1996) remain unchanged; in that lead levels associated with the one, isolated lead sample do not pose unacceptable risks to human health or the environment.

<u>COPC</u>	<u>EPC</u>	<u>1995 Residential</u>	2002 Residential	<u>BTV</u>
	(mg/kg)	<u>PRG (mg/kg)</u>	PRG (mg/kg)	(mg/kg)
Lead	833	400	400	166

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

Land use at the War Dog Borrow Pit has not changed since the ROD, and with absence of COCs at the site, access to the site is unrestricted and site use is unlimited. No other information has come to light that could call into question the above-referenced condition of the site.

2.2.3 Protectiveness Statement for IRP Site 37/War Dog Borrow Pit

Based on the review of existing data and site inspections, the War Dog Borrow Pit is currently protective of human health and the environment. The toxicity values and the Residential PRG for lead have not changed, though the Industrial PRG for lead has changed from 1,000 mg/kg to 750 mg/kg. The current protectiveness of War Dog Borrow Pit is equally valid for the future, unless a new contamination source is introduced to the site.

2.2.4 Next Review of IRP Site 37/War Dog Borrow Pit

The next five-year review of MARBO ROD is scheduled after 02 March 2009, five years from this review. The second five-year review of MARBO ROD should not include War Dog Borrow Pit, unless a new source of contamination is found at the site.

This page is intentionally left blank

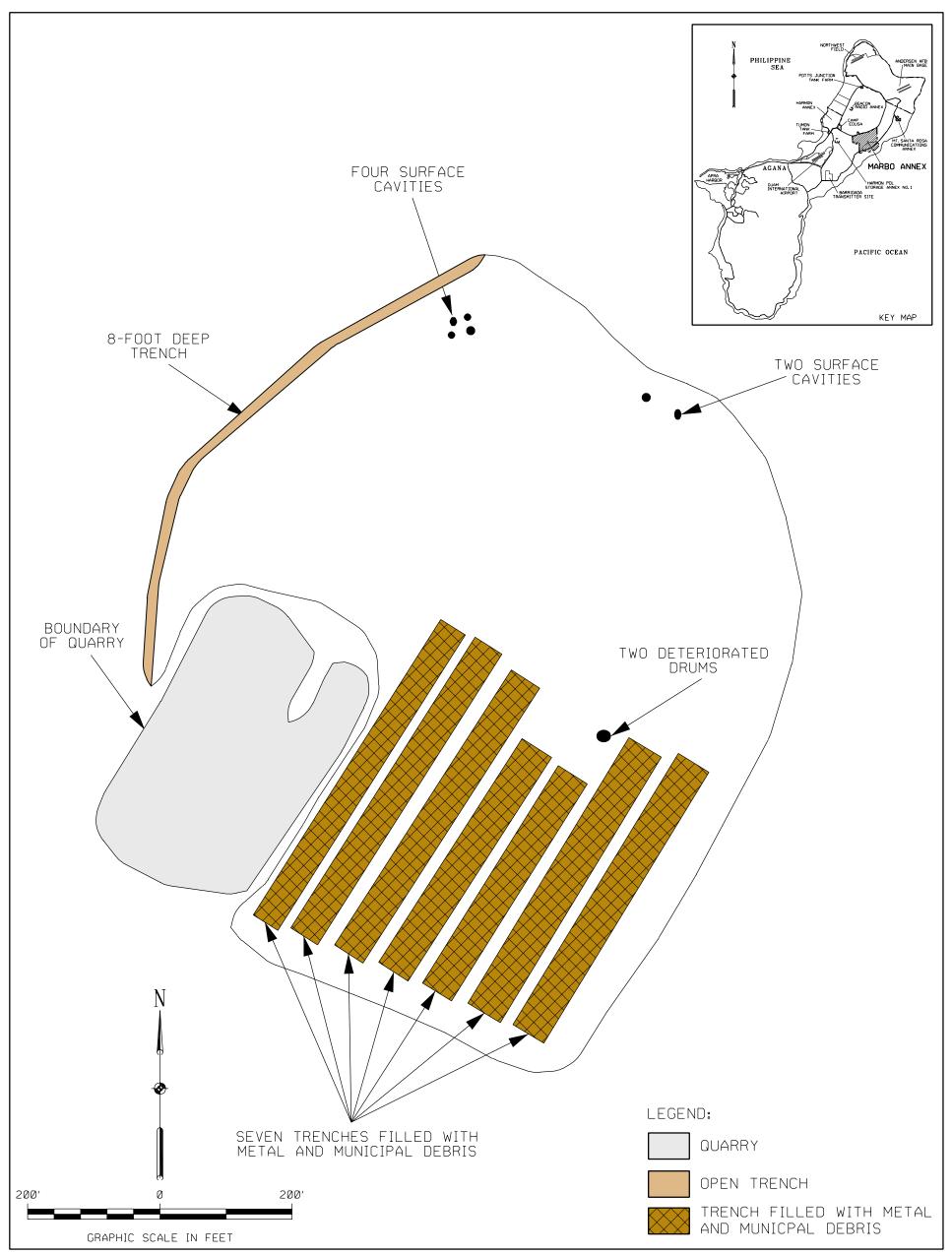


Figure 2-1. Features of Site 23/Waste Pile 5, MARBO Annex, Andersen Air Force Base, Guam.

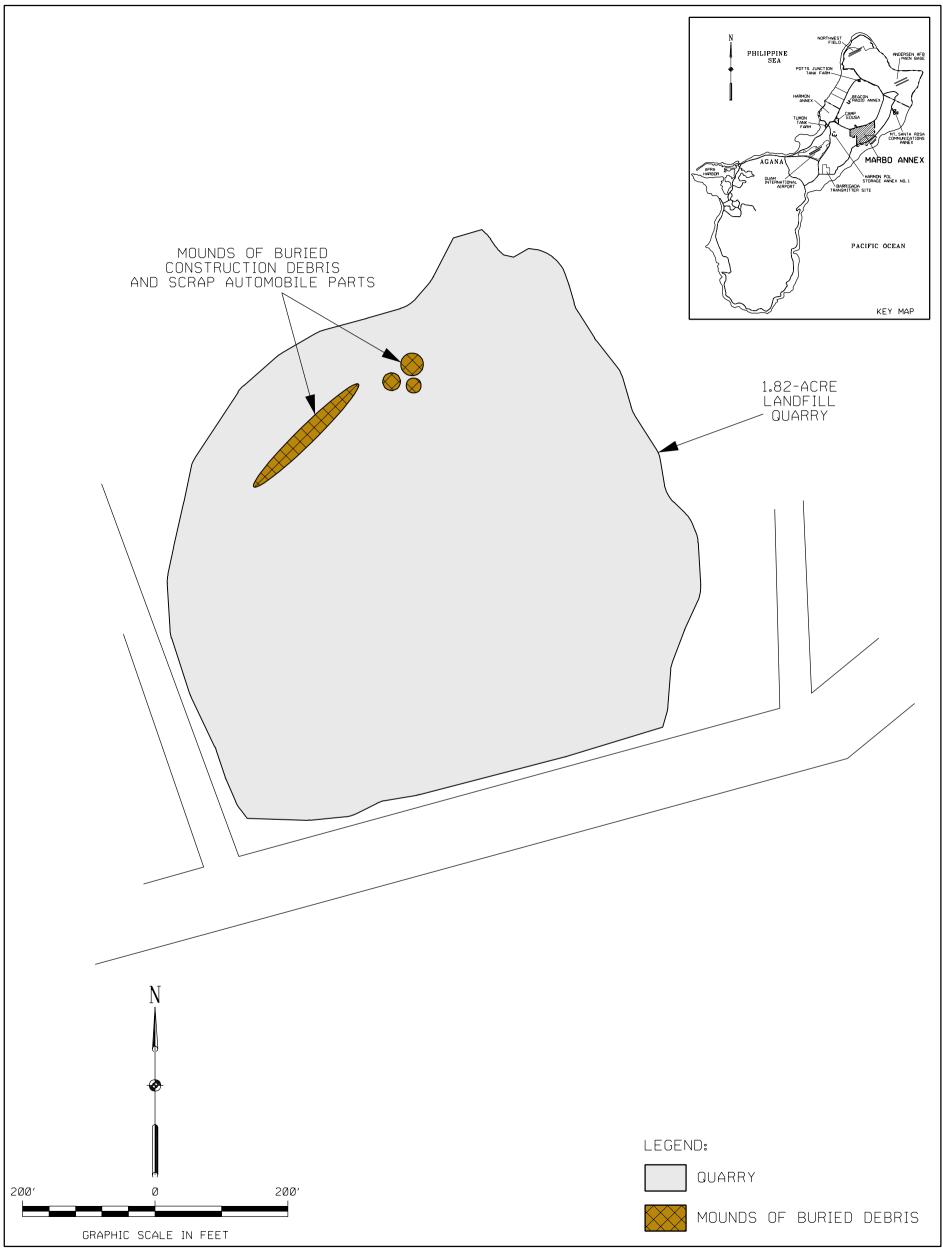


Figure 2-2. Features of Site 37/War Dog Borrow Pit, MARBO Annex, Andersen Air Force Base, Guam.

3.0 MARBO ANNEX SITES WITH COMPLETED REMEDIAL ACTIONS

Since the MARBO ROD was signed on 17 July 1998, RAs have been completed at IRP Site 22/Waste Pile 6, IRP Site 24/Landfill 29, and IRP Site 38/MARBO Laundry. The first five-year review of these sites is presented below.

3.1 First Five-Year Review of IRP Site 22/Waste Pile 6

3.1.1 IRP Site 22/Waste Pile 6 Background

IRP Site 22/Waste Pile 6 (Waste Pile 6) is a small site located centrally within the MARBO Annex (Figure 1-4). There were seven Areas of Interest (AOIs) at the site (Figure 3-1):

- A *Car Battery Area* containing six car battery casings, including the additional southern excavation,
- A Radio Battery Area containing nine apparent alkaline radio batteries,
- An Unknown Battery Area containing three possible batteries,
- A Roofing Material Pile,
- A Metal Debris Pile with subsurface metal debris,
- An Empty Drum Pile where empty drums were detected in the shallow subsurface, and
- An *Asphalt Drum Pile* including approximately 108 deteriorated stacked drums containing approximately 2,900 gallons of paving grade asphalt, some of which had leaked to the ground.

3.1.2 History of Contamination at IRP Site 22/Waste Pile 6

According to the HHRA and ERA, each AOI was impacted by COCs and required a RA. The COCs that were identified for each AOI are listed below along with their EPCs, BTVs, 1995 Residential PRGs (USEPA, 1995), and 2002 Residential PRGs (USEPA, 2002).

COCs by AOI	EPCs (mg/kg)	<u>1995 Residential</u> <u>PRGs (mg/kg)</u>	2002 Residential PRGs (mg/kg)	<u>BTVs</u> (mg/kg)
Car Battery Area				
Antimony	823	31	31	63
Lead	5,910	400	400	166
Radio Battery Area				
Antimony	71	31	31	63
Cadmium	42	38	37	6.5
Lead	1,560	400	400	166

COCs by AOI	EPCs (mg/kg)	<u>1995 Residential</u> <u>PRGs (mg/kg)</u>	2002 Residential PRGs (mg/kg)	<u>BTVs</u> (mg/kg)
Unknown Battery Area				
Lead	3,410	400	400	166
Roofing Material Pile				
Benzo(a)pyrene	15	0.061	0.062	NA
Benzo(b)fluoranthene	32	0.61	0.62	NA
Indeno(1,2,3-cd)pyrene	5.6	0.61	0.62	NA
<i>Metal Debris Pile</i> Cadmium	183	38	37	6.5
<i>Empty Drum Pile</i> Chromium	1,290	210	210	1,080
Asphalt Drum Pile				
Benzo(a)pyrene	1.5	0.061	0.062	NA
Benzo(b)fluoranthene	7.6	0.61	0.62	NA
Benzo(a)anthracene	1.9	0.61	0.62	NA
Arsenic	74	0.38	0.39	62
Chromium	1,270	210	210	1,080
Lead	903	400	400	166

NA = Not Applicable, BTV is applicable only for inorganic compounds (metals).

3.1.3 Initial Response at IRP Site 22/Waste Pile 6

The COCs detected in Waste Pile 6 soils were determined to be relatively stable and immobile, therefore no immediate response was required.

3.1.4 Basis for Taking Action at IRP Site 22/Waste Pile 6

- Elevated lead (EPC of 5,910 mg/kg) and antimony (EPC of 823 mg/kg) concentrations in soils contributed to unacceptable non-cancer risks (Hazard Index (HI)=27) to human health at the *Car Battery Area*.
- Elevated lead (EPC of 1,560 mg/kg), antimony (EPC of 71 mg/kg), and cadmium (EPC of 42 mg/kg) concentrations in soil contributed to unacceptable non-cancer risks (HI=12) at the *Radio Battery Area*.
- At the *Unknown Battery Area*, elevated lead (3,410 mg/kg) concentrations in soil were the basis for taking action.
- Elevated benzo(a)pyrene (15 mg/kg), benzo(b)fluoranthene (32 mg/kg), and indeno(1,2,3-cd)pyrene (5.6 mg/kg) concentrations in soil contributed to unacceptable cancer (3x10⁻⁵) and non-cancer risks (HI=3) at the *Roofing Material Pile*.

- Elevated cadmium (EPC of 183 mg/kg) concentrations in soil contributed to unacceptable non-cancer risks (HI=6) at the *Metal Debris Pile*.
- Elevated chromium (EPC of 1,270 mg/kg) concentrations in soil contributed to unacceptable non-cancer risks (HI=6) at the *Empty Drum Pile*.
- Elevated arsenic (74 mg/kg), chromium (1,270 mg/kg), lead (903 mg/kg), benzo(a)pyrene (1.5 mg/kg), benzo(b)fluoranthene (7.6 mg/kg), and benzo(a)anthracene (1.9 mg/kg) concentrations in soil contributed to unacceptable cancer (3x10⁻⁴) and non-cancer (HI=3) risks at the *Asphalt Drum Pile*.

Though the COC-impacted soils did not require an immediate initial response, a RA was proposed for the site to protect the future human and ecological receptors.

3.1.5 Remedial Action at IRP Site 22/Waste Pile 6

The COC-impacted soil at Waste Pile 6 was originally estimated at 30 bank cubic yards (bcy). In addition to the soil removal, six battery casings, 12 batteries, and other asphalt and metal debris were scheduled for removal. The impacted areas were estimated to cover an area of approximately 814 square feet, to a depth of approximately 1 foot (ICF, 1997a). The MARBO ROD (EA, 1998a), evaluated *No Action* and *Soil Removal* remedial alternatives for Waste Pile 6. The *Institutional Control (IC)* and *Soil Cover* options were not considered as viable remedial alternatives as they restricted future land use at the site. To allow unrestricted use of the site, the *Soil Removal* alternative was selected as the preferred alternative. The Remedial Action Objective (RAO) for the *Soil Removal* alternative was to protect the human health and the environment by:

- eliminating the direct exposure path to COCs to allow unrestricted access to the site, and
- minimizing the potential migration of COCs to groundwater beneath the site.

3.1.6 Remedial Action Implementation at IRP Site 22/Waste Pile 6

According to the Interim Remedial Verification Report (RVR) (Shaw, 2004), the cleanup levels were established based on the greater value of the Residential PRG or the BTV. Due to significant increases in soil volumes and the number of batteries and battery casings that needed disposal, the cleanup action at Waste Pile 6 was completed during three distinct phases. The first phase was performed February 1999 through May 1999, the second phase was performed November 2000 through February 2001, and the last phase was performed April through January 2004. According to the June 2004 RVR, the RA for the seven AOIs at IRP Site 22/Waste Pile 6 were completed as follows:

• Approximately 14,393 loose cubic yards (lcy) of non-hazardous COC-impacted soil and solid debris were removed and transported to the Andersen AFB Sanitary Landfill for disposal.

- Approximately 130 lcy of lead-impacted soil were removed and treated with triple super phosphate to reduce the lead concentrations below the RCRA toxicity characteristic for hazardous waste. This non-hazardous 130 lcy of lead-impacted soil were then transported to the Andersen AFB Sanitary Landfill for disposal.
- Approximately 10 lcy of roofing tar materials were removed and transported to the Andersen AFB Sanitary Landfill for disposal.
- Approximately 1,500 gallons of discarded asphalt from 108 full or partially full 55-gallon drums were removed and transported to the asphalt debris stockpile locates at IRP Site 35/Waste Pile 1. This asphalt debris was later incorporated into the IRP Site 2/Landfill 2 trenches, and the empty 55-gallon drums were transported to the Andersen AFB Sanitary Landfill for disposal.
- Fifty empty 55-gallong drums and drum remnants, 80 lcy of metallic debris, and 8 rubber tires were recovered, containerized, and shipped to an off-island facility for disposal.
- Two 55-gallon drums of alkaline batteries and 7 drums and 12 boxes of lead-acid batteries and battery casings were recovered, containerized, and shipped to an off-island facility for disposal.
- Approximately 62 lcy of asbestos-containing materials were removed and transported to the Andersen AFB Sanitary Landfill for disposal.

Confirmation soil samples were collected from all excavated areas and analyzed for COCs and all confirmation sample results were below cleanup levels at the seven AOIs at Waste Pile 6 (Shaw, 2004). Based on clean confirmation sample results, Waste Pile 6 was restored by backfilling the excavated areas deeper than one foot, using 6-inch minus clean imported fill. The backfilled materials were placed in 6-inch to 12-inch loose lifts and compacted to a minimum of 85 percent of the maximum dry density. The site was then graded to direct the flow of stormwater runoff away from roads and structures, to avoid ponding, and to foster growth of native shrubs, plants, and trees (Shaw, 2004).

3.1.7 Document and Data Review for IRP Site 22/Waste Pile 6

Since the MARBO ROD was signed the only documents generated, regarding Waste Pile 6, are those verifying the implementation of the *Soil Removal* alternative at the site. There were no operation and maintenance (O&M) or long term monitoring (LTM) programs required after the completion of the *Soil Removal* alternative, based on confirmation samples (Shaw, 2004). Therefore no additional information is necessary to further evaluate the effectiveness of the implemented remedy.

3.1.8 Site Inspection of IRP Site 22/Waste Pile 6

The site was last inspected on 19 February 2004 by a team consisting of Mr. Gregg Ikehara (Andersen AFB), Mr. Mark Ripperda (USEPA), Mr. Michael Cruz (GEPA), Dr. Jim Rosacker

and Mr. Paul Dusenbury (Booz-Allen Hamilton), and representatives of the "study" and "cleanup" contractors.

The inspection team walked through the site and examined the excavated areas in all seven AOIs at Waste Pile 6 and agreed that the project objectives had been met. The COC-impacted soil and associated debris have been removed and Waste Pile 6 has been properly restored, thus requiring no further remedial action. (Photos 3-1 and 3-2).

3.1.9 Technical Assessment of Remedial Action at IRP Site 22/Waste Pile 6

Question A: Is the remedy functioning as intended by the ROD?

The June 2004 Final RVR (Shaw, 2004) for Waste Pile 6 was the last document issued for this site. There are no additional data available since the completion of the *Soil Removal* alternative. Based on the site inspection, the remedy is functioning as intended by the ROD. There have been no changes in the physical conditions of the site that would affect the protectiveness of the remedy.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

Exposure assumptions for lead, antimony, cadmium, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and benzo(a)anthracene have not changed since the ROD was signed in 1998. There have been some minor changes to some of the toxicity data and cleanup values for arsenic, benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and benzo(a)anthracene, however the changes are insignificant and do not change the conclusion of the HHRA and ERA results. In addition the cleanup values for the Waste Pile 6 COCs, based on the higher of the Residential PRG or BTV, have been modified to reflect the 2002 Residential PRGs, as presented below.

COCs by AOI	EPCs (mg/kg)	<u>Waste Pile 6 RGOs</u> (mg/kg)	<u>2002 Residential PRGs</u> or BTVs (mg/kg)
<i>Unknown Battery Area</i> Lead	3,410	400	400
Roofing Material Pile Benzo(a)pyrene Benzo(b)fluoranthene Indeno(1,2,3-cd)pyrene	15 32 5.6	0.061 0.61 0.61	0.062 0.62 0.62
<i>Metal Debris Pile</i> Cadmium	183	38	37
<i>Empty Drum Pile</i> Chromium	1,290	1,080	210

COCs by AOI	EPCs (mg/kg)	<u>Waste Pile 6 RGOs</u> (mg/kg)	<u>2002 Residential PRGs</u> or BTVs (mg/kg)
Asphalt Drum Pile			
Benzo(a)pyrene	1.5	0.061	0.062
Benzo(b)fluoranthene	7.6	0.61	0.62
Benzo(a)anthracene	1.9	0.61	0.62
Arsenic	74	62	62
Chromium	1,270	1,080	1,080
Lead	903	400	400

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No information has come to light to call into question the effectiveness of the selected remedy. The Applicable or Relevant and Appropriate Requirements (ARARs), "to be considered" (TBC), pertinent to *Soil Removal* are still met and the human health and ecological risks have been adequately addressed at the site.

3.1.10 Technical Assessment Summary of IRP Site 22/Waste Pile 6

The selected remedy for Waste Pile 6 was completed in early 2004. Based on the available documents, data, and the site inspection the *Soil Removal* alternative has functioned as intended by the ROD. The remedy eliminates the direct exposure path to COCs and minimizes the potential migration of COCs to groundwater beneath the site.

3.1.11 Issues, Recommendations, and Follow-up Actions for IRP Site 22/Waste Pile 6

	Recommendations /	Party	Oversight	Milestone	Affect Protectiveness? Yes/No	
Issues	Follow-Up Actions	Responsible	Agency	Date	Current	Future
		Not	Not	Not	Not	Not
None	None	Applicable	Applicable	Applicable	Applicable	Applicable

3.1.12 Protectiveness Statement for IRP Site 22/Waste Pile 6

Based on the review of existing data and site inspections, the *Soil Removal* alternative at Waste Pile 6 is currently protective of human health and the environment. This protectiveness is equally valid for the future, unless new contamination is introduced to the site.

3.1.13 Next Review of IRP Site 22/Waste Pile 6

The next five-year review of the MARBO ROD is scheduled after 02 March 2009, five years from this review. The second five-year review of MARBO ROD should not include Waste Pile 6, unless a new contaminant source is discovered at the site.

3.2 First Five-Year Review of IRP Site 24/Landfill 29

3.2.1 IRP Site 24/Landfill 29 Background

IRP Site 24/Landfill 29 (Landfill 29) is located in the southwest portion of the MARBO Annex (Figure 1-5).

Though early reconnaissance of Landfill 29 characterized the site as a landfill feature, the existence of a landfill was not confirmed during the thorough field investigation conducted during the RI. The RI concluded that the original site boundary did not define a true disposal site (i.e., a landfill or consolidated waste dump), but instead was an abandoned quarry that contained scattered drum remnants and metallic debris (Figure 3-2). The RI identified three primary disposal areas that included: 1) a 2.4-Acre Landfill located south-southwest of the "original" site boundary (Figures 3-2 and 3-3), 2) an area west of the original site boundary containing soil-filled drums ("Surface Drum Area"), and 3) a small area within the original site boundary consisting of shallow subsurface metallic debris ("Subsurface Metallic Debris Area").

Though there were numerous areas of scattered metallic debris around the site, there were three primary AOIs:

- A 2.4-Acre Landfill, located south-southwest of the original site boundary, contained mostly municipal waste (i.e., bottles, cans, ferrous and copper metallic debris, and crushed empty deteriorated drums). Measurements taken during excavations showed the average thickness of the fill layer was 4.2 feet (3 to 6.5 feet), and the average depth to the bottom of the fill layer was 6.2 feet (range of 5 to 8.5 feet) bgs. The waste material was covered with a relatively uniform 2-foot layer of re-cemented limestone and several inches of soil. The surface of the landfill was vegetated.
- A *Surface Drum Area*, west of the original site boundary, consisted of an estimated 86 empty or soil-filled drums/drum remnants, and the Subsurface Metallic Debris Area contains subsurface metallic debris.
- A *Subsurface Metallic Debris Area*, located within the original site boundary, contained subsurface metallic debris.

3.2.2 History of Contamination at IRP Site 24/Landfill 29

According to the HHRA and ERA, only the *Surface Drum Area* and the *Subsurface Metallic Debris Area* were impacted by COCs and required RAs. COCs that were identified at Landfill 29 include antimony and lead (EA, 1997). The EPCs that were used in the HHRA and their respective 1998 Residential PRGs, 2002 Residential PRG, and applicable BTVs are listed below.

COCs by AOI	EPCs (mg/kg)	<u>1998 Residential</u> <u>PRGs (mg/kg)</u>	2002 Residential PRGs (mg/kg)	<u>1998 BTVs</u> (mg/kg)
Surface Drum Area				
Antimony	224	31	31	63
Lead	18,700	400	400	166
Final First Five-Year Review of Record of Decision for MARBO Operable Unit		3-7		July 2004

COCs by AOI	EPCs (mg/kg)	<u>1998 Residential</u> <u>PRGs (mg/kg)</u>	2002 Residential PRGs (mg/kg)	<u>1998 BTVs</u> (mg/kg)
Subsurface Metallic	c Debris Area			
Antimony	123	31	31	63
Lead	1,120	400	400	166

3.2.3 Initial Response at IRP Site 24/Landfill 29

The COCs detected in Landfill 29 soils were determined to be relatively stable and immobile, therefore no immediate response was required.

3.2.4 Basis for Taking Action at IRP Site 24/Landfill 29

The bases for taking actions at Landfill 29 were due to:

- Elevated antimony (EPC of 224 mg/kg) and lead (EPC of 18,700 mg/kg) concentrations in soils that contributed to unacceptable cancer $(2x10^{-4})$ and non-cancer (HI=10) risks to human health at the *Surface Drum Area*.
- Elevated antimony (EPC of 123 mg/kg) and lead (EPC of 1,120 mg/kg) concentrations in soils that contributed to unacceptable non-cancer risks (HI=4) to human health at the *Subsurface Metallic Debris Area*.

Though the condition of the COC-impacted soil did not require an immediate initial response, an RA was proposed for the site to protect the future human and ecological receptors.

3.2.5 Remedial Action at IRP Site 24/Landfill 29

The COC-impacted soil at the *Surface Drum Area* and the *Subsurface Metallic Debris Area* was estimated at 35 bcy. This includes drums partially filled with soil at the *Surface Drum Area* and metallic debris at the *Subsurface Metallic Debris Area*. The depth of the impacted soil at the *Surface Drum Area* and the *Subsurface Metallic Debris Area*. The depth of the impacted soil at the *Surface Drum Area* and the *Subsurface Metallic Debris Area*. The depth of the impacted soil at the *Surface Drum Area* and the *Subsurface Metallic Debris Area* were estimated at 1 foot and 2 feet, respectively (ICF, 1997a). According to the MARBO ROD, signed on 17 July 1998 (EA, 1998a), *No Action* and *Soil Removal* were evaluated as potential remedial alternatives for Landfill 29. The *IC* and *Soil Cover* were not considered as potential remedial options for Landfill 29 because these alternatives would restrict future land use. Consequently, to obtain unrestricted future land use, *Soil Removal* was proposed to be protective of human health and the environment. The RAOs for the *Soil Removal* alternative were determined to protect human health and the environment by:

- eliminating the direct exposure path to COCs to allow unrestricted access to the site, and
- minimizing the potential migration of COCs to groundwater beneath the site.

3.2.6 Remedial Action Implementation at IRP Site 24/Landfill 29

According to the Final RVR (Shaw, 2001), implementing the cleanup levels of 400 mg/kg and 63 mg/kg for lead and antimony, resulted in a significant increase in the actual soil cleanup volumes versus those estimated in the RI/FS (ICF, 1996). Due to the increase in cleanup volumes, the MARBO ROD had to be amended (Andersen AFB, 2000). Approximately 14,247 bcy of lead- and antimony-contaminated soil and 1,433 bcy of solid waste were removed from Landfill 29 and disposed of at the Consolidation Unit (IRP Site 02/Landfill 2). All lead- and antimony-contaminated with a 2 percent triple super phosphate (TSP), using a pug mill before disposal at the Consolidation Unit. Landfill 29 was backfilled with 8,438 bcy of clean fill and 1,692 bcy of topsoil, taken from an on-site borrow pit. The backfilled material was placed in 6-inch to 12-inch loose lifts that were compacted to a minimum of 85 percent dry density (Figure 4-1) (Shaw, 2001).

3.2.7 Document and Data Review for IRP Site 24/Landfill 29

Since the MARBO ROD was signed, no supporting documents have been generated for Landfill 29, other than those verifying the implementation of the *Soil Removal* alternative. There were no operation and maintenance (O&M) or long term monitoring programs required after the completion of the *Soil Removal* alternative, based on 145 confirmation samples (Shaw, 2001). Therefore no additional information is necessary to further evaluate the effectiveness of the implemented remedy.

3.2.8 Site Inspection of IRP Site 24/Landfill 29

The site was last inspected on 19 February 2004 by a team of Mr. Gregg Ikehara of Andersen AFB, Mr. Mark Ripperda of USEPA, Mr. Michael Cruz of GEPA, Dr. Jim Rosacker and Mr. Paul Dusenbury of Booz-Allen Hamilton, and representatives of the "study" and "cleanup" contractors.

The inspection team walked through the site and examined the excavated areas at Landfill 29 and found that the project objective has been met. The COC-impacted soil and associated debris have all been removed from the site and Landfill 29 has been properly restored requiring no further remedial action (Photo 3-3).

3.2.9 Technical Assessment of Remedial Action at IRP Site 24/Landfill 29

Question A: Is the remedy functioning as intended by the ROD?

The September 2001 Final RVR for Landfill 29 was the last document issued for Landfill 29. There are no additional data available since the completion of the *Soil Removal* alternative. Based on site inspection, the remedy is functioning as intended by the ROD. There have been no changes in the physical condition of the site that would affect the protectiveness of the remedy.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

The land and resource use at Landfill 29 has not changed. With COC-impacted soil and solid debris removed from the site followed by clean confirmation sampling, the future land use at Landfill 29 is unlimited and the access to site is unrestricted.

The toxicity data and PRGs for antimony and lead have not significantly changed, since the ROD was signed, that would alter the conclusion of the HHRA and ERA results. The Landfill 29 RGOs for the Landfill 29 COCs as intended by the ROD were selected to correspond to the 1998 Residential PRG for lead and the BTV for antimony. As presented below, the RGOs have not changed.

COCs	EPCs (mg/kg)	Landfill 29 RGOs (mg/kg)	2002 Residential PRGs or BTVs (mg/kg)		
Surface Drum Area	<u></u>				
Antimony	224	63	63		
Lead	18,700	400	400		
Subsurface Metallic Debris	s Area				
Antimony	123	63	63		
Lead	1,120	400	400		

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No other information has come to light that could alter or call into question the protectiveness of the remedy at Landfill 29. The ARARs and TBCs, pertinent to *Soil Removal* are still met and the human health and ecological risks have been adequately addressed at the site.

3.2.10 Technical Assessment Summary of IRP Site 24/Landfill 29

Based on the available document, data, and site inspection the *Soil Removal* alternative has functioned as intended by the ROD to eliminate the direct exposure path to COCs and to minimize the potential migration of COCs to groundwater beneath the site.

3.2.11 Issues, Recommendations, and Follow-up Actions for IRP Site 24/Landfill 29

	Recommendations /	Party	Party Oversight Milestone		Affect Protectiveness? Yes/No	
Issues	Follow-Up Actions	Responsible	Agency	Date	Current	Future
None	None	Not	Not	Not	Not	Not
		Applicable	Applicable	Applicable	Applicable	Applicable

3.2.12 Protectiveness Statement for IRP Site 24/Landfill 29

Based on the review of existing data and site inspections, the *Soil Removal* alternative at Landfill 29 is currently protective of human health and the environment. This protectiveness is equally valid for the future, unless a new contamination source is introduced to the site.

3.2.13 Next Review of IRP Site 24/Landfill 29

The next five-year review of the MARBO ROD is scheduled after 02 March 2009, five years from this review. The second five-year review of MARBO ROD should not include Landfill 29, unless a new contamination source is discovered at the site.

3.3 First Five-Year Review of IRP Site 38/MARBO Laundry

3.3.1 IRP Site 38/MARBO Laundry Background

IRP Site 38/MARBO Laundry (MARBO Laundry) is located in the eastern half of the MARBO Annex (Figure 1-5). The MARBO Laundry was operated as a military laundry facility between 1948 and 1973 (Figure 4-2). The laundry facility was modified in 1970 to include a dry cleaning facility. This facility may have discharged solvents to the base sanitary sewer via a floor drain in the dry cleaning room. Since 1974, MARBO Laundry has been utilized as a storage facility for furniture, among other uses (ICF, 1996). The building was renovated during the RI, and the renovation was completed in 1997. The renovation included scraping old paint from the outside walls, causing paint chips to be deposited on the ground surface (grass or soil) outside the building. Surface soil samples were collected along the periphery of the building (ICF, 1996).

As presented in Figure 4-2, the primary areas of interest included:

- The North and South Transformer Areas.
- Areas Near the Edge of the Building surrounding the MARBO Laundry.

3.3.2 History of Contamination at IRP Site 38/MARBO Laundry

According to HHRA and ERA, surface soils in the *North* and *South Transformer Areas* and the *Areas Near the Edge of Building* were impacted by COCs and required RA. The COCs at the *North* and *South Transformer Areas* were Aroclor 1254 and lead. The surface soil in the *Areas Near the Edge of the Building* were impacted by Aroclor 1254 (EA, 1997). The EPCs that were used in the MARBO ROD for the HHRA and their respective 1995 and 2002 Residential PRGs are listed below:

<u>COCs</u>	<u>EPC</u> <u>1995 Ro</u> (mg/kg) <u>PRGs</u>		<u>2002 Residential</u> <u>PRGs (mg/kg)</u>
North and South Transformer Areas			
Aroclor 1254	26	1.4 (nc)	0.22 (ca)
Lead	4,210	400	400
Final First Five-Year Review of Record of Decision for MARBO Operable Unit	3-11		July 2004

COCs	<u>EPC</u>	<u>1995 Residential</u>	2002 Residential
	(mg/kg)	<u>PRGs (mg/kg)</u>	PRGs (mg/kg)
<i>Area Near the Edge of the Building</i> Aroclor 1254	1.9	1.4 (nc)	0.22 (ca)

(nc) – the 1995 Residential PRG is based on non-cancer endpoint (ca) – the 2002 Residential PRG is based on cancer endpoint

3.3.3 Initial Response at IRP Site 38/MARBO Laundry

The COCs at MARBO Laundry were in soil and relatively stable and immobile. Thus, no immediate response was necessary.

3.3.4 Basis for Taking Action at IRP Site 38/MARBO Laundry

The basis for taking action at the MARBO Laundry included the elevated lead concentrations and unacceptable cancer $(4x10^{-4})$ and non-cancer (HI=19) risks associated with Aroclor 1254 concentrations at the *South Transformer Area*. Elevated lead concentrations and unacceptable cancer risks $(2x10^{-5})$ were associated with elevated Aroclor 1254 concentrations at the *North Transformer Area*. Unacceptable cancer $(5x10^{-5})$ and non-cancer (HI=3) risks were associated with elevated Aroclor 1254 concentrations at the *North Transformer Area*.

3.3.5 Remedial Action at IRP Site 38/MARBO Laundry

The lead- and Aroclor 1254-impacted soil at the *North* and *South Transformer Areas* and the *Area Near the Edge of Building* was estimated to extend five feet from the edge of the building and the transformers to a depth of 1 foot, approximately 135 bcy (ICF, 1997a).

According to the MARBO ROD (EA, 1998a), *No Action* and *Soil Removal* were evaluated as potential remedial alternatives for the MARBO Laundry. The *IC* and *Soil Cover* alternatives were not considered favorably as they would restrict the future land use at the site. Consequently, in order to allow unrestricted future use of the land, *Soil Removal* was proposed as the alternative that would be protective of human health and the environment, and would allow unrestricted use of the land. The RAO for *Soil Removal* at MARBO Laundry was deemed protective of human health and the environment by:

- eliminating the direct exposure path to COCs to allow unrestricted access to the site, and
- minimizing the potential migration of COCs to groundwater beneath the site.

3.3.6 Remedial Action Implementation at IRP Site 38/MARBO Laundry

According to the Final RVR (Shaw, 2000) the 1998 Residential PRGs were used as RAOs for lead and Aroclor 1254. Using the 1998 Residential PRGs as cleanup levels (400 mg/kg for lead and 0.97 mg/kg for Aroclor 1254), increased the cleanup volume over what was originally estimated by the RI/FS (ICF, 1996). According to the final RVR, approximately 450 bcy of lead- and Aroclor 1254-impacted soil were removed from MARBO Laundry and disposed of at

Andersen AFB Main Base Landfill. The final cleanup area was a 5- by 15-foot wide by 1- to 4.5-foot deep excavation along the edge of the building (Figure 4-2). The Aroclor 1254-impacted soil was transported in accordance with the Toxic Substance Control Act (TSCA). MARBO Laundry excavated areas were backfilled with 450 bcy of clean fill that was compacted to 90 percent of the maximum dry density (Shaw, 2000).

3.3.7 Document and Data Review for IRP Site 38/MARBO Laundry

Since the MARBO ROD was signed, no supporting documents have been generated pertaining to the MARBO Laundry, other than documents verifying the implementation of the *Soil Removal* at the site. There was no O&M or long term monitoring program required after the implementation of the *Soil Removal* alternative, based on 35 confirmation samples (Shaw, 2000). Therefore no additional information is necessary to further evaluate the effectiveness of the implemented remedy.

3.3.8 Site Inspection of IRP Site 38/MARBO Laundry

The site was last inspected on 19 February 2004 by a team of Mr. Gregg Ikehara of Andersen AFB, Mr. Mark Ripperda of USEPA, Mr. Michael Cruz of GEPA, Dr. Jim Rosacker and Mr. Paul Dusenbury of Booz-Allen Hamilton, and representatives of the "study" and "cleanup" contractors.

The inspection team walked through the site and examined the excavated areas at MARBO Laundry and found that the project objective had been met. The COC-impacted soil and associated debris have all been removed from the site and MARBO Laundry has been properly restored requiring no further remedial action (Photos 3-4 through 3-6).

3.3.9 Technical Assessment of Remedial Action at IRP Site 38/MARBO Laundry

Question A: Is the remedy functioning as intended by the ROD?

The Final RVR for MARBO Laundry (Shaw, 2000) was the last related document issued for the site. There are no additional data available since the implementation of the *Soil Removal* alternative. Based on site inspection, the remedy is functioning as intended by the ROD. There have been no changes in the physical condition of the site that would affect the protectiveness of the remedy.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

The land and resource use at MARBO Laundry has not been changed and the site still remains inactive. With COC-impacted soil removed from the site, followed by clean confirmation sampling, the future land use at MARBO Laundry is unlimited and access to site is unrestricted.

The toxicity data and PRGs for antimony and lead have not changed significantly, since the ROD was signed, that would alter the HHRA and ERA results. The RGOs used for the MARBO

Laundry cleanup were revised to the meet the 1998 Residential PRGs for lead and Aroclor 1254 rather than the 1995 Residential PRGs. As presented below, the 1995 Residential PRG for lead has not changed between 1995, 1998, and 2002. The Residential PRG for Aroclor 1254 has changed from 1.4 mg/kg in 1995, to 0.97 mg/kg in 1998, to 0.22 mg/kg in 2002. It should be noted that the 1995 and 1998 Residential PRGs for Aroclor 1254 represent non-cancer endpoints and that the 2002 Residential PRG represents a cancer endpoint. A review of the Final RVR (Shaw, 2000) indicates that the RA was conducted in three phases, until Aroclor 1254 and lead concentrations at 20 confirmatory sample locations were below cleanup goals (400 mg/kg for lead and 0.97 mg/kg for Aroclor 1254). Soil was removed along the north and south sides of the laundry building, to a depth of 1-foot bgs, and 20 confirmatory samples were collected (ten each on each side of the building). Confirmatory samples collected at eight locations were below cleanup goals for both Aroclor 1254 and lead, and no additional RA was required. Around 12 sample locations, where Aroclor 1254 and/or lead concentrations exceeded the cleanup goals, additional soils were removed to a depth of 3-ft bgs, followed by confirmatory sampling. Confirmatory samples at nine of these locations were below cleanup goals for both Aroclor 1254 and lead, and no additional RA was required. At this point the lead cleanup was completed. Around the remaining three locations, Aroclor 1254-contaminated soil was removed to a depth of 4.0- to 4.5-ft bgs, followed by confirmatory sampling. Confirmatory samples at all three locations were below cleanup goals for Aroclor 1254, and no additional RA was required. At the completion of the RA, all confirmation samples had Aroclor 1254 concentrations below both the 1998 Residential PRGs (0.97 mg/kg) and the revised 2002 Residential PRG (0.22 mg/kg).

COCs	<u>EPC</u> (mg/kg)	<u>MARBO Laundry</u> RGOs (mg/kg)	2002 Residential PRGs or BTVs (mg/kg)
<i>North and South Transformer Areas</i> Aroclor 1254 (pre-cleanup) Lead	26 4,210	0.97 (nc) 400	0.22 (ca) 400
<i>Area Near the Edge of the Building</i> Aroclor 1254	1.9	0.97 (nc)	0.22 (ca)

(nc) – the 1995 Residential PRG is based on non-cancer endpoint

(ca) - the 2002 Residential PRG is based on cancer endpoint

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No other information has come to light that could call into question the protectiveness of the remedy at MARBO Laundry. The ARAR and TBCs, pertinent to the *Soil Removal* alternative are still met and risks to human health and the environment have been adequately addressed at the site.

3.3.10 Technical Assessment Summary of IRP Site 38/MARBO Laundry

Based on the available document, data, and site inspection the *Soil Removal* has functioned as intended by the ROD to eliminate the direct exposure path to COCs and to minimize the potential migration of COCs to groundwater beneath the site.

3.3.11 Issues, Recommendations, and Follow-up Actions for IRP Site 38/MARBO Laundry

					Affect Protectiveness? Yes/No	
Issues	Recommendations / Follow-Up Actions	Party Responsible	Oversight Agency	Milestone Date	Current	Future
None	None	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable

3.3.12 Protectiveness Statement for IRP Site 38/MARBO Laundry

Based on the review of existing data and site inspections, the *Soil Removal* alternative at MARBO Laundry is currently protective of human health and the environment. This protectiveness is equally valid for the future, unless a new contamination source is introduced to the site.

3.3.13 Next Review of IRP Site 38/MARBO Laundry

The next five-year review of MARBO ROD is scheduled after 02 March 2009, five years from this review. The second five-year review of MARBO ROD should not include MARBO Laundry, unless a new source of contamination is discovered at the site.

This page is intentionally left blank

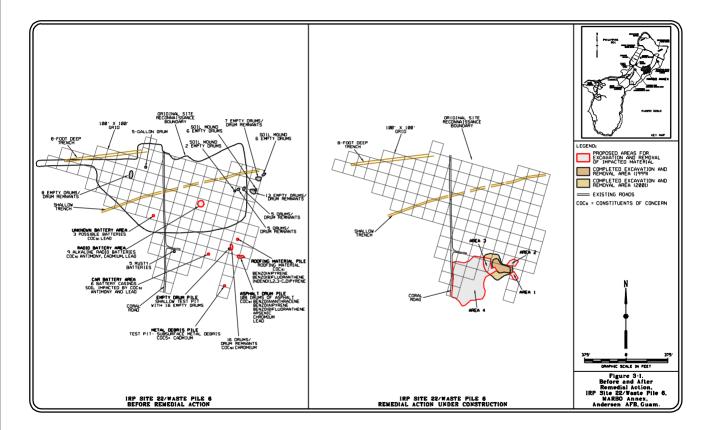


Photo 3-1 Area 2 at Waste Pile 6 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 3-2 Area 4 at Waste Pile 6 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 3-3 Landfill 29 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 3-4 South Side of MARBO Laundry After Completion of Remedial Action During February 2004 Site Inspection.

First Five-Year Review of Record of Decision for MARBO Operable Unit

Photo 3-5 North Side of MARBO Laundry After Completion of Remedial Action During February 2004 Site Inspection.

Photo 3-6 Remnant of Former Transformer at MARBO Laundry After Completion of Remedial Action During February 2004 Site Inspection.

4.0 MARBO ANNEX SITES WITH OPERATING REMEDIAL ACTIONS

IRP Site 20/Waste Pile 7 (Waste Pile 7) is classified as *Operating Remedial Action (RA)*, as the RA has been implemented but residual COCs have been left in place at concentrations that do not allow for unrestricted use of or unlimited access to the land. An *Operating RA* may require management in perpetuity (Waste Pile 7). The first five-year review of Waste Pile 7 is evaluated herein.

4.1 First Five-Year Review of Site 20/Waste Pile 7

4.1.1 Site 20/Waste Pile 7 Background

Waste Pile 7 is located in the south-central portion of the MARBO Annex (Figure 1-3). Waste Pile 7 was an abandoned quarry that was partially filled with waste, and covered with soil and vegetation. Waste Pile 7 was divided into two broad areas of concern with respect to the potential for contamination. Area A included the *Buried Waste Area* (approximately 1.84 acres in size with an average depth to the bottom of the fill layer of 10.8 feet), and a small area covered with ten empty, deteriorated drum remnants (Figure 4-1). Area B included numerous mounds of soil, some of which were covered with construction debris, municipal trash, and metal debris (EA, 1998a).

4.1.2 History of Contamination at Site 20/Waste Pile 7

According to the HHRA and ERA, Area A had some surface soil contamination that required a RA. The COCs identified at Waste Pile 7 included lead, pesticides (4,4'-DDE, 4,4-DDT, dieldrin, alpha chlordane and gamma chlordane), and the PCB-Aroclor 1260 (EA, 1997a). The EPCs that were used in the HHRA in the MARBO RI/FS (ICF, 1996) are presented below along with their respective BTVs and the 1995 and 2002 Residential PRGs:

<u>COCs</u>	<u>EPCs</u> (mg/kg)	<u>1995</u> <u>Residential</u> <u>PRGs (mg/kg)</u>	<u>2002</u> <u>Residential</u> <u>PRGs (mg/kg)</u>	<u>BTVs (mg/kg)</u>
4,4'-DDE	6.7	1.3	1.7	NA
4,4'-DDT	6.2	1.3	1.7	NA
Dieldrin	0.12	0.028	0.030	NA
Alpha chlordane	0.44	0.34	0.35	NA
Gamma chlordane	0.38	0.34	0.35	NA
Aroclor 1260	4.4	0.066 #	0.22	NA
Lead	3,604	400	400	166

= PRG is based on total PCB concentration; prior to 2000 there was no PRG for Aroclor 1260. NA = Not Applicable, BTV is applicable only for inorganic compounds (metals).

4.1.3 Initial Response

The COCs detected in Waste Pile 7 soils were determined to be relatively stable and immobile, therefore no immediate response was required.

4.1.4 Basis for Taking Action at Site 20/Waste Pile 7

The basis for taking action at Waste Pile 7 related to excess cancer $(2x10^{-4})$ and non-cancer (HI=4) risks associated with elevated concentrations of Aroclor 1260, pesticides, and lead in surface and subsurface soils in the *Buried Waste Area* (Figure 4-1). Though the condition of the COC-impacted soil did not require an immediate initial response, an RA was proposed for the site to be protective of future human and ecological receptors.

4.1.5 Remedial Action at Site 20/Waste Pile 7

The COC-impacted soils at *Buried Waste Area* covered an approximately 1.8-acre area to a depth of 3 to 17 feet deep (Figure 4-1). According to the MARBO ROD (EA, 1998a), *No Action, IC, Soil Removal*, and *Soil Cover* remedial alternatives were evaluated for Waste Pile 7. However, due to the high volume of the COC-impacted soils that would require removal or treatment, the *Soil Cover* alternative was selected as the preferred alternative. The soil cover alternative was deemed to be protective of human health and the environment. The RAOs for the *Soil Cover* alternative that would be protective of human health and the environment included:

- eliminating the direct exposure path to COCs, and
- minimizing the potential migration of COCs to groundwater beneath the site.

Though the *Soil Cover* alternative eliminates direct exposure to COCs, it does not allow for unrestricted future land use at Waste Pile 7. As such, a written concurrence of the three FFA signatories is required before USAF can take any action at Waste Pile 7 that could compromise the structural integrity of the *Soil Cover*. Similarly, the USAF shall notify the other two FFA signatories of any plan to release or transfer the Waste Pile 7 property to a federal, or non-federal entity, in accordance with CERCLA 120(h)(3) (EA, 1998). In addition the MARBO ROD stipulates that the USAF shall also place warning signs around the periphery of Waste Pile 7 to notify the public and to restrict activities that may jeopardize the structural integrity of the *Soil Cover*, such as trenching or excavation.

4.1.6 Remedial Action Implementation at Site 20/Waste Pile 7

According to final RVR, all municipal trash and metallic debris were relocated to the low-lying section of the *Buried Waste Area* and then the *Soil Cover* was constructed over the 1.8-acre *Buried Waste Area* (Shaw, 2000).

The *Soil Cover* consisted of a 6-inch lift of 6-inch minus crush coral sub grade, covered by a 12-inch lift of a 2-inch minus limestone gravel containment layer, which in turn was covered by a 6-inch lift of topsoil. The sub grade and containment layers were compacted to 95 percent of the maximum dry density. As presented in Figure 4-1, water control structures were constructed using 12-inch deep earthen swales, 6-inch to 10-inch diameter boulder riprap, and a large ponding basin to control the drainage pattern and minimize the erosion against a potential

50-year storm. The site was then re-vegetated and an orange plastic fence was initially installed to protect the re-vegetated areas from erosion by wildlife (Shaw, 2000).

4.1.7 Document and Data Review for Site 20/Waste Pile 7

Since the MARBO ROD was signed, the only documents generated regarding Waste Pile 7, are those verifying the implementation of the *Soil Cover* alternative at the site. There was no O&M or LTM program requirement for the *Soil Cover* alternative and therefore there are no supporting data to further evaluate the effectiveness of the remedy.

4.1.8 Site Inspection of Site 20/Waste Pile 7

The site was last inspected on 19 February 2004 by a team of Mr. Gregg Ikehara (Andersen AFB), Mr. Mark Ripperda (USEPA), Mr. Michael Cruz (GEPA), Dr. Jim Rosacker and Mr. Paul Dusenbury (Booz-Allen Hamilton), and representatives of "study" and "cleanup" contractors.

The inspection team walked through the site and examined the excavated areas at Waste Pile 7 and found that, for the most part, the soil cover, the riprap, and the ponding basin at Waste Pile 7 were intact (Photos 4-1 and 4-2). However, according to the last site inspection on 22 April 2004, the upper 6 inches of the *Soil Cover* and the re-vegetation are damaged by a small pig wallow and rainfall (Photo 4-3), and also by growth of small trees (Photo 4-4). Additionally, there were signs of truck traffic at the site and no warning signs were observed around the site to warn against intrusive activities such as driving, trenching, or excavation at the site (Photos 4-5 and 4-6).

4.1.9 Technical Assessment of Remedial Action at Site 20/Waste Pile 7

Question A: Is the remedy functioning as intended by the ROD?

The final RVR for Waste Pile 7 (Shaw, 2002) was the last related document issued for Waste Pile 7. There are no additional data available since implementing the Soil Cover. Based on the site inspection, the remedy is not fully functioning as intended by the ROD. Over time, continued, unchecked growth of small trees, pig wallowing activity, and truck traffic at the site may jeopardize the integrity of the Soil Cover at Waste Pile 7.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

The land and resource use at Waste Pile 7 has not been changed. With COC-impacted soil beneath the *Soil Cover*, the future land use at Waste Pile 7 is still restricted. The site and its vicinity are still inactive and therefore the exposure assumptions for the HHRA and ERA are still valid for the site. No new human health or ecological exposure pathways or receptors have been identified for the site.

The toxicity data and Residential PRGs for 4,4'-DDE, 4,4-DDT, dieldrin, alpha chlordane, gamma chlordane, and Aroclor 1260 have changed slightly since the ROD was signed on 17 July 1998. However, those changes do not alter the HHRA and ERA results or the effectiveness of

the selected remedy. As presented below, even though some of the Residential PRGs have changed since 1995, the changes are insignificant and do not alter the remedial alternative for Waste Pile 7.

<u>COCs</u>	EPCs (mg/kg)	<u>1995 Residential</u> <u>PRGs (mg/kg)</u>	2002 Residential PRGs (mg/kg)
4,4'-DDE	6.7	1.3	1.7
4,4'-DDT	6.2	1.3	1.7
Dieldrin	0.12	0.028	0.030
Alpha chlordane	0.44	0.34	1.6
Gamma chlordane	0.38	0.34	1.6
Aroclor 1260	4.4	0.066#	0.22
Lead	3,604	400	400

= PRG is based on total PCB concentration rather than Aroclor; prior to 2000 there was no PRG for Aroclor 1260.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

Based on the site inspection, the integrity of the *Soil Cover* is starting to deteriorate and if allowed to continue, the *Soil Cover* may not be protective of the human health or the environment.

4.1.10 Technical Assessment Summary of Site 20/Waste Pile 7

Based on the available document, data, and site inspection the *Soil Cover* alternative is not functioning as intended by the ROD to eliminate the direct exposure path to COCs and to minimize the potential migration of COCs to groundwater beneath the site. The specific issues at Waste Pile 7 are discussed in the section below, followed by recommendations.

4.1.11 Issues, Recommendations, and Follow-up Actions for Site 20/Waste Pile 7

	Recommendations /	Party	Oversight	Milestone	Affect Protectiveness? Yes/No	
Issues	Follow-Up Actions	Responsible	Agency	Date	Current	Future
1) No signs are posted around the <i>Soil Cover</i> to prevent activities that may damage the cover, such as driving trucks, trenching, or excavation.	Post warning signs around the periphery of the site to restrict any activities that may jeopardize the structural integrity of the <i>Soil Cover</i> .	USAF	USEPA & GEPA	10/01/2004	N	Y
2) Pig wallow and small trees have damaged small area of the <i>Soil Cover</i> . If continues, soil erosion may expose COCs to surface.	Implement a quarterly O&M program to check the integrity of the <i>Soil Cover</i>).	USAF	USEPA & GEPA	10/01/2004	Ν	Y
3) The <i>Soil Cover</i> is subject to frequent island natural disasters such as typhoons and earthquakes that can damage the structural integrity of the <i>Soil Cover</i> .	Implement an event driven inspection program to check the integrity of the <i>Soil Cover</i> after each natural disaster.	USAF	USEPA & GEPA	10/01/2004	Ν	Y

A daily report should be kept of every O&M visit to the site. The daily report should include: the date, weather condition, personnel on site, observations regarding the structural integrity of the soil cover (supported by photographs), and any corrective actions that are performed (supported by photographs). These daily reports should be compiled in a semi-annual report and distributed to the Remedial Project Managers (RPM).

4.1.12 Protectiveness Statement for Site 20/Waste Pile 7

Based on the review of existing data and site inspections, the *Soil Cover* at Waste Pile 7 is currently protective of human health and the environment. This protectiveness is valid as long as erosion, tree roots, typhoons, or earthquakes do not damage the structural integrity of the *Soil Cover*. In order for the *Soil Cover* to be protective in the long-term, a regular maintenance program is recommended for the site along with a site inspection after any natural disaster to ensure the structural integrity of the *Soil Cover*. Additionally, posting signs are recommended around the site to prevent any subsurface exploration that may damage the *Soil Cover*.

4.1.13 Next Review of Site 20/Waste Pile 7

The next five-year review of MARBO ROD is scheduled after 02 March 2009, five years from this review, and should include Waste Pile 7. The related review period would be from 02 March 2004 to 02 March 2009.

This page is intentionally left blank

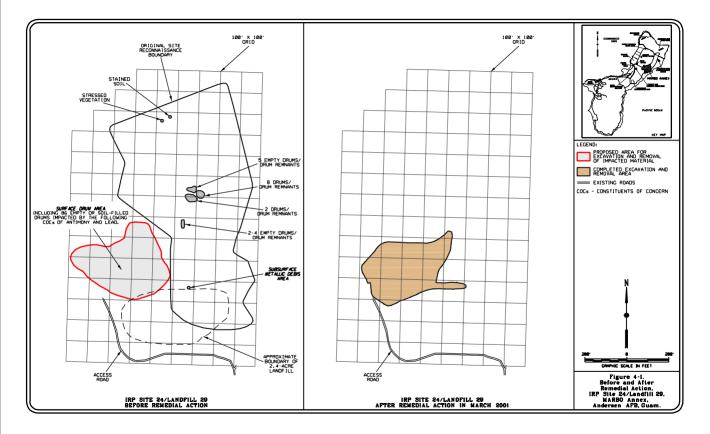


Photo 4-1 Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 4-2 Waste Pile 7 Drainage Area After Completion of Remedial Action During February 2004 Site Inspection.

Photo 4-3 Soil Cover Damaged by Pig Wallow at Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 4-4 Small Tree Growing on Soil Cover at Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 4-5 Sign of Truck Traffic at Waste Pile 7 After Completion of Remedial Action During February 2004 Site Inspection.

Photo 4-6 Waste Pile 7 Entrance Sign During February 2004 Site Inspection.

5.0 NEW IRP SITES IN MARBO ANNEX SCHEDULED FOR REMEDIAL INVESTIGATION UNDER THE BASEWIDE OPERABLE UNIT

Even though AOC 54, AOC 55, and AOC 56 are located in the MARBO Annex, they were not part of MARBO Annex OU and were not included in the July 1998 MARBO OU ROD. By the time AOC 54, AOC 55, and AOC 56 were studied under the Phase II EBS (EA, 1998b), the MARBO OU ROD had already been signed. However, according to the Phase II EBS, AOC 54, AOC 55, and AOC 56 were recommended for further investigation. Further investigation of these sites may help identify potential TCE and PCE sources observed in the nearby MARBO groundwater. Subsequently, AOC 54, AOC 55, and AOC 56 have been re-classified as IRP Site 52, IRP Site 53, and IRP Site 54, respectively, and are programmed for further environmental investigation under the FFA and in accordance with the CERCLA. Remedial investigations of IRP Site 52, IRP Site 53, and IRP Site 54 are programmed for 2005 as part of the Basewide OU, and investigation results will be included in the second five-year review. Until these sites are investigated, warning signs should be posted around IRP Site 54 are presented in this section.

5.1 IRP Site 52 (Formerly AOC 54) Operational Support Buildings

5.1.1 IRP Site 52/Operational Support Buildings Background

IRP Site 52/Operational Support Buildings (IRP Site 52) is located in the north-central portion of the MARBO Annex (Figure 1-3). An initial investigation was conducted under the Phase I and II EBSs under the former designation of AOC 54 (EA, 1998b and ICF, 1995). According to the EBS reports, IRP Site 52 includes the foundations (concrete pads) of former operational support buildings including tool shops, a carpenter shop, a generator shop, a heavy vehicle shop, and vehicle maintenance shops (Figure 5-1). In addition, a concrete pit associated with the former location of the heavy vehicle shop was located at the site. Due to past operations at the former shops, potentially hazardous materials may have been discharged to the soils.

5.1.2 History of Contamination at IRP Site 52/Operational Support Buildings

During the Phase II EBS field investigation the concrete pads and surrounding area were covered by trees and heavy vegetation (EA, 1998b). No evidence of stained soil or stressed vegetation was evident at the site. The Phase II EBS included collecting 8 composite surface soil samples within 5 feet of the concrete pads, at depths of 2 inches to 6 inches bgs. Additionally, 13 discrete surface soil samples were collected to better define the extent of the contamination and to verify the presence of specific COPCs detected in the composite surface soil samples. Composite and discrete surface soil samples were analyzed for semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals (EA, 1998b).

No SVOCs or PCBs were detected in any of the surface soil samples at concentrations that exceeded Residential PRGs (Figure 5-1 and Table 5-1). Composite surface soil samples AAFB06A54S031 and AAFB06A54S038 contained antimony at concentrations that exceeded the BTV (63 mg/kg) and the 1995 Residential PRG (31 mg/kg) (Figure 5-1 and Table 5-1). Additionally, lead concentrations exceeding the BTV (166 mg/kg) and the 1995 Residential PRG

(400 mg/kg), were detected in composite surface soil samples AAFB06A54S029, AAFB06A54S030, AAFB06A54S032, and AAFB06A54S038, (Figure 5-1).

Discrete surface soil samples were collected adjacent to sample locations areas where aluminum, antimony and lead were detected in composite surface soil samples (EA, 1998b). Lead concentrations exceeding the BTV and Residential PRG were detected in discrete surface soil samples AAFB06A54S995, AAFB06A54S996, AAFB06A54S998, AAFB06A54S1003, AAFB06A54S1004, AAFB06A54S1005, and AAFB06A54S1007 (Table 5-1 and Figure 5-1).

No subsurface soil samples were collected, as per the approved work plans, because bedrock was encountered at depths shallower than 2 feet bgs. A total of 53 soil gas samples were collected, and analyzed for VOCs using the on-base gas chromatograph/mass spectrometer (GC/MS). No target VOCs were detected in any of the 53 soil gas samples.

At conclusion of the Phase II EBS, according to Air Force Instruction (AFI) 32-7066 (USAF, 1994), IRP Site 52 was classified as a Category 6, where contamination is present at concentrations above action levels, and required response actions have not yet been implemented.

5.1.3 Upcoming Field Investigation at IRP Site 52/Operational Support Buildings

The USAF is programming funding for an EE/CA at IRP Site 52 that is currently scheduled for 2005. The EE/CA will establish RAOs and characterize cleanup areas for lead-contaminated soil. In addition to discrete surface soil samples, because no subsurface soil samples were collected during the EBS, the EE/CA will include subsurface soil sampling, trenching, or soil borings to investigate for potential subsurface contaminant sources (Figure 5-2. Furthermore, the subsurface investigation may explore for suspected source areas of chlorinated VOCs that are observed in the groundwater (monitoring well IRP-31) down gradient of the site (Figure 5-2). If a source of chlorinated VOCs is found at IRP Site 52, a monitoring well will be programmed.

5.2 IRP Site 53 (Formerly AOC 55) Operational Support Buildings

5.2.1 IRP Site 53/Operational Support Buildings Background

IRP Site 53/Operational Support Buildings (IRP Site 53) is located in the north-central portion of the MARBO Annex (Figure 1-3). An initial investigation was conducted under the Phase I and II EBSs under the former designation of AOC 55 (EA, 1998b and ICF, 1995). According to the Phase I EBS records and the Phase II EBS field verification, IRP Site 53 was a former gas station with two associated rusted aboveground storage tanks (ASTs) as shown in Figure 5-3. Due to past operations, discharge of fuel-related constituents to the soils may have occurred.

5.2.2 History of Contamination at IRP Site 53/Operational Support Buildings

During the Phase II EBS field investigation, the areas near the rusted ASTs were covered by trees and heavy vegetation (EA, 1998b). No evidence of stained soil or stressed vegetation was evident at the site. The Phase II EBS field investigation included collecting two composite surface soil samples within 5 feet of the ASTs. Composite surface soil samples were collected at

3- to 6-inches bgs and analyzed for SVOCs, PCBs and metals (EA, 1998b). No SVOCs or PCBs were detected in any of the soil samples (Figure 5-3). Composite surface soil samples AAFB06A55S048 and AAFB06A55S049 contained lead and manganese, respectively, at concentrations that exceeded the BTVs and 1995 Residential PRGs (Table 5-2). The COCs (lead) detected in IRP Site 53 soils were determined to be relatively stable and immobile, therefore no immediate response was required.

No subsurface soil samples were collected, as per the approved work plans, because bedrock was encountered at depths shallower than 2 feet bgs. However 10 soil gas samples were collected and analyzed for VOCs using the on-base GC/MS. No target VOCs were detected in any of the soil gas samples.

According to AFI 32-7066 (USAF, 1994), IRP Site 53 was assigned to Category 6, where contamination is present at concentrations above action levels, and required response actions have not yet been implemented.

5.2.3 Remedial Action at IRP Site 53/Operational Support Buildings

The Air Force is programming funding for an EE/CA at IRP Site 53, which is currently scheduled for 2005. The EE/CA will establish RAOs and characterize cleanup areas for lead-contaminated soil. In addition to discrete surface soil samples, the EE/CA will include subsurface soil sampling to investigate for potential subsurface contaminant sources (Figure 5-4). IRP Site 53 is not a probable source of the TCE or PCE observed in MARBO groundwater, so no monitoring wells are currently being proposed.

5.3 IRP Site 54 (Formerly AOC 56) Operational Support Buildings

5.3.1 IRP Site 54/Operational Support Buildings Background

IRP Site 54/Operational Support Buildings (IRP Site 54) is located in the central portion of the MARBO Annex (Figure 1-3). An initial investigation was conducted under the Phase I and II EBSs under the former designation of AOC 56 (EA, 1998b and ICF, 1995). According to the EBS reports, IRP Site 54 included a sign paint shop, battery shop, refrigeration shop, plumbing shop, electric shop, carpenter shop, welding shop, motor pool garage, grease stand, machine shop, preventive maintenance shops, generator shack, paint shed, steam shop, and warehouses (Figure 5-5).

5.3.2 History of Contamination at IRP Site 54/Operational Support Buildings

During the Phase II EBS field investigation the concrete pads and surrounding area were covered by trees and heavy vegetation (EA, 1998b). No evidence of stained soil or stressed vegetation was evident at the site.

The Phase II EBS included collecting 11 composite surface soil samples within 5 feet of the concrete pads, at depths of 2- to 6-inches bgs. Additionally, 7 discrete surface soil samples were collected to better define the extent of the contamination and verify the presence of specific

COPCs detected in the composite surface soil samples. Composite and discrete surface soil samples were analyzed for SVOCs, PCBs, and metals (EA, 1998b).

Surface soil samples AAFB06A56S092, AAFB06A56S095, AAFB06A56S103, AAFB06A56S110, and AAFB06A56S111 contained benzo(a)pyrene at concentrations that exceeded the 1995 Residential PRG (61 mg/kg) (Table 5-3 and Figure 5-5). The PCB Aroclor 1260 was detected in sample AAFB06A56S100 at concentrations equal to the 1995 Residential PRG for total PCBs (Table 5-3 and Figure 5-5). Surface soil samples AAFB06A56S092, AAFB06A56S096, AAFB06A56S100, AAFB06A56S101, and AAFB06A56S109 contained lead at concentrations that exceeded the 1995 Residential PRG (400 mg/kg) (Table 5-3 and Figure 5-5). The COCs detected in IRP Site 54 soils were determined to be relatively stable and immobile, therefore no immediate response was required.

No subsurface soil samples were collected, as per the approved work plans, because bedrock was encountered at depths shallower than 2 feet bgs. However 53 soil gas samples were collected and analyzed for VOCs using the on-base GC/MS. No target VOCs were detected in any of the soil gas samples.

At the conclusion of the Phase II EBS, according to AFI 32-7066 (USAF, 1994), IRP Site 54 was classified as a Category 6, where contamination is present at concentrations above action levels, and required response actions have not yet been implemented.

5.3.3 Upcoming Field Investigation at IRP Site 54/Operational Support Buildings

The Air Force is programming funding for an EE/CA at IRP Site 54 that is scheduled for 2005. The EE/CA will establish RAOs and characterize cleanup areas for benzo(a)pyrene-, lead-, and Aroclor 1260-contaminated soil. Because no subsurface soil samples were collected during the EBS, in addition to discrete surface soil samples, the EE/CA will include trenching or soil borings to investigate for potential subsurface contaminant sources. Also, the subsurface exploration may explore for suspected source areas of chlorinated VOCs that are observed in the groundwater (monitoring well IRP-31) down gradient of the site (Figure 5-6). If a source of chlorinated VOCs is found at IRP Site 54, a monitoring well will be programmed.

	Sample Identifier					A54S028	A54S029	A54S030	A54S031	A54S032	A54S038	A54S040	A54S041D	
	Sampling Depth (ft)			PRG	PRG	0.20-0.30	0.00-0.30	0.20-0.40	0.30-0.30	0.30-0.40	0.20-0.30	0.20-0.50	0.20-0.50	
Method	Analyte	Units	BTVs	Res	Indust									
SEMIVOL	ATILE ORGANIC COMP	POUNDS												
SW8270	PYRENE	ug/kg	N/A	2,300,000	54,000,000	<370	110 J	<800	<440	<380	<420	<810	<840	
TOTAL M	ETALS													
SW6010	ALUMINUM	mg/kg	173,500	76,000	100,000	9,200	28,200	24,500	232,000	34,700	16,200	893 N	1,010 N	
SW6010	ANTIMONY	mg/kg	63	31	820	3.4 BN	11.7 BN	42.4 N	6.5 BN	16.1 BN	85.3 N	2.5 B	2.4 B	
SW6010	BARIUM	mg/kg	335	5,400	100,000	98.2	188	25.2	43.6	105	62.7	3.1 B	3.7 B	
SW6010	BERYLLIUM	mg/kg	3.3	150	2,200	< 0.1	0.39 B	0.31 B	0.8 B	0.56 B	0.18 B	< 0.12	<.12	
SW6010	CADMIUM	mg/kg	6.5	37	810	1.8	7.4	5.3	3.1	2.8	6	0.32 B	.4 B	
SW6010	CALCIUM	mg/kg	N/A	N/A	N/A	351,000	278,000	329,000	283,000	318,000	293,000	362,000	331,000	
SW6010	CHROMIUM, TOTAL	mg/kg	1,080	210	450	75.1 E	339 E	169 E	71.5 E	372 E	178 E	9.4	10.7	
SW6010	COBALT	mg/kg	29	4,700	100,000	2.4 B	9.3	4.9 B	7.2	6.9	5.8 B	<1.1	<1	
SW6010	COPPER	mg/kg	72.2	2,900	76,000	16.5	86.3	126	25.8	13.7	266	3.6 B	3.7 B	
SW6010	IRON	mg/kg	116,495	23,000	100,000	18,000	88,100	23,500	39,200	29,100	43,500	1,110 E	1,250 E	
SW6010	LEAD	mg/kg	166	400	750	266 E	1,540 E	480 E	211 E	732 E	935 E	35.5	44.6	
SW6010	MAGNESIUM	mg/kg	N/A	N/A	N/A	3,520 E	1,670 E	1,710 E	2,230 E	1,620 E	1,750 E	4,000	4,320	
SW6010	MANGANESE	mg/kg	5,500	1,800	32,000	230 E	801 E	383 E	419 E	351 E	327 E	46.4	64.6	
SW6010	NICKEL	mg/kg	242.5	1,600	41,000	14.2 B	68	36.5	66.2	47.8	32.8	<1.1	<1	
SW6010	POTASSIUM	mg/kg	N/A	N/A	N/A	38 B	62.9 B	43.7 B	76.3 B	36.3 B	79.5 B	91.1 B	75.5 B	
SW6010	SILVER	mg/kg	14.9	390	10,000	< 0.28	< 0.33	< 0.33	< 0.39	< 0.33	< 0.34	4.1 BN	3.6 BN	
SW6010	SODIUM	mg/kg	N/A	N/A	N/A	108	181	72.8 B	94 B	55 B	87.7 B	798	987	
SW6010	VANADIUM	mg/kg	206	550	14,000	8.4 B	29.5	26.6	52.4	40	20.1	1.2 B	1.3 B	
SW6010	ZINC	mg/kg	111	23,000	100,000	213 E	782 E	233 E	209 E	871 E	1,200 E	22	23.3	
SPECIFIC	METALS													
SW7060	ARSENIC	mg/kg	62	0.39	2.7	1.3 *	2 *	2.2 *	3.7 *	0.51 B*	2.8 BS	0.34 B	.28 B	
SW7471	MERCURY	mg/kg	0.28	23	610	< 0.05	0.1 B	0.17	0.13	0.1	0.09 B	< 0.05	<.05	
SW7841	THALLIUM	mg/kg	1.42	5.2	130	< 0.21	0.28 BN	< 0.24	0.28 BN	< 0.22	< 0.24	< 0.24	<.24	
	kground Threshold Value Preliminary Remediation C	Goal					alue is less than than the Instrun			n Limit,				
N/A = Not a	pplicable					$S = Reported v_{i}$	alue is determine	ed by the metho	d of standard ad	ditions				
J = Indicates	s an estimated value					* = Duplicate a	nalyses is not w	ithin control lim	nits					
E = Reporte	d value is estimated due to t	the presence	of interfere	nce		** = PRG for the	hallium acetate							
N = Spiked	sample recovery is not withi	in control li	mits			NA = Not analy	yzed							
D = Duplica	ite sample					Bold and shaded indicates Concentration = or > the higher of BTV or Residential PRGs								
-	laboratory results see Appe	ndix B.				Bold indicates Concentration = or > the higher of BTV or Industrial PRGs								
j = Duplicat	e is not within QAPP contro	ol limit (50%)					C						

TABLE 5-1. IRP SITE-52 (FORMER AOC-54) SOIL SAMPLE RESULTS.

Final First Five-Year Reveiw of Record of Decision for MARBO Annex Operable Unit

Method Analyte Units BTVs Res Indust SEMIVOLATILE ORGANIC COMPOUNDS SW8270 pYRENE ug/kg N/A 2,300,000 54,000,000 <750 NA NA NA NA NA NA TOTAL METALS s s s s s 173,500 76,000 100,000 7,900 N NA NA	0.17-0.33 NA 22,200 NA NA NA NA NA NA NA NA NA NA NA NA NA									
SEMIVOLATILE ORGANIC COMPOUNDS SW8270 PYRENE ug/kg N/A 2,300,000 54,000,000 <750 NA	22,200 NA NA NA NA NA NA NA NA NA NA NA									
SW8270 PYRENE ug/kg N/A 2,300,000 54,000,000 <750 NA	22,200 NA NA NA NA NA NA NA NA NA NA NA									
TOTAL METALS SW6010 ALUMINUM mg/kg 173,500 76,000 100,000 7,900 N NA N	22,200 NA NA NA NA NA NA NA NA NA NA NA									
SW6010 ALUMINUM mg/kg 173,500 76,000 100,000 7,900 N NA NA NA NA NA NA NA NA NA SW6010 ANTIMONY mg/kg 63 31 820 6 B NA NA NA NA NA NA NA SW6010 BARIUM mg/kg 335 5,400 100,000 6.7 B NA	NA NA NA NA NA NA NA NA NA NA									
SW6010 ANTIMONY mg/kg 63 31 820 6 B NA NA NA NA NA SW6010 BARIUM mg/kg 335 5,400 100,000 6.7 B NA NA NA NA NA NA SW6010 BERYLLIUM mg/kg 3.3 150 2,200 <0.1	NA NA NA NA NA NA NA NA NA NA									
SW6010 BARIUM mg/kg 335 5,400 100,000 6.7 B NA	NA NA NA NA NA NA NA NA NA									
SW6010 BERYLLIUM mg/kg 3.3 150 2,200 <0.1	NA NA NA NA NA NA NA NA									
SW6010 CADMIUM mg/kg 6.5 37 810 1.1 NA NA NA NA NA SW6010 CALCIUM mg/kg N/A N/A N/A 334,000 NA NA NA NA NA NA NA SW6010 CHROMIUM, TOTAL mg/kg 1,080 210 450 51.5 NA NA NA NA NA NA SW6010 COBALT mg/kg 29 4,700 100,000 <0.93	NA NA NA NA NA NA NA									
SW6010 CALCIUM ng/kg N/A N/A N/A 334,000 NA <	NA NA NA NA NA NA									
SW6010 CHROMIUM, TOTAL mg/kg 1,080 210 450 51.5 NA NA NA NA NA NA SW6010 COBALT mg/kg 29 4,700 100,000 <0.93	NA NA NA NA NA NA									
SW6010 COBALT mg/kg 29 4,700 100,000 <0.93 NA N	NA NA NA NA NA									
SW6010 COPPER mg/kg 72.2 2,900 76,000 26.2 NA	NA NA NA NA									
SW6010 IRON mg/kg 116,495 23,000 100,000 6,560 E* NA	NA NA NA NA									
SW6010 LEAD mg/kg 166 400 750 203 249 E 3,350 E 614 E 65.4 E 729 Ej 211 Ej SW6010 MAGNESIUM mg/kg N/A N/A N/A 1,600 NA	NA NA NA									
SW6010 MAGNESIUM mg/kg N/A N/A N/A 1,600 NA NA<	NA NA									
SW6010 MANGANESE mg/kg 5,500 1,800 32,000 242 NA NA <t< td=""><td>NA</td></t<>	NA									
SW6010 NICKEL mg/kg 242.5 1,600 41,000 7.5 B NA NA <th< td=""><td></td></th<>										
SW6010POTASSIUMmg/kgN/AN/AN/A47 BNANANANANANANASW6010SILVERmg/kg14.9 390 10,0003.8 BNNANANANANANA										
SW6010 SILVER mg/kg 14.9 390 10,000 3.8 BN NA NA NA NA NA NA	NA									
	NA									
SWG010 SODILIM modeo N/A N/A N/A 77.4 D NA NA NA NA NA NA	NA									
SW6010 SODIUM mg/kg N/A N/A N/A 77.4 B NA NA NA NA NA NA NA	NA									
SW6010 VANADIUM mg/kg 206 550 14,000 8.6 B NA NA NA NA NA NA	NA									
SW6010 ZINC mg/kg 111 23,000 100,000 71.5* NA NA NA NA NA NA NA	NA									
SPECIFIC METALS										
SW7060 ARSENIC mg/kg 62 0.39 2.7 0.5 B NA NA NA NA NA NA	NA									
SW7471 MERCURY mg/kg 0.28 23 610 0.06 B NA NA NA NA NA NA	NA									
SW7841 THALLIUM mg/kg 1.42 5.2 130 <0.21 NA NA NA NA NA NA	NA									
BTV = Background Threshold Value B = Reported value is less than the Contract Required Detection Limit,										
2002 PRG = Preliminary Remediation Goal but greater than the Instrument Detection Limit										
N/A = Not applicable $S = Reported$ value is determined by the method of standard additions										
J = Indicates an estimated value * = Duplicate analyses is not within control limits										
E = Reported value is estimated due to the presence of interference ** = PRG for thallium acetate										
N = Spiked sample recovery is not within control limits NA = Not analyzed										
D = Duplicate sample Indicates value exceeds Residential PRGs and BTVs										
For detailed laboratory results see Appendix B. Bold indicates the higher value of Residential PRGs vs. BTVs										
j = Duplicate is not within QAPP control limit (50%)										

TABLE 5-1. IRP SITE-52 (FORMER AOC-54) SOIL SAMPLE RESULTS.

Final First Five-Year Reveiw of Record of Decision for MARBO Annex Operable Unit

	Sample Identifier					06A54S1001	06A54S1002	06A54S1003	06A54S1004	06A54S1005	06A54S1006	A54S1007			
	Sampling Depth (ft)			PRG	PRG	0.17-0.33	0.17-0.33	0.17-0.33	0.17-0.33	0.17-0.33	0.17-0.33	0.17-0.33			
Method	Analyte	Units	BTVs	Res	Indust										
SEMIVOL	ATILE ORGANIC COMP	OUNDS													
SW8270	PYRENE	ug/kg	N/A	2,300,000	54,000,000	NA	NA	NA	NA	NA	NA	NA			
TOTAL M	ETALS														
SW6010	ALUMINUM	mg/kg	173,500	76,000	100,000	34,100	29,100	NA	NA	NA	NA	NA			
SW6010	ANTIMONY	mg/kg	63	31	820	NA	NA	NA	NA	5.9 BE	7.9 BE	25.6 E			
SW6010	BARIUM	mg/kg	335	5,400	100,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	BERYLLIUM	mg/kg	3.3	150	2,200	NA	NA	NA	NA	NA	NA	NA			
SW6010	CADMIUM	mg/kg	6.5	37	810	NA	NA	NA	NA	NA	NA	NA			
SW6010	CALCIUM	mg/kg	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA			
SW6010	CHROMIUM, TOTAL	mg/kg	1,080	210	450	NA	NA	NA	NA	NA	NA	NA			
SW6010	COBALT	mg/kg	29	4,700	100,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	COPPER	mg/kg	72.2	2,900	76,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	IRON	mg/kg	116,495	23,000	100,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	LEAD	mg/kg	166	400	750	NA	NA	875 E	2,550 E	411 E	318 E	1,310 E			
SW6010	MAGNESIUM	mg/kg	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA			
SW6010	MANGANESE	mg/kg	5,500	1,800	32,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	NICKEL	mg/kg	242.5	1,600	41,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	POTASSIUM	mg/kg	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA			
SW6010	SILVER	mg/kg	14.9	390	10,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	SODIUM	mg/kg	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA			
SW6010	VANADIUM	mg/kg	206	550	14,000	NA	NA	NA	NA	NA	NA	NA			
SW6010	ZINC	mg/kg	111	23,000	100,000	NA	NA	NA	NA	NA	NA	NA			
SPECIFIC	METALS														
SW7060	ARSENIC	mg/kg	62	0.39	2.7	NA	NA	NA	NA	NA	NA	NA			
SW7471	MERCURY	mg/kg	0.28	23	610	NA	NA	NA	NA	NA	NA	NA			
SW7841	THALLIUM	mg/kg	1.42	5.2	130	NA	NA	NA	NA	NA	NA	NA			
BTV = Bac	kground Threshold Value					$\mathbf{B} = \mathbf{Reported} \mathbf{v}$	alue is less than	the Contract Re	equired Detection	n Limit.					
	= Preliminary Remediation C	boal								.,					
N/A = Not a	•					but greater than the Instrument Detection Limit S = Reported value is determined by the method of standard additions									
	s an estimated value					 * = Duplicate analyses is not within control limits 									
	ed value is estimated due to the	he presence	of interfere	ence		** = PRG for thallium acetate									
*	sample recovery is not withi					NA = Not analyzed									
D = Duplica	· ·					Indicates value exceeds Residential PRGs and BTVs									
-	l laboratory results see Appen	ndix B.				Bold indicates the higher value of Residential PRGs vs. BTVs									
	te is not within QAPP contro		6)				g (w								

TABLE 5-1. IRP SITE-52 (FORMER AOC-54) SOIL SAMPLE RESULTS.

Final First Five-Year Reveiw of Record of Decision for MARBO Annex Operable Unit

	Sample Identifier			-	-	A55S048	A55S049				
	Sampling Depth (ft)			PRG	PRG	0.30-0.50	0.00-0.50				
Method	Analyte	Units	BTVs	Res	Indust						
FOTAL META	ALS										
SW6010	ALUMINUM	mg/kg	173,500	76,000	100,000	39,800 N	159,000 N				
SW6010	ANTIMONY	mg/kg	63	31	820	5.2 B	6.4 B				
SW6010	BARIUM	mg/kg	335	5,400	100,000	20	74				
SW6010	BERYLLIUM	mg/kg	3.3	150	2,200	0.64 BN	2.2 N				
SW6010	CADMIUM	mg/kg	6.5	37	810	4.5	8.3				
SW6010	CALCIUM	mg/kg	N/A	N/A	N/A	286,000	29,300				
SW6010	CHROMIUM, TOTAL	mg/kg	1,080	210	450	194	605				
SW6010	COBALT	mg/kg	29	4,700	100,000	8.2	31.4				
SW6010	COPPER	mg/kg	72.2	2,900	76,000	19.2	64.1				
SW6010	IRON	mg/kg	116,495	23,000	100,000	41,300 E*	108,000 E*				
SW6010	LEAD	mg/kg	166	400	750	786	32.3				
SW6010	MAGNESIUM	mg/kg	N/A	N/A	N/A	1,950	1,170				
SW6010	MANGANESE	mg/kg	5,500	1,800	32,000	1,960	4,320				
SW6010	NICKEL	mg/kg	242.5	1,600	41,000	41.3	186				
SW6010	POTASSIUM	mg/kg	N/A	N/A	N/A	85.9 B	65.5 B				
SW6010	SILVER	mg/kg	14.9	390	10,000	3 BN	< 0.48				
SW6010	SODIUM	mg/kg	N/A	N/A	N/A	53.6 B	61.1 B				
SW6010	VANADIUM	mg/kg	206	550	14,000	25.9	106				
SW6010	ZINC	mg/kg	111	23,000	100,000	103 *	175 *				
SPECIFIC MI	ETALS										
SW7060	ARSENIC	mg/kg	62	0.39	2.7	11.3	3.1 B				
SW7471	MERCURY	mg/kg	0.28	23	610	0.15	0.16				
SW7841	THALLIUM	mg/kg	1.42	5.2	130	<0.26	0.44 BN				
BTV = Backgro	ound Threshold Value			B = Reported	value is less thar	the Contract Required Detecti	on Limit,				
2002 PRG = Pr	eliminary Remediation Goal			-		ment Detection Limit					
N/A = Not appl	icable			-		vithin control limits					
$E = Reported v_{i}$	alue is estimated due to the presence	of interference	e	-	thallium acetate						
	pple recovery is not within control li			Bold and shaded indicates Concentration = or > the higher of BTV or Residential PRGs							
	oratory results see Appendix B.					n = or > the higher of BTV or					
	not within QAPP control limt (50%)				C					

TABLE 5-2. IRP SITE 53 (FORMER AOC-55) SOIL SAMPLE RESULTS.

	Sample Identifier	_			TTE 54 (FO)	A56S092	A56S093	A56S094	A56S095	A56S096D	A56S097	A56S098
	Sampling Depth (ft)			PRG	PRG	0.00-0.30	0.20-0.50	0.20-0.50	0.20-0.50	0.20-0.50	0.20-0.50	0.20-0.50
Method	Analyte	Units	BTVs	Res	Indust	0.00-0.50	0.20-0.50	0.20-0.50	0.20-0.50	0.20-0.50	0.20-0.50	0.20-0.50
SEMIVOL	ATILE ORGANIC COMPOUNDS	s										
	ANTHRACENE	ug/kg	N/A	22,000,000	100,000,000	<390	<400	<850	<420	<410	<780	<390
	BENZO(A)ANTHRACENE	ug/kg	N/A	620	2,900	160 J	<400	<850	160 J	<410	<780	<390
SW8270	BENZO(A)PYRENE	ug/kg	N/A	62	290	220 J	<49	<52	330 J	<50	<47	<47
SW8270	BENZO(B)FLUORANTHENE	ug/kg	N/A	620	2,900	550	<400	<850	600	<410	<780	<390
SW8270	BENZO(G,H,I)PERYLENE	ug/kg	N/A	N/A	N/A	<390	<400	<850	650	<410	<780	<390
SW8270	BENZO(K)FLUORANTHENE	ug/kg	N/A	6,200	29,000	170 J	<400	<850	170 J	<410	<780	<390
SW8270	BENZOIC ACID	ug/kg	N/A	100,000,000	100,000,000	86 J	<2,000	<4,100	1,900 J	<2,000	<3,800	<1,900
	CARBAZOLE	ug/kg	N/A	24,000	86,000	<390	<400	<850	230 J	<410	<780	<390
SW8270	CHRYSENE	ug/kg	N/A	62,000	290,000	410	<400	<850	250 J	<410	<780	<390
	FLUORANTHENE	ug/kg	N/A	2,300,000	30,000,000	380 J	<400	<850	110 J	<410	<780	<390
SW8270	INDENO(1,2,3-C,D)PYRENE	ug/kg	N/A	620	2,900	<390	<400	<850	500	<410	<780	<390
SW8270	PHENANTHRENE	ug/kg	N/A	N/A	N/A	<390	<400	<850	340 J	<410	<780	<390
	DIBENZO(A,H)ANTHRACENE	ug/kg	N/A	62	290	<390	<400	<850	<420	<410	<780	<390
	PYRENE	ug/kg	N/A	23,000,000	54,000,000	690	<400	<850	180 J	<410	<780	<390
PESTICID		ug/11g		20,000,000	21,000,000	070	(100	1000	1000	(110	(700	
	PCB-1260 (AROCLOR 1260)	µg/kg	NA	220	1000	<36	<37	<38	<38	50	<35	45
TOTAL M		μ6/16			1000		,			20		10
	ALUMINUM	mg/kg	173,500	76,000	100,000	3,140	8,340	25,800	25,100	33,200	7,380	16,000
	ANTIMONY	mg/kg	63	31	820	4 B	2.5 B	3.8 Bj	4.4 B	7 Bj	2.8 B	4.7 B
SW6010	BARIUM	mg/kg	335	5,400	100,000	160	9.5 B	17	16.9	26.3	47.2	24.3
	BERYLLIUM	mg/kg	3.34	150	2,200	<0.12	<0.11	0.41 B	0.32 B	0.52 B	<0.11	0.2 B
	CADMIUM	mg/kg	6.5	37	810	0.61 N	0.58 N	1.1 N	1.3 N	1.4 N	0.8 N	1.3 N
	CALCIUM	mg/kg	0.5 N/A	N/A	N/A	365,000	350,000	311,000	299,000	301,000	360,000	302,000
	CHROMIUM, TOTAL	mg/kg	1,080	210	450	26.5 E	56.8 E	153 E	127 E	175 E	60.8 E	103 E
	COBALT	mg/kg	29	4,700	100,000	<1.1	<1	3.3 B	3.2 B	4.5 B	<0.99	2.6 B
	COPPER	mg/kg	72.2	2,900	76,000	358 *	6.7 *	7.7 *i	16 *	267 *j	7.5 *	2.0 B 35.7 *
	IRON	mg/kg	116,495	23,000	100,000	8,230 *	5,800 *	20,300 *	18,700 *	23,900 *	8,080 *	18,000 *
	LEAD	mg/kg	166	400	750	1,520 E*	45.4 E*	116 E*j	115 E*	903 E*j	193 E*	242 E*
	MAGNESIUM	mg/kg	N/A	N/A	N/A	2,070	2,000	2,370	1,940	2,160	3,280	1,810
	MANGANESE	mg/kg	5,500	1,800	32,000	145 E	202 E	768 Ej	461 E	457 Ej	117 E	224 E
	NICKEL	mg/kg	242.5	1,600	41,000	7.4 B	9 B	24.7	23	22.6	7.3 B	17.6
	POTASSIUM	mg/kg	N/A	N/A	N/A	80.3 B	84 B	153 Bj	87.1 B	81 Bj	60.8 B	82.3 B
SW6010		mg/kg	14.9	390	10,000	3.5 B	3.7 B	2.8 B	2.9 B	3.2 B	3.8 B	3.1 B
	SODIUM	mg/kg	N/A	N/A	N/A	129	122	196	148	129	418	619
	VANADIUM	mg/kg	206	550	14,000	2.6 B	12.2	30.4	17.1	26.1	6.3 B	18.1
SW6010		mg/kg	111	23,000	100,000	249 E	99.8 E	65.9 Ej	183 E	447 Ej	46.2 E	171 E
	ARSENIC	mg/kg	62	.39	2.7	0.66	7.9 S	14 j	11.3	7.6 j	13.4 +	4.8 S
	MERCURY	mg/kg	0.28	23	610	0.06 B	<0.06	0.08 B	0.08 B	0.1 B	<0.05	0.18
	SELENIUM	mg/kg	NA	390	10,000	0.76 BE	<0.58	<0.61	<0.6	<0.6	<1.1	<0.13
	THALLIUM	mg/kg	1.42	5.2	130	<0.22	<0.23	0.27 BW	<0.24	<0.24	<0.22	<0.23
	CYANIDE	mg/kg	N/A	11	35	0.26	<0.25	0.76 j	0.24	<0.24 j	0.33	0.66
511 7012	CTAME	iiig/ kg	IN/A		55	0.20	<0.25	0.70 j	0.20	<0.24 J	0.55	0.00
						B = Reported valu	e is less than the C	Contract Required I	Detection Limit,			
BTV = Back	kground Threshold Value; 2002 PRC	G = Prelimi	inary Remed	liation Goal:		but greater that	an the Instrument l	Detection Limit				
	applicable; $J = Indicates an estimated$		2			S = Reported valu	e is determined by	the method of star	dard additions			
	ue to the presence of interference; N		-				•	AAS analysis is ou				
	rol limits; $D = Duplicate sample; j = 1$		-	•		•		nce is less than 509		nce		
	For detailed laboratory results see A	1				* = Duplicate anal	*		spine assorba			
	aded indicates concentration = or > t			Residential PRGs		** = PRG for that	•	control minto				
	tes Concentration = or > the highe	•										
bolu mulca	the night		or muustri	ai i KGS		NA = Not analyze	^{zu}					

TABLE 5-3. IRP SITE 54 (FORMER AOC-56) SOIL SAMPLE RESULTS.

Seminor Seminor SW8270 A SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 D SW8270 P	FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260)	Units ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	BTVs N/A N/A	PRG Res 22,000,000 620 62 62 62 620 N/A 6,200 100,000,000 24,000 62,000 620 N/A 62	PRG Indust 100,000,000 2,900 2,900 N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	A568099 0.20-0.50 <430 <430 <52 <430 <430 <430 <430 <430 <430 <430 <430	A56S100 0.20-0.30 <390 88 J <47 260 J <390 <390 <1,900 <390 240 J 250 J <390 240 J 250 J <390 <390	A56S101 0.20-0.30 <2,100 <100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100 <2,100	A56S102 0.20-0.40 <810 <810 <810 <810 <810 <810 <810 <81	A568103 0.20-0.40 150 J 170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J <420
Method A SEMIVOLAT SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 D SW8270 D SW8270 D SW8270 P SW8270 P	Analyte TILE ORGANIC COMPOUNDS ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(A)PYRENE BENZO(G)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Res 22,000,000 620 62 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62	Indust 100,000,000 2,900 2,900 N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	$\begin{array}{c} <430\\ <430\\ <52\\ <430\\ <430\\ <430\\ <430\\ <430\\ <430\\ <430\\ <430\\ <430\\ <430\\ <430\end{array}$	<390 88 J <47 260 J <390 <390 <1,900 <390 240 J 250 J <390	<2,100 <2,100 <100 <2,100 <2,100 <2,100 <2,100 <2,100 <2,100 <2,100	<810 <810 <49 <810 <810 <810 <810 <810 <810 <810 <810	150 J 170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J
SEMIVOLAT SW8270 A SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C	TILE ORGANIC COMPOUNDS ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(G,H,I)PERYLENE BENZO(C ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22,000,000 620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62	100,000,000 2,900 2,900 N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	<430 <52 <430 <430 <430 <430 <430 <430 <430 <430	88 J <47 260 J <390 <1,900 <390 240 J 250 J <390	<2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <49 <810 <810 <4,000 <810 <810 <810 <810	170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J
SW8270 A SW8270 B SW8270 B <th>ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(C ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS</th> <th>ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg</th> <th>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</th> <th>620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62</th> <th>2,900 290 2,900 N/A 29,000 100,000,000 86,000 86,000 290,000 30,000,000 2,900 N/A</th> <th><430 <52 <430 <430 <430 <430 <430 <430 <430 <430</th> <th>88 J <47 260 J <390 <1,900 <390 240 J 250 J <390</th> <th><2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100</th> <th><810 <49 <810 <810 <4,000 <810 <810 <810 <810</th> <th>170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J</th>	ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(C ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62	2,900 290 2,900 N/A 29,000 100,000,000 86,000 86,000 290,000 30,000,000 2,900 N/A	<430 <52 <430 <430 <430 <430 <430 <430 <430 <430	88 J <47 260 J <390 <1,900 <390 240 J 250 J <390	<2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <49 <810 <810 <4,000 <810 <810 <810 <810	170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J
SW8270 A SW8270 B SW8270 B <td>ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(C ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS</td> <td>ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg</td> <td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62</td> <td>2,900 290 2,900 N/A 29,000 100,000,000 86,000 86,000 290,000 30,000,000 2,900 N/A</td> <td><430 <52 <430 <430 <430 <430 <430 <430 <430 <430</td> <td>88 J <47 260 J <390 <1,900 <390 240 J 250 J <390</td> <td><2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100</td> <td><810 <49 <810 <810 <4,000 <810 <810 <810 <810</td> <td>170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J</td>	ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(C ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62	2,900 290 2,900 N/A 29,000 100,000,000 86,000 86,000 290,000 30,000,000 2,900 N/A	<430 <52 <430 <430 <430 <430 <430 <430 <430 <430	88 J <47 260 J <390 <1,900 <390 240 J 250 J <390	<2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <49 <810 <810 <4,000 <810 <810 <810 <810	170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J
SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C SW8270 D SW8270 D <td>BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS</td> <td>ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg</td> <td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62</td> <td>2,900 290 2,900 N/A 29,000 100,000,000 86,000 86,000 290,000 30,000,000 2,900 N/A</td> <td><430 <52 <430 <430 <430 <430 <430 <430 <430 <430</td> <td>88 J <47 260 J <390 <1,900 <390 240 J 250 J <390</td> <td><2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100</td> <td><810 <49 <810 <810 <4,000 <810 <810 <810 <810</td> <td>170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J</td>	BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	620 62 620 N/A 6,200 100,000,000 24,000 62,000 62,000 620 N/A 62	2,900 290 2,900 N/A 29,000 100,000,000 86,000 86,000 290,000 30,000,000 2,900 N/A	<430 <52 <430 <430 <430 <430 <430 <430 <430 <430	88 J <47 260 J <390 <1,900 <390 240 J 250 J <390	<2,100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <49 <810 <810 <4,000 <810 <810 <810 <810	170 J 320 J 580 <420 170 J 850 J 150 J 250 J 91 J
SW8270 B SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 D	BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A N/A	62 620 N/A 6,200 100,000,000 24,000 62,000 2,300,000 620 N/A 62	290 2,900 N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	<52 <430 <430 <2,100 <430 <430 <430 <430 <430	<47 260 J <390 <390 <1,900 240 J 250 J <390	<100 <100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<49 <810 <810 <810 <4,000 <810 <810 <810	320 J 580 <420 170 J 850 J 150 J 250 J 91 J
SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 C SW8270 D SW8270 D <td>BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS</td> <td>ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg</td> <td>N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>620 N/A 6,200 100,000,000 24,000 62,000 620 N/A 62</td> <td>2,900 N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A</td> <td><430 <430 <430 <2,100 <430 <430 <430 <430</td> <td>260 J <390 <390 <1,900 <390 240 J 250 J <390</td> <td><100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100</td> <td><810 <810 <810 <4,000 <810 <810 <810</td> <td>580 <420 170 J 850 J 150 J 250 J 91 J</td>	BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A N/A	620 N/A 6,200 100,000,000 24,000 62,000 620 N/A 62	2,900 N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	<430 <430 <430 <2,100 <430 <430 <430 <430	260 J <390 <390 <1,900 <390 240 J 250 J <390	<100 <2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <810 <810 <4,000 <810 <810 <810	580 <420 170 J 850 J 150 J 250 J 91 J
SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 D SW8270 D SW800 D	BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A	N/A 6,200 100,000,000 24,000 62,000 2,300,000 620 N/A 62	N/A 29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	<430 <430 <2,100 <430 <430 <430 <430	<390 <390 <1,900 <390 240 J 250 J <390	<2,100 <2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <810 <4,000 <810 <810 <810	<420 170 J 850 J 150 J 250 J 91 J
SW8270 E SW8270 C SW8270 C SW8270 F SW8270 F SW8270 E SW8270 E SW8270 E SW8270 F	BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A N/A	6,200 100,000,000 24,000 62,000 2,300,000 620 N/A 62	29,000 100,000,000 86,000 290,000 30,000,000 2,900 N/A	<430 <2,100 <430 <430 <430 <430	<390 <1,900 <390 240 J 250 J <390	<2,100 <10,000 <2,100 <2,100 <2,100 <2,100	<810 <4,000 <810 <810 <810	170 J 850 J 150 J 250 J 91 J
SW8270 B SW8270 C SW8270 F SW8270 F SW8270 P SW8270 P SW8270 P SW8270 P PESTICIDE SW8080 P	BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A N/A	100,000,000 24,000 62,000 2,300,000 620 N/A 62	100,000,000 86,000 290,000 30,000,000 2,900 N/A	<2,100 <430 <430 <430 <430	<1,900 <390 240 J 250 J <390	<10,000 <2,100 <2,100 <2,100 <2,100 <2,100	<4,000 <810 <810 <810	850 J 150 J 250 J 91 J
SW8270 C SW8270 C SW8270 F SW8080 F	CARBAZOLE CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A	24,000 62,000 2,300,000 620 N/A 62	86,000 290,000 30,000,000 2,900 N/A	<430 <430 <430 <430	<390 240 J 250 J <390	<2,100 <2,100 <2,100 <2,100	<810 <810 <810	150 J 250 J 91 J
SW8270 C SW8270 F SW8270 D SW8270 P SW8270 C SW8270 P	CHRYSENE FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A	62,000 2,300,000 620 N/A 62	290,000 30,000,000 2,900 N/A	<430 <430 <430	240 J 250 J <390	<2,100 <2,100 <2,100	<810 <810	250 J 91 J
SW8270 F SW8020 F	FLUORANTHENE INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A	2,300,000 620 N/A 62	30,000,000 2,900 N/A	<430 <430	250 J <390	<2,100 <2,100	<810	91 J
SW8270 II SW8270 P SW8270 P SW8270 P PESTICIDE SW8080	INDENO(1,2,3-C,D)PYRENE PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A	620 N/A 62	2,900 N/A	<430	<390	<2,100		
SW8270 P SW8270 E SW8270 P PESTICIDE SW8080	PHENANTHRENE DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg ug/kg	N/A N/A	N/A 62	N/A				<010	< <u>420</u>
SW8270 E SW8270 P PESTICIDE SW8080	DIBENZO(A,H)ANTHRACENE PYRENE PCB-1260 (AROCLOR 1260) TALS	ug/kg ug/kg	N/A	62		<+J0	<300	<2,100	<810	<420
SW8270 P PESTICIDE SW8080 P	PYRENE PCB-1260 (AROCLOR 1260) FALS	ug/kg			290	<430	<390	<2,100	<810	<920
PESTICIDE SW8080 P	PCB-1260 (AROCLOR 1260) TALS		10/11	23,000,000	54,000,000	<430	270 J	<2,100	<810	210 J
SW8080 P	TALS	µg/kg		25,000,000	54,000,000	(450	2703	<2,100	<010	2103
	TALS	m 8/ m 6	NA	220	1000	47	66	<38	<38	<38
TOTAL MET			1111	220	1000	47	00		(50	(50
		mg/kg	173,500	76,000	100,000	51.700	4.120	16,300	47,400	27.600
SW6010 A	ANTIMONY	mg/kg	63	31	820	6.2 B	17.4	7.4 B	8.5 B	4.2 B
SW6010 B		mg/kg	335	5,400	100,000	72.5	20.8	26.9	45.8	19.6
	BERYLLIUM	mg/kg	3.34	150	2,200	0.94 B	<0.11	0.18 B	0.83 B	0.4 B
SW6010 C		mg/kg	6.5	37	810	2.3 N	1.7 N	1.4 N	1.9 N	1.5 N
SW6010 C		mg/kg	N/A	N/A	N/A	226,000	336,000	312,000	222,000	279,000
	CHROMIUM, TOTAL	mg/kg	1,080	210	450	393 E	57.2 E	120 E	354 E	159 E
SW6010 C		mg/kg	29	4,700	100,000	7.9	1.8 B	2.5 B	8.1	4.1 B
SW6010 C		mg/kg	72.2	2,900	76,000	31.8 *	28.3 *	31.4 *	25.4 *	21.1 *
SW6010 I		mg/kg	116.495	23,000	100,000	37.400 *	15.600 *	14,200 *	38,300 *	21.800 *
SW6010 L		mg/kg	166	400	750	31.6 E*	1,980 E*	925 E*	162 E*	140 E*
	MAGNESIUM	mg/kg	N/A	N/A	N/A	1,730	1,540	2,180	1,570	2,000
	MANGANESE	mg/kg	5,500	1,800	32,000	1,010 E	149 E	342 E	889 E	509 E
SW6010 N		mg/kg	242.5	1,600	41,000	72.3	8.1 B	22	74.7	28.9
	POTASSIUM	mg/kg	N/A	N/A	N/A	132 B	72.3 B	117 B	90.2 B	85 B
SW6010 S		mg/kg	14.9	390	10,000	1.6 B	4.2 B	3.1 B	1.7 B	2.8 B
SW6010 S		mg/kg	N/A	N/A	N/A	144	48.6 B	158	108 B	163
	VANADIUM	mg/kg	206	550	14,000	52.4	2.5 B	25.6	60.8	22.5
SW6010 Z		mg/kg	111	23,000	100,000	118 E	793 E	411 E	148 E	218 E
SW7060 A		mg/kg	62	.39	2.7	4.2	6.3 +	5.2 S	3.6	6.9
SW7471 N		mg/kg	0.28	23	610	0.15	0.07 B	0.26	0.13	0.08 B
SW67740 S		mg/kg	NA	390	10,000	< 0.63	<0.57	<0.59	<0.58	<0.6
SW7840 T		mg/kg	1.42	5.2	130	0.45 B	<0.23	<0.24	0.48 B	<0.24
SW9012 C		mg/kg	N/A	11	35	<0.27	0.53	0.28	<0.25	0.33
N/A = Not app estimated due within control limt (50%); Fo Bold and shade	round Threshold Value; 2002 PRG plicable; J = Indicates an estimated to the presence of interference; N = limits; D = Duplicate sample; j = I or detailed laboratory results see Ag led indicates concentration = or > th s Concentration = or > th e higher	value; E = = Spiked s Duplicate i ppendix B he higher o	= Reported v ample recov is not within of BTV or R	ralue is ery is not QAPP control esidential PRGs		but greater tha S = Reported valu W = Postdigestion (85-115%) an		Detection Limit the method of stan AAS analysis is ou nce is less than 50%	ndard additions	ice

TABLE 5-3. IRP SITE 54 (FORMER AOC-56) SOIL SAMPLE RESULTS.

S S SW8270 A SW8270 B SW8270 C SW8270 C	ample Identifier jampling Depth (ft) Analyte FILE ORGANIC COMPOUNDS ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE BENZO(C,H,I)PERYLENE DENO(1,2,3-C,D)PYRENE	Units ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	BTVs N/A N/A N/A N/A N/A N/A N/A	PRG Res 22,000,000 620 62 620 8/A 6.200	PRG Indust 100,000,000 2,900 2,900 N/A	Method SW8310 SW8310 SW8310	A56S1009 0.17-0.50 <7.8 <3.1	A56S1010 0.17-0.50 28	A56S1011 0.17-0.50 24	A5681012 0.17-0.50	A5681013 0.17-0.50	A56S1014 0.17-0.50	A56S1015 0.17-0.50
Method A SEMIVOLAT SW8270 A SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C	Analyte FILE ORGANIC COMPOUNDS ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A	Res 22,000,000 620 62 620 N/A	Indust 100,000,000 2,900 290 2,900	SW8310 SW8310	<7.8				0.17-0.30	0.17-0.50	
SEMIVOLAT SW8270 A SW8270 B SW8270 C	TILE ORGANIC COMPOUNDS NNTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A N/A	22,000,000 620 62 62 820 N/A	100,000,000 2,900 290 2,900	SW8310		28	24				
SW8270 A SW8270 B SW8270 C SW8270 F	ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A	620 62 620 N/A	2,900 290 2,900	SW8310		28	24				
SW8270 A SW8270 B SW8270 C SW8270 F	ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A	620 62 620 N/A	2,900 290 2,900	SW8310		28	24				
SW8270 B SW8270 C SW8270 C SW8270 C SW8270 C SW8270 C SW8270 C SW8270 F	BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID ZARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A	620 62 620 N/A	2,900 290 2,900	SW8310		20		NA	NA	<7.6	<7.7
SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 C SW8270 C SW8270 C SW8270 F	BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID ZARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A N/A	62 620 N/A	290 2,900		<3.1	32	39	NA	NA	3.4	<3.1
SW8270 B SW8270 B SW8270 B SW8270 B SW8270 C SW8270 F	BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg ug/kg	N/A N/A N/A	620 N/A	2,900	3 1 0 310	3.3	96	130	NA	NA	<3.0	<3.1
SW8270 B SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 C SW8270 C SW8270 F	BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg ug/kg	N/A N/A	N/A	,	SW8310	7.4	160	230	NA	NA	4.8	5.9
SW8270 B SW8270 B SW8270 C SW8270 C SW8270 C SW8270 C SW8270 F	BENZO(K)FLUORANTHENE BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg ug/kg	N/A			SW8310	<3.1	<3.1	<3.1	NA	NA	4.0	5.7
SW8270 B SW8270 C SW8270 C SW8270 F	BENZOIC ACID CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg ug/kg			29,000	SW8310 SW8310	<3.1	68	89	NA	NA	<3.0	<3.1
SW8270 C SW8270 C SW8270 F	CARBAZOLE CHRYSENE FLUORANTHENE	ug/kg	18/23	100,000,000	100,000,000	SW8310 SW8310	<3.1	<3.1	<3.1	NA	NA	<5.0	(5.1
SW8270 C SW8270 F	CHRYSENE FLUORANTHENE		N/A	24,000	86,000	SW8310 SW8310	<3.1	<3.1	<3.1	NA	NA		
SW8270 F	LUORANTHENE		N/A	62,000	290,000	SW8310 SW8310	15	75	68	NA	NA	10	12
			N/A	2,300,000	30,000,000	SW8310 SW8310	<11	63	79	NA	NA	<11	<11
SW 8270 II		ug/kg ug/kg	N/A N/A	2,300,000 620	2,900	SW8310 SW8310	<3.1	73	89	NA	NA	<3.0	<3.1
SW0270 D	PHENANTHRENE			020 N/A		SW8310 SW8310		<3.1		NA		<3.0	< 5.1
	DIBENZO(A,H)ANTHRACENE	ug/kg	N/A N/A	N/A 62	N/A 290	SW8310 SW8310	<3.1 <3.1	<3.1	<3.1 21	NA	NA NA	<3.0	<3.1
SW8270 D SW8270 P		ug/kg ug/kg	N/A N/A	23,000,000	54,000,000	SW8310 SW8310	<14	13 52	63	NA	NA	<14	<14
PESTICIDE	IKENE	ug/kg	IN/A	23,000,000	34,000,000	3 W 8510	<14	32	03	INA	INA	<14	<14
	PCB-1260 (AROCLOR 1260)	u a/lra	NA	220	1000		NA	NA	NA	<91	NA	NA	NA
TOTAL MET		µg/kg	INA	220	1000		INA	INA	INA	<91	INA	INA	INA
SW6010 A		ma/ka	173,500	76,000	100,000		NA	NA	NA	NA	NA	NA	NA
SW6010 A SW6010 A		mg/kg	63	31	820		NA	NA	NA	NA	NA	NA	NA
SW6010 A SW6010 B		mg/kg	335	5,400	100,000		NA	NA	NA	NA	NA	NA	NA
	BERYLLIUM	mg/kg	3.34	5,400 150	2,200		NA	NA	NA	NA	NA	NA	NA
SW6010 B SW6010 C		mg/kg	5.54 6.5	37	2,200 810		NA			NA		NA	NA
SW6010 C SW6010 C		mg/kg	0.5 N/A	37 N/A	810 N/A		NA	NA NA	NA NA	NA	NA NA	NA	NA
	CHROMIUM, TOTAL	mg/kg	1,080	210	450		NA			NA			NA
SW6010 C		mg/kg	29	4,700				NA NA	NA	NA	NA	NA	
SW6010 C SW6010 C		mg/kg	29 72.2	2,900	100,000 76,000		NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
SW6010 C SW6010 II		mg/kg	116,495	23,000	100,000		NA			NA	NA		NA
SW6010 II SW6010 L		mg/kg	166	23,000 400	750		3,790 EN	NA 81.7 EN	NA 40.4 EN	150 EN	72 EN	NA NA	NA
	MAGNESIUM	mg/kg	100 N/A	400 N/A	730 N/A		NA	NA	A0.4 EN NA	NA	NA	NA	NA
	MAGNESIUM	mg/kg	5,500	1,800	32,000		NA			NA			NA
SW6010 N SW6010 N		mg/kg	5,500 242.5	1,600	41,000		NA	NA	NA	NA	NA	NA NA	NA
		mg/kg						NA	NA		NA		
	POTASSIUM	mg/kg	N/A	N/A	N/A		NA	NA	NA	NA	NA	NA	NA
SW6010 S SW6010 S		mg/kg	14.9 N/A	390 N/A	10,000 N/A		NA	NA	NA	NA	NA	NA	NA
		mg/kg					NA	NA	NA	NA	NA	NA	NA
SW6010 V		mg/kg	206 111	550 23.000	14,000		NA	NA	NA	NA	NA	NA	NA
SW6010 Z		mg/kg		23,000	100,000		NA	NA	NA	NA	NA	NA	NA
SW7060 A		mg/kg	62 0.28	.39	2.7		NA	NA	NA	NA	NA	NA	NA
SW7471 N		mg/kg	0.28	23	610		NA	NA	NA	NA	NA	NA	NA
SW67740 S		mg/kg	NA	390 5-2	10,000		NA	NA	NA	NA	NA	NA	NA
SW7840 T		mg/kg	1.42	5.2	130		NA	NA	NA	NA	NA	NA	NA
SW9012 C	L'YANIDE	mg/kg	N/A	11	35		NA	NA	NA	NA	NA	NA	NA
N/A = Not app estimated due to within control 1 limt (50%); Fo	round Threshold Value; 2002 PRG blicable; J = Indicates an estimated to the presence of interference; N = limits; D = Duplicate sample; j = L or detailed laboratory results see Ap ed indicates concentration = or > th	Reported v ample recovers s not within	value is very is not n QAPP control		but greater th S = Reported valu W = Postdigestion (85-115%) a	ue is less than the Co an the Instrument D as is determined by n spike for furnace A nd sample absorban dyses is not within c llium acetate	etection Limit the method of stan AAS analysis is ou ce is less than 50%	dard additions t of control limits	ice				
Bold indicates	s Concentration = or > the higher	of BTV of	or Industria	al PRGs		NA = Not analyze	ed						

TABLE 5-3. IRP SITE 54 (FORMER AOC-56) SOIL SAMPLE RESULTS.

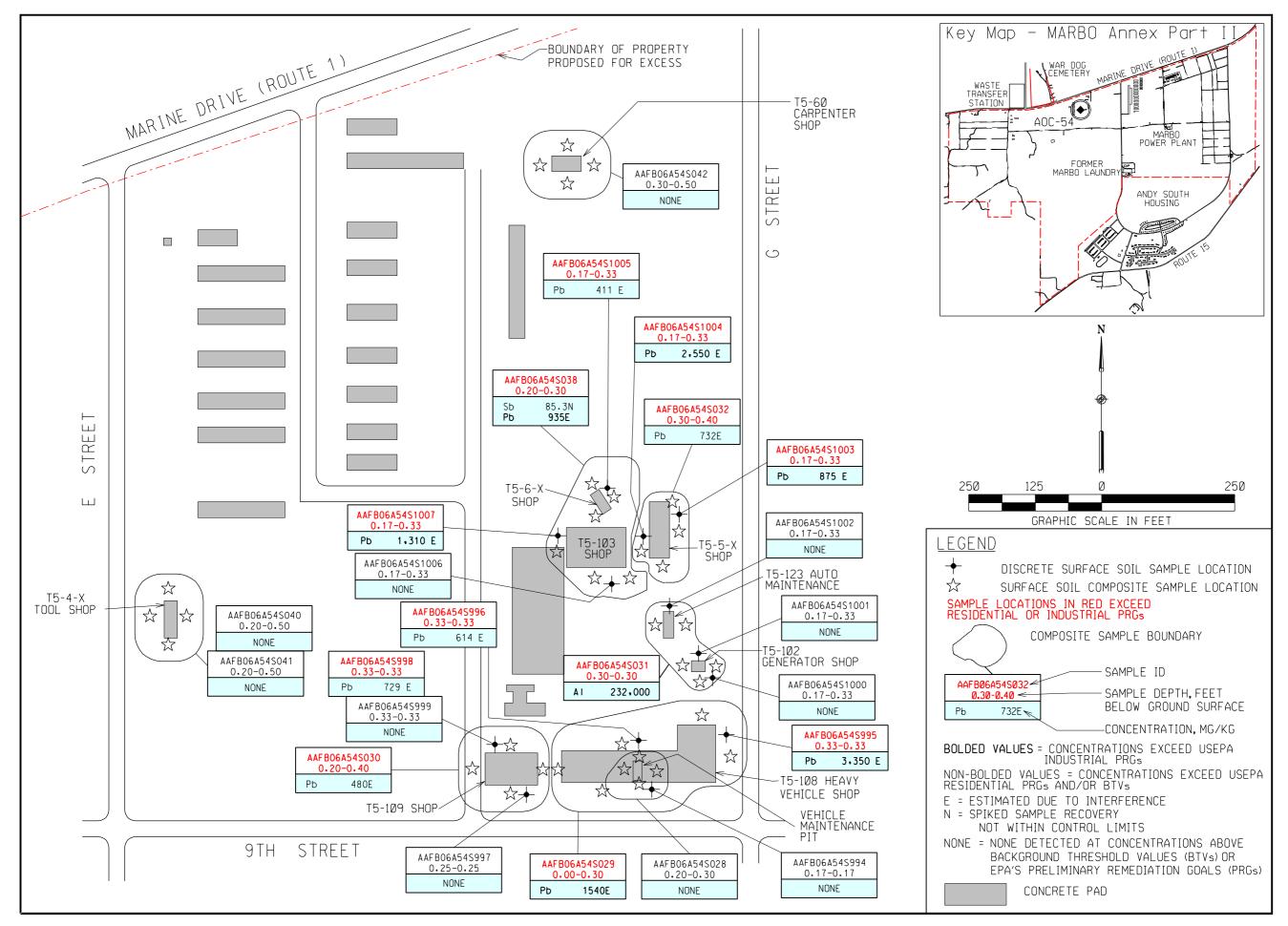


Figure 5-1. IRP Site-52 (Former AOC-54) Soil Sample Locations and Results at MARBO Annex.

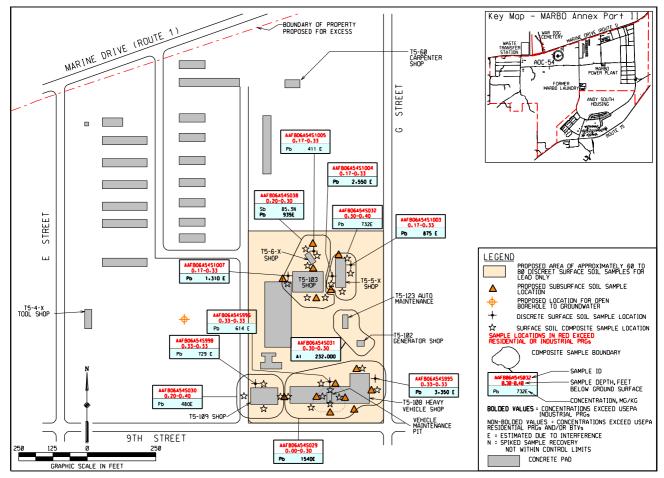


Figure 5-2. IRP Site-52 (Former AOC-54) Proposed Surface and Subsurface Investigation at MARBO Annex.

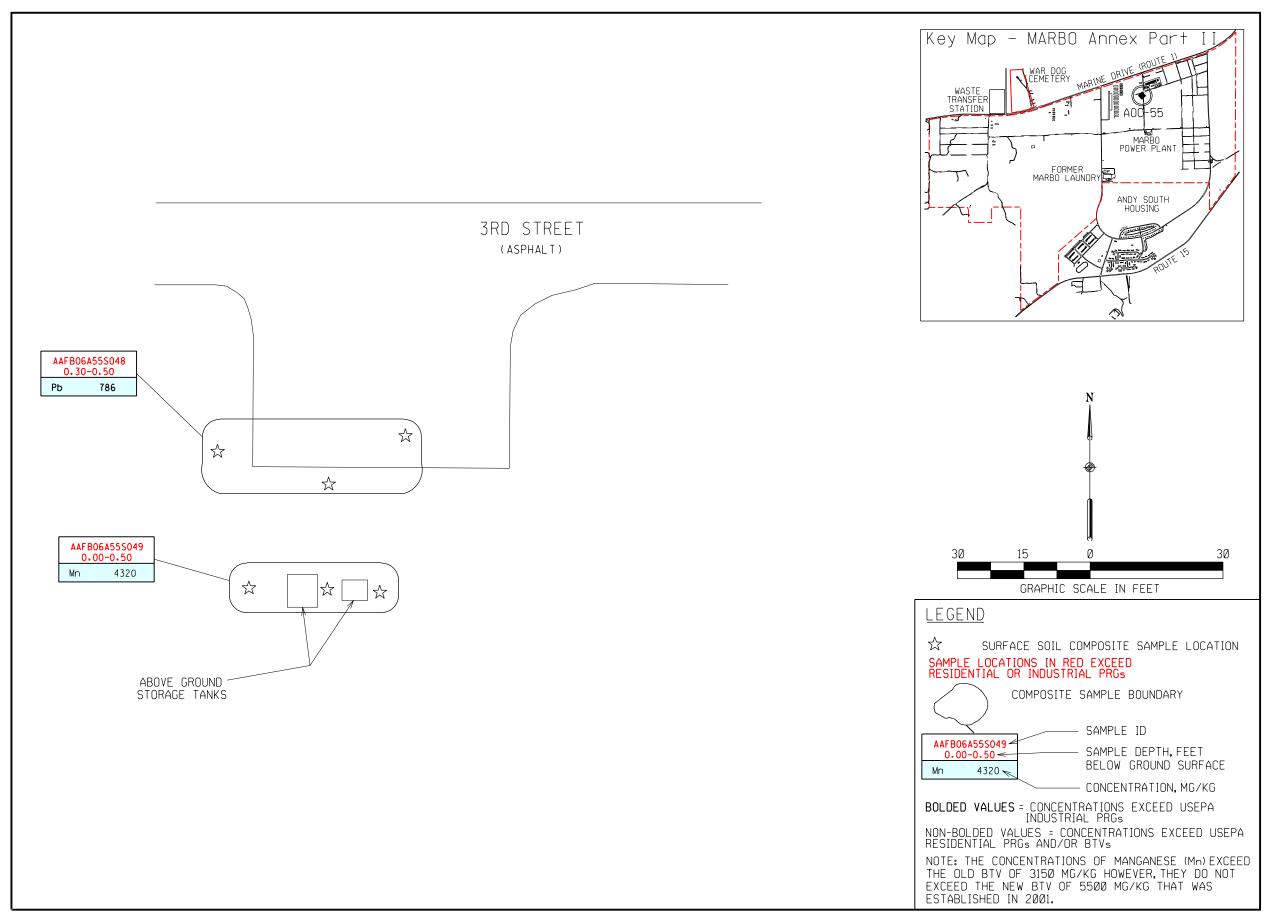


Figure 5-3. IRP Site-53 (Former AOC-55) Soil Sample Locations and Results at MARBO Annex.

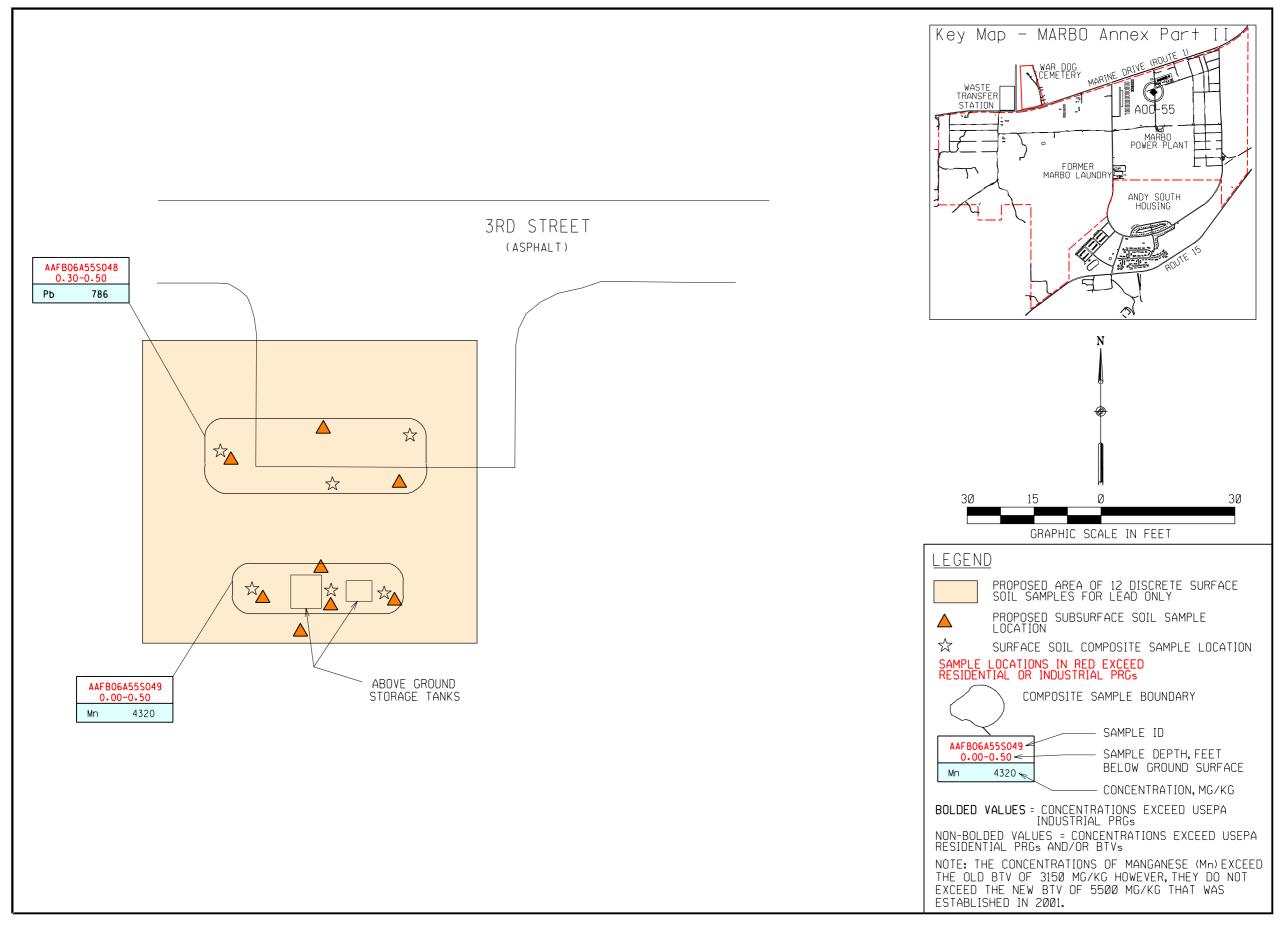


Figure 5-4. IRP Site-53 (Former AOC-55) Proposed Surface and Subsurface Soil Sample Locations at MARBO Annex.

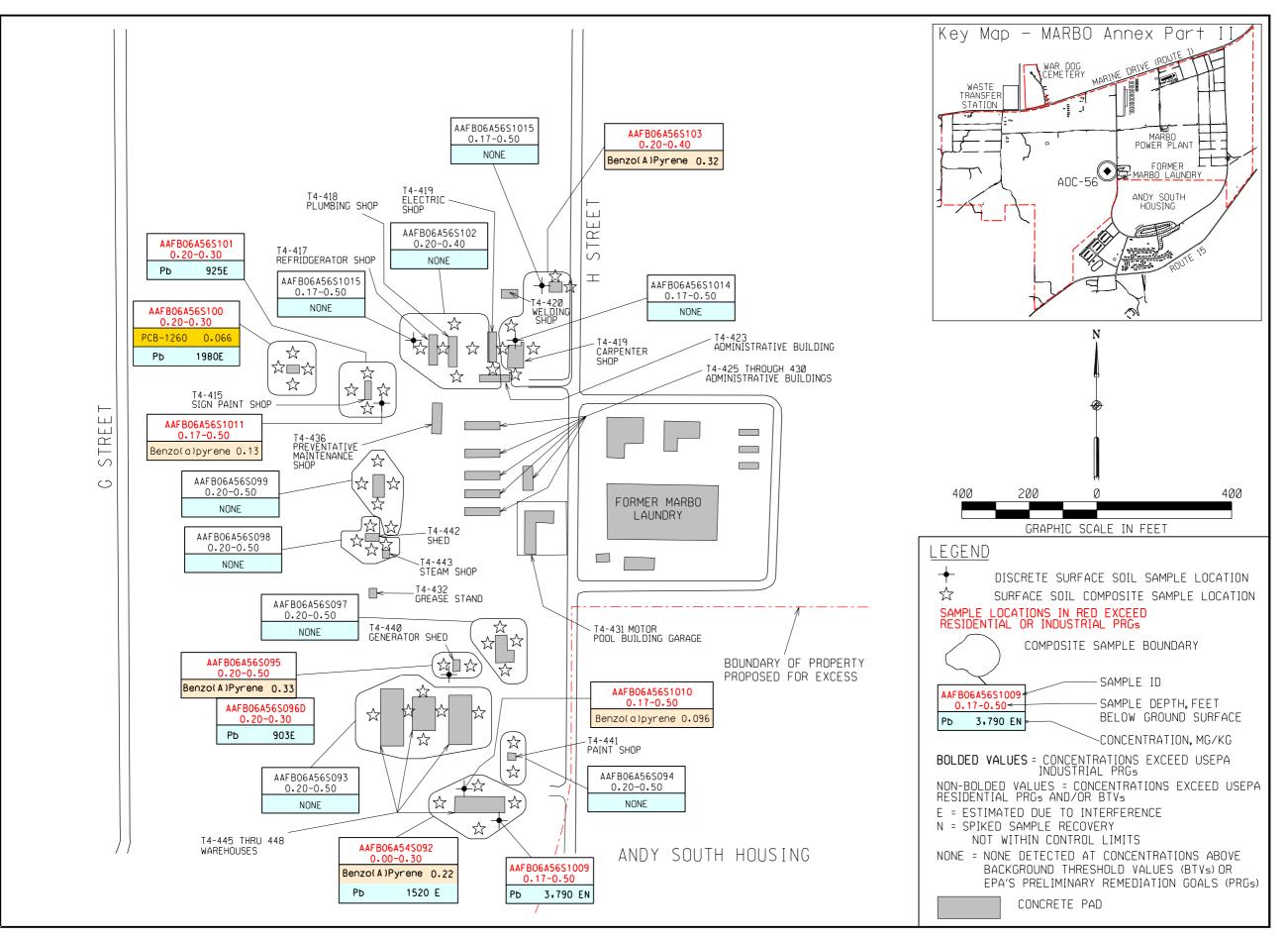


Figure 5-5. IRP-Site-54 (Former AOC-56) Soil Sample Locations and Results at MARBO Annex.

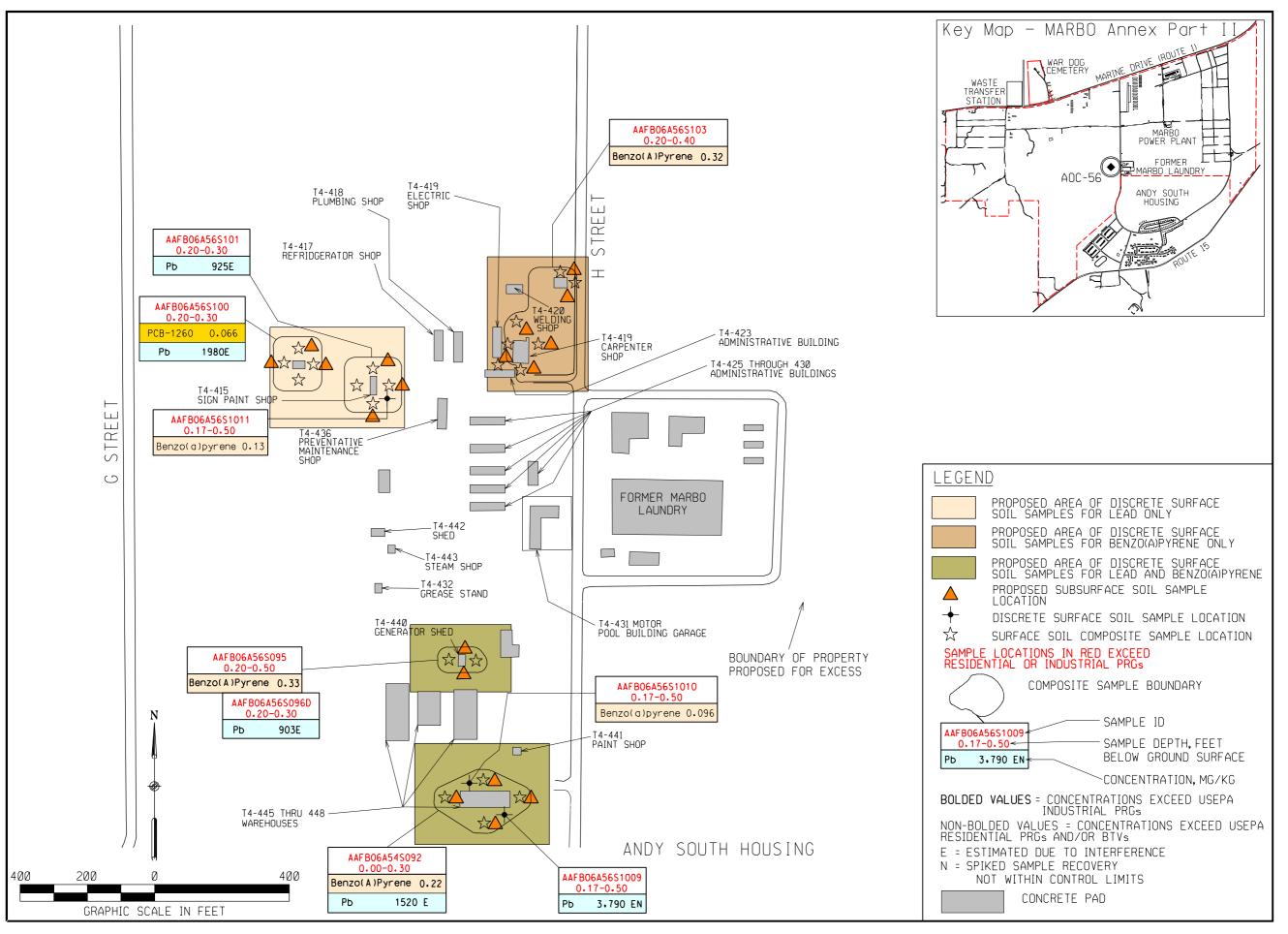


Figure 5-6. IRP-Site-54 (Former AOC-56) Proposed Surface and Subsurface Soil Sample Locations at MARBO Annex.

6.0 MARBO ANNEX GROUNDWATER

According to the MARBO ROD (EA, 1998a), groundwater beneath MARBO Annex was impacted by low levels of trichloroethene (TCE) primarily in the northern portion of the MARBO Annex (southwest of IRP Site 37), and tetrachloroethene (PCE) primarily in the vicinity of the former MARBO Laundry (IRP Site 38), as shown in Figure 1-4. The selected alternative for MARBO Annex Groundwater consisted of *Natural Attenuation with Institutional Controls*. This alternative was intended to utilize natural attenuation of TCE and PCE to achieve the remediation goal of decreasing concentrations in the aquifer to levels below USEPA established Maximum Contaminant Levels (MCLs).

As stipulated in the MARBO ROD (EA, 1998a), natural attenuation of TCE and PCE in the groundwater would be due primarily to the physical processes of dispersion and dilution, and not to dechlorination processes. Also the ROD indicated that the timeframe to achieve cleanup goals could take 10 to 40 years, assuming a continued source of PCE and TCE did not exist. Supplemental to the natural attenuation processes were three institutional controls (ICs), which included:

- 1) *Land Use Restrictions* to monitor and restrict groundwater access in areas impacted by TCE/PCE),
- 2) *Groundwater Monitoring* (to monitor TCE/PCE and confirm the stability of TCE/PCE plumes in the MARBO Annex), and
- 3) *Existing Wellhead Treatment* (to ensure public health risk is within acceptable range at existing Air Force production wells).

The selected groundwater alternative is classified as an *Operating Remedial Action (RA)*, as the RA has been implemented but residual COCs have been left in place at concentrations that do not allow for unlimited use of or unrestricted access to the land. In addition, the *Operating RA* may require many more years before cleanup levels can be fully achieved. The first five-year review of MARBO Annex Groundwater is evaluated herein.

6.1 First Five-Year Review of MARBO ANNEX Groundwater

6.1.1 MARBO Annex Groundwater Background

The initial groundwater activities were conducted at MARBO Annex in 1989 that included monitoring well installation, groundwater elevation measurements, and sampling and analysis. A total of five IRP monitoring wells were installed and sampled during this phase, including IRP-1, IRP-2, IRP-8, IRP-10 and IRP-12 (Figure 6-1). Each well was installed in the upper portion of the freshwater lens (i.e., shallow wells), in the Mariana/Barrigada limestone formations. The wells were sampled in May, August, and October 1989. Three discrete rounds of water level measurements were made; one in June and two in October 1989. Groundwater samples were also collected from four Guam Waterworks Authority (GWA) off-site production wells (MW-1

through MW-3 and MW-5 through MW-9). The analytical results are presented in the IRP Phase II, Stage 1 Final Report (Battelle, 1989).

6.1.1.1 Phase II, Stage 1 Activities

Phase II, Stage 1 groundwater activities were completed in December 1991. Three additional IRP monitoring wells were installed and sampled, including IRP-14, IRP-15 and IRP-16. IRP-14 was installed to monitor the groundwater in the vicinity of the MARBO Laundry (IRP Site 38), and IRP-15 and IRP-16 were installed to monitor groundwater in the vicinity of Waste Pile 7 (IRP Site 20). Groundwater sampling and measurements were conducted on the same wells, with the addition of IRP-14, IRP-15, IRP-16, and GWA production well Y-2 (Figure 6-1). GWA production well M-6 was not sampled during this stage of work. Groundwater samples were collected and depth-to-water measurements were conducted twice during this stage; in April 1989 and August 1989. The analytical results are presented in the IRP Phase II, Stage 2 Final Report (SAIC, 1991).

6.1.1.2 Phase II, Stage 2 Activities

Phase II, Stage 2 groundwater activities, conducted from November 1995 to February 1996, included: borehole drilling, lithologic well logging, borehole condition logging, down hole geophysics, monitoring well installation, water level measurements, and groundwater sampling. A total of 13 monitoring wells were installed, IRP-23 through IRP-35. Monitoring wells IRP-24, IRP-29, IRP-31, IRP-33, and IRP-35 were installed approximately 90 feet below the top of the groundwater surface (deep wells), to monitor water quality at the base of the freshwater lens (Figure 1-4). The remaining monitoring wells were installed at the top of the freshwater lens (shallow wells).

6.1.1.3 Long-Term Groundwater Monitoring Program

The Long-Term Groundwater Monitoring (LTGM) Program was initiated in October 1995 in accordance with the following agency approved documents and variances:

- Groundwater Monitoring Plan (GWMP) (EA, 1995),
- MARBO Annex ROD (EA, 1998a), and
- Technical Memorandum on Long-Term Groundwater Monitoring at MARBO (EA, 1998f).

The LTGM program was designed to ensure compliance with the CERCLA, RCRA, Clean Water Act (CWA), Safe Drinking Water Act (SDWA), and all Applicable or Relevant and Appropriate Requirements (ARARs) with the goals of:

- establishing baseline groundwater elevation and water quality data at monitoring and production wells,
- evaluating the baseline data and identifying critical sampling locations,
- installing new monitoring wells in those critical sampling locations, and

• determining modifications to monitoring points, monitoring frequency, and analytical methods.

Since the LTGM Program was initiated in 1995, 18 semi-annual (twice per year) rounds of groundwater sampling have been conducted at the MARBO Annex. The analytical results for monitoring points in the LTGM Program are provided in Appendix C, and analytical results for auxiliary monitoring points (outside the LTGM Program) are presented in Appendix D.

Initially 46 monitoring and production wells were sampled and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs), metals, cyanide, and water quality parameters (total dissolved solids, alkalinity, chlorides, and sulfate). Groundwater samples were collected and groundwater elevations were measured during October-November 1995 (Round 1), February-March 1996 (Round 2), October-November 1996 (Round 3), and April-May 1997 (Round 4), and utilized in the OU3 FFS and ROD documents in order to assess longer-term trends. A total of 21 IRP wells, 23 production wells, and two Guam Power Authority (GPA) monitoring wells (GPA-1 and GPA-2) were sampled for the ROD (EA, 1998a).

6.1.1.3.1 Post-ROD LTGM Program

In 1998, these monitoring and production wells were evaluated according to criteria established in the GWMP (EA, 1995) to determine whether they should be retained in the LTGM Program. Wells meeting the following criteria were recommended for retention in the LTGM Program:

- wells with detected target analyte concentrations at or above ARARs, including the most current *Drinking Water Standards and Health Advisories* MCLs,
- wells located down gradient of a potential source area, and
- wells that provide a strategic monitoring location.

6.1.1.3.2 1998 Technical Memorandum

A February 1998 technical memorandum (EA, 1998f) requested that 12 monitoring and production wells be removed from the LTGM Program (Table 6-1 and Figure 6-1) based on a review of the trends observed from four groundwater sampling events (Rounds 1 through 4). This memorandum also requested that the analytical parameters for the remaining 34 wells be reduced to VOCs, only, with the exception of three wells (IRP-10, IRP-15, and IRP-16) located near Waste Pile 7. In support of the RA (soil cover) for Waste Pile 7, IRP-10, IRP-15, and IRP-16 were to be monitored for VOCs, PAHs, pesticides, metals, cyanide, SVOCs, PCBs, and water quality parameters. The USEPA and GEPA approved this request. A subsequent technical memorandum (EA, 2001), based on the evaluation of additional analytical data (Rounds 5 through 11), recommended that SVOCs, PCBs, and total dissolved solids be removed as analytical parameters from IRP-10, IRP-15, and IRP-16. The USEPA and GEPA approved this request.

6.1.1.3.3 2003 Technical Memorandum

After completion of the Spring 2003 sampling event (Round 16) a technical memorandum (EA, 2003) summarized the historical groundwater analytical data and evaluated data trends to support a further reduction of sampling points, sampling frequency, and analytical parameters at the MARBO Annex OU. Based on the 2003 memorandum (EA, 2003):

- five IRP monitoring wells (IRP-1, IRP-2, IRP-12, IRP-23, and IRP-26) were removed from the LTGM Program (Table 6-1 and Figure 6-1). The remaining 14 IRP monitoring wells (IRP-8, IRP-10, IRP-14, IRP-15, IRP-16, IRP-24, IRP-25, IRP-27, IRP-29, IRP-30, IRP-31, IRP-33, IRP-34, and IRP-35) were retained in the LTGM Program, to be analyzed for VOCs only. Monitoring wells IRP-8, IRP-30, IRP-33, and IRP-34 were retained in the LTGM Program due to their strategic locations, and are analyzed for VOCs only (Table 6-1 and Figure 6-1). Monitoring wells IRP-10, IRP-15, and IRP-16 were retained in the LTGM Program due to their proximity to IRP Site 20/Waste Pile 7, and are analyzed for VOCs, pesticides, and metals.
- four of the five GWA production wells (D-2, D-5, M-6, and M-7) were removed from the LTGM Program. GWA production well D-14 was retained in the LTGM Program, due to its location down gradient from MARBO Annex, and is analyzed for VOCs only (Table 6-1 and Figure 6-1).
- five of the eight Andersen AFB production wells (MW-3, MW-5, MW-6, MW-7, and MW-8) were removed from the LTGM Program. Three Andersen AFB production wells (MW-1, MW-2, and MW-9) were retained in the LTGM Program, and are analyzed for VOCs only (Table 6-1 and Figure 6-1).
- GPA monitoring wells GPA-1 and GPA-2 were retained in the LTGM Program, and are analyzed for VOCs only (Table 6-1 and Figure 6-1).
- With the exception of IRP-31, IRP-14, and IRP-29, the groundwater sampling frequency was reduced from a semi-annual basis to an annual basis.

The above changes were all approved at the May 2004 RPM meeting.

A total of 20 monitoring and production wells are regularly monitored as part of the LTGM Program at the MARBO Annex (Table 6-1 and Figure 6-1). Five of the IRP wells are "deep" monitoring wells that were screened at/near the base of the freshwater lens (IRP-24, IRP-29, IRP-31, IRP-33, and IRP-35). The deep monitoring wells are generally screened approximately 90 to 100 feet below the production wells and shallow monitoring wells in order to monitor water quality near the freshwater/saltwater interface. The remaining IRP monitoring wells are screened in the upper portion of the freshwater lens, at approximately the same depth as the nearby production wells. The GPA wells are fully screened across the fresh water lens. (Table 6-1 and Figure 6-1).

The technical memoranda cited in this section are provided in Appendix E.

6.1.1.4 Auxiliary Groundwater Data

Additional groundwater monitoring points (monitoring wells, production wells, rock borings, and springs), which were either not sampled regularly as part of the LTGM Program, which preceded the program, or which were added subsequent to the MARBO OU ROD are also considered in this five-year review. These data are the result of sampling efforts by the USAF, GWA, and GEPA. Relevant analytical data for these sampling points are presented in Appendix D of this report.

6.1.1.4.1 Pre-LTGM Program Data for MW-1 and MW-2

In addition to data collected in the LTGM Program, some of the MARBO Annex production wells (MW-1 and MW-2) were monitored for TCE and PCE, by Base Bioenvironmental, prior to 1996. These data, though not equivalent to the OU2 RI data, are important as they can be used to establish TCE trends preceding 1996. A plot of TCE concentrations in observed MW-1 and MW-2 from 1978 through 1996 is presented at the end of Appendix D (Figure D-1) and will be discussed in the following sections. Additional pre-1996 data for other USAF production wells is available in the OU3 FFS Report (EA, 1997b).

6.1.1.4.2 Rock Boring EX-6

The rock boring, EX-6, was installed by the United States Geological Survey (USGS) in 1982 as part of the Northern Guam Lens (NGL) Study (Camp, Dresser & McKee, Inc. and Barrett, Harris & Associates, 1982). EX-6, located downgradient of the MARBO Annex (Figure 6-2), was sampled in the Spring 2000 (Round 10), Fall 2000 (Round 11), and Spring 2004 (Round 18) groundwater sampling events. Well information is presented in Table 6-1 and analytical results (VOCs) are summarized in Appendix D, Table D-1.

6.1.1.4.3 GWA Production Wells

Several GWA production wells were installed in the MARBO Annex after the MARBO OU ROD was finalized. Production well Y-18 (formerly Y-1) was installed in the MARBO Annex (Figure 1-4), by GWA, in December 1998 (Earth Tech, 1998). The well is located on a parcel that is proposed for transfer to GovGuam (Figure 1-5; magenta). The well is constructed of 6-inch diameter steel casing, with approximately 50 feet of screen (395-445 feet). Pumping and drawdown tests were performed on the well, with an average drawdown of 4.5 feet at an average pumping rate of 210 gallons per minute (gpm) (Earth Tech, 2002). In addition, the well was sampled for metals (EPA methods 200.7 and 245.1) and water quality parameters (pH by EPA 325.2, chloride by EPA 325.2, fluoride by EPA 340.2, hardness by SM 2340B, specific conductance by EPA 120.1, and turbidity by EPA 180.1) in December 1998. No records of any VOC analytical results were found for Y-18, so the USAF collected a sample during the Spring 2004 (Round 18) groundwater-sampling event.

Production well Y-20 (formerly Y-3) was installed in the MARBO Annex (Figure 1-4) by GWA in January 1999 (Earth Tech, 1999). The well is located on a parcel that has been transferred to GovGuam (Figure 1-5; green). The well was constructed of 6-inch diameter steel casing, with

approximately 50 feet of screen (395-445 feet). Pumping and drawdown tests were performed on the well, with an average drawdown of 2.0 feet at an average pumping rate of 425 gpm (Earth Tech, 2002). In addition the well was sampled for metals (EPA methods 200.7 and 245.1) and water quality parameters (pH by EPA 325.2, chloride by EPA 325.2, fluoride by EPA 340.2, hardness by SM 2340B, specific conductance by EPA 120.1, and turbidity by EPA 180.1) in January 1999. No records of any VOC analytical results were found for Y-20, so the USAF collected a sample during the Spring 2004 (Round 18) groundwater sampling event.

6.1.1.4.4 GEPA Harmon Monitoring Wells

Three additional monitoring wells (HMW-1, HMW-2, and HMW-3) were installed by GEPA in an area of Harmon down gradient of the MARBO Annex (Figure 6-2). Installation of these wells was prompted by the discovery of PCE and TCE in the Tumon-Maui and Guam Plaza Hotel production wells (APEC, 2002).

HMW-1 was installed in October 2001, near the intersection of Route 16 and the Harmon Loop Road (Figure 6-3), to characterize groundwater quality adjacent to a potential source of PCE (dry cleaners). The well is screened across the entire fresh water lens (169-279 feet). Two discrete groundwater samples, collected from near the top of the screened interval, were collected in October 2001 and January 2002 (APEC, 2002). In May 2002 the USAF, in support of the GEPA program, collected two samples using a piston pump at depths of 184 and 260 feet. In May 2004 the USAF collected four samples using a low flow piston pump at depths of 195, 225, 260, and 275 feet. Sampling information and groundwater data are presented in Table 6-1 and analytical results are summarized in Appendix D (Table D-2) and discussed in Section 6.1.2.

HMW-2 was installed in May 2002, near the intersection of Route 16 and the Harmon Loop Road (Figure 6-3) to characterize groundwater quality adjacent to a potential source of PCE (dry cleaners). The well is screened across the entire fresh water lens (170-300 feet). One discrete groundwater sample, collected from near the top of the screened interval, was collected in June 2002 (APEC, 2003a). In November 2003, EA under contract to the USAF and in support of the GEPA program, collected six vertically profiled groundwater samples using passive diffusion bag (PDB) samplers. The PDB technology has been proven effective for collecting groundwater samples for VOC analysis based on a study conducted in 2002 (Vroblesky, D.A., Joshi, M., Morrell, J., and Peterson J.E., 2002). Sampling information and groundwater data are presented in Table 6-1 and analytical results are summarized in Appendix D (Table D-3) and discussed in Section 6.1.2.

HMW-3 was installed in May 2003, near the Guam Sports Complex (Figure 6-3), to characterize groundwater quality along the axis of the Yigo-Tumon Trough, downgradient of MARBO Annex. The well is screened across the entire fresh water lens (240-375 feet). In November 2003, the USAF, in support of the GEPA program, collected six, vertically-profiled groundwater samples using PDB samplers. In May 2004, the USAF collected four samples using a low flow piston pump at depths of 270, 345, 366, and 372 feet. Sampling information and groundwater data are presented in Table 6-1 and analytical results are summarized in Appendix D (Table D-4) and discussed in Section 6.1.2.

6.1.1.4.5 Tumon Bay Springs

Between August 2000 and August 2001, PCR Environmental (under contract to the GEPA) completed groundwater sampling from eight springs in Tumon Bay (Figures 6-2 and 6-4). The study characterized rainfall conditions, groundwater discharge, and groundwater quality from the eight springs for four events over one annual cycle (PCR, 2002). Spring locations are presented on Figure 6-4 and analytical results are presented in Appendix D (Table D-5) and discussed in Section 6.1.2.

6.1.1.4.6 The Tumon-Maui Well

The Tumon-Maui well, located in Tumon (Figure 6-4), was constructed in 1947 and is owned by the USAF. The well facilities include a slanted tunnel that was dug into the subsurface to intercept the water table. The base of the slanted tunnel leads to a pump room that is adjacent to a horizontal infiltration gallery. The infiltration gallery is a straight, 1,000-foot long tunnel that intercepts the upper 1.5 feet of the fresh-water aquifer. Due to it's proximity to the ocean the freshwater lens at the Tumon-Maui well is relatively thin. The well is designed to skim fresh water from the top of the aquifer to reduce the potential of saltwater intrusion. There are two turbine pumps located in the pump room, each with a capacity of 900 gallons per minute (gpm). These turbines lift the water vertically (approximately 100 feet) to a chlorination station at the surface, on the west side of Marine Drive. Water from this station is piped approximately six miles to treatment and storage facilities in MARBO, and eventually to the Main Base 12 miles away. A brief chronological history directly or indirectly related to the Tumon-Maui well is provided below:

- 1947 Tumon-Maui well was constructed and started operation.
- 1985 USAF Bioenvironmental Engineering (BEE) staff began collecting production well samples, including Tumon-Maui, to analyze for VOCs.
- October 1994 USAF issued an agreement with Public Utility Agency of Guam (PUAG; subsequently known as GWA) to interconnect with the USAF water system at Andersen South Tank 4, and provide PUAG with 330 gpm.
- March 1995 PCE concentrations in the monthly BEE sampling efforts (14.6 μ g/L) exceeds MCL (5 μ g/L)
- September-October 1995 Public notices posted in Pacific Daily News indicating PCE exceedances in Tumon-Maui well. Well shut down until a treatment facility can be constructed.
- October 1995 Alternative Analysis is prepared (Winzler and Kelly, 1995) to remediate Tumon-Maui. Five alternatives are evaluated and the packed tower-air stripper is the selected alternative.
- January 1997 Packed tower-air stripper is constructed in MARBO to treat water from Tumon-Maui and USAF MW-2 production wells.
- January 1997 through December 1997 Operation of air stripper hampered by excessive calcium carbonate scaling of packing media. While USAF evaluates alternatives, Tumon-Maui and MW-2 are only operated intermittently.
- November 1997 USAF began participating in island-wide water conservation program.

- March 1998 USAF determined that alternatives to fix/replace air stripper are not feasible considering that water from Tumon-Maui and MW-2 are not necessary for USAF mission.
- June 1998 USAF notifies GEPA that they intend to modify air stripper to rectify the problem related to scale buildup. USAF proposes adding a sequestering agent, sodium hexa-metaphosphate to reduce scaling. USAF also notifies GEPA that due to several interconnections with GWA, and less overall consumption, that the USAF can satisfy all potable water demands without the use of the Tumon-Maui well.
- July 1998 MARBO ROD for soil and groundwater finalized.
- December 1998 Air stripper is shut down while USAF considers long-term options.
- July 2004 USAF currently assessing long-term disposition of the Tumon-Maui well.

In October 2003 and May 2004 the USAF collected grab samples from the Tumon-Maui well. Historical groundwater data are presented in Table 6-1 and analytical results are summarized in Appendix D (Table D-5) and discussed in Section 6.1.2.

6.1.1.5 Initial Survey and Re-Survey of MARBO Annex Monitoring Wells

A component of this five-year review included verification of the elevation survey data for the monitoring wells at MARBO Annex. The monitoring wells that were installed prior to the OU2 RI (IRP-01, IRP-02, IRP-03, IRP-08, IRP-10, IRP-12, IRP-14, IRP-15, and IRP-16) were surveyed in February and March of 1994. The GPA wells (GPA-1 and GPA-2) were surveyed in February of 1995. The wells installed as part of the OU2 RI (IRP-23, IRP-24, IRP-25, IRP-26, IRP-27, IRP-28, IRP-29, IRP-30, IRP-31, IRP-32B, IRP-33, IRP-34, and IRP-35) were surveyed in November 1995, at the completion of the OU2 RI drilling program.

Based on initial elevation survey data, groundwater elevations have been measured during each of the 18 semiannual groundwater monitoring events, and potentiometric surface maps that were generated from these data are presented in the following documents:

- Groundwater Maps for Operable Unit 2 (ICF, 1995b)
- Final Groundwater Monitoring Plan for Andersen AFB (EA, 1995)
- Groundwater Summary Report for Andersen AFB (EA, 1998g)
- Spring 1998 Groundwater Data Monitoring Report for Andersen AFB (EA, 1998h)
- Fall 1998 Groundwater Data Monitoring Report for Andersen AFB (EA, 1999a)
- Spring 1999 Groundwater Data Monitoring Report for Andersen AFB (EA, 1999b)
- Fall 1999 Groundwater Data Monitoring Report for Andersen AFB (EA, 2000)
- Spring 2000 Groundwater Monitoring Main Base, Northwest field, and MARBO Annex Operable Units (EA/URS, 2000)
- Fall 2000 Groundwater Monitoring Main Base, Northwest Field, and MARBO Annex Operable Units (EA/URS, 2001a)
- Spring 2001 Groundwater Monitoring Main Base, Northwest Field, and MARBO Annex Operable Units (EA/URS, 2001b)
- Fall 2001 Groundwater Data Monitoring Report for Andersen AFB (FWENC/EA, 2002c)

- Spring 2002 Groundwater Monitoring Report for Andersen AFB (FWENC/EA, 2002d)
- Fall 2002 Groundwater Monitoring Report for Andersen AFB (FWENC/EA, 2003b)
- Spring 2003 Groundwater Monitoring Report for Andersen AFB (FWENC/EA, 2003c)

A review of the historical potentiometric surface maps indicates consistent results between them. Each of the groundwater potentiometric surface maps indicates a prominent "low" feature in the vicinity of IRP-12 and a "high" feature in the vicinity of IRP-16. The Fall 1998 potentiometric surface map (EA, 1999a), a representative map that illustrates both these features, is illustrated in Figure 6-5. As these features are key to the interpretation of groundwater flow within MARBO Annex, a primary objective of the re-survey was to confirm that these two features exist. A re-survey of 23 monitoring wells was performed in December 2003, by a Guam-licensed surveyor. Both location data (x and y coordinates) and elevation data (z coordinate) were measured. Both the original survey data and the re-survey data are presented in Table 6-2 and illustrated in Figure 6-6. As presented in Table 6-2, there were slight (0.01 feet to 0.20 feet) elevation variances, between the two surveys, for most of the wells. However, two wells (IRP-08 and IRP-12) showed excessive variations that affected the contouring and interpretation of previous potentiometric surface maps. The re-survey elevations for IRP-12 and IRP-08 are 1.86 feet higher and 1.11 feet lower, respectively.

A newly generated groundwater potentiometric surface map for the MARBO Annex, based on the re-surveyed elevations and the Fall 2003 groundwater elevations, reveals a more subtle potentiometric surface map than previous ones (Figure 6-7). Though the "high" centered around IRP-16 persists with the new data, the "low" centered around IRP-12 disappears. This new depiction of the groundwater surface is significant as it challenges some of the former conceptions relevant to shallow groundwater flow. This issue, and how it impacts the MARBO ROD and future actions, are addressed in more detail in the following sections.

6.1.2 History of Contamination of the MARBO Annex Groundwater

6.1.2.1 Nature and Extent of TCE and PCE

6.1.2.1.1 MARBO Annex

During previous groundwater sampling events at the MARBO Annex, VOCs, SVOCs, PAHs, PCBs, pesticides, TAL metals, and cyanide were detected in groundwater samples collected from one or more monitoring wells. However, these analytes were detected either inconsistently or at concentrations below their respective MCL. No SVOCs, PAHs, PCBs, pesticides, or TAL metals were determined to be COCs so there is no further discussion regarding them in this document. The following VOCs were detected in at least one groundwater sample at MARBO Annex:

- 1,1,1,2-tetrachloroethane
- 1,1-dichloroethene (1,1-DCE)
- 1,1,2-trichloroethane (1,1,2-TCA)
- 1,2,4-trichlorobenzene
- 2-hexanone

- acetone
- benzene
- bromodichloromethane
- bromomethane
- carbon disulfide
- carbon tetrachloride
- chloroform
- chloromethane
- cis-1,2-dichloroethene
- dibromochloromethane
- dichlorodifluoromethane
- methyl ethyl ketone (2-butanone)
- methylene chloride
- m,p-xylenes
- naphthalene
- tetrachloroethene(PCE)
- trichloroethene (TCE)
- toluene
- trichlorofluoromethane

Of the VOCs listed above, only TCE and PCE have been detected consistently at concentrations exceeding their respective MCL (5 μ g/L), and they are the only COCs at MARBO Annex. In addition, two chlorinated VOCs, 1,1-dichloroethene (1,1-DCE) and 1,1,2-trichloroethane (1,1,2-TCA), have been detected above their MCL (7 μ g/L and 5 μ g/L) once and twice, respectively. Historical analytical data acquired for the MARBO Annex LTGM Program are presented in Appendix C. The historical ranges of TCE and PCE concentrations observed in groundwater samples collected at MARBO Annex as part of the LTGM Program are illustrated in Figure 6-8. In addition, Figure 6-8 illustrates the historical ranges of concentrations of TCE and PCE "daughter" products, cis-1,2-dichloroethene (1,2-DCE) and 1,1-DCE. Wells with groundwater samples with COCs that exceeded their respective MCL are highlighted in red.

Based on 18 rounds of groundwater sampling, TCE and PCE concentrations have been detected above MCLs (5 μ g/L), at two locations inside the MARBO Annex (Figure 6-8). TCE and PCE concentrations were detected at concentrations exceeding the MCL in four wells (IRP-31, MW-2, GPA-1, and GPA-2) located west and southwest of Site 37 and the Waste Transfer Station (Figure 6-8). The groundwater samples collected from IRP-31 have had TCE and PCE concentrations ranging from 110 to 605 μ g/L and 0.9 to 6.1 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9). The groundwater samples collected from GPA-1 have had TCE and PCE concentrations ranging from non-detect (ND) to 14 μ g/L and ND to 0.4 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9). The groundwater samples collected from GPA-2 have had TCE and PCE concentrations ranging from ND to 6.7 μ g/L and ND to 0.4 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9). The groundwater samples collected from GPA-2 have had TCE and PCE concentrations ranging from ND to 6.7 μ g/L and ND to 0.4 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9). The groundwater samples collected from GPA-2 have had TCE and PCE concentrations ranging from ND to 6.7 μ g/L and ND to 0.4 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9). The groundwater samples collected from MW-2 have had TCE and PCE concentrations ranging from ND to 6.7 μ g/L and ND to 0.2 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9).

As illustrated in Figure 6-9, MW-2 is screened near the top of the freshwater lens ("shallow") and samples are representative of the shallow freshwater lens. Monitoring well IRP-31 is screened near the base of the fresh water lens and/or top of the transition zone ("deep"), and groundwater samples are representative of that zone. GPA-1 and GPA-2 are screened across the freshwater lens and extend into the marine zone ("fully screened"), however groundwater samples have consistently been collected from the transition zone as illustrated in Figure 6-9. Overall, groundwater samples collected from these four wells have had TCE concentrations 1 to 2 orders of magnitude higher than the respective PCE concentrations. The source for the TCE and PCE observed in these wells was not identified during the OU 3 RI (ICF, 1997b) and has not been identified in the interim.

As illustrated in Figure 6-10, there have been no consistent trends for TCE concentrations observed in groundwater samples collected from IRP-31, GPA-1, and MW-2 during the Fall 1996 through Spring 2004 sampling events. Groundwater samples collected from IRP-31 trended with higher TCE concentrations from Fall 1996 through Spring 1998; leveled off through Fall 1999; decreased through Fall 2001; increased again through Spring 2003 to the highest TCE concentration ($605 \mu g/L$); and have been relatively stable through Spring 2004. TCE observed in groundwater samples collected from GPA-1 and MW-2 appear to trend the opposite of those observed for IRP-31 (Figure 6-10). TCE concentrations decreased from Fall 1996 through Fall 1998 (to trace levels); increased through Spring 2000, and leveled off through Fall 2003.

At the other location, near the MARBO Laundry, PCE concentrations have been detected above MCLs (5 μ g/L) in groundwater samples collected from IRP-14 ("shallow") and IRP-29 ("deep") (Figure 6-8). At this location PCE is the more prevalent chlorinated constituent in groundwater, and TCE concentrations have never exceeded 2 μ g/L. The 18 "shallow" groundwater samples, collected from IRP-14, have had ND TCE and PCE concentrations ranging from 1.6 to 11 μ g/L. The "deep" groundwater samples, collected from IRP-29, have had TCE and PCE concentrations ranging from ND to 2 μ g/L and 4.5 to 18 μ g/L, respectively (Table C-1, Figure 6-8, and Figure 6-9). Converse to the other location (IRP-31) where TCE is prevalent, PCE concentrations in groundwater at MARBO Laundry are typically an order of magnitude higher than the respective TCE concentration. The source of the PCE in groundwater was not definitively attributed to the MARBO Laundry during the OU 3 RI (ICF, 1997b). However the source of PCE is suspected to relate to former dry cleaning activities at the MARBO Laundry.

As illustrated in Figure 6-11, there has been a systematic decrease in PCE concentrations in groundwater samples collected from IRP-14 (shallow well) from Fall 1996 (10 μ g/L) through Spring 2004 (1.8 μ g/L). However there have been no consistent PCE trends in IRP-29 (deep well), as PCE concentrations increased from Fall 1996 (1.0 μ g/L) through Spring 1998 (6.0 μ g/L); decreased through Spring 2002 (1.1 μ g/L); and increased through Spring 2004 (18 μ g/L).

Additional groundwater monitoring points (monitoring wells, production wells, rock borings, and springs), which were either not sampled regularly as part of the LTGM Program, which preceded the program, or which were added subsequent to the MARBO OU ROD are also considered in this five-year review. These data are the result of sampling efforts by the USAF,

GWA, and GEPA. Relevant analytical data for these sampling points are presented in Appendix D of this report.

6.1.2.1.2 Harmon Wells

As discussed in Section 6.1.1.4, auxiliary data from locations down gradient of the MARBO Annex, were collected and/or reviewed for this five-year review. These data are critical to confirming that the selected alternative is protective of human health and the environment.

Three rounds of groundwater samples have been collected from EX-6: April 2000, October 2000, and May 2004. One shallow groundwater sample (320 feet) collected in May 200, one shallow (320 feet) and one deep groundwater sample (415 feet) collected in October 2000, and one shallow (325 feet) and two deep (446 and 448 feet) groundwater samples collected in May 2004 had ND PCE and TCE. Sampling information and groundwater analytical data are summarized in Appendix D (Table D-1) and are depicted in Figure 6-13.

Three additional monitoring wells (HMW-1, HMW-2, and HMW-3) were installed in Harmon. Four series of groundwater samples were collected from HMW-1: two by APEC and two by EA. The two APEC samples were collected on 23 October 2001 and 2 January 2002 using a bailer (Table D-2). Both samples were ND for TCE and PCE, however the reporting limit was equivalent to the MCL (5 μ g/L). On 22 May 2002, EA collected two samples, at depths of 184 and 260 feet, using a low flow piston pump. The shallow groundwater sample had traces of PCE (0.4 μ g/L) and ND for TCE, and the deep groundwater sample was ND for both TCE and PCE (Table D-2 and 6-13). On 12 May 2004, EA collected four samples, at depths of 195, 225, 260, and 275 feet using a piston pump. The groundwater sample collected at 195 feet had traces of PCE (0.2 μ g/L) and TCE (0.5 μ g/L). The samples collected at 225 and 260 feet had ND PCE and traces of TCE (0.4 μ g/L). The sample collected at 275 feet had ND PCE and traces of TCE (0.3 μ g/L). Sampling information and groundwater analytical data are summarized in Appendix D (Table D-2) and are depicted in Figure 6-12.

Two series of groundwater samples were collected from HMW-2: one by APEC and one by EA. The APEC sample was collected on 4 June 2002 using a bailer (Table D-3). The sample was ND for TCE and PCE, however the reporting limit was equivalent to the MCL (5 μ g/L). On 17 November 2002, EA collected six samples, at depths of 191.4, 211.4, 231.4, 251.4, 271.4, and 291.4 feet, using PDBs. The sample collected at 231.4 feet had trace (0.4 μ g/L) concentrations of PCE and ND TCE. The other five samples had ND PCE and TCE (Table D-3 and Figure 6-12). Sampling information and groundwater analytical data are summarized in Appendix D (Table D-3) and are depicted in Figure 6-12.

Two series of groundwater samples were collected from HMW-3 on 17 November 2002 and 13 May 04. On 17 November 2002 EA collected six samples, and a duplicate sample, at depths of 258.9, 288.9, 318.9, 348.9, 358.9, and 368.9 feet, using PDBs. All samples were ND for both PCE and TCE (Table D-4 and Figure 6-12). On 12 May 2004, EA collected four samples, at depths of 270, 345, 366, and 372 feet using a piston pump. The groundwater sample collected at 270 feet had ND PCE and traces of TCE ($0.2 \mu g/L$). The sample collected at 345 feet had traces of PCE ($0.3 \mu g/L$) and TCE ($0.2 \mu g/L$). The samples collected at 366 and 372 feet ND PCE and

TCE. Sampling information and analytical data are summarized in Appendix D (Table D-4) and are depicted in Figure 6-12.

An east-west trending cross section, constructed through HW-1, HMW-2, HMW-3, and EX-6, is illustrated in Figure 6-13. Due to the limited chloride data for these wells, the extent of the freshwater lens, transition zone, and marine water, may be off slightly. The cross section indicates that based on available data, there are only barely detectable traces of TCE and PCE in the freshwater lens.

6.1.2.1.3 Tumon Bay Springs

Between August 2000 and August 2001 PCR Environmental collected groundwater seep samples from eight springs in Tumon Bay (Figure 6-4 and Table D-5). Samples collected at the Hilton Onshore Spring and Marriott Onshore Spring had ND TCE and PCE (Table D-5). Samples collected farther north along Tumon Bay had detectable concentrations of PCE and TCE. One sample collected at the Reef Onshore Spring in August 2001 exceeded the MCL for PCE. One samples collected from the Outrigger Offshore Spring in August 2000 and August 2001 exceeded the MCL for TCE. Two samples collected from the Outrigger Offshore Spring in August 2000 and August 2001 exceeded the MCL for PCE.

6.1.2.1.4 The Tumon-Maui Well

Analytical data for the Tumon-Maui well are presented in Table D-6 (Appendix D). Water table measurements, made by the AF in May 1995, indicate that the well draws down approximately 3 inches when it is pumped at a rate of 1,000 gpm. Groundwater samples collected between 1989 and 1997, when the production well was active, had PCE concentrations in the 1 to 22 μ g/L range, and consistently exceeded the MCL (5 μ g/L). TCE, with one exception, was either ND or detected at trace concentrations (<1.0 μ g/L) in these same samples. Groundwater samples collected in October 2003 and May 2004, with the well inactive, had trace PCE (0.7 and 0.6 μ g/L, respectively) and ND TCE. Historical chloride concentration data are poorly documented, though USAF files indicate several samples with chloride contents of approximately 150 ppm.

6.1.2.2 Fate and Transport of TCE and PCE

6.1.2.2.1 Conceptual Site Model

Cross-sectional information and a block diagram showing potential groundwater and contaminant migration pathways in the vadose zone and aquifer were included in the OU2 RI report (ICF, 1997b) and are presented in Appendix F. A description of the potential pathways and flow regime for groundwater and TCE/PCE that were discussed in the ROD are summarized as follows. In the limestone karst environment, precipitation percolates rapidly into the soils and limestone bedrock. The upper portion of the epikarst zone limestone is capable of storing large volumes of water due to dissolution porosity that has developed with time. Dissolution decreases with depth, decreasing the storage capacity. Epikarst water is gradually released to the underlying vadose zone and to the aquifer as diffuse recharge. Discrete/concentrated runoff

occurs only where there are enlarged joints, faults, brecciated zones, and surface depressions that concentrate runoff to a discrete subsurface inlet.

The vertical migration of groundwater is altered due to interconnecting fractures, solution cavities, or lithologic changes. Vertical flow and flow along the hydraulic gradient occurs where vadose zone groundwater contacts the water table. The rate and direction of flow is further altered by encountering other preferential pathways. The flow regime in the vadose zone ranges from diffuse/slow flow, similar to a macro-porous media aquifer, to preferential/channeled fracture flow. Underlying structural features, lithologic features, and secondary porosity may influence groundwater flow and, therefore, complicate the migration of TCE and PCE.

As shown in Figure 6-14, groundwater flow within the MARBO Annex may be controlled by complex faulting near the center of the Annex, as described in the OU2 RI Report (ICF, 1997b). In addition, groundwater flow to the southwest, northwest, and northeast of the MARBO Annex may be influenced by the numerous GWA production wells that capture some of the groundwater flow. Groundwater flow within MARBO Annex may also be influenced by USAF production wells.

6.1.2.2.2 Groundwater Flow

As discussed in the previous section there is a groundwater "high" west of the MARBO Laundry that appears to influence groundwater over a significant portion of the MARBO Annex (Figure 6-7). To the south of this "high," groundwater flow may also be affected by a fault and breccia zone near the southern boundary of the MARBO Annex (Figure 6-14). It is uncertain if groundwater flows along this fault zone or passes through and continues south. However, groundwater flow toward the south is ultimately controlled by a northeast-southwest trending volcanic ridge that generally parallels Route 15 (Figures 6-2 and 6-14). Due to this "high," groundwater flow in the MARBO Laundry area would be to the north or south.

Based on previous elevation survey data, groundwater flow from the IRP-31 area appeared to flow primarily into a groundwater "low" centered around IRP-12 (Figure 6-5). A potentiometric surface map, based on new elevation survey data (Figure 6-7) depicts a much flatter groundwater gradient in the vicinity of IRP-31, with an overall westward flow component. Some of the groundwater in this vicinity may also be influenced by flow gradients induced by nearby production wells.

The ROD assumed groundwater velocities of 20-36 feet/day that were derived from the dye trace investigation performed at the Main Base (ICF, 1995c). This estimate appears to be representative of the MARBO Annex based on the hydraulic gradient and lithology, and is consistent with other investigations indicating the age of the freshwater lens may be less than 5 years (Mink and Lau, 1977). The OU2 RI assumed that if it takes 10 aquifer volumes to remediate the groundwater system, the aquifer could be cleansed naturally within 50 years, assuming no additional contamination is stored in the vadose zone. However, because of potential movement of contaminants from the vadose to the phreatic zone, contaminant persistence may continue for an unknown period of time, but should diminish, assuming the primary source is gone.

6.1.2.2.3 Dechlorination Processes

Contaminant transformations can occur through degradation of PCE and TCE, however based on high dissolved oxygen (DO) concentrations in the shallow aquifer, these processes are anticipated to be insignificant. Deeper in the aquifer, where DO should decrease, and more anaerobic conditions should prevail, the likelihood for degradation of PCE and TCE is more likely. Evidence of these transformations in the shallow aquifer, based on the presence of degradation byproducts, is minimal based on observations of analytical data at the MARBO Annex (Appendix C and Figure 6-8). As discussed in the previous section, and as illustrated in Figure 6-8, there are very few occurrences of degradation byproducts such as 1,2-DCE and 1,1-DCE, and the absence of vinyl chloride. The highest concentrations of the degradation byproducts 1,2-DCE and 1,1-DCE have been observed in samples collected from IRP-31 (Figures 6-8 and 6-9), near the base of the freshwater lens.

6.1.3 Initial Response

The COCs detected in the MARBO Annex Groundwater were determined to be relatively safe as there were no imminent human health risks, therefore no immediate response was required.

6.1.4 Basis for Taking Action at the MARBO Annex Groundwater

The basis for taking action at the MARBO Annex Groundwater was to protect human health through implementation of ICs.

6.1.5 Remedial Action for the MARBO Annex Groundwater

As noted previously, ICs are active mechanisms that were to be implemented, along with natural attenuation, to provide protectiveness. The ICs consisted of the following three components that would help eliminate the risk of direct exposure path to COCs.

1) Land Use Restrictions involve placing restrictions on the property deeds pertaining to the installation of water supply wells on properties affected by PCE- and TCE-impacted groundwater. The intent of land use restrictions is to reduce potential exposure to contaminants by legally restricting future groundwater development from those areas that are impacted. The implementation mechanism for this component would be through the GEPA's Wellhead Protection Program and Well Installation licensing and permitting. As part of the Wellhead Protection Program, GEPA has developed a Groundwater Protection Zone Map that identifies those areas where surface activities above the resource or recharge zone have the ability to impact the water quality. The metes and bounds descriptions of the land are designated on this map along with other pertinent information (GEPA, 1993). The GEPA reviews groundwater data from the Andersen AFB CERCLA process, and all well installation applications are reviewed by the GEPA first prior to installation. Also, as part of the Wellhead Protection Program, installation of new production wells within 1,000 feet of an existing production well is prohibited. As GEPA has been involved with the

development of this ROD, this would easily facilitate the necessary transfer of information from Andersen AFB to the GEPA, for implementation of the above-mentioned ICs.

- 2) Long-Term Groundwater Monitoring at the MARBO Annex was proposed for the existing monitoring wells and production wells. Groundwater would be analyzed for TCE, PCE and other constituents that would be deemed pertinent for monitoring. Long-term monitoring was to proceed according to a formalized LTGM Program.
- **3) Existing Wellhead Treatment** was proposed for three of the production wells in MARBO Annex (MW-1, MW-2 and MW-3), until TCE and/or PCE concentrations are consistently below MCLs. Groundwater samples from two of these wells (MW-1 and MW-2) had slightly exceeded the MCL for TCE in the past. The endorsement and recommendation of continued wellhead treatment in these production wells was to provide additional health risk benefit to those wells that exceed MCLs for TCE and/or PCE.

6.1.6 Remedy Implementation at MARBO Annex Groundwater

The ICs specified in the ROD were fully implemented, with the exception of wellhead treatment for MW-2. MW-2 was taken off production in early 1998 as it was no longer required to meet USAF water demand and the stripping tower used to treat the water was fouling due to frequent carbonate crustation of the spherical packing media.

6.1.7 Document and Data Review for MARBO Annex Groundwater

Documents examined in support of this ROD review are cited in the list of references that are provided in Chapter 8.

6.1.8 Site Inspection of the MARBO Annex Groundwater

A general site inspection of the MARBO Annex was conducted during the Fall 2003 groundwater sampling event. All wells were in good condition and were properly secured.

6.1.9 Technical Assessment of Remedial Action for the MARBO Annex Groundwater

Question A: Is the remedy functioning as intended by the ROD?

The remedy is functioning as intended in the ROD, in that it is still protective of human health and the environment as long as ICs are implemented. However, the natural attenuation process is not operating as intended at IRP-31, based on the lack of a clear decreasing trend of TCE concentrations. The natural attenuation calls on the physical processes of dispersion and dilution, which are largely dependent on the volume and rate of water traveling through the vadose zone and aquifer. The ROD made certain assumptions relevant to recharge rates and residence times in order to estimate potential times for TCE and PCE to attenuate below MCLs. The primary limitation to these estimates includes the uncertainty of the total TCE/PCE mass that may exist in the subsurface. As the source(s) of the PCE and TCE have never been positively identified, the estimated cleanup times should take this in to consideration, with the understanding that actual cleanup times may exceed the high end of the range. The EE/CAs and RAs that are programmed for the three new IRP sites will be designed to explore for possible TCE and PCE sources.

Question B: Are the exposure assumptions, toxicity data, cleanup values, and Remedial Action Objectives (RAOs) used at the time of the remedy selection still valid?

There are no changes in exposure assumptions, toxicity data, cleanup values, or RAOs that are significant or that alter the validity of the selected remedy.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

There is no new information that has come to light that questions the protectiveness of the remedy. The recently obtained groundwater data collected in Harmon, suggests that the elevated TCE and PCE concentrations observed in MARBO Annex (IRP-31) are not present in the freshwater lens in Harmon. Should the PCE and TCE concentrations in groundwater at MARBO Annex remain unchanged, or increases, during the next five years indicating that the ineffectiveness of natural attenuation in remediating the site in timely manner, a ROD amendment may be required to either specify an active remediation or a technical infeasibility (TI) waiver.

6.1.10 Technical Assessment Summary of the MARBO Annex Groundwater

Based on the data review, the RAOs were addressed as intended in the ROD.

6.1.11 Issues, Recommendations, and Follow-up Actions for the MARBO Annex Groundwater

	Recommendations /	Party	Oversight	Milestone	Aff Protectiv Yes/	veness?
Issues	Follow-Up Actions	Responsible	Agency	Date	Current	Future
1) PCE and TCE sources in MARBO Annex have not been identified.	Deep soil borings should be drilled at IRP Sites 52/54 to look for potential source areas. If chlorinated VOC sources are found at either site, one or more borings may be drilled at strategic locations through the extent of the fresh water lens.	USAF	USEPA & GEPA	12/31/2005	Ν	Y
2) Fate and transport of TCE and PCE within MARBO are poorly understood, particularly at depth.	To better understand hydrogeology and fate and transport at depth, drill 1-2 borings (open bore wells) through the entire freshwater lens. In addition a dye trace study, relevant to IRP-31 and IRP- 29, should be considered.	USAF	USEPA & GEPA	12/31/2005	Ν	Y
3) Tumon-Maui Well is currently not being used, and as such no benefits are derived from either use of the water or the remedial effects.	USAF should assess long-term need for Tumon Maui well. Determine what to do with the Tumon-Maui well if the well is not essential to USAF mission	USAF	USEPA & GEPA	10/01/2005	Ν	Y

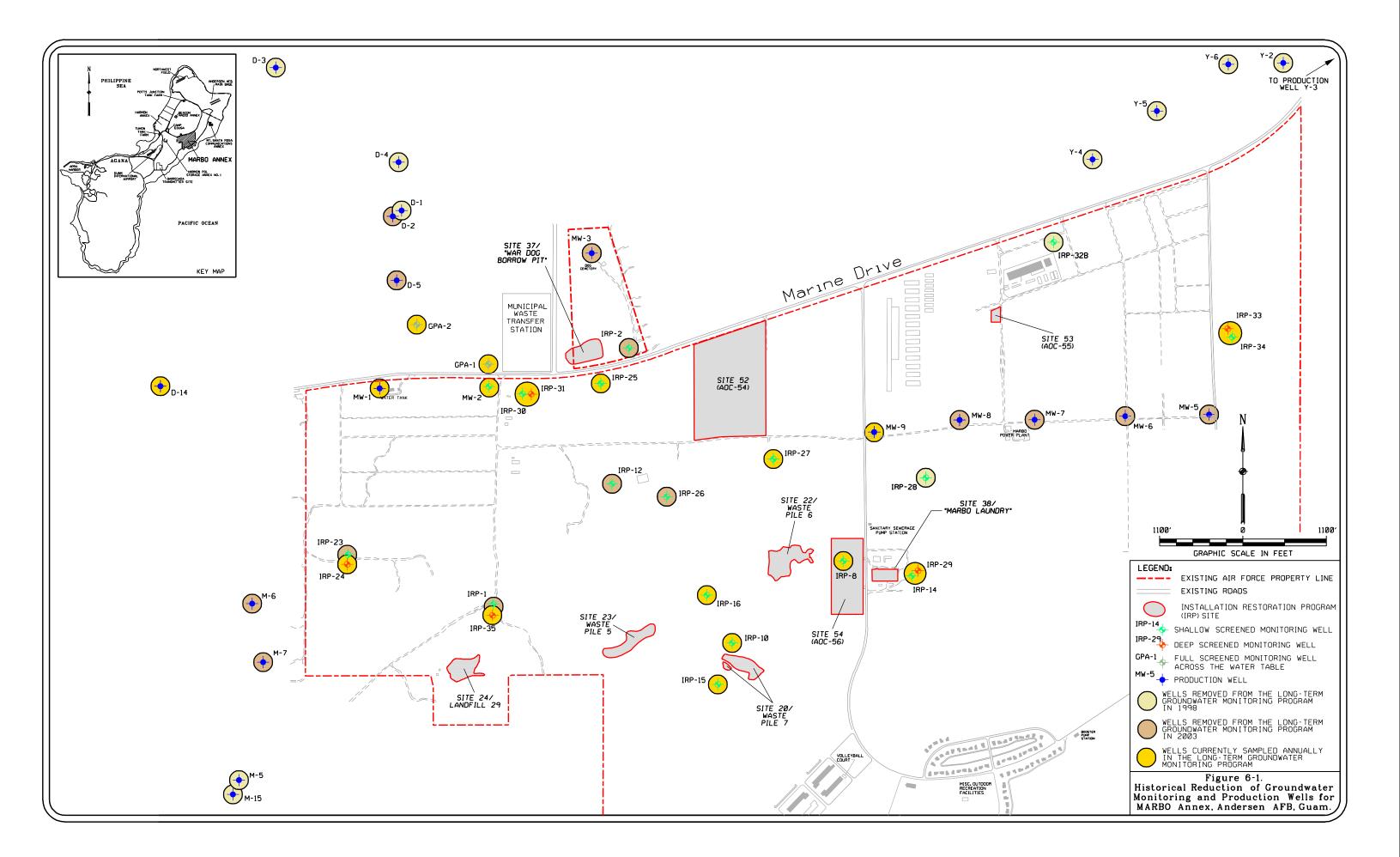
6.1.12 Protectiveness Statement for the MARBO Annex Groundwater

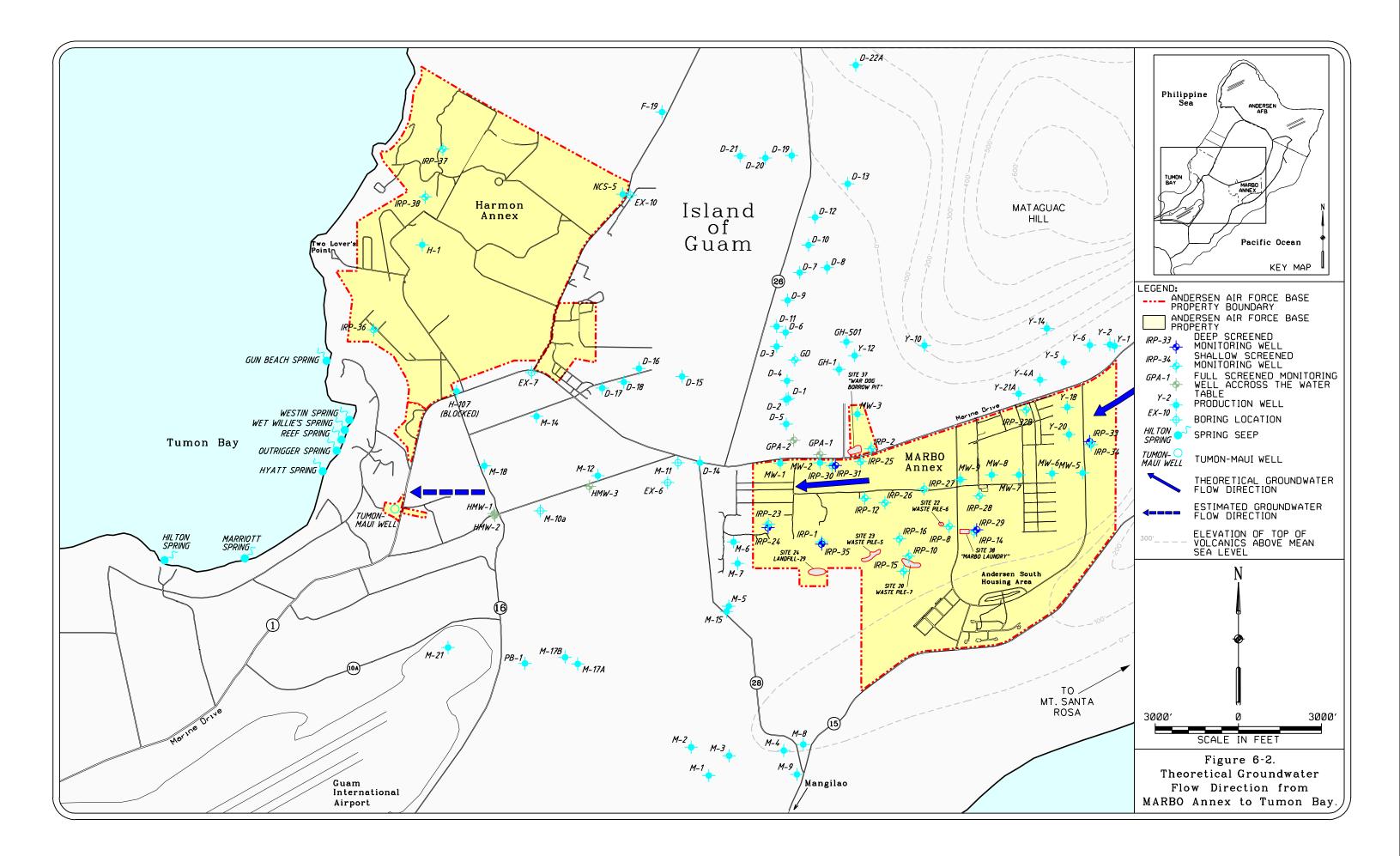
Tap water samples were collected from Y-18 and Y-20 on May 2004 and analyzed for VOCs as part of the Spring 2004 LTGM program. Based on the results (ND for PCE and TCE) the ICs are functioning as intended and the remedy is protective of the human health and the environment.

Additionally, even though wellhead treatment of MW-2 was part of the initial remedy, it is no longer in effect. However it's usefulness was more effective as a protective measure than as a means to remediate the groundwater. MARBO Annex production wells MW-1 and MW-3 continue to produce potable water, and are monitored to assure that PCE and TCE concentrations remain consistently below the MCL.

6.1.13 Next Review of the MARBO Annex Groundwater

The next five-year review of MARBO ROD is scheduled after 02 March 2009, five years from this review, and should include a full review of the groundwater at MARBO Annex. The related review period would be from 02 March 2004 to 02 March 2009.


LTGM Program Status	Well Identification	Well Type	Screened Interval (feet below ground surface)	Borehole Total Depth (feet below ground surface)	Concentrations Exceeding ARARs (COC)	Rationale for Discontinuation and Continuation of Sampling
	D-1	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
ar 9998	D-3	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
Wells Removed From The Long-Term Groundwater Monitoring Program In 1998	D-4	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
u p u	IRP-28	Shallow Screened	342-362	480	None	Concentrations were Not Detected or Below Action Levels
Fr	IRP-32B	Shallow Screened	367-387	420	None	Concentrations were Not Detected or Below Action Levels
Gred org	M-5	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
Removed Term Gro ring Progr	M-15	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
Ren Ter ing	Y-2	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
ls I g-1 for	Y-3	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
Wells] Long- [*] fonitor	Y-4	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
NC N	Y-5	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
	Y-6	Production	Unknown	Unknown	None	Concentrations were Not Detected or Below Action Levels
50	D-2	Production	383-418	418	None	Concentrations were Not Detected or Below Action Levels
Wells Removed From The Long-Term Groundwater Monitoring Program In 2003	D-5	Production	372-412	412	None	Concentrations were Not Detected or Below Action Levels
itol	IRP-1	Shallow Screened	276-316	320	None	Concentrations were Not Detected or Below Action Levels
d T no	IRP-2	Shallow Screened	360-400	404	None	Concentrations were Not Detected or Below Action Levels
Wells Removed From The Term Groundwater Monii Program In 2003	IRP-12	Shallow Screened	329-369	376	None	Concentrations were Not Detected or Below Action Levels
Ero 200	IRP-23	Shallow Screened	307-327	460	None	Concentrations were Not Detected or Below Action Levels
l ba Ina	IRP-26	Shallow Screened	310-330	460	None	Concentrations were Not Detected or Below Action Levels
and and	M-6	Production	320-405	405	None	Concentrations were Not Detected or Below Action Levels
em gra	M-7	Production	290-340	340	None	Concentrations were Not Detected or Below Action Levels
	MW-3	Production	408-428	428	None	Concentrations were Not Detected or Below Action Levels
ells	MW-5	Production	Unknown	475	None	Concentrations were Not Detected or Below Action Levels
A F	MW-5 MW-6	Production	Unknown	497	None	Concentrations were Not Detected of Below Action Levels
gu	MW-7	Production	Unknown	497	None	Concentrations were Not Detected of Below Action Levels
Ĕ	MW-8	Production	Unknown	390	None	Concentrations were Not Detected of Below Action Levels
	D-14	Production	330-370	375	None	Downgradient from MARBO Annex
	GPA-1	Full Screened	345-554	554	Yes (Trichlorethene)	Downgradient from MARBO Annex
Е	GPA-1 GPA-2	Full Screened	345-681	681	Yes (Trichlorethene)	Downgradient from MARBO Annex
he	IRP-8	Shallow Screened	350-390	400	None	Downgradient from Site 38/MARBO Laundry
L	IRP-10	Shallow Screened	292-331	338	None	
2 L 60	IRP-10 IRP-14	Shallow Screened	362-402	412		Adjacent to Site 20/Waste Pile 7
la li	IRP-14 IRP-15		294-334	338	Yes (Tetrachlorethene)	Adjacent to Site 38/MARBO Laundry
ito n		Shallow Screened			None	Adjacent to Site 20/Waste Pile 7
an An	IRP-16 IRP-24	Shallow Screened	281-321 410-430	326 445	None None	Downgradient from Site 22/Waste Pile 6
r M		Deep Screened				Adjacent to MARBO Annex Boundary
np ate	IRP-25	Shallow Screened	353-373	480	None	Downgradient from Site 37/War Dog Borrow Pit
Sampled Annually In The dwater Monitoring Progra	IRP-27	Shallow Screened	324-344	460	None	Downgradient from Site 22/Waste Pile 6
ly uno	IRP-29	Deep Screened	459-479	520	Yes (Tetrachlorethene and Trichloroethene)	Adjacent to Site 38/MARBO Laundry
Wells Currently ong-Term Groun	IRP-30	Shallow Screened	349-369	480	None	Downgradient from Site 38/MARBO Laundry
10	IRP-31	Deep Screened	445-465	480	Yes (Tetrachlorethene and Trichloroethene)	Downgradient from Site 38/MARBO Laundry
ΔĘ	IRP-33	Shallow Screened	472-492	520	None	Adjacent to MARBO Annex Boundary
slls T	IRP-34	Deep Screened	392-412	520	None	Adjacent to MARBO Annex Boundary
Wells Currently Sampled Annually In The Long-Term Groundwater Monitoring Program	IRP-35	Deep Screened	380-400	412	None	Adjacent to Site 24/Landfill 29
Γ	MW-1	Production	345-385	385	None	Adjacent to MARBO Annex Boundary
	MW-2	Production	349-379	379	Yes (Trichlorethene)	Adjacent to MARBO Annex Boundary
	MW-9	Production	Unknown	472	None	Downgradient from Site 38/MARBO Laundry
s	EX-6	Rock Boring	None	463	None	Concentrations were Not Detected or Below Action Levels
illia	HMW-1	Full Screened	169-279	280	None	Concentrations were Not Detected or Below Action Levels
Auxiliary Points	HMW-2	Full Screened	170-300	320	None	Concentrations were Not Detected or Below Action Levels
	HMW-3	Full Screened	240-375	377	None	Concentrations were Not Detected or Below Action Levels
ARAR - Applicat	le or Relevant a	nd Appropriate Requ	lirement			
COC - Constiuent	of Concern					


TABLE 6-1. HISTORICAL REDUCTION OF GROUNDWATER MONITORING AND PRODUCTION WELLS FOR MARBO ANNEX, ANDERSEN AFB, GUAM.

Final First Five-Year Review of Record of Decision for MARBO Annex Operable Unit

		Coord	linates		Mean Low iter (MLL)			Coord	linates		Mean Low ter (MLL)		
Well ID	Initial Survey Date	Northing	Easting	Brass Cap/ Steel Plate	Top of Casing	Soundin g Tube	New Survey Date	Northing	Easting	Brass Cap/ Steel Plate	Top of Casing	Soundin g Tube	Differentia l
GPA-1	February 1995	179058.88	200084.17	359.39	360.33	NA	December 2003	179060.54	200083.43	359.26	360.19	NA	-0.14
GPA-2	February 1995	179,578.03	199,138.59	361.55	362.76	NA	November 2003	179,578.03	199,138.59	361.55	362.72	NA	-0.04
IRP-01	February/March 1994	175897.86	200151.95	287.68	NA	289.89	December 2003	175897.52	200151.86	287.72	NA	289.91	0.02
IRP-02	February/March 1994	179272.50	201938.01	373.04	NA	374.88	December 2003	179272.17	201937.91	372.88	NA	374.71	-0.17
	February/March 1994			364.47	367.13	NA	November 2003	176,462.39	204,765.93	364.47	366.02	NA	-1.11
IRP-10	February/March 1994	175,384.19	203,391.50	306.07	NA	307.64	November 2003	175,384.19	203,391.50	306.07	NA	307.56	-0.08
	February/March 1994			345.45	NA	344.94	November 2003	177,478.97	201,716.24	345.45	NA	346.80	1.86
	February/March 1994			378.88	NA	380.65	November 2003	176,266.94	205,671.53	378.88	NA	380.55	-0.10
IRP-15	February/March 1994	174,834.90	203,109.81	311.62	NA	313.31	November 2003	174,834.90	203,109.81	311.62	NA	313.21	-0.10
IRP-16	February/March 1994	176,013.58	202,965.29	298.90	NA	300.50	November 2003	176,013.58	202,965.29	298.90	NA	300.42	-0.08
IRP-23	November 1995	176544.40	198233.85	318.37	NA	320.71	December 2003	176544.11	198233.09	318.32	NA	320.66	-0.05
IRP-24		176419.86	198222.24	314.18	315.87	NA	December 2003	176419.57	198221.89	314.13	315.81	NA	-0.05
IRP-25	November 1995	178,803.14	201,566.48	363.95	NA	365.37	November 2003	178,803.14	201,566.48	363.95	NA	365.27	-0.10
IRP-26	November 1995	177,309.82	202,438.90	321.69	323.28	NA	November 2003	177,309.82	202,438.90	321.69	323.14	NA	-0.14
IRP-27	November 1995	177,808.33	203,845.49	335.52	NA	337.31	November 2003	177,808.33	203,845.49	335.52	NA	337.20	-0.11
IRP-28	November 1995	177559.91	205855.43	352.54	NA	354.45	December 2003	177560.33	205854.77	352.45	NA	354.35	-0.10
IRP-29		,	205,755.76	381.26	383.02	NA	November 2003	176,334.04	205,755.76	381.26	382.92	NA	-0.10
IRP-30	November 1995	178,665.60	200,534.91	360.54	NA	361.94	November 2003	178,665.60	200,534.91	360.54	NA	361.82	-0.12
IRP-31	November 1995	178,660.75	200,651.79	362.19	363.54	NA	November 2003	178,660.75	200,651.79		363.41	NA	-0.13
IRP-32B	November 1995	180667.41	207541.33	379.32	NA	381.84	December 2003	180668.09	207541.00	379.27	NA	381.79	-0.06
IRP-33	November 1995	179525.73	209837.41	402.35	NA	404.67	December 2003		209872.98	402.42	404.45	NA	-0.23
IRP-34	November 1995	179417.39	209900.22	403.75	NA	405.37	December 2003	179417.73	209899.91	403.82	NA	405.43	0.06
IRP-35	November 1995	175823.76	200155.14	284.77	286.04	NA	December 2003	175824.04	200155.21	284.81	286.09	NA	0.05
NOTE: NA - Not	Applicable												

TABLE 6-2. MARBO ANNEX MONITORING WELL SURVEY COORDINATES AND ELEVATIONS.(1994/1995 survey data as compared to 2003 survey data)

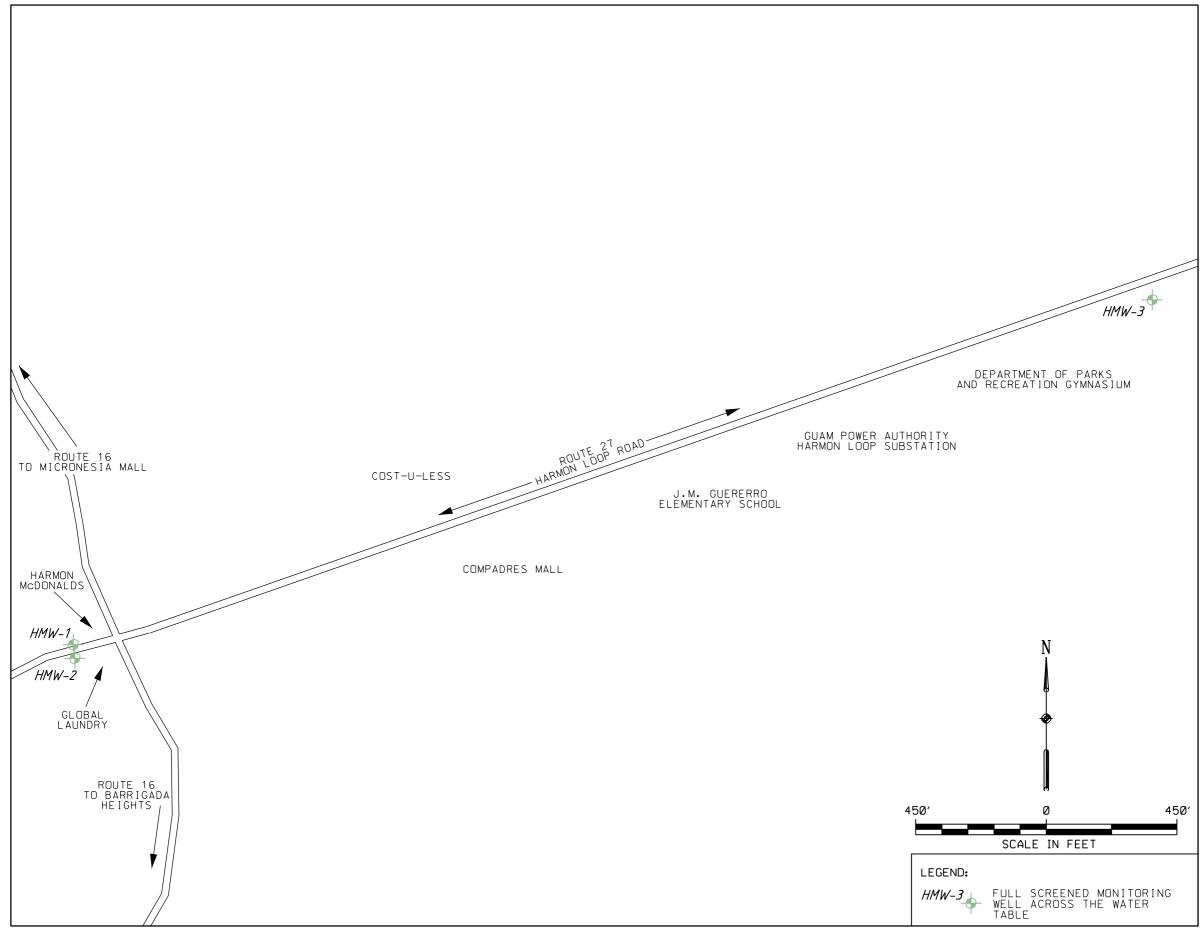


Figure 6-3. Location of Monitoring Wells HMW-1, HMW-2 and HMW-3.

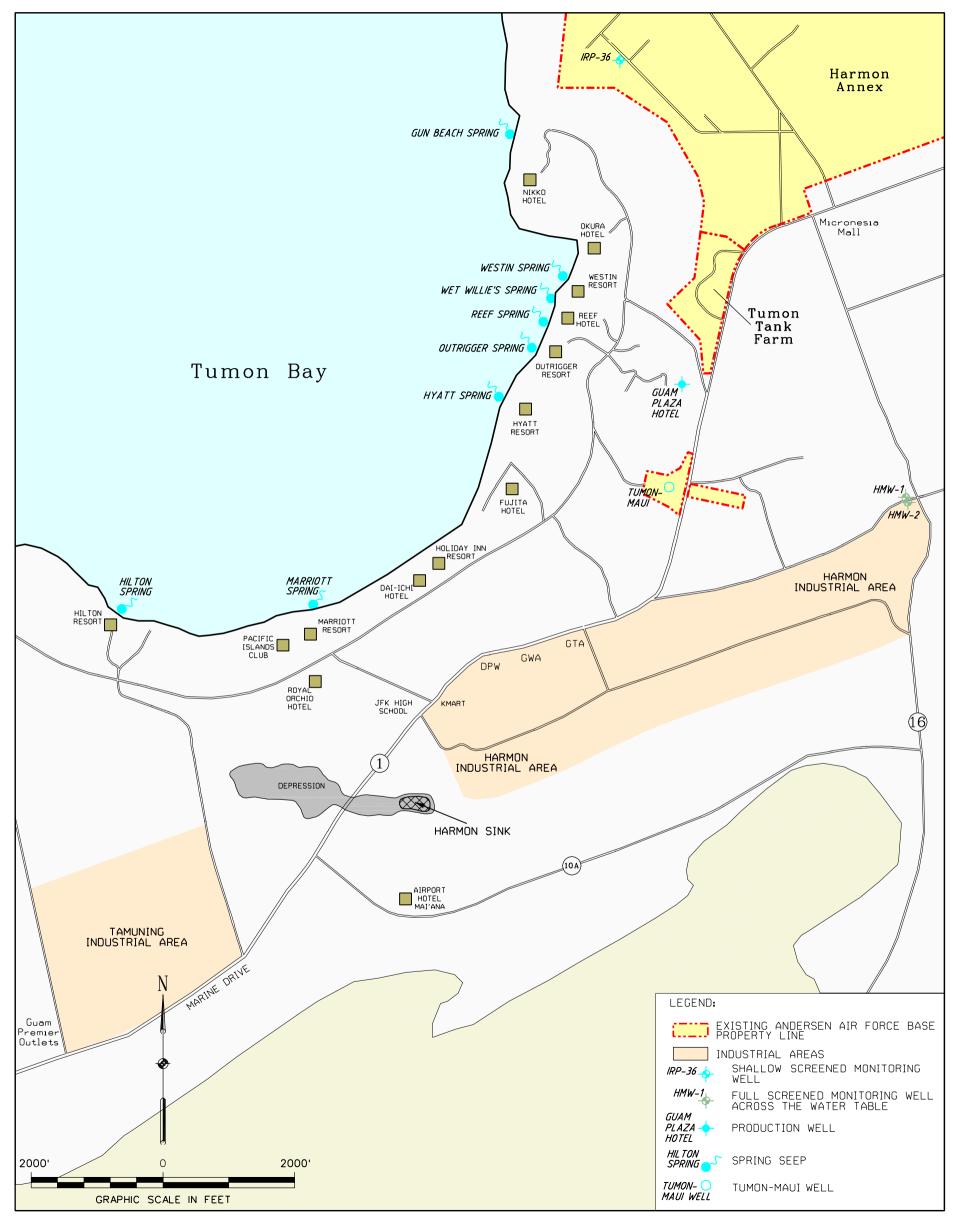
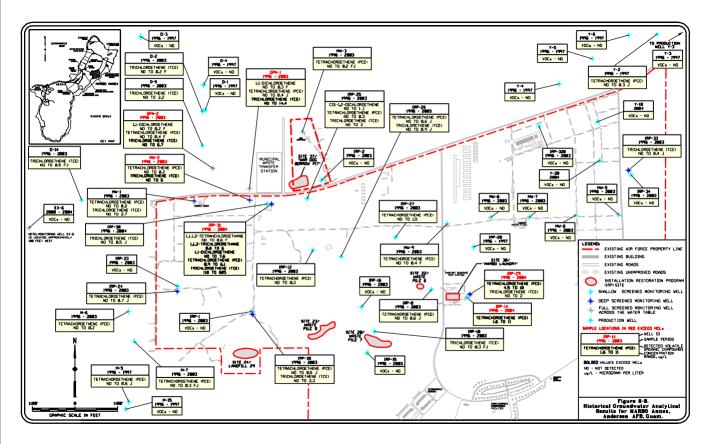
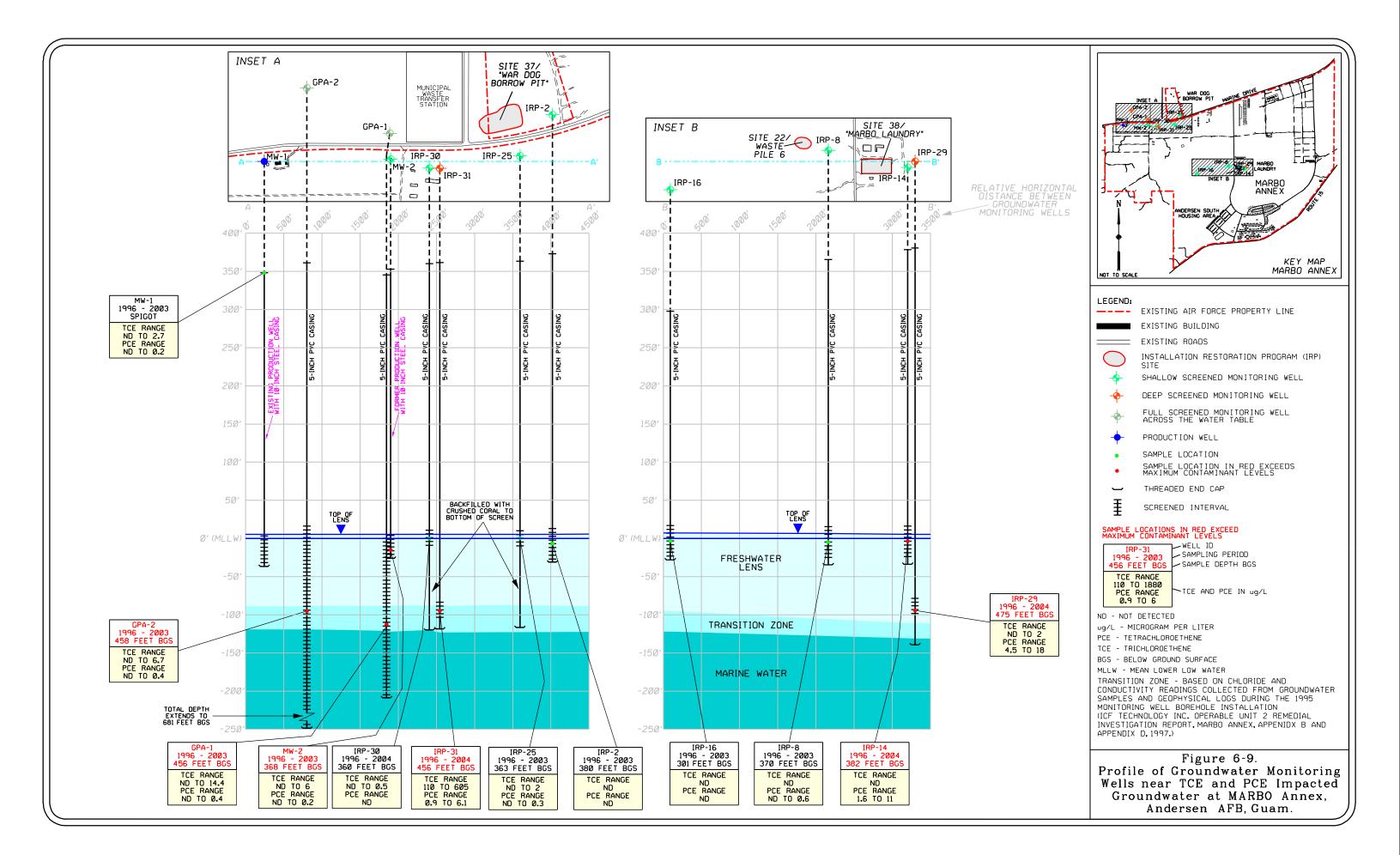




Figure 6-4. Groundwater Sampling Points in Tumon Bay and Surrounding Area.

7.0 REFERENCES

- Allied Pacific Environmental Consulting (APEC). 2002. Summary Report for Harmon Monitoring Well #1. Prepared by APEC for the GEPA. May.
- Allied Pacific Environmental Consulting (APEC). 2003a. *Summary Report for Harmon Monitoring Well #2*. Prepared by APEC for the GEPA. May.
- Allied Pacific Environmental Consulting (APEC). 2003b. *Summary Report for Harmon Monitoring Well #3*. Prepared by APEC for the GEPA. June.
- Andersen AFB. 2000. *Record of Decision Amendment for MARBO Annex Operable Unit Site* 24/Landfill 29. 36th Comptroller Flight. October.
- Andersen AFB. 2003a. Interview with Director of Horizontal Shop. 36th Comptroller Flight. October.
- Andersen AFB. 2003b. Addendum to Federal Facility Agreement (FFA), Attachment G for Revised Operable Units (OUs); 2003 Remedial Project Manager (RPM) Meeting Minutes. October.
- Barrett Consulting Group. 1992. Water Facilities Master Plan Update. February.
- Battelle Columbus Division (Battelle). 1989. Installation Restoration Program Phase II Stage 1 – Confirmation/Quantification Andersen AFB, Guam. January.
- Camp, Dresser & McKee, Inc. and Barrett, Harris & Associates. 1982. Northern Guam Lens Study.
- Contractor, D.N., and Jenson, J.W. 1999. Simulated Effect of Vadsose Infiltration on Water Levels in the Northern Guam Lens. November.
- Department of Aquatic and Wildlife Resources (DAWR). 1988. *Checklist of terrestrial vertebrates and selected terrestrial invertebrates of Guam.*
- Earth Tech. 1998. Well Drilling Log for Production Well Y-18 (formerly Y-1), Yigo, Guam. December
- Earth Tech. 1999. Well Drilling Log for Production Well Y-20 (formerly Y-3), Yigo, Guam. January.
- Earth Tech. 2002. Drawdown Data and Production Data for MARBO, GWA Production Wells.
- EA Engineering Science and Technology (EA), 1995. *Final Groundwater Monitoring Plan for Andersen AFB, Guam.* October.

- EA. 1996. Final RI/FS Standard Operation Procedures for Andersen AFB, Guam. December.
- EA. 1997a. Final Proposed Plan for MARBO Annex OU, Andersen AFB, Guam. October.
- EA. 1997b. Final MARBO Annex OU2 Focused Feasibility Study Report, Andersen AFB, Guam. October.
- EA. 1998a. Final MARBO Annex OU Record of Decision. May.
- EA. 1998b. Final Phase II Environmental Baseline Survey for MARBO Annex Part II, Andersen AFB, Guam. October.
- EA. 1998c. Final Phase I Environmental Baseline Survey for Andersen South Housing Area, Andersen AFB, Guam. April.
- EA. 1998d. Final Phase II Environmental Baseline Survey for Andersen South Housing Area, Andersen AFB, Guam. April.
- EA. 1998e. Final Community Relations Plan for the Installation Restoration Program, Andersen AFB, Guam. December.
- EA. 1998f. Technical Memorandum on Long-Term Groundwater Monitoring at MARBO. February.
- EA. 1998g. Groundwater Summary Report for Andersen AFB, Guam. August.
- EA. 1998h. Spring 1998 Groundwater Data Monitoring Report for Andersen AFB, Guam. November.
- EA. 1999a. Fall 1998 Groundwater Data Monitoring Report for Andersen AFB, Guam. July.
- EA. 1999b. Spring 1999 Groundwater Data Monitoring Report for Andersen AFB, Guam. July.
- EA. 2000. Fall 1999 Groundwater Data Monitoring Report for Andersen AFB, Guam. July.
- EA. 2001. Variance Request to the Long Term Groundwater Monitoring Program (LTGM Program) at the Main Base, Northwest Field, and MARBO Operable Units, Andersen AFB, Guam.
- EA. 2002. Memorandum for Recalculation of BTV for Manganese for Andersen AFB, Guam. April.
- EA. 2003. Reduction of Monitoring Points, Sampling Frequency, and Analytical Parameters for Long-term Groundwater Monitoring at MARBO Annex Operable Unit. July.

- EA/Montgomery Watson (MW). 1997. Final MARBO Annex Operable Unit (OU) 2 Focused Feasibility Study Report (OU2 FFS). October.
- EA/URS. 2000 Spring 2000 Groundwater Monitoring Main Base, Northwest field, and MARBO Annex Operable Units. September.
- EA/URS. 2001a. Fall 2000 Groundwater Monitoring Main Base, Northwest Field, and MARBO Annex Operable Units. March.
- EA/URS. 2001b. Spring 2001 Groundwater Monitoring Main Base, Northwest Field, and MARBO Annex Operable Units. September.
- FWENC/EA (Foster Wheeler Environmental Corporation and EA Engineering, Science, and Technology, Inc.). 2002a. *Final Andersen South Housing Area Asbestos Site Assessment*. December.
- FWENC/EA. 2002b. Final Record of Decision (ROD), Harmon Annex OU, Andersen AFB, Guam. October.
- FWENC/EA. 2002c. Fall 2001 Groundwater Data Monitoring Report for Andersen AFB, Guam. February.
- FWENC/EA. 2002d. Spring 2002 Groundwater Monitoring Report for Andersen AFB, Guam. August.
- FWENC/EA. 2003a. Final Record of Decision (ROD) for Urunao Dumpsites 1 and 2, Urunao OU, Andersen AFB, Guam. December.
- FWENC/EA. 2003b. Fall 2002 Groundwater Monitoring Report for Andersen AFB, Guam. March.
- FWENC/EA. 2003c. Spring 2003 Groundwater Monitoring Report for Andersen AFB, Guam. August.
- GEPA (Guam Environmental Protection Agency). 1993. Groundwater Protection Zone Map.
- GEPA. 2001. Guam's Water Quality Standards.
- ICF. (ICF Technology, Inc.) 1993. Community Relations Plan for the Installation Restoration Program, Andersen AFB, Guam. November.
- ICF. 1994. Sampling and Analysis Plan Addendum to OU 6 for OU 5, Andersen AFB, Guam. October.

- ICF. 1995a. Phase I-Environmental Baseline Survey Report, MARBO Annex Part II, Andersen AFB, Guam. May.
- ICF. 1995b. Phase I-Environmental Baseline Survey Report, MARBO Annex Part II, Andersen AFB, Guam. May.
- ICF. 1995c. Groundwater Dye Trace Program and Well Cluster Proposal for the Landfill Area, Andersen AFB, Guam. February.
- ICF. 1996. Final OU 3 Remedial Investigation for MARBO Annex, Andersen AFB, Guam. December.
- ICF. 1997a. Final OU 3 Focused Feasibility Study Report (OU3 FFS). January.
- ICF. 1997b. Final OU 2 MARBO Annex Remedial Investigation Report (OU2 RI).
- Jocson, J.M.U., Jenson, J.W., and Contractor, D.N. 1999. Numerical Modeling and Field Investigation of Infiltration, Recharge, and Discharge in the Northern Guam Lens Aquifer. October.
- Mink, J.F., and Lau, S.L. 1977. Groundwater Analysis by Tritium Technique: A Preliminary Evaluation.
- PCR Environmental, Inc. 2002. Summary Report of Tumon Bay Springs Sampling for Chemical Analysis. December.
- Science Applications International Corporation (SAIC). 1991. Installation Restoration Program Phase II Stage 2 - Remedial Investigation/Feasibility Study Andersen AFB, Guam. November.
- Shaw Group (Shaw). 2000. Remediation Verification Report, Installation Restoration Program Site 38/MARBO Laundry, MARBO Annex, Andersen AFB, Guam. October.
- Shaw. 2001. Remediation Verification Report, Installation Restoration Program Site 24/Landfill 29, MARBO Annex, Andersen AFB, Guam. September.
- Shaw. 2004. Final Remediation Verification Report, Installation Restoration Program Site 22/Waste Pile 06, MARBO Annex, Andersen AFB, Guam. June.
- Tracey. J.I., Sclanger, S.O., Doan, D.B., May, H.G., and Stark, J.T. 1964. *Geologic Map and Sections of Guam, Marianas Islands*.

United States Bureau of the Census. 2001. Population of Insular Areas.

- USEPA (United States Environmental Protection Agency). 1995. EPA Region IX Preliminary Remediation Goals Table (Update).
- USEPA. 1998. EPA Region IX Preliminary Remediation Goals Table (Update).
- USEPA. 1999. Guide to Preparing Superfund Proposed Plans, Record of Decisions, and Other Remedy Selection Decision Documents. November.
- USEPA. 2001. *Comprehensive Five-Year Review Guidance*. OSWER Directive #9355.7-03B-P. EPA 540-R-01-007. June.
- USEPA. 2002. EPA Region IX Preliminary Remediation Goals Table (Update).
- Vroblesky, D.A., Joshi, M., Morrell, J., and Peterson J.E., 2002. Evaluation of Passive Diffusion Bag Samplers, Dialysis Samplers, and Nylon-Screen Samplers in Selected Wells at AFB, Guam, March-April 2002.
- Winzler and Kelly Consulting Engineers. 1995. Alternative Analysis to Remediate Tumon-Maui Water Well, Andersen AFB, Guam. October.

This page is intentionally left blank

Appendix A

Andersen Air Force Base Administrative Record Index

TABLE A1. ANDERSEN AFB ADMINTRATIVE RECORDS RELATED TO MARBO OU. Sorted by: Document Date and AR/IR File Number Date of Report: May 2003

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Jun-84	SOW, Phase I Records Search	HQ AFSEC/DEVP	2
01-Aug-84	GEPA Letter to Base Regarding Landfill Closure	Branch, James B	3
	Plan for Sites 01, 02, 03, 29, and 35	Guam Environmental	
		Protection Agency	
01-Mar-85	Phase I, Record Search Report	Environmental	4
		Science and	
		Engineering, Inc.	
30-May-85	Base Letter to Governor of Guam Regarding Phase I	Sachse, Billy E, Col	5
·	Record Search	43 CSG/CC	
05-Jun-85	Newspaper Article, "Air Force Probes Waste Disposal	The Pacific Daily	6
	Sites"	News	
17-Jun-85	Newspaper Article, "Dump Site Study to Sample Water"	The Pacific Daily	7
		News	
13-Aug-85	GEPA Letter to Base Regarding Comments on Phase	Branch, James B	8
0	I Record Search	Guam Environmental	-
		Protection Agency	
18-Oct-85	Base Letter to GEPA Regarding Phase II	Sachse, Billy E, Col	9
	Presurvey Conference	43 CSG/CC	-
19-Mar-86	Congressman Letter to Secretary of the Air Force	Synar, Mike	10
	Regarding Phase I Record Search	Guam House of	
		Representatives	
08-Apr-86	GEPA Letter to Base Regarding Landfill Closure	Branch, James B	11
	Plan for Sites 01, 02, 03, 29, and 35	Guam Environmental	
	,,,,,	Protection Agency	
Sep-86	Phase II, Technical Operations Plan,	Battelle	12
~~F ~~	Confirmation/Quantification Survey		
08-Oct-86	EPA Region IX Letter to US General Accounting Office	Takata, Keith	13
	Regarding DoD Management of IRP and Phase I Record	EPA Region IX	
	Search Comments		
Dec-86	RCRA Facility Assessment Report, Solid Waste	Science Applications	14
200 00	Management Units	International Corp.	
13-Mar-87	GEPA Letter to Base Regarding SOW, Stage 1 Comments	Crisostomo, Charles	15
10 1111 07		Guam Environmental	10
		Protection Agency	
19-May-87	GEPA Letter to Base Regarding Site 01	Crisostomo, Charles	16
	Monitoring Wells	Guam Environmental	
		Protection Agency	
19-Jun-87	GEPA Letter to OEHL Regarding Sites 01, 02, and	Crisostomo, Charles	17
	03 Monitoring Wells	Guam Environmental	
		Protection Agency	
29-Feb-88	GEPA Letter to Base Regarding Landfill Closure	Crisostomo, Charles	18
	Plan for Sites 01, 02, 03, 29, and 35	Guam Environmental	10
		Protection Agency	
01-Jul-88	GEPA Letter to Guam Attorney General Regarding	Solivio, Rolando B	19
01-Jul-88	GEPA Letter to Guam Attorney General Regarding Legal Action for Landfill 5	Solivio, Rolando B Guam Environmental	19
01-Jul-88	GEPA Letter to Guam Attorney General Regarding Legal Action for Landfill 5	Guam Environmental	19
	Legal Action for Landfill 5	Guam Environmental Protection Agency	
01-Jul-88 11-Aug-88		Guam Environmental	19 20

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
17-Aug-88	GEPA Letter to Base Regarding Comments on	Crisostomo, Charles	21
	Landfill Closure Plan Modification	Guam Environmental	
		Protection Agency	
30-Sep-88	GEPA Letter to Base Regarding Approval of	Crisostomo, Charles	22
×.	Landfill Closure Plan Modification	Guam Environmental	
		Protection Agency	
30-Sep-88	GEPA Letter to Base Regarding Comments on	Crisostomo, Charles	23
· · · I	Landfill Closure Plan Modification	Guam Environmental	
		Protection Agency	
01-Nov-88	Revised Landfill and Waste Pile Closure Plan	Battelle	24
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Battelle	25
or buil of	Report, Volume I of VI	Dattone	20
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Battelle	26
	Report, Volume I of VI, Appendices A-G	Dattene	20
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Battelle	27
01-Jaii-89	Report, Volume II of VI, Appendix H-J	Battelle	21
01-Jan-89		Battelle	28
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Dattelle	28
01 Jan 90	Report, Volume III of VI, Appendices K1-K2a	D = (t = 11 -	20
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Battelle	29
01 1 00	Report, Volume IV of VI, Appendix K2b	D 11	20
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Battelle	30
	Report, Volume V of VI, Appendix K2c		
01-Jan-89	Phase II Stage 1, Final Confirmation/Quantification	Battelle	31
	Report, Volume VI of VI, Appendices L-N		
01-Jan-89	Phase II Stage 2, Quality Assurance Project Plan	Battelle	32
01-Jan-89	Phase II Stage 2, Work Plan	Battelle	33
09-Jan-89	GEPA Letter to Base Regarding Comments on Phase II	Crisostomo, Charles	34
	Stage 2 Health and Safety Plan	Guam Environmental	
		Protection Agency	
09-Feb-89	GEPA Letter to Base Regarding Landfill Post	Castro, Fred M	35
	Closure Permit	Guam Environmental	
		Protection Agency	
21-Feb-89	GEPA Letter to Base Regarding Comments on	Castro, Fred M	36
	Landfill Modified Closure/Post Closure Plan	Guam Environmental	
		Protection Agency	
24-Feb-89	GEPA Letter to Base Regarding Comments on	Castro, Fred M	37
	Landfill Post Closure Permit	Guam Environmental	
		Protection Agency	
24-Feb-89	Newspaper Article, "Notice to Public"	The Pacific Daily News	38
27-Mar-89	Base Letter to GEPA Regarding Modified Landfill	Green, Frederick L, Col	39
27-10141-07	Closure Plan	43 CSG/CC	57
03-Apr-89	GEPA Letter to Base Regarding Approval for	Castro, Fred M	40
03-Api-89	Amended Modified Landfill Closure Plan	Guam Environmental	40
	Amended Mourried Landini Closure Flan		
02 M 90		Protection Agency	4.1
03-May-89	Base Letter to GEPA Regarding Exchange of	Green, Frederick L, Col	41
22.14 00	Information and Comments on Landfill Closure Plan	43 CSG/CC	10
22-May-89	GEPA Letter to Base Regarding Comments in Base	Castro, Fred M	42
	Letter of 3 May 89	Guam Environmental	
		Protection Agency	
25-May-89	GEPA Letter to Base Regarding Groundwater	Castro, Fred M	43
	Monitoring Comments in Base Letter of 3 May 89	Guam Environmental	
		Protection Agency	
01-Jul-89	RCRA Post-Closure Permit Application, Sites 01, 02,	Harding Lawson	44

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBEF
10-Aug-89	Base Letter to GEPA Regarding RCRA Post-Closure Permit Application	Green, Frederick L, Col 43 CSG/CC	45
20-Sep-89	GEPA Letter to Base Regarding Landfill Cover,	Castro, Fred M	46
20 569 07	Fence, and Test Results	Guam Environmental	40
	Tence, and Test Results	Protection Agency	
31-Oct-89	Base Letter to GEPA Regarding Landfill Closure	Green, Frederick L, Col	47
51-001-09	Cover and Test Results	633 ABW/CC	47
06-Nov-89	GEPA Letter to Base Regarding Comments for FTA	Solivio, Rolando B	48
	and RCRA Landfill Closure Permit	Guam Environmental	
		Protection Agency	
22-Nov-89	GEPA Letter to Base Regarding Landfill Closure Plan	Solivio, Rolando B	49
		Guam Environmental	
		Protection Agency	
01-Dec-89	Phase II Stage 2, Informal Technical Information	Science Applications	50
	Report, Vol I of III, Analytical Data	International Corp.	
01-Dec-89	Phase II Stage 2, Informal Technical Information	Science Applications	51
01 200 07	Report, Vol II of III, Analytical Data	International Corp.	01
01-Dec-89	Phase II Stage 2, Informal Technical Information	Science Applications	52
01 Dec 0)	Report, Vol III of III, Analytical Data	International Corp.	52
02-May-90	GEPA Letter to Base Regarding Fire Training Area 2	Castro, Fred M	53
02-1v1ay-90	OLI A Letter to Dase Regarding The Training Area 2	Guam Environmental	55
03 May 00	GEPA Letter to Base Regarding Comments on	Protection Agency Castro, Fred M	54
05-Way-90		Guam Environmental	54
	Approved Landfill Closure Plan		
02 4	CEDA Letter to Door Depending Eins Training	Protection Agency	55
03-Aug-90	GEPA Letter to Base Regarding Fire Training	Castro, Fred M	55
	Area 2 Concrete Cap	Guam Environmental	
20 4 00		Protection Agency	54
29-Aug-90	GEPA Letter to Base Regarding Landfill Closure	Castro, Fred M	56
	Plan Deficiencies	Guam Environmental	
		Protection Agency	
13-Sep-90	Base Letter to GEPA Regarding Landfill Closure	DeGovanni, George, Col	57
	Plan Modification	633 ABW/CC	
28-Sep-90	Base Letter to GEPA Regarding Landfill Closure	DeGovanni, George, Col	58
	Plan Modification	633 ABW/CC	
03-Jan-91	GEPA Letter to Base Regarding Comments on	Castro, Fred M	59
	Modified Landfill Closure Plan	Guam Environmental	
		Protection Agency	
04-Feb-91	EPA Region IX Letter to Base Regarding Comments on Comprehensive Groundwater Monitoring Evaluation	EPA Region IX	60
14-Mar-91	GEPA Letter to Base Regarding Comments on Fire	Castro, Fred M	61
	Training Area 2, "Decision for Remedial Action"	Guam Environmental	01
	Training Area 2, Decision for Remedial Action	Protection Agency	
22-Mar-91	Newspaper Article, "Air Force Continues Waste Sites	The Pacific Daily News	62
22-Wiai-91	Cleanup"	The Facilite Daily News	02
28-Mar-91	Modified Landfill Closure Plan	Science Applications	63
		International Corp.	
15-Apr-91	News Release, "Public Hearing for Modified	633 ABW/DEV	64
	Closure Plan on Base Landfill"		
30-Apr-91	Base Letter to GEPA Regarding Negotiations for	DeGovanni, George, Col	65
-	Modified Closure Plan for Base Landfill	633 ABW/CC	
15-May-91	Public Hearing Meeting Minutes, 14 May 91	Mackey, Gary W	66

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBEF
20-May-91	Base Letter to GEPA Regarding Requirements of	Schauz, William G, LtCol	67
20-11ay-91	Public Notification for Modification of the Closure	633 ABW/DE	07
	Plan	033 ABW/DE	
24 Mars 01		Sahara William C. LtCal	(0
24-May-91	Base Letter to EPA Region IX Regarding Cover Design	Schauz, William G, LtCol	68
20. 14 01	for Modified Landfill Closure Plan and Stage 3 SAP	633 ABW/DE	(0)
28-May-91	Base Letter to US Fish and Wildlife Service Regarding	Nault, Gary S	69
21.34 01	Consultation on Endangered Species Act, Landfill 2	633 ABW/DEV	
31-May-91	Base Letter to US Fish and Wildlife Service Regarding	Nault, Gary S	70
	Consultation on Endangered Species Act for Topographic	633 ABW/DEV	
00 X 01	Survey, Landfill 2		
03-Jun-91	US Fish and Wildlife Service Letter to Base	Smith, Robert P	71
	Regarding Consultation for Clearing Vegetation,	US Fish and Wildlife	
	Landfill 2	Service	
06-Jun-91	US Fish and Wildlife Service Letter to Base	Smith, Robert P	72
	Regarding Consultation on Endangered Species Act,	US Fish and Wildlife	
	Landfill 2	Service	
08-Jul-91	GEPA Letter to Base Regarding Negotiated	Brown, Joanne M	73
	Modified Landfill Closure Plan	Guam Environmental	
		Protection Agency	
16-Jul-91	Base Letter to US Fish and Wildlife Service Regarding	Nault, Gary S	74
	Consultation to Install 11 Boreholes	633 ABW/DEV	
18-Jul-91	GEPA Letter to Base Regarding Approved	Castro, Fred M	75
	Modifications for Landfill Closure Plan	Guam Environmental	
		Protection Agency	
26-Jul-91	EPA Region VII Letter to EPA Region IX Regarding	Baxter, Terry E	76
	Review Comments for Stage 3, SAP	EPA Region VII	
02-Aug-91	EPA Region IX Letter to AFCEE-ESO/ER Regarding	Hagemann, Matthew	77
	Comments for Exploratory Borehole Locations	EPA Region IX	
22-Aug-91	US Fish and Wildlife Service Letter to Base	Kramer, William R	78
	Regarding Consultation for Endangered Mariana Crow and	US Fish and Wildlife	
	Mariana Fruit Bat, Landfill 2	Service	
28-Aug-91	Base Letter to GEPA Regarding Alternative Cover	Schauz, William G, LtCol	79
C	Design for Landfill Cap	633 ABW/DE	
03-Sep-91	Base Letter to GEPA Regarding Using a Synthetic	Schauz, William G, LtCol	80
1	Cover for Landfill Cap	633 ABW/DE	
04-Sep-91	Base Letter to GEPA Regarding Comments on	DeGovanni, George, Col	81
	Modifications on Closure Plan for Landfill Area	633 ABW/CC	
13-Sep-91	Base Letter to GEPA Regarding Borehole Drilling	Trowbridge, Julia A	82
10 Sep 91		633 ABW/DE	0-
15-Sep-91	Documentation Report, Disposal Activities of Landfill 1 and 2	ICF Technology, Inc.	83
16-Sep-91	Base Letter to GEPA Requesting Amendment to Modified Closure Plan	Trowbridge, Julia A 633 ABW/DE	84
24-Sep-91	GEPA Letter to Base Regarding Comments on Stage	Brown, Joanne M	85
27-30p-21	3 SAP	Guam Environmental	05
	JUA	Protection Agency	
24 San 01	GEPA Latter to Base Pagarding for Exploratory		86
24-Sep-91	GEPA Letter to Base Regarding for Exploratory	Brown, Joanne M	86
	Borehole Locations	Guam Environmental	
06.0	Deer Letter to CEDA Decenting De'l	Protection Agency	07
26-Sep-91	Base Letter to GEPA Regarding Failure to Receive Review Comments on Phase II Stage 2 RI/FS Report	Trowbridge, Julia A 633 ABW/DE	87

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBEF
11-Oct-91	Newspaper Article, "Notice to the Public Regarding	The Pacific Daily News	88
	Availability of Amended Closure Item for Modified Closure Plan"		
11-Oct-91	Base Letter to EPA Region IX Regarding Review	Schauz, William G, LtCol	89
	Comments on Proposal for Borehole Locations	633 ABW/DE	
31-Oct-91	GEPA Letter to Base Regarding Site Inspection	Castro, Fred M	90
	for Borehole Activity	Guam Environmental	
		Protection Agency	
01-Nov-91	Groundwater Monitoring Plan	Science Applications	91
		International Corp.	
01-Dec-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	92
	I of VII	International Corp.	
01-Nov-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	93
	II of VII, Appendices A and C-F	International Corp.	
01-Nov-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	94
	III of VII, Appendix G1 (Part 1)	International Corp.	
01-Nov-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	95
	IV of VII, Appendix G1 (Parts 2a-c)	International Corp.	
01-Nov-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	96
	V of VII, Appendix G1 (Part 3)	International Corp.	
01-Nov-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	97
	VI of VII, Appendix G2 (Parts 1a-b)	International Corp.	
01-Nov-91	Phase II Stage 2, Final RI/FS Technical Report, Vol	Science Applications	98
	VII of VII, Appendix G2 (Parts 2a-b)-G5, H and K	International Corp.	
05-Nov-91	GEPA Letter to Base Regarding Modification	Castro, Fred M	99
	Request for "Conceptual Design Report, Landfill	Guam Environmental	
	Operable Unit Cap Design"	Protection Agency	
03-Dec-91	GEPA Letter to Base Regarding Comments for	Brown, Joanne M	100
	Synthetic Cap, "Conceptual Design Report, Landfill	Guam Environmental	
	Operable Unit Cap"	Protection Agency	
13-Dec-91	GEPA Letter to Base Regarding Comments on 16	Brown, Joanne M	101
	Sep 91 Letter Requesting Amendment for Modified	Guam Environmental	
	Landfill Closure Plan	Protection Agency	
13-Dec-91	SOW, RI/FS Stage 3, Part II	AFCEE/ESR	102
23-Dec-91	Base Letter to GEPA Regarding Placing Topsoil	Schauz, William G, LtCol	103
	Cover on Site 27	633 ABW/DE	
01-Jan-92	RI/FS Stage 3, Final Landfill Unit Work Plan	ICF Kaiser Engineers	104
14-Jan-92	Base Letter to GEPA Regarding Alternative Cover	Schauz, William G, LtCol	105
	Designs for Landfill Cap, Site 02	633 ABW/DE	
14-Jan-92	Base Letter to GEPA Regarding Transmittal of	Schauz, William G, LtCol	106
	Draft Design Drawings, Specifications, and	633 ABW/DE	
	Correspondence for Alternative Cover Designs		
	and Comments for Landfill Cap, Site 02		
22-Jan-92	GEPA Letter to Base Regarding Comments on Field	Castro, Fred M	107
	Sampling Plan for Landfill 2 Test Pits and Background	Guam Environmental	
	Soil Samples	Protection Agency	
06-Feb-92	Newspaper Article, "Notice to Public Regarding	The Pacific Daily News	108
	Andersen AFB Proposed Placement on the NPL"		
27-Feb-92	Base Letter to GEPA Regarding Boreholes	Schauz, William G, LtCol	109
	Drilling and Sampling Analysis	633 ABW/DE	
01-Mar-92	Groundwater Dye Tracing Study, SAP	ICF Kaiser Engineers	110
17-Mar-92	SOW, RI/FS Stage 3 and FTA Cover	AFCEE/ERS	111
01-Apr-92	Geologic and Hydrogeologic Report of Landfill Complex	ICF Kaiser Engineers	112

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBEF
07-Apr-92	US Fish and Wildlife Service Letter to Base	Kramer, William R	113
-	Regarding Consultation for Surveying Sampling Site and	US Fish and Wildlife	
	Drilling Wells	Service	
22-Apr-92	GEPA Letter to Base Regarding Comments on	Castro, Fred M	114
1	Groundwater Dye Tracer Study	Guam Environmental	
	Clouid Hair 2 ye rideor Stady	Protection Agency	
15-May-92	US Fish and Wildlife Service Letter to Base	Smith, Robert P	115
15 May 92	Regarding Consultation to Define and Locate Landfill	US Fish and Wildlife	115
	Boundaries, Fill Trenches, and Conduct Topographical	Service	
	Survey	Service	
19-Jun-92	US Fish and Wildlife Service Letter to Base	Kramer, William R	116
19-Juli-92			110
	Regarding Consultation Comments to Define and	US Fish and Wildlife	
	Locate Landfill Boundaries, Fill Trenches, and Conduct	Service	
10	Topographical Survey		
10-Jul-92	Base Newspaper Article, "Community Relations Vital	Poland, D. Joan	117
	for Environmental Program''	633 CES	
30-Jul-92	SOW, Landfill 5 Cap	AFCEE/ESR	118
01-Aug-92	Fact Sheet, "Environmental Cleanup at Andersen Air	633 CES/DEV	119
	Force Base''		
06-Oct-92	JACE Letter to EPA Region IX Regarding Andersen AFB	Swenson, Raymond T, LtCol	120
	CERCLA Federal Facility Agreement, Remaining Issues	Air Force Legal Services	
		Agency, Regional Counsel	
		(JACE)	
07-Oct-92	EPA Region IX Letter to HQ PACAF/DE Regarding	Anderson, Julie	121
	Andersen AFB CERCLA Federal Facility Agreement	EPA Region IX	
19-Oct-92	Guam Attorney General Letter to SAF/ESO Regarding	Barrett-Anderson,	122
	Federal Facility Agreement	Elizabeth	
		Guam Attorney General	
10-Nov-92	Newspaper Article, "Angel Santos Stakes Claim to	Brooks, Donovan	123
	Land"	Pacific Daily News	
18-Dec-92	SOW, RI/FS, OU-4	AFCEE/ESR	124
29-Jan-93	Federal Facility Agreement: EPA Region IX, GEPA, and	EPA Region IX	125
	USAF		
01-Mar-93	EE/CA, OU-1, Landfill 5	ICF Technology, Inc.	126
01-Mar-93	RI/FS, Health and Safety Plan, OU-1	ICF Technology, Inc.	127
15-Mar-93	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	127
10-10101-20	Draft Final Work Plans and SAPs for OU-2 and OU-3	EPA Region IX	120
15-Mar-93	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	129
15-10101-95	EE/CA for Landfill 5 and CRP	EPA Region IX	129
01 4 mm 02			120
01-Apr-93	Landfill 5 Cap Construction, Site Safety and Health Plan	Hensel-Phelps	130
		Construction Co.	
01 4 02		Woodward-Clyde	101
01-Apr-93	Landfill 5 Cap Construction, Erosion Control Plan	Hensel-Phelps	131
		Construction Co.	
		Woodward-Clyde	
01-Apr-93	Landfill 5 Cap Construction, Sampling and Analysis Plan	Hensel-Phelps	132
		Construction Co.	
		Woodward-Clyde	
06-Apr-93	TRC Meeting Agenda, 06 Apr 93	633 CES/DEV	133
06-Apr-93	Newspaper Article, "Chamoru Nation Seeks U.S. Help in	The Pacific Daily	134
L	Local Cancer Study"	News	
07-Apr-93	GEPA Letter to Base Regarding Comments on EE/CA	Castro, Fred M	135
5, . p. 75	for Landfill 5	Guam Environmental	100
		Protection Agency	
		r totection Agency	

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-May-93	Landfill 5 Cap Construction, Construction Quality Plan	Hensel-Phelps	136
		Construction Co.	
		Woodward-Clyde	
14-May-93	News Release, "Public Notice, Schedule of Proposed	Pacific Daily News	137
	Deadlines for Completion of Draft Primary Documents:		
	Work Plan, Sampling & Analysis Plan, RI Report,		
	Feasibility Report, Proposed Plan, & ROD''		
15-May-93	Newspaper Article, "Public Notice for EE/CA, Landfill 5"	The Pacific Daily News	138
22-Apr-93	GEPA Letter to Base Regarding Comments on CRP	Castro, Fred M	139
		Guam Environmental	
		Protection Agency	
01-May-93	Fact Sheet, "Landfill 5 Removal Action at Andersen Air Force Base"	633 CES/DEV	140
10-May-93	GEPA Letter to Base Regarding Comments on	Castro, Fred M	141
-	EE/CA, Technical Specifications, Construction Quality Plan,	Guam Environmental	
	and Sampling and Analysis Plan for Landfill 5	Protection Agency	
12-May-93	GEPA Letter to Hansel Phelps Construction Co.	Castro, Fred M	142
-	Regarding Comments on Clearing and Grading of	Guam Environmental	
	Landfill 5	Protection Agency	
12-May-93	TRC Meeting Minutes, 12 May 93	Stanfill, Ronnie A, Col	143
		633 ABW/CV	
28-May-93	Base Letter to GEPA Regarding Revised Landfill	Poland, Joan	144
	5 Cap Construction Quality Plan (CQP) and Comments on	633 CES/DEV	
	GEPA's CQP and SAP Comments		
01-Jun-93	Technical Specifications, Landfill 5 Cap Design	ICF Technology, Inc.	145
01-Jun-93	RI/FS, Expanded Source Investigation Work Plan, OU-6	ICF Technology, Inc.	146
21-Jun-93	US Fish and Wildlife Service Letter to Base	Smith, Robert P	147
	Regarding Reinitiation of Endangered Species Act	US Fish and Wildlife	
	Section 7 Consultation 1-2-92-F-08, Landfills	Service	
28-Jun-93	GEPA Letter to Base Regarding Comments for	Wuerch, Victor	148
	Landfill 5 Cap Construction Quality Plan, Technical	Guam Environmental	
	Specifications, and Sampling and Analysis Plan	Protection Agency	
15-Jul-93	EPA Region IX Letter to Base Regarding Comments for	Levine, Herbert	149
	Expanded Source Investigation Work Plan	EPA Region IX	
19-Jul-93	GEPA Letter to Base Regarding Comments on	Wuerch, Victor	150
	Expanded Source Investigation Work Plan	Guam Environmental	
		Protection Agency	
29-Jul-93	Informal Technical Information Report, Title	Jacobs Engineering	151
	II Services, Landfill 5 Cap	Group Inc.	
23-Aug-93	SOW, RI/FS, OU-6	AFCEE/ESR	152
26-Aug-93	EPA Region IX Letter to Base Regarding Comments for	Levine, Herbert	153
01.0	OU-6 Basewide Work Plan and SAP	EPA Region IX	
01-Sep-93	Basewide Health and Safety Plan, OU-6	ICF Technology, Inc.	154
07-Sep-93	GEPA Letter to Base Regarding Comments for	Wuerch, Victor	155
	RI/FS, Basewide Work Plan and SAP, OU-6	Guam Environmental	
		Protection Agency	1 = /
07-Oct-93	EPA Region IX Letter to Base Regarding Comments for	Levine, Herbert	156
	EPA Region IX Letter to Base Regarding Comments for RI/FS, Work Plan and SAP, OU-2	Levine, Herbert EPA Region IX	
07-Oct-93 29-Oct-93	EPA Region IX Letter to Base Regarding Comments for	Levine, Herbert EPA Region IX Poland, Joan	156 157
29-Oct-93	EPA Region IX Letter to Base Regarding Comments for RI/FS, Work Plan and SAP, OU-2 RPM Meeting Minutes, 8-10 Sept 93	Levine, Herbert EPA Region IX Poland, Joan 633 CES/CEVR	157
	EPA Region IX Letter to Base Regarding Comments for RI/FS, Work Plan and SAP, OU-2	Levine, Herbert EPA Region IX Poland, Joan	

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Nov-93	RI/FS, Health and Safety Plan, OU-4	ICF Technology, Inc.	161
01-Nov-93	RI/FS, Health and Safety Plan, OU-5	ICF Technology, Inc.	162
01-Nov-93	Community Relations Plan	ICF Technology, Inc.	163
04-Nov-93	EPA Region IX Letter to Base Regarding Comments for	Levine, Herbert	164
	RI/FS, Work Plan and SAP, OU-3	EPA Region IX	
01-Dec-93	Landfill 5 Cap Construction, Certification	Hensel-Phelps	165
	of Closure Report	Construction Co.	
	1	Woodward-Clyde	
01-Dec-93	Landfill 5 Cap Construction, Operation and	Hensel-Phelps	166
	Maintenance Manual	Construction Co.	
		Woodward-Clyde	
06-Dec-93	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	167
00 200 70	RI/FS Work Plan and SAP, OU-1	EPA Region IX	107
16-Dec-93	GEPA Letter to Base Regarding Comments on RI/FS	Wuerch, Victor	168
10 Dec 95	Basewide Work Plan and SAP, OU-6	Guam Environmental	100
	basewide work I fail and SMI, OU 0	Protection Agency	
01-Jan-94	Fact Sheet, "TRC Update"	633 CES/CEVR	169
01-Jan-94	Final Inspection Report, Landfill 5 Cap	Jacobs Engineering	109
01-Jall-94	Final hispection Report, Landini 5 Cap	Group Inc.	170
07 1	Page Latter to EDA Design IV Descuding Dage Comments	*	171
07-Jan-94	Base Letter to EPA Region IX Regarding Base Comments on RI/FS Work Plan, OU-2	633 CES/CEVR	171
11-Jan-94	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	172
	RI/FS Work Plan and SAP, OU-4	EPA Region IX	
13-Jan-94	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	173
	RI/FS Basewide SAP, OU-6	EPA Region IX	
21-Jan-94	GEPA Letter to Base Regarding Comments on RI/FS	Wuerch, Victor	174
	Work Plan and SAP, OU-1	Guam Environmental	
		Protection Agency	
01-Feb-94	RI/FS, Landfill 2 Cap Construction, Cost Evaluation Report	ICF Technology, Inc.	175
01-Feb-94	Final Landfill 5 Cap Construction Report	Hensel-Phelps	176
		Construction Co.	
		Woodward-Clyde	
01-Feb-94	RI/FS, Natural Resource Survey Report, Vol I of II	ICF Technology, Inc.	177
01-Feb-94	RI/FS, Natural Resource Survey Report, Vol II of II	ICF Technology, Inc.	178
01-Feb-94	Fact Sheet, "Dye Tracer Project Near Completion"	Guam Coastal	170
0110074	racebiect, bye mater moject tear completion	Management Program	1/2
08-Feb-94	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	180
00100 74	RI/FS Work Plan and SAP, OU-5	EPA Region IX	100
17-Feb-94	GEPA Letter to Base Regarding Comments on RI/FS	Wuerch, Victor	181
17-1-0-94	Work Plan and SAP, OU-4	Guam Environmental	101
	work I fail and SAL, 00-4	Protection Agency	
18-Feb-94	GEPA Letter to Base Regarding Comments on RI/FS	Levine, Herbert	182
10-Feb-94			162
	Work Plan, OU-3	Guam Environmental	
21 Mar 04	CEDA Latter to Deco Deconding Comments on DI/EC	Protection Agency	102
21-Mar-94	GEPA Letter to Base Regarding Comments on RI/FS	Wuerch, Victor	183
	Work Plan and SAP, OU-5	Guam Environmental	
22 M		Protection Agency	104
23-Mar-94	Letter from Atty Peter Sgro, Jr., to Base Regarding	Sgro, Jr., Peter R.	184
	Elevated Levels of Cadmium and Lead; Failure to	Atty-At-Law	
	Adhere to Quality Control & Quality Assurance of Drinking Water & Necessity for Public Hearings		
07 4	TRC Meeting Minutes, 17 Feb 94	Stanfill, Ronnie A, Col	185
07-Apr-94	The meeting minutes, 17 1 co 74	5441111, 10511110 1 1, 001	105

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
14-Apr-94	SOW, RI/FS, OU-6	AFCEE/ERD	186
10-May-94	Base Letter to GEPA Regarding Landfill Complex	Poland, Joan	187
	Dye Trace Project Sampling	633 CES/CEVR	
01-Jun-94	SOW, RI/FS, OU-3	AFCEE/ERD	188
23-Jun-94	EPA Region IX Letter to Base Regarding Comments on	Levine, Herbert	189
	RI/FS Work Plan and SAP, OU-4	EPA Region IX	
19-Jul-94	GEPA Fax to Base Regarding Approval of the	Damian, Francis	190
	Reseeding of LF-5	GEPA	
01-Jul-94	Final Geologic and Hydrogeologic Report, Landfill Complex	ICF Technology, Inc.	191
25-Jul-94	GEPA Letter to Base Regarding Comments on RI/FS	Wuerch, Victor	192
2 3-J ul-94		Guam Environmental	192
	Work Plan and SAP, OU-4		
00 4 04		Protection Agency	102
02-Aug-94	SOW, RI/FS, OU-3	AFCEE/ERD	193
09-Aug-94	Fax Documents to Base Concerning Fact Sheet from	Sgro, Jr., Peter R.	194
	Atty Peter Sgro, Jr., on the EE/CA for LF-5	Atty-At-Law	
	Community Relations Plan & Letter to PUAG & GEPA		
01-Sep-94	RI/FS, Final Sampling and Analysis Plan Addendum, OU-3		195
01-Sep-94	RI/FS, Final Work Plan Addendum, OU-3	ICF Technology, Inc.	196
01-Sep-94	RI/FS/RD, Data Summary, Conclusions, and	ICF Technology, Inc.	197
	Recommendations for Initial RI Activities at Landfill		
	29, War Dog Borrow Pit, and Waste Pile 6		
09-Sep-94	SOW, RI/FS, Mod 1 for OU-2	AFCEE/COR	198
01-Oct-94	RI/FS, Final Sampling and Analysis Plan Addendum, OU-2	ICF Technology, Inc.	199
01-Oct-94	RI/FS, Final Work Plan Addendum, OU-2	ICF Technology, Inc.	200
01-Oct-94	RI/FS, Informal Technical Information Report	ICF Technology, Inc.	201
	Ecological Habitat Survey of OU-3		
01-Oct-94	RI/FS, Final Sampling and Analysis Plan Addendum, OU-4	ICF Technology, Inc.	202
01-Oct-94	RI/FS, Final Work Plan Addendum, OU-4	ICF Technology, Inc.	203
01-Oct-94	RI/FS, Final Sampling and Analysis Plan Addendum, OU-5	ICF Technology, Inc.	204
01-Oct-94	RI/FS, Final Work Plan Addendum, OU-5	ICF Technology, Inc.	205
19-Oct-94	SOW, RI/FS, OU-5	AFCEE/ESR	206
01-Nov-94	RI/FS, Final Sampling and Analysis Plan Addendum, OU-1	ICF Technology, Inc.	207
	RI/FS, Final Work Plan Addendum, OU-1	ICF Technology, Inc.	208
11-Nov-94	SOW, RI/FS/RD, Test Pit and Test Trench Excavations	AFCEE/ERS	209
29-Nov-94	TRC Meeting Minutes, 07 Nov 94	Saunders, Ralph S, Jr, Col	210
29 1107 94	The weeking windles, or nov 94	633 ABW/CC	210
01-Jan-95	Fact Sheet, "Andersen Air Force Base's Environmental	633 CES/CEVR	211
01-Jan-95		USS CES/CEVR	211
01 1 05	Investigation"		212
01-Jan-95	RI/FS, Final Basewide Sampling and Analysis Plan,	ICF Technology, Inc.	212
01 1 07	OU-6		010
01-Jan-95	RI/FS, Final Basewide Work Plan, OU-6	ICF Technology, Inc.	213
11-Jan-95	Meeting Minutes for Telephone Conference with	ICF Technology, Inc.	214
	Base, GEPA, and EPA Region IX Regarding Monitoring Well Pumps, OU-2		
01-Feb-95	Fact Sheet, "Andersen AFB Restoration Advisory Board (RAB)"	36 CES/CEVR	215
01-Feb-95	RI/FS/RD, Final Groundwater Dye Trace Program and Wel	ICF Technology. Inc.	216
	Cluster Proposal for the Landfill Area		
03-Feb-95	RI/FS/RD, Data Summary, Conclusions, and	ICF Technology, Inc.	217
00-1 CD-20	Recommendations for Initial RI Activities at Waste Pile	for recunology, me.	217
	7, Waste Pile 5, and MARBO Laundry		010
15 1 05			718
15-Feb-95 24-Feb-95	RAB Meeting Minutes, 15 Feb 95RPM Meeting Minutes, 15-16 Feb 95	633 CES/CEVR 633 CES/CEVR	218 219

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
09-Mar-95	EPA Region IX Letter to Base Regarding Comments on	Schutz, Michelle	220
	Draft Groundwater Monitoring Plan	EPA Region IX	
10-Mar-95	SOW, RI/FS, OU-1	AFCEE/ESR	220
20-Mar-95	RI/FS/RD, Data Summary, Conclusions, and	ICF Technology, Inc.	222
	Recommendations for Initial RI Activities at Relocated		
	Waste Pile 6 and Relocated Landfill 29		
21-Mar-95	Installation Restoration Program Site Tour		223
24-Mar-95	RAB Meeting Minutes, 24 Mar 95	Saunders, Ralph S, Jr, Col 633 ABW/CC	224
24-Mar-95	SOW, RI/FS, OU-6	AFCEE/ESR	225
06-Apr-95	EPA Region IX Letter to Base Regarding Comments on	Schutz, Michelle	226
-	RI/FS Base Background Soil Field Sampling Plan	EPA Region IX	
20-Apr-95	RAB Meeting Minutes, 20 Apr 95	Saunders, Ralph S, Jr, Col	227
		633 ABW/CC	
01-May-95	SOW, RI/FS, OU-1	AFCEE/ESR	228
08-May-95	Base Letter to GEPA Regarding Comments on	Poland, Joan	229
-	Drilling Pilot Holes	633 CES/CEVR	
18-May-95	RAB Meeting Minutes, 18 May 95	Saunders, Ralph S, Jr, Col	230
2		633 ABW/CC	
18-May-95	RAB Charter Revisions	36 CES/CEVR	231
	RI/FS/RD, Soil Gas Results, Conclusions, and	ICF Technology, Inc.	232
v	Recommendations Report, OU-3		
22-May-95	RPM Meeting Minutes, 19-22 May 1995	633 CES/CEVR	233
24-May-95	Newspaper Article, "Putting the Lid on an Old Problem"	633 CES/CEVR	234
26-May-95	GEPA Letter to Base Regarding Comments on	Wuerch, Victor	235
v	Monitoring Wells Report, MARBO	Guam Environmental	
		Protection Agency	
01-Jun-95	RI/FS, Basewide Health and Safety Plan, OU-6	EA Engineering,	236
		Science and	
		Technology	
06-Jun-95	EPA Region IX Letter to Base Regarding Comments on	Schutz, Michelle	237
	Draft Groundwater Monitoring Plan	EPA Region IX	
22-Jun-95	EPA Region IX Letter to Base Regarding Comments for	Schutz, Michelle	238
	Soil Gas Results, Conclusions, and	EPA Region IX	
	Recommendations for OU-3		
29-Jun-95	SOW, EE/CA for FTA 2 and Landfill 9 in OU-4	AFCEE/ESR	239
20-Jul-95	SOW, RI/FS/RD, OU-3	AFCEE/ERD	240
21-Jul-95	Base Letter to EPA Region IX Regarding Responses to	633 CES/CEVR	241
	EPA Comments on Soil Gas Results, Conclusions, and		
	Recommendations Report for OU-3		
24-Jul-95	GEPA Letter to Base Regarding Comments on Soil	Wuerch, Victor	242
2104190	Gas Results, Conclusions, and Recommendations Report	Guam Environmental	
	for OU-3	Protection Agency	
08-Aug-95	GEPA Letter to Base Regarding Comments on Draft	Wuerch, Victor	243
to nug se	Groundwater Monitoring Plan	Guam Environmental	210
	Groundwater Wolldoring Fian	Protection Agency	
23-Aug-95	SOW, Third-Party Data Validation	AFCEE/COR	244
18-Sep-95	Base Letter to EPA Region IX Requesting Modification	Poland, Joan	244
10 Sep-75	to Testing Methods Specified in QAPP	633 CES/CEVR	275
26-Sep-95	RAB Letter Concerning Trichloroethylene	Brown, Joanne M.	246
20-5cp-33	Contamination	Senator, Guam	470
		Legislature	
01-Oct-95	DI/FS/DD Final Croundwater Manitaring Day	ICF Technology, Inc.	247
01-001-93	RI/FS/RD, Final Groundwater Monitoring Plan	icr rechnology, Inc.	24 /

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Oct-95	RI/FS, Final Basewide Health and Safety Plan	EA Engineering,	248
		Science and	
		Technology	
11-Oct-95	EPA Region IX Letter to Base Regarding Comments on	Schutz, Michelle	249
	QAPP	EPA Region IX	
12-Oct-95	RAB Meeting Minutes, 12 Oct 95	Jaroch, Victor D, Col	250
12 000 70		36 ABW/CV	200
15-Nov-95	Base Letter to EPA Region IX Regarding Responses to	Poland, Joan	251
	Comments on Soil Gas Results, Conclusions, and	36 CES/CEVR	
	Recommendations Report for OU-3		
01-Dec-95	Final Management Action Plan	EA Engineering,	252
JI-DU-73		Science and	
		Technology	
29-Jan-96	RI/FS, Data Summary, Conclusions, and	ICF Technology, Inc.	253
2) Juli 90	Recommendations for Initial RI Activities at Waste Pile 3	Ter Teennology, me.	235
01-Feb-96	RI/FS, Final Records Search	ICF Technology, Inc.	254
06-Feb-96	EPA Region IX Letter to Base Regarding Comments on	Schutz, Michelle	254
00-1-60-90		EPA Region IX	233
15-Feb-96	Media Sample Data Report, OU-3	Jaroch, Victor D, Col	256
15-Feb-96	RAB Meeting Minutes, 15 Feb 96		250
16 5.1.06	$\mathbf{D}\mathbf{N}\mathbf{M}\mathbf{M} = \mathbf{M}^{\prime} = \mathbf{M}^{\prime} = 15 15 15 16 5 10 6$	36 ABW/CV	257
16-Feb-96	RPM Meeting Minutes, 15-16 Feb 96	36 ABW/CV	257
22-Mar-96	GEPA Letter to Base Regarding Responses to GEPA	Wuerch, Victor	258
	Comments on Soil Gas Results, Conclusions, and	Guam Environmental	
	Recommendations Report for OU-3	Protection Agency	
01-Apr-96	RI/FS/RD, Groundwater Elevations and Water Level	ICF Technology, Inc.	259
	Map, Informal Technical Information Report, MARBO		
	Annex and Harmon Annex, Vol I of II		
01-Apr-96	RI/FS/RD, Groundwater Elevations and Water Level	ICF Technology, Inc.	260
	Map, Informal Technical Information Report, North		
	and Northwest Fields, Vol II of II		
26-Jun-96	RAB Meeting Minutes, 16 May 96	Jaroch, Victor D, Col	261
		36 ABW/CV	
26-Jun-96	SOW, EE/CA, Landfills 21, 23 and 26, Hazardous Waste	AFCEE/COR	262
	Storage Area 1, and Waste Pile 4, OU-4		
04-Mar-96	SOW, EE/CA, Landfills 14, 15, and 16, and PCB Storage	AFCEE/COR	263
	Area		
12-Jan-96	SOW, RI/FS, OU-2	AFCEE/ERD	264
15-Oct-92	Newspaper Article, "EPA Puts Andersen on Superfund	The Pacific Daily	265
	Priority List"	News	
16-Oct-92	Newspaper Article, "Andersen is Named to	Tropic Topics	266
10-000-92	• •	mopre ropres	200
	Superfund"		
16-Oct-92	Superfund" Newspaper Article "Andersen Cleanup Contract	The Pacific Daily	267
16-Oct-92	Newspaper Article, "Andersen Cleanup Contract	The Pacific Daily	267
	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement"	News	
01-Sep-93	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement" EPA Superfund Technical Assistance Grants Fact Sheet	News HQ USEPA	268
01-Sep-93 01-Jul-94	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement" EPA Superfund Technical Assistance Grants Fact Sheet Base Newsletter, Jul 94	News HQ USEPA 633 CES/CEVR	268 269
01-Sep-93	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement" EPA Superfund Technical Assistance Grants Fact Sheet Base Newsletter, Jul 94 EPA Region IX Letter to Base Regarding Review of	News HQ USEPA 633 CES/CEVR Schutz, Michelle	268
01-Sep-93 01-Jul-94 20-Jul-95	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement" EPA Superfund Technical Assistance Grants Fact Sheet Base Newsletter, Jul 94 EPA Region IX Letter to Base Regarding Review of Purge/Stablization Test for Groundwater Monitoring Wells	NewsHQ USEPA633 CES/CEVRSchutz, MichelleEPA Region IX	268 269 270
01-Sep-93 01-Jul-94	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement" EPA Superfund Technical Assistance Grants Fact Sheet Base Newsletter, Jul 94 EPA Region IX Letter to Base Regarding Review of Purge/Stablization Test for Groundwater Monitoring Wells EPA Region IX Letter to Base Regarding Response to	News HQ USEPA 633 CES/CEVR Schutz, Michelle EPA Region IX Schutz, Michelle	268 269
01-Sep-93 01-Jul-94 20-Jul-95 03-Aug-95	Newspaper Article, "Andersen Cleanup Contract Awaits Agreement" EPA Superfund Technical Assistance Grants Fact Sheet Base Newsletter, Jul 94 EPA Region IX Letter to Base Regarding Review of Purge/Stablization Test for Groundwater Monitoring Wells EPA Region IX Letter to Base Regarding Response to Comments of Purge Stablization Test	NewsHQ USEPA633 CES/CEVRSchutz, MichelleEPA Region IXSchutz, MichelleEPA Region IX	268 269 270 271
01-Sep-93 01-Jul-94 20-Jul-95	Newspaper Article, "Andersen Cleanup ContractAwaits Agreement"EPA Superfund Technical Assistance Grants Fact SheetBase Newsletter, Jul 94EPA Region IX Letter to Base Regarding Review ofPurge/Stablization Test for Groundwater Monitoring WellsEPA Region IX Letter to Base Regarding Response toComments of Purge Stablization TestBase Letter to EPA Region IX Regarding Proposed	NewsHQ USEPA633 CES/CEVRSchutz, MichelleEPA Region IXSchutz, MichelleEPA Region IXPoland, Joan	268 269 270
01-Sep-93 01-Jul-94 20-Jul-95 03-Aug-95 14-Nov-95	Newspaper Article, "Andersen Cleanup ContractAwaits Agreement"EPA Superfund Technical Assistance Grants Fact SheetBase Newsletter, Jul 94EPA Region IX Letter to Base Regarding Review ofPurge/Stablization Test for Groundwater Monitoring WellsEPA Region IX Letter to Base Regarding Response toComments of Purge Stablization TestBase Letter to EPA Region IX Regarding ProposedLandfill Groundwater Monitoring Well Network	NewsHQ USEPA633 CES/CEVRSchutz, MichelleEPA Region IXSchutz, MichelleEPA Region IXPoland, Joan36 CES/CEVR	268 269 270 271 272
01-Sep-93 01-Jul-94 20-Jul-95 03-Aug-95	Newspaper Article, "Andersen Cleanup ContractAwaits Agreement"EPA Superfund Technical Assistance Grants Fact SheetBase Newsletter, Jul 94EPA Region IX Letter to Base Regarding Review ofPurge/Stablization Test for Groundwater Monitoring WellsEPA Region IX Letter to Base Regarding Response toComments of Purge Stablization TestBase Letter to EPA Region IX Regarding Proposed	NewsHQ USEPA633 CES/CEVRSchutz, MichelleEPA Region IXSchutz, MichelleEPA Region IXPoland, Joan	268 269 270 271

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
08-Feb-96	GEPA Letter to Base Regarding Review of Draft	Wuerch, Victor	274
	Media Sample Data Report, OU-3	Guam Environmental	
		Protection Agency	
29-Aug-96	GEPA Letter to Base Regarding Review Comments	Wuerch, Victor	275
	on RI, OU-3	Guam Environmental	
		Protection Agency	
17-Sep-96	RAB Meeting Minutes, 15 Aug 96	Jaroch, Victor D, Co	276
		36 ABW/CV	
31-Oct-96	RPM Meeting Minutes, 24-25 Sep-96	36 CES/CEVR	277
01-Apr-96	Newsletter Article, "Air Force Plans the Installation of		278
-	Air Stripper"		
01-Aug-96	Newspaper Article, "Harmon Cliffline Permits Revoked"	Sterne, Bernadette	279
e		Pacific Daily News	
19-Aug-96	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	280
	of the Draft OU-3 Feasibility Study Report	36 CES/CEVR	
22-Aug-96	USEPA Region IX Letter to Base Regarding Comments	Schutz, Michelle	281
 11ug >0	on the OU-3 RI Report	USEPA Region IX	-01
23-Aug-96	GEPA Letter to Base Regarding Extension for Review	Wuerch, H. Victor	282
23-11ug-90	of the OU-3 RI Report	GEPA	202
30-Aug-96	Newsletter Article, "Defense Cleanup"	Pasha Publication	283
18-Sep-96	Base Fax to USEPA Region IX Fax to Base Regarding	Ikehara, Gregg N.	283
18-Sep-90		36 CES/CEVR	204
04.0-+.06	Second Attempt to Drill Hole in IRP 52a Well		295
04-Oct-96	USEPA Region IX Letter to GEPA Regarding Reported	Burnett, Bryant K.	285
11.0	Drums Located on Marine Drive, Guam	USEPA Region IX	201
11-Oct-96	Base Letter to Guam Governor Requesting AF	Deloney, John M.	286
	Reconsidering Revocation of Harmon Cliffline Permit	Colonel, USAF	
		36 ABW/CC	
15-Oct-96	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	287
	of Draft NFRAP for IRP Site 7/LF-9	36 CES/CEVR	
15-Oct-96	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	288
	of Copies of Draft NFRAP for IRP Site 7/LF-9	36 CES/CEVR	
16-Oct-96	News Article, "Landowners Threaten Forcible Eviction"	Loerzel, Adrienne	289
		Pacific Daily News	
21-Oct-96	USEPA Region IX Letter to Base Regarding Comments	Schutz, Michelle	290
	on the OU-3 Focused Feasibility Study Report	USEPA Region IX	
22-Oct-96	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	292
	OU-3 Focused Feasibility Study Report	GEPA	
23-Oct-96	Newspaper Article, "Well Contamination Needs Close	(Editorial)	293
	Scrutiny"	Pacific Daily News	
29-Oct-96	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	294
	of the Consensus Statement and the Revised Primary	36 CES/CEVR	
	Document Deadlines		
29-Oct-96	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	295
2) 000)0	of Copies of the Consensus Statement and the Revised	36 CES/CEVR	275
	Primary Document Deadlines		
39-Oct-96	Water Issues Between the Air Force & Public Utilities	Quintanilla, R.	296
59-001-90	Agency of Guam	PUAG	270
01 Nov 06			297
01-Nov-96	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	291
15 No- 04	of the Draft OU-2 RI Report & Appendices	36 CES/CEVR	200
15-Nov-96	Extended Draft Final RI Report for OU-3, MARBO &	Wuerch, H. Victor	298
A1 N	Updated Risk Assessment Concurrence	Guam EPA	200
21-Nov-96	RAB Meeting Minutes, 21 Nov 96	EA Engineering	299

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Dec-96	OU-3, Remedial Investigation Report	ICF Technology	300
	Vol 1 - Text, Final	<i></i>	
01-Dec-96	OU-3, Remedial Investigation Report	ICF Technology	301
	Vol 2 - Appendices A through D, Final	<i></i>	
01-Dec-96	OU-3, Remedial Investigation Report	ICF Technology	302
	Vol 3 - Appendix E, Final		
01-Dec-96	OU-3, Remedial Investigation Report	ICF Technology	303
	Vol 4 - Appendices F-1 through F-7, Final		
01-Dec-96	OU-3, Remedial Investigation Report	ICF Technology	304
	Vol 5 - Appendices F-8 through J, Final		
09-Dec-96	RPM Meeting Minutes, 21-22 Nov 96	EA Engineering	305
02-Dec-96	Revised Risk Assessment Procedures	Schutz, Michelle	306
		USEPA Region IX	
02-Dec-96	EPA Region IX Comments on Draft Final NFRAP for	Schutz, Michelle	307
	IRP Site 7/LF-9	USEPA Region IX	
05-Dec-96	Amend Deadlines on Federal Facilities Agreement	Schutz, Michelle	308
	8	USEPA Region IX	
09-Dec-96	Newspaper Article, "Asphalt from Bellows Pit Recycled	Honolulu Star	309
	for Isle Potholes"	Bulletin	
17-Dec-96	GEPA Fax to Base Regarding Review & Approval of	Wuerch, H. Victor	310
	Draft Final NFRAP for IRP Site 7/LF-9	GEPA	
18-Dec-96	USEPA Region IX Letter to Base Regarding Procedure	Schutz, Michelle	311
	for Completion & Deletion of National Priorities List	USEPA Region IX	
	Sites		
19-Jun-05	Article, "Community Involvement in Guam Helps Save	Bureau of Planning	312
17 5411 05	More than \$175,000"	Man, Land & Sea	_
01-Jan-97	OU-3, Focused Feasibility Study Report, Final	ICF Technology	313
01-Jan-97	Final NFRAP for IRP Site 7/LF-9	EA Engineering	314
01-Jan-97	Fact Sheet, "Technology: Air Stripping"	36 CES/CEVR	315
06-Jan-97	USEPA Region IX Letter to Base Requesting	Ripperda, Mark	316
	Extension to the Comment Period for OU-2, RI Report,	USEPA Region IX	
	MARBO Annex	8	
08-Jan-97	USEPA Region IX Letter to Base & GEPA Regarding	Schutz, Michelle	317
	30 Day Extension to Review Draft Final OU-3 RI Report	USEPA Region IX	
09-Jan-97	USEPA Region IX Letter to Base Regarding Review of	Ripperda, Mark	318
	the Draft RI Report for OU-2 MARBO Annex	USEPA Region IX	
09-Jan-97	Base Letter to RAB Members Regarding Transmittal of	Jaroch, Victor D.	319
	Quarterly RAB Meeting Minutes, 21 Nov 96	Colonel, USAF	
		36 ABW/CV	
23-Jan-97	Base Letter to RAB Members Regarding Next	Jaroch, Victor D.	320
	Quarterly RAB Meeting	Colonel, USAF	
		36 ABW/CV	
24-Jan-97	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	321
2 • J	Draft RI Report for OU-2	GEPA	021
27-Jan-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	322
	of the Draft Final OU-3 (MARBO Annex)	36 CES/CEVR	
	Feasibility Study Report		
27-Jan-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	323
<i>⊒1-</i> Ja11 - 71	of Copies of the Draft Final OU-3 (MARBO Annex)	36 CES/CEVR	545
	Feasibility Study Report		
20 L 07		0.111 D	224
20 Jan 07	USEDA Dagion IV Latter to Ress Degarding Degeorge		
29-Jan-97	USEPA Region IX Letter to Base Regarding Response to Review & Amendment of QAPP for Federal Facility	Opalski, Dan USEPA Region IX	324

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
29-Jan-97	Base Letter to GEPA Regarding Transmittal of Copies of the Final Revised Standard Operating Procedures (SOPs) for the RI/FS Activities	Poland, D. Joan	325
31-Jan-97	GEPA Letter to Base Regarding Comments on the Draft RI Report for OU-2	Wuerch, H. Victor GEPA	326
31-Jan-97	GEPA Letter to Base Regarding Comments on Phase II EBS for P.L. 103-339 Parcels	Wuerch, H. Victor GEPA	327
31-Jan-97	USEPA Region IX Letter to Base Regarding Response to the Potential Impacts of the Eureka Laboratory Fraud Case of Federal Facilities Cleanup	Opalski, Dan USEPA Region IX	328
01-Feb-97	Fact Sheet, "Harmon Annex"	36 CES/CEVR	329
12-Feb-97	Peer Review Report of Draft Final Focused Feasibility Study for OU-3	Poland, D. Joan 36 CES/CEVR	330
13-Feb-97	Technical Document to Support NFRAP Declaration IRP Site 7/LF-9	36 CES/CEVR	331
19-Feb-97	Base Letter to GEPA Regarding Requesting Approval to Use Triangle Laboratories & Data Chem Labs to Conduct Dioxin and Furan Analyses	Poland, D. Joan 36 CES/CEVR	332
19-Feb-97	Base Letter to USEPA Region IX Regarding Requesting Approval to Use Triangle Laboratories & Data Chem Labs to Conduct Dioxin and Furan Analyses	Poland, D. Joan 36 CES/CEVR	333
21-Feb-97	Base Letter to USEPA Region IX Regarding Deadline Extension Request for Draft Feasibility Report for OU-2	Poland, D. Joan 36 CES/CEVR	334
26-Feb-97	Base Letter to Guam EPA (GEPA) Regarding Transmittal of NFRAP Documents for IRP Site 7/LF-9	Poland, D. Joan 36 CES/CEVR	335
26-Feb-97	Base Letter to USEPA Region IX Regarding Transmittal of Final NFRAP Documents for IRP Site 7/LF-9	Poland, D. Joan 36 CES/CEVR	336
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 1 - Text, Final	ICF Technology	337
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 2A - Appendix A-C, Final	ICF Technology	338
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 2B - Appendix A - C, Final	ICF Technology	339
	OU-2, MARBO Annex, Remedial Investigation Report Vol 3A - Appendix E - F, Final	ICF Technology	340
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 3B - Appendix G, Final	ICF Technology	341
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 4A - Appendix H-I, Final	ICF Technology	342
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 4B - Appendix J-L, Final	ICF Technology	343
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 5 - Appendix M-O, Final	ICF Technology	344
01-Mar-97	OU-2, MARBO Annex, Remedial Investigation Report Vol 6 - Appendix P-T, Final	ICF Technology	345
03-Mar-97	RPM Meeting Minutes, 12-13 Feb 97	EA Engineering	346
04-Mar-97	Base Letter to USEPA Region IX Regarding Notification of Laboratories to be Utilized by EA Engineering	Poland, D. Joan 36 CES/CEVR	347
30-Mar-97	Action Memorandum - Request & Document Approval of Proposed Action for Site 39/Harmon Substation	36 CES/CEVR	348
02-Apr-97	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final RI Report for Groundwater (OU-2)	Poland, D. Joan 36 CES/CEVR	349
02-Apr-97	Base Letter to USEPA Region IX Regarding Transmittal of the Draft Final RI Report for Groundwater (OU-2)	Poland, D. Joan 36 CES/CEVR	350

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
03-Apr-97	USEPA Region IX Letter to Base Regarding Evaluation	Opalski, Dan	351
	of Base Response to Quality Assurance Questionnaire	USEPA Region IX	
03-Apr-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	352
	of Copies of the Draft Final Basewide Sampling &	36 CES/CEVR	
	Analysis Plan, QAPP		
03-Apr-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	353
	of the Draft Focused Feasibility Study Report for	36 CES/CEVR	
	Groundwater (OU-2)		
03-Apr-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	354
	of Copies of the Draft Focused Feasibility Study Report	36 CES/CEVR	
	for Groundwater (OU-2)		
03-Apr-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	355
	of Copies of the Final OU-3 Focused Feasibility Report	36 CES/CEVR	
	Revision Pages		
03-Apr-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	356
	of the Final OU-3 Focused Feasiblity Report Revision	36 CES/CEVR	
	Pages		
03-Apr-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	357
	of Copies of the Final OU-3 RI Revision Pages	36 CES/CEVR	
03-Apr-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	358
-	of the Final OU-3 RI Revision Pages	36 CES/CEVR	
08-Apr-97	RAB Quarterly Meeting Minutes, 20 Feb 97	Riggle, Albert F.	359
1		Colonel, USAF	
		36 SPTG/CC	
09-Apr-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	360
•••• --	of Draft Final Phase II EBS for P.L. 103-339 Parcels	36 CES/CEVR	
29-Apr-97	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	361
r	on the Draft Final OU-2 RI Report	USEPA Region IX	
07-May-97	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	362
······	Draft Final Basewide Sampling & Analysis Plan, QAPP	GEPA	
	and the Draft Final RI Report for Groundwater OU-2, MARBO Annex		
07-May-97	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	363
07 May 27	on the Draft Final QAPP	USEPA Region IX	505
15-May-97	Base Letter to Mr. Tony Artero Regarding Assessment	Riggle, Albert F.	364
15 Wiay-97	of Disposed Materials on Lot #10080	Colonel, USAF	504
	or proposed materials of Lot #10000	36 SPTG/CC	
19-May-97	List of Interviewees for the IRP Community Relations	36 CES/CEVR	365
17 1910y-77	Plan Revisions	JU CLU/ CL VIX	505
20-May-97	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	366
20-11ay-97		USEPA Region IX	500
	on the Focused Feasibility Study Report for MARBO	USEFA Region IA	
20 Mars 07	Annex OU-2	Daland D. Jaan	267
29-May-97	Base Letter to USEPA Region IX Regarding Clarification	Poland, D. Joan	367
	to the QAPP for Federal Facility Cleanup Sites	36 CES/CEVR	
20 M 07	Questionnaire		269
29-May-97	Base Letter to GEPA Regarding Requesting	Poland, D. Joan	368
	Modifications to the OU-4 Work Plan for IRP Site 27/	36 CES/CEVR	
	Hazardous Waste Storage Area 1 & OU-5 Work Plan		
20.15	for IRP Site 34/PCB Storage Area		
29-May-97	Base Letter to USEPA Region IX Regarding Requesting	Poland, D. Joan	369
	Modifications to the OU-4 Work Plan for IRP Site 27/	36 CES/CEVR	
	Hazardous Waste Storage Area 1 & OU-5 Work Plan		
	for IRP Site 34/PCB Storage Area		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
03-Jun-97	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	370
	Focused Feasibility Study for MARBO Annex OU-2	GEPA	
19-Jun-97	Base Letter to RAB Members Regarding Next	Riggle, Albert F.	371
	Quarterly RAB Meeting & Minutes of 15 May 97 RAB	Colonel, USAF	
	Meeting	36 SPTG/CC	
30-Jun-97	USEPA Region IX Letter to Base Regarding Approval to	Ripperda, Mark	372
	Use Method SW 3540 A/8310 for PAH Analysis	USEPA Region IX	
08-Jul-97	Summary of Community Interviews	36 CES/CEVR	373
11-Jul-97	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	374
	Draft Proposed Plan for MARBO Annex OU	36 CES/CEVR	••••
	(Soils & Groundwater)		
11-Jul-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	375
11-Jui- <i>71</i>	of the Draft Proposed Plan for MARBO Annex OU	36 CES/CEVR	575
	(Soils & Groundwater)	JUCES/CEVK	
11-Jul-97		Diggle Albert E	376
11-Jui-97	Base Letter to Mr. Tony Artero Regarding Completion	Riggle, Albert F.	570
	of Field Work on Lot 10080 by AF's Environmental	Colonel, USAF	
20 1 1 0 5	Assessment Contractor	36 SPTG/CC	0.55
30-Jul-97	Base Letter to RAB Members Regarding Introductory	McGoldrick, Tim	377
	Relative Risk Assessment Workshop for 31 Jul 97	Colonel, USAF	
		36 ABW/CV	
30-Jul-97	Recommended Community Relations Activities for	36 CES/CEVR	378
01-Aug-97	FY98 Fact Sheet, "Vertical Landfill Expansion"	36 CES/CEVR	379
14-Aug-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	380
14-Aug-97	of the Draft Final MARBO Annex OU-2 (Groundwater)	36 CES/CEVR	300
	Focused Feasibility Study Report	JU CES/CEVR	
14-Aug-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	381
14-Aug-97	of the Draft Final MARBO Annex OU-2 (Groundwater)	36 CES/CEVR	301
	. ,	30 CES/CEVR	
25 4 07	Focused Feasibility Study Report		202
25-Aug-97	GEPA Fax to Base Regarding Comments on the Draft	Wuerch, H. Victor	382
•• • •=	Proposed Plan for MARBO Annex OU	GEPA	202
29-Aug-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, Joan	383
	of Copies of the Draft Final Proposed Plan for MARBO	36 CES/CEVR	
	Annex OU (Soils & Groundwater)		
29-Aug-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	384
	of the Draft Final Proposed Plan for MARBO Annex	36 CES/CEVR	
	OU (Soils & Groundwater)		
01-Sep-97	Fact Sheet, "Landfill 7"	36 CES/CEVR	385
23-Sep-97	GEPA Letter to Base Regarding Air Force Response	Wuerch, D. Victor	386
	to GEPA Comments on the MARBO Annex OU	GEPA	
	Focused Feasibility Study Report		
01-Oct-97	Final MARBO Annex OU-2 Focused Feasibility Study	Montgomery	387
	Report	Watson	
01-Oct-97	Final Basewide Quality Assurance Project Plan		388
01-Oct-97	Final Proposed Plan, MARBO Annex OU	36 CES/CEVR	389
01-Oct-97	IRP Newsletter, "Restoration Advisory Board	36 CES/CEVR	390
	Recommends Cleanup Priorities"		**
08-Oct-97	News Release, "Notice of Availability, MARBO Annex	Pacific Daily News	
	OU Proposed Plan''		
14-Oct-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	391
	of the Draft Decision Summary NFRAP for IRP Site 18/	36 CES/CEVR	
	LF-23 & Copies of the Final Proposed Plan for MARBO		
	Annex OU & Inserts for MARBO Annex OU-2 Focused		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBEF
20-Oct-97	Base Letter to GPA Authorizing Installation of Power	Poland, D. Joan	392
	Connection for IRP Contractor OHM	36 CES/CEVR	
22-Oct-97	RPM Minutes, 22 Oct 97	EA Engineering	393
28-Oct-97	USEPA Letter to HQ ACC Regarding Clarification of	Luftig, Stephen D.	394
	Requirements for Administrative Record Files	USEPA	
21-Nov-97	RAB Meeting Minutes, 16 Oct 97	EA Engineering	395
24-Nov-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	396
	of the Draft Decision Summary NFRAP for IRP Site 3/	36 CES/CEVR	
	WP-3 & Copies of the Draft Site Characterization		
	Report for WP 1, 2, & 3		
24-Nov-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	397
	of Copies of the Draft Decision Summary NFRAP for	36 CES/CEVR	
	IRP Site 3/Waste Pile 3 & Copies of the Draft Site		
	Characterization Report for WP 1, 2, & 3		
01-Dec-97	Final Quality Program Plan, Interim Remedial Actions,		398
	Main Base, MARBO, & Harmon OUs, Vol 1		
01-Dec-97	Final Environmental Cleanup Plan, Interim Remedial		399
	Actions, Main Base, MARBO, & Harmon OUs, Vol 2		
04-Dec-97	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	400
	on the Draft Decision Summary NFRAP for IRP Site 18	USEPA Region IX	
	/LF-23	-	
09-Dec-97	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	401
	on the Draft Decision Summary NFRAP for IRP Site 3/	USEPA Region IX	
	Waste Pile 3	-	
09-Dec-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland,D. Joan	402
	of Copies of the Proposed Remediation Activities	36 CES/CEVR	
	Project Memorandum for Waste Piles 1 & 2		
09-Dec-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	403
	of the Proposed Remediation Activities Project	36 CES/CEVR	
	Memorandum for Waste Piles 1 & 2		
10-Dec-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	404
	of Copies of the Draft Bioventing & Vapor Extraction	36 CES/CEVR	
	Pilot Study for FTA-2		
10-Dec-97	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	405
	of the Draft Bioventing & Vapor Extraction Pilot Study	36 CES/CEVR	
	for FTA-2		
15-Dec-97	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	406
	of the Draft ROD for Soils & Groundwater MARBO	36 CES/CEVR	
	Annex OU		
15-Dec-97	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	407
	Draft ROD for Soils & Groundwater MARBO Annex	36 CES/CEVR	
	OU		
15-Dec-97	Base Letter to USEPA Region IX Regarding	Poland, D. Joan	408
	Modification to QAPP to Incorporate Method SW 8290	36 CES/CEVR	
	for Analysis of Dioxins & Furans		
15-Dec-97	Base Letter to GEPA Regarding Modification to QAPP	Poland, D. Joan	409
	to Incorporate Method SW 8290 for Analysis of Dioxins	36 CES/CEVR	
	& Furans		
01-Jan-98	Final Bioventing & Vapor Extraction Pilot Study Work	EA Engineering	410
	Plan FTA-2		
28-Jan-98	GEPA Fax to Base Regarding Comments on the Draft	Wuerch, H. Victor	411
	Bioventing & Vapor Extraction Pilot Study Work Plan	GEPA	
	for FTA-2		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBE
01-Feb-98	Base Letter to GEPA Requesting Adjustments to AF	Hodges, William	412
	Permit	Colonel, USAF	
		36 ABW/CC	
02-Feb-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	413
02-100-90	of Copies of the Action Memorandum & Site	36 CES/CEVR	415
	•	JUCES/CEVK	
	Characterization Summary Report for IRP Site 39/		
0 0 F 1 00	Harmon Substation		
02-Feb-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	414
	Final Bioventing & Vapor Extraction Pilot Study Work	36 CES/CEVR	
	Plan for FTA-2		
11-Feb-98	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	415
	on the Draft Final MARBO Annex OU ROD	USEPA Region IX	
25-Feb-98	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	416
	of the NFRAP for IRP Site 18/LF-23	36 CES/CEVR	
26-Feb-98	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	417
	of the Site Characterization Report for IRP Site 19/	36 CES/CEVR	
	LF-24		
26-Feb-98	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	418
20-1-00-70	of the Draft Basewide Groundwater Summary Report	36 CES/CEVR	410
01 Mar 00	· ·		410
	Decision Summary, NFRAP, IRP Site 3/Waste Pile 3	ICF Technology	419
01-Mar-98	Site Characterization Report, Waste Piles 1, 2, & 3	ICF Technology	420
	Vol 1 - Text		
01-Mar-98	Site Characterization Report, Waste Piles 1, 2, & 3	ICF Technology	421
	Vol 2 - Appendices (2 of 2)		
01-Mar-98	Fact Sheet, "Asphalt Recycling Operations"	36 CES/CEVR	422
04-Mar-98	RPM Meeting Minutes, 18 Feb 98	EA Engineering	423
23-Mar-98	Base Letter to GEPA Regarding Modification of the	Poland, D. Joan	424
	Target Analyte List in the Basewide QAPP	36 CES/CEVR	
23-Mar-98	Base Letter to USEPA Region IX Regarding	Poland, D. Joan	425
	Modification of the Target Analyte List in the Basewide	36 CES/CEVR	
	QAPP		
24-Mar-98	Technical Document to Support NFRAP Declaration	36 CES/CEVR	426
24 Mai 90	for IRP Site 3/Waste Pile 3	50 CLS/CL VK	420
26 Mar 09	Base Letter to USEPA Region IX Regarding Approval	Poland, D. Joan	427
20-Mar-98			427
2636 00	for Addition of OHM Services Corp to the QAPP	36 CES/CEVR	120
26-Mar-98	Base Letter to GEPA Regarding Approval for Addition	Poland, D. Joan	428
	of OHM Services Corp to the QAPP	36 CES/CEVR	
26-Mar-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	429
	of Copies of the Final Decision Summary NFRAP for	36 CES/CEVR	
	IRP Site 3/ Waste Pile 3		
26-Mar-98	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	430
	of the Final Decision Summary NFRAP for IRP Site 3/	36 CES/CEVR	
	Waste Pile 3		
31-Mar-98	USEPA Region IX Letter to Base Regarding	Ripperda, Mark	431
21 min 70	Modifications to the QAPP Target Analyte List	USEPA Region IX	т.) 1
31-Mar-98	USEPA Region IX Letter to Base Regarding	Ripperda, Mark	432
51-IVIAI-98		• •	432
01 4 00	Modifications to the QAPP	USEPA Region IX	400
01-Apr-98	Fact Sheet, "Andersen AFB Restoration Advisory	36 CES/CEVR	433
	Board (RAB)"		
15-Apr-98	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	434
	Action Memorandum & Site Characterization Summary	GEPA	
	Report for IRP Site 39/Harmon Substation & Addition		
	of OHM Services Corp., EMAX Inc., to the QAPP		
16-Apr-98	RPM Meeting Minutes, 16 Apr 98	36 CES/CEVR	435

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
16-Apr-98	Technical Document to Support NFRAP Declaration	36 CES/CEVR	436
30-Apr-98	for IRP Site 18/LF-23 Town Hall Meeting Minutes Regarding Landfill 7	Miclat, Marriane	437
50-Api-98	Located in Base Housing	36 CES/CEVR	437
01-May-98	Final MARBO Annex OU Record of Decision	36 CES/CEVR 36 CES/CEVR	438
01-May-98	Base Letter to GPA Authorizing Installation of Power	Poland, D. Joan	439
01-1v1ay-98	Connection for IRP Contractor OHM	36 CES/CEVR	437
15-Jun-98	RAB Meeting Minutes, 16 Apr 98	EA Engineering	440
15-Jun-98	US Dept of Interior to Base Regarding Concurrence of	DiRosa, Roger	441
15 Juli 70	Base Finding for IRP Site 8/LFs 10A, 10B, 10C, & IRP	Refuge Manager	
	Site 33/Drum Storage Area 2	GNWR	
15-Jun-98	UOG Letter to Base Regarding Resignation of Dr. John	Jenson, John W.	442
15 Juli 90	Jenson from RAB & Nomination of Mr. John Jocson to	Ph.D., UOG	112
	RAB	WERI Institute	
01-Jul-98	Final Site Characterization Summary Report for IRP	EA Engineering	443
01 941 90	Site 39/Harmon Substation	Entering	115
10-Jul-98	Press Release, "AAFB Conducts RAB Meeting"	36 CES/CEVR	444
10 541 50		Pacific Daily News	
21-Jul-98	RAB Meeting Minutes, 16 Jul 98	EA Engineering	445
01-Aug-98	Newsletter Article, "Air Force Recycling Effort Paves	Bureau of Planning	446
01 1149 70	Island Roads"	Man, Land, & Sea	110
01-Aug-98	Final Groundwater Summary Report for AAFB	EA Engineering	447
01-Aug-98	Site Summary Report for FTA-2	Jacobs	448
011108900		Engineering	
01-Aug-98	Operation & Maintenance Plan, FTA-2, Soil Vapor	Jacobs	449
01110890	Extraction System, AAFB	Engineering	,
25-Aug-98	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	450
	of the Final Groundwater Summary Report for AAFB	36 CES/CEVR	
04-Sep-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	451
	of Copies of Updated Draft Community Relations Plan	36 CES/CEVR	
04-Sep-98	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	452
	of Updated Draft Community Relations Plan	36 CES/CEVR	
04-Sep-98	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	453
1	of Final MARBO Annex OU ROD	36 CES/CEVR	
13-Oct-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	454
	Draft Decision Summary NFRAP for IRP Site 11/	36 CES/CEVR	
	LFs15A & 15B		
13-Oct-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	455
	of Copies of Draft Decision Summary NFRAP for IRP	36 CES/CEVR	
	Site 11/LFs15A & 15B		
19-Oct-98	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	456
	on the Draft Community Relations Plan	USEPA Region IX	
01-Nov-98	Final Spring 1998 Groundwater Data Monitoring Report	EA Engineering	457
05-Nov-98	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	458
	of Draft Quality Program Plan (Vol 1) & Draft	36 CES/CEVR	
	Environmental Cleanup Plan (Vol 2) for MARBO Annex		
	OU		
05-Nov-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	459
	of Copies of the Draft Quality Program Plan (Vol 1) &	36 CES/CEVR	
	Draft Environmental Cleanup Plan (Vol 2) for MARBO		
	Annex OU		
11-Nov-98	News Release, "Notice of Availability, ROD for the	36 CES/CEVR	460
	MARBO IRP Sites"	Pacific Daily News	

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
12-Nov-98	News Release, "Notice of Availability, ROD for the	36 CES/CEVR	461
	MARBO IRP Sites''	Pacific Daily News	
13-Nov-98	News Release, "Notice of Availability, ROD for the	36 CES/CEVR	462
	MARBO IRP Sites"	Pacific Daily News	
23-Nov-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	463
	Draft EE/CA for IRP Site 34/PCB Storage Area	36 CES/CEVR	
23-Nov-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	464
	of the Draft EE/CA for IRP Site 34/PCB Storage Area	36 CES/CEVR	
23-Nov-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	465
	of the Draft NFRAP for IRP Site 27/Hazardous Waste	36 CES/CEVR	
01 D 00	Storage Area 1		1
01-Dec-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	466
01 5 00	of the Draft EE/CA for IRP Site 10/LF-14	36 CES/CEVR	4.48
01-Dec-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	467
00 D 00	Draft EE/CA for IRP Site 10/LF-14	36 CES/CEVR	1.00
08-Dec-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	468
	of the Project Memorandum for the Proposed	36 CES/CEVR	
00 D 00	Remediation Activities for P.L. 103-339 AOCs	Deles I D. Less	4.60
08-Dec-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	469
	Project Memorandum for the Proposed Remediation	36 CES/CEVR	
10 Dag 09	Activities for P.L. 103-339 AOCs	Daland D. Jaan	470
10-Dec-98	Base Letter to USEPA Region IX Regarding Transmittal of the Draft EE/CA for IRP Site 31/Chemical Storage	Poland, D. Joan 36 CES/CEVR	470
	Area 4	JUCES/CEVK	
10-Dec-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	471
10-Dec-98	of the Draft EE/CA for IRP Site 16/LF-21	36 CES/CEVR	471
10-Dec-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	472
10 Dec 70	Draft EE/CA for IRP Site 16/LF-21	36 CES/CEVR	772
10-Dec-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	473
10 Dec 90	Draft EE/CA for IRP Site 31/Chemical Storage Area 4	36 CES/CEVR	175
16-Dec-98	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	474
10 200 70	of the Final Community Relations Plan	36 CES/CEVR	.,.
16-Dec-98	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	475
10 200 70	of Copies of the Final Community Relations Plan	36 CES/CEVR	.,,,
16-Dec-98	Base Letter to GEPA Regarding Transmittal of the	Poland, D. Joan	476
	Draft Decision Summary Report for IRP Site 32/Drum	36 CES/CEVR	
	Storage Area 1		
28-Dec-98	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	477
	Draft EE/CA for IRP Site 31/Chemical Storage Area 4	GEPA	
29-Dec-98	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	478
	Draft EE/CA for IRP Site 34/PCB Storage Area	GEPA	
06-Jan-99	RAB Meeting Minutes, 15 Oct 98	EA Engineering	479
06-Jan-99	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	480
	Draft NFRAP for IRP Site 27/Hazardous Waste	GEPA	
	Storage Area 1		
06-Jan-99	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	481
	of the Draft Decision Summary Report for IRP Site 33/	36 CES/CEVR	
	Drum Storage Area 2		
06-Jan-99	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	482
	of Copies of the Draft Decision Summary Report for	36 CES/CEVR	
	IRP Site 33/Drum Storage Area 2		
15-Jan-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	483
	on Draft NFRAP Decision Document for IRP Site 27/	USEPA Region IX	
	Hazardous Waste Storage Area 1		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
16-Jan-99		Ripperda, Mark	484
10-Jan-99	USEPA Letter to Base Regarding Comments on Agency Draft EE/CA for IRP Site 34/PCB Storage Area		404
01-Feb-99	Final Decision Document NFRAP for IRP Site 11/	USEPA Region IX	485
	LFs-15A& 15B	EA Engineering	483
13-Feb-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	486
	on Draft EE/CA for IRP Site 16/LF-21	USEPA Region IX	
13-Feb-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	487
	on Draft EE/CA for IRP Site 31/Chemical Storage	USEPA Region IX	
	Area 4		
19-Feb-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	488
	on Draft EE/CA for IRP Site 10/LF-14	USEPA Region IX	
19-Feb-99	USEPA Region IX Letter to Base Regarding	Ripperda, Mark	489
	Concurrence of Sample Purge Field Change Request	USEPA Region IX	
19-Feb-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	490
	on Draft Decision Summary Report for IRP Site 32/	USEPA Region IX	
	Drum Storage Area 1	C	
19-Feb-99	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	491
	Draft Decision Summary Report for IRP Site 32/Drum	GEPA	
	Storage Area 1		
19-Feb-99	Dept of Interior Letter to Base Regarding Review of the	Ritter, Michael	492
	Proposed Work Plan for IRP Sites 28 & 12	Guam NWR	., _
19-Feb-99	GEPA Letter to Base Regarding Comments on the	Wuerch, H. Victor	493
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Draft EE/CA for IRP Site 16/LF-21	GEPA	.,,
01-Mar-99	Final Basewide Quality Assurance Project Plan,	EA Engineering	494
01 10 1 01 <i>y y</i>	Revision 2.0	Di i Dignicoling	121
08-Mar-99	Cover Letter & RAB Meeting Minutes, 21 Jan 99	EA Engineering	495
22-Mar-99	Base Letter to GWA Regarding Status of Tumon-Maui	Gehri, Mark J.D.	496
22 IIIai <i>))</i>	& MW-2 Water Wells & Possible Exploratory Activity	Colonel, USAF	190
	at Harmon Annex	36 ABW/CC	
25-Mar-99	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	497
25 Mai 99	of the Draft NFRAP for IRP Site 11/LFs 15A & 15B	36 CES/CEVR	177
01-Apr-99	Final NFRAP Decision Document for IRP Site 27/	EA Engineering	498
01-Api-99	Hazardous Waste Storage Area 1	LA Lingineering	470
01 Apr 99	Final EE/CA for IRP Site 34/PCB Storage Area	EA Engineering	499
10-Apr-99	News Release, "Vacancy Announcement Andersen	36 CES/CEVR	500
10-Api-99	AFB Restoration Advisory Board Members"	Pacific Daily News	500
11-Apr-99	News Release, "Vacancy Announcement Andersen	36 CES/CEVR	501
11-Apr-99	•		501
12 4 00	AFB Restoration Advisory Board Members"	Pacific Daily News	502
12-Apr-99	News Release, "Vacancy Announcement Andersen	36 CES/CEVR	502
15 4 00	AFB Restoration Advisory Board Members"	Pacific Daily News	502
15-Apr-99	RAB Meeting Minutes, 15 April 99	EA Engineering	503
20-Apr-99	News Article, "Officials Disagree on Wells"	SantoTomas, Jojo	504
07 1 00		Pacific Daily News	
27-Apr-99	Base Letter to Guam National Wildlife Refuge	Larcher, Shawn D.	505
	Regarding Conducting Environmental Investigations at	Capt, USAF	
	IRP Site 36/Ritidian Dump Site	36 CES/CEV	
01-May-99	Final EE/CA for IRP Site 10/LF-14	EA Engineering	506
01-May-99	Final EE/CA Report for IRP Site 16/LF-21	EA Engineering	507
19-May-99	RPM Meeting Minutes, 19 May 99	EA Engineering	508
01-Jun-99	Decision Summary Report for IRP Site 33/Drum	EA Engineering	509
	Storage Area 2		
01-Jun-99	Final EE/CA for IRP Site 31/Chemical Storage Area 4	EA Engineering	510

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
04-Jun-99	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	511
	of Copies of the Final Draft, EE/CA for IRP Site 34/	36 CES/CEVR	
	PCB Storage Area, Site 10/LF-14, Site 16/LF-21, &		
	Site 31/Chemical Storage Area 4		
04-Jun-99	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	512
	of the Final Draft, EE/CA for IRP Site 34/PCB Storage	36 CES/CEVR	
	Area, Site 10/LF-14, Site 16/LF-21, & Site 31/Chemical		
	Storage Area 4		
09-Jun-99	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	513
	of Copies of the NFRAP Decision Document for IRP	36 CES/CEVR	
	Site 27/Hazardous Waste Storage Area		
09-Jun-99	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	514
	of the NFRAP Decision Document for IRP Site 27/	36 CES/CEVR	
	Hazardous Waste Storage Area		
12-Jun-99	News Article, "Notice of Availability for IRP Sites:	36 CES/CEVR	515
	LF-14, PCB Storage Area, Chemical Storage Area 4,	Pacific Daily News	
12 1 01	& LF-21"		
13-Jun-01	LF-14, PCB Storage Area, Chemical Storage Area 4,	36 CES/CEVR	516
14.1 00	& LF-21"	Pacific Daily News	516
14-Jun-99	News Article, "Notice of Availability for IRP Sites:	36 CES/CEVR	517
	LF-14, PCB Storage Area, Chemical Storage Area 4, & LF-21"	Pacific Daily News	
15-Jun-99	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	518
	of Memos Discussing the Discontinuation of	36 CES/CEVR	
	Groundwater Monitoring at NWF and Harmon		
15-Jun-99	Fax Letter to Base Authorizing Air Force Limited Right	Artero, Tony	519
	of Entry to IRP Site 36/Ritidian Dump Site to Conduct	Landowners	
	Environmental Survey	Representative	
01-Jul-99	Remediation Verification Report, IRP Site 19/LF-24	IT Corporation	520
01-Jul-99	Remediation Verification Report, IRP Site 39/Harmon	IT Corporation	521
	Substation, Vol 1	1	
01-Jul-99	Remediation Verification Report, IRP Site 39/Harmon	IT Corporation	522
	Substation, Vol 2		
06-Jul-99	Base Letter to USEPA Region IX Regarding Transmittal	Poland, D. Joan	523
	of Copies of the Draft EE/CA Reports for IRP Site 21/ LF-26	36 CES/CEVR	
06-Jul-99	Base Letter to GEPA Regarding Transmittal of Copies	Poland, D. Joan	524
00 541 77	of the Draft EE/CA Reports for IRP Site 21/LF-26	36 CES/CEVR	521
	LF-26	50 CES/CEVR	
21-Jul-99	Base Letter to USEPA Region IX Regarding	Poland, D. Joan	525
21 0 41 77	Appointment of Mr. Gregg Ikehara as New AAFB	36 CES/CEVR	525
	Remedial Project Manager (RPM)	JU CLU, CLUR	
21-Jul-99	Base Letter to GEPA Regarding Appointment of Mr.	Poland, D. Joan	526
	Gregg Ikehara As New AAFB Remedial Project	36 CES/CEVR	020
	Manager		
30-Jul-99	Base Letter to GEPA Regarding Notification of a New	Ikehara, Gregg N.	527
	Project Laboratory with Columbia Analytical Services	36 CES/CEVR	
30-Jul-99	Base Letter to USEPA Region IX Regarding Notification	Ikehara, Gregg N.	528
	of a New Project Laboratory with Columbia Analytical	36 CES/CEVR	
	Services		
30-Jul-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	529
	of the Remediation Verification Reports for IRP Site 39/	36 CES/CEVR	22/
	Harmon Substation, Site 19/LF-24, & AOCs 1,2,3,4,5,		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
30-Jul-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	530
	of Copies of the Remediation Verification Reports for	36 CES/CEVR	
	IRP Site 39/Harmon Substation, Site 19/LF-24, &		
	AOCs 1,2,3,4,5,12, & 22 at Harmon Annex		
02-Aug-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	531
	of the Final Decision Summary Report for IRP Site 32/	36 CES/CEVR	
	Drum Storage Area 1 & the Basewide QAPP, Rev 2		
03-Aug-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	532
	of Copies of the Final Fall 1998 and Spring 1999	36 CES/CEVR	
	Groundwater Data Monitoring Reports		
03-Aug-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	533
-	of the Final Fall 1998 and Spring 1999 Groundwater	36 CES/CEVR	
	Data Monitoring Reports		
06-Aug-99	Base Letter to GEPA Regarding Transmittal of the	Ikehara, Gregg N.	534
U	Final NFRAP Decision Documents for IRP Site 27/	36 CES/CEVR	
	Hazardous Waste Storage Area		
06-Aug-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	535
001105))	of Copies of the Final NFRAP Decision Documents for	36 CES/CEVR	000
	IRP Site 27/Hazardous Waste Storage Area	So ello, ell'r R	
06-Aug-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	536
00-Aug-99	of Copies of the Draft Project Work Plans for IRP Site	36 CES/CEVR	550
	34/PCB Storage Area, IRP Site 10/LF-14, IRP Site 16/	30 CES/CEVR	
	•		
06 Arra 00	LF-21 & IRP Site 31/Chemical Storage Area 4	Ilasham, Casas N	527
06-Aug-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	537
	of the Draft Project Work Plans for IRP Site 34/PCB	36 CES/CEVR	
	Storage Area, IRP Site 10/LF-14, IRP Site 16/LF-21 &		
	IRP Site 31/Chemical Storage Area 4		
06-Aug-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	538
	on the Draft Decision Summary NFRAP for IRP Site	USEPA Region IX	
	21/LF-26		
19-Aug-99	Base Letter to GEPA Regarding Proposed Variance	Ikehara, Gregg N.	539
	Request for Columbia Analytical Services Laboratory	36 CES/CEVR	
19-Aug-99	Base Letter to USEPA Region IX Regarding Proposed	Ikehara, Gregg N.	540
	Variance Request for Columbia Analytical Services	36 CES/CEVR	
	Laboratory		
19-Aug-99	USEPA Region IX Letter to Base Regarding Approval	Ripperda, Mark	541
-	of the Proposed Variance Request	USEPA Region IX	
19-Aug-99	USEPA Region IX Letter to Base Regarding Approval	Ripperda, Mark	542
U	of the Remedial Verification Report for IRP Site 39/	USEPA Region IX	
	Harmon Substation	C	
19-Aug-99	USEPA Region IX Letter to Base Regarding Approval of	Ripperda, Mark	543
19 1146 99	the Remedial Verification Report for IRP Site 19/LF-24	USEPA Region IX	010
24-Aug-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	544
24 Mug 99	on the Draft Project Work Plans for IRP Site 34/PCB	USEPA Region IX	544
	Storage Area, IRP Site 10/ LF-14 IRP Site 16/LF-21 &	USLI A Region IX	
	•		
27 4.00	IRP Site 31/Chemical Storage Area 4	Ikahara Grazz N	E 1 E
27-Aug-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	545
	of the Draft EE/CA for IRP Site 2/LF-2 & IRP Site 5/	36 CES/CEVR	
01.0 00	LF-7		~ 4 ~
01-Sep-99	Final Decision Summary NFRAP for IRP Site 21/LF-26	EA Engineering	546
09-Sep-99	Technical Document to Support NFRAP Declaration	36 CES/CEVR	547
	for IRP Site 21/LF-26		
15-Sep-99	RPM Meeting Minutes, 9 Sep 99	EA Engineering	548

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
28-Sep-99	Base Letter to GEPA Regarding Transmittal of the	Ikehara, Gregg N.	549
	Basewide QAPP Revision 2 & Final Reports for IRP	36 CES/CEVR	
	Site 27/Hazardous Storage Area 1, Site 32/Drum		
	Storage Area 1, & Site 33/Drum Storage Area 2		
6 Oct 99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	550
	of Copies of the Draft RI Report for Harmon Annex OU	36 CES/CEVR	
6 Oct 99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	551
	of the Draft RI Report for Harmon Annex OU	36 CES/CEVR	
12-Oct-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	552
	of Copies of the Final Decision Summary for IRP Site	36 CES/CEVR	
	21/LF-26		
12-Oct-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	553
	of the Final Decision Summary for IRP Site 21/LF26	36 CES/CEVR	
12-Oct-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	554
	of Copies of the Draft EE/CA for IRP Site 26/FTA-2	36 CES/CEVR	
12-Oct-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	555
	of the Draft EE/CA for IRP Site 26/FTA-2	36 CES/CEVR	
13-Oct-99	GEPA Letter to Base Regarding Comments on Draft	Wuerch, H. Victor	556
	EE/CA Report for IRP Site 2/LF-2	GEPA	
16-Oct-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	557
	on Draft EE/CA for IRP Site 5/LF-7 & IRP Site 2/LF-2	USEPA Region IX	
22-Oct-99	GEPA Letter to Base Regarding Comments on Draft	Wuerch, H. Victor	558
	Decision Summary NFRAP for IRP Site 21/LF-26	GEPA	
22-Oct-99	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	559
	of Copies of the Draft EE/CA for IRP Site 8/LF-10A,	36 CES/CEVR	
	10B, & 10C		
22-Oct-99	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	560
	the Draft EE/CA for IRP Site 8/LF-10A, 10B, & 10C	36 CES/CEVR	
	& 10C		
26-Oct-99	GEPA Letter to Base Regarding Comments on Draft	Wuerch, H. Victor	561
	EE/CA Report for IRP Site 5/LF-7	GEPA	
10-Dec-99	GEPA Letter to Base Regarding Comments on Draft	Salas, Jesus T.	562
	EE/CA for IRP Site 26/FTA-2	GEPA	
10-Dec-99	Base Letter to GEPA Regarding Responses to	Ikehara, Gregg N.	563
	Comments for RVR of IRP Site 39/Harmon Substation,	36 CES/CEVR	
	IRP Site 19/LF-24 & AOCs 1, 2, 3, 4, 5, 12, & 22		
16-Dec-99	USEPA Region IX Letter to Base Regarding Comments	Ripperda, Mark	564
	on the Draft RI Report for Harmon Annex	USEPA Region IX	
23-Dec-99	GEPA Letter to Base Regarding Comments on the	Salas, Jesus T.	565
	Draft EE/CA Report for IRP Site 8/LF-10A, 10B, & 10C	GEPA	
01-Jan-00	Final EE/CA for IRP Site 5/LF-7	EA Engineering	566
01-Jan-00	Draft Proposed Plan, Harmon Annex OU	36 CES/CEVR	567
18-Jan-00	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	568
	of Copies of Action Memorandum for IRP Site 34/PCB	36 CES/CEVR	
	Storage Area, IRP Site 16/LF-21, IRP Site 10/LF-14, &		
	IRP Site 31/Chemical Storage Area 4		
18-Jan-00	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	569
	of Action Memorandum for IRP Site 34/PCB Storage	36 CES/CEVR	_ ~ ~
	Area, IRP Site 16/LF-21, IRP Site 10/LF-14, & IRP		
	Site 31/Chemical Storage Area 4		
18-Jan-00	Action Memorandum to Request and Document	Ikehara, Gregg N.	570
18-Jan-00	Approval of the Proposed Removal Action for IRP Site	36 CES/CEVR	570
	ADDROVALOF THE PRODOSED KEINOVALACTION TOF TKP NUE		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
18-Jan-00	Action Memorandum to Request and Document	Ikehara, Gregg N.	571
	Approval of the Proposed Removal Action for IRP Site 16/LF-21	36 CES/CEVR	
18-Jan-00	Action Memorandum to Request and Document	Ikehara, Gregg N.	572
	Approval of the Proposed Removal Action for IRP Site 10/LF-14	36 CES/CEVR	
18-Jan-00	Action Memorandum to Request and Document	Ikehara, Gregg N.	573
	Approval of the Proposed Removal Action for IRP Site 31/Chemical Storage Area 4	36 CES/CEVR	
27-Jan-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Draft Proposed Plan for IRP Sites in the Harmon Annexes	Ikehara, Gregg N. 36 CES/CEVR	574
27-Jan-00	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	575
27-Jan-00	of the Draft Proposed Plan for IRP Sites in the Harmon	36 CES/CEVR	575
	Annexes	So CED, CEVIC	
27-Jan-00	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	576
27 Juli 00	of Copies of the Draft Final RI Report for IRP Sites in the Harmon Annexes	36 CES/CEVR	570
27-Jan-00	Base Letter to GEPA Regarding Transmittal of Copies	Ikehara, Gregg N.	577
27 Juli 00	of the Draft Final RI Report for IRP Sites in the Harmon Annexes	36 CES/CEVR	577
27-Jan-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final EE/CA for IRP Site 5/LF-7	Ikehara, Gregg N. 36 CES/CEVR	578
28-Jan-00	RAB Meeting Minutes, 21 Oct 99	EA Engineering	579
31-Jan-00	Base Letter to USEPA Region IX Regarding Transmittal	Ikehara, Gregg N.	580
	of Copies of the Draft Final EE/CA for IRP Site 2/LF-2	36 CES/CEVR	
31-Jan-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final EE/CA for IRP Site 2/LF-2	Ikehara, Gregg N. 36 CES/CEVR	581
01-Feb-00	Final EE/CA for IRP Site 2/LF-2	EA Engineering	582
03-Feb-00	USEPA Region IX Letter to Base Regarding Comments on the Draft EE/CA for IRP Site 8/LF-10	Ripperda, Mark USEPA Region IX	583
07-Feb-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final Decision Summary Document for IRP Site 1/LF1	Ikehara, Gregg N. 36 CES/CEVR	584
11-Feb-00	Base Letter to Mangilao Mayor Nonito Blas Regarding Termination of Mayor as a RAB Member	Schoeck, Edward Colonel, USAF 36 ABW/CV	585
11-Feb-00	Base Letter to RAB Members Regarding Quarterly RAB Meeting	Schoeck, Edward Colonel, USAF 36 ABW/CV	586
16-Feb-00	RPM Meeting Minutes, 16 Feb 00	EA Engineering	587
18-Feb-00	News Article, "\$6M for Cleanup"	Loerzel, Adrienne Pacific Daily News	588
25-Feb-00	GEPA Letter to Base Regarding Comments on Draft RI Report for Harmon Annex OUs IRP Site 18/LF-23, IRP	Salas, Jesus T. GEPA	589
	Site 19/LF-24 & IRP Site 39/Harmon Substation		
28-Feb-00	News Article, "GovGuam Seeks Quick End to Land- Return Issue"	Loerzel, Adrienne Pacific Daily News	590
29-Feb-00	Dept of Interior Letter to Base Regarding Formal	DiRosa, Roger	591
	Section 7 Consultation for IRP Site 9/LF-13, IRP Site	GNWR	
	13/LF-18, IRP Site 14/LF-19, & IRP Site 15/LF-20		
01-Mar-00	Final Groundwater Data	EA Engineering, Science,	592
	Monitoring Transport Report, Fall 99, Marbo Annex	and Technology	

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Mar-00	Final Groundwater Data Monitoring Report, Fall 99	EA Engineering, Science,	593
	Main Base Annex and Northwest Field Annex	and Technology	
22-Mar-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Draft Final NFRAP Report for IRP Site 28/Chemical Storage Area 1	Ikehara, Gregg N. 36 CES/CEVR	594
22-Mar-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final NFRAP Report for IRP Site 28/ Chemical Storage Area 1	Ikehara, Gregg N. 36 CES/CEVR	595
22-Mar-00	RAB Meeting Minutes, 17 Feb 2000	EA Engineering, Science and Technology	596
28-Mar-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Draft Final NFRAP Report for IRP Site 17/LF-22	Torres, Jess F. 36 CES/CEVR	597
28-Mar-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final NFRAP Report for IRP Site 17/LF-22	Torres, Jess F. 36 CES/CEVR	598
01-Apr-00	Final Decision Summary Document, Site 1	EA Engineering, Science and Technology	599
26-Apr-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Draft NFRAP for IRP Site 30/Waste Pile 4	Ikehara, Gregg N. 36 CES/CEVR	600
26-Apr-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft NFRAP for IRP Site 30/Waste Pile 4	Ikehara, Gregg N. 36 CES/CEVR	601
02-May-00	Base Letter to GEPA Regarding Transmittal of Copies of the Final Decision Summary Document of IRP Site1/LF1	Ikehara, Gregg N. 36 CES/CEVR	602
02-May-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Final Decision Summary Document of IRP Site1/LF1	Ikehara, Gregg N. 36 CES/CEVR	603
04-May-00	RAB Meeting Minutes, 04 May 2000	EA Engineering	604
09-Jun-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Decision Summary NFRAP for IRP Site4/LF6	Ikehara, Gregg N. 36 CES/CEVR	605
09-Jun-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Draft Decision Summary NFRAP for IRP Site 4/LF6	Ikehara, Gregg N. 36 CES/CEVR	606
22-Jun-00 01-Aug-00	RPM Meeting Minutes, 22 June 00 EE/CA, Final Report, Site 8	EA Engineering EA Engineering, Science and Technology	607
01-Aug-00	NFRAP, Final Decision Document, Site 4	EA Engineering, Science and Technology	608
03-Aug-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Decision Summary NFRAP for IRP Site 25/ Fire Training Area 1	Ikehara, Gregg N. 36 CES/CEVR	609
25-Aug-00	GEPA Letter to Base Regarding GEPA Comments on the Draft Decision NFRAP for IRP Site 4/LF 6	Salas, Jesus T. GEPA	610
29-Aug-00	Base Letter to GEPA Regarding Transmittal of Copies of the Draft Final EE/CA Report of IRP Site 8/ LFs 10A, 10B, 10C.	Ikehara, Gregg N. 36 CES/CEVR	611
31-Aug-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Draft Final EE/CA Decision Summary NFRAP Report for Site 4/LF 6	Ikehara, Gregg N. 36 CES/CEVR	612

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
31-Aug-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	613
	the Draft Final Decision Summary NFRAP Report for	36 CES/CEVR	
	for Site4/LF6		
31-Aug-00	Base Letter to USEPA Region IX Regarding Transmittal of	Ikehara, Gregg N.	614
	Copies of Final NFRAP Dec. Summ. Rpt for Site 4/LF 6	36 CES/CEVR	
31-Aug-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	615
	Final NFRAP Dec. Summ. Rpt for Site 4/LF 6	36 CES/CEVR	
01-Sep-00	Final Groundwater	EA Engineering,	616
	Monitoring Report,	Science and	
	Spring 00, MARBO Annex,	Technology	
	Northwest Field Annex		
01-Sep-00	RA, Quality Program	IT Corp.	617
	Plan, Vol I of II, Main		
	Base Annex, MARBO		
	Annex, Site 2, 5, 24		
01-Sep-00	RA, Environmental	IT Corp.	618
	Cleanup Plan, Vol II of		
	II, Main Base Annex,		
	Site 5		
07-Sep-00	Newspaper Article,	The Pacific	619
-	"Defense Bill May	Daily News	
	Include Call to Remove		
	Unexploded Ordnance"		
07-Sep-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	620
-	the Final Spring Groundwater 2000 Monitoring Report	36 CES/CEVR	
	for MARBO Annex & Northwest Field Operable Units		
07-Sep-00	Base Letter to USEPA Region IX Regarding Transmittal of	Ikehara, Gregg N.	621
-	Copies of the Final Spring Groundwater 2000 Monitoring	36 CES/CEVR	
	Report for MARBO Annex & Northwest Field Operable		
	Units		
15-Sep-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	622
-	the Draft Quality Program Plan & Environmental Cleanup		
	Plan for Site 24/LF 29 MARBO Operable Unit		
15-Sep-00	Base Letter to USEPA Region IX Regarding Transmittal of	Ikehara, Gregg N.	623
•	Copies of the Draft Quality Program Plan & Environmental		
	Cleanup Plan for Site 24/LF 29 MARBO Operable Unit		
18-Sep-00	Newspaper Article,	The Pacific	624
I	"Military Remnants	Daily News	
	Linger: Ordnance,	j i i i i	
	Dumpsites Dot Island"		
	Newspaper Article,	The Pacific	
19-Sep-00	"GEPA Creating Hazard	Daily News	
17 Sep 00	Search: Local Agency		625
	Wants Own System to		
	Investigate Potential		
	Sites"		
22-Sep-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	626
	the Draft Environmental Cleanup Plan for Site 2/LF 2	36 CES/CEVR	020
22-50p-00			
22-5ep-00	=		
	Main Base Operable Units	Ikehara Gregg N	627
22-Sep-00	=	Ikehara, Gregg N. 36 CES/CEVR	627

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Oct-00	Groundwater Monitoring	EA Engineering,	628
	Report, Spring, FY00,	Science and	
	Main Base Annex	Technology	
01-Oct-00	Remediation	IT Corp.	629
	Verification Report,		
	MARBO Annex, Site 20		
01-Oct-00	Remediation	IT Corp.	630
	Verification Report,	-	
	MARBO Annex, Site 38		
01-Oct-00	ROD, Amendment, MARBO	36 CES/CEVR	631
	Annex, Site 24		
03-Oct-00	Base Letter to USEPA Region IX Regarding Transmittal of	Ikehara, Gregg N.	632
	Copies of the Draft Environmental Cleanup Plan for	36 CES/CEVR	
	Site 5/LF 7		
03-Oct-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	633
	the Draft Environmental Cleanup Plan for Site 5/LF 7	36 CES/CEVR	
	Newspaper Article,	The Pacific	
15-Oct-00	"Notice of	Daily News	634
	Availability: Amendment	·	
	of ROD'', MARBO Annex		
26-Oct-00	USEPA Region IX Letter Regarding EPA Comments on	Ikehara, Gregg N.	635
	Draft Environmental Cleanup Plan for Site 24/LF 29 and	36 CES/CEVR	
	Site 2/LF 2		
01-Nov-00	Asphalt Recovery Status	IT Corp.	636
	Report, Site 35	1	
01-Nov-00	Asphalt Recovery Status	IT Corp.	637
	Report, Site 29		
01-Nov-00	RI, Final Report,	EA Engineering,	638
	Harmon Annex	Science and	
		Technology	
01-Nov-00	RA, Environmental	IT Corp.	639
	Cleanup Plan, Vol II of		
	II, Marbo Annex, Site 24		
01-Nov-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	640
	the Spring 2000 Groundwater Monitoring Report for Main	36 CES/CEVR	
	Base Operable Units		
01-Nov-00	Base Letter to USEPA Region IX Regarding Transmittal of	Ikehara, Gregg N.	641
	Copies of the Spring 2000 Groundwater Monitoring Report	36 CES/CEVR	
	for Mainbase Operable Units		
06-Nov-00	Base Letter to GEPA Regarding Transmittal of Copies of	Ikehara, Gregg N.	642
	the Draft Remedial Verification Report for Site 38/MARBO		
	Laundry Facility and Site 20/Waste Pile 7 AAFB		
06-Nov-00	Base Letter to USEPA Region IX Regarding Transmittal of	Ikehara, Gregg N.	643
	Copies of the Draft Remedial Verification Report for	36 CES/CEVR	
	Site 38/MARBO Laundry Facility and Site 20/Waste		
	Pile 7		
		Schoeck, Edward	644
06-Nov-00	Base Letter to RAB Members Regarding Next	SCHOECK, EUWAIU	
06-Nov-00	Base Letter to RAB Members Regarding Next Quarterly Meeting		011
06-Nov-00	Base Letter to RAB Members Regarding Next Quarterly Meeting	Colonel, USAF	011
	Quarterly Meeting	Colonel, USAF 36 ABW/CV	
15-Nov-00	Quarterly Meeting RPM Meeting Minutes, 15 November 00	Colonel, USAF 36 ABW/CV EA Engineering	645
	Quarterly Meeting	Colonel, USAF 36 ABW/CV	

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
22-Nov-00	Base Letter to GEPA Regarding Transmittal of Copies of the Final Asphalt Recovery Status Reports for Site 35/ Waste Pile 1 and Site 29/Waste Pile 2	Ikehara, Gregg N. 36 CES/CEVR	648
22-Nov-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Final Asphalt Recovery Status Reports for Site 35/Waste Pile 1 and Site 29/Waste Pile 2	Ikehara, Gregg N. 36 CES/CEVR	649
22-Nov-00	Base Letter to GEPA Regarding Transmittal of Copies of the Sampling and Analysis Plan for Remedial Investigation/Feasibility Study for Urunao Dumpsites 1 & 2, Urunao Operable Unit, AAFB	Ikehara, Gregg N. 36 CES/CEVR	650
22-Nov-00	Base Letter to GEPA Regarding Transmittal of Copies of the Final Remedial Investigation Report for Harmon Annex Operable Unit, AAFB	Ikehara, Gregg N. 36 CES/CEVR	651
22-Nov-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies for the Sampling and Analysis Plan for Remedial Investigation/Feasibility Study for Urunao Dumpsites 1 & 2, Urunao Operable Unit, AAFB	Ikehara, Gregg N. 36 CES/CEVR	652
30-Nov-00	Base Letter to GEPA Regarding Transmittal of Copies of the Final Environmental Cleanup Plan Report for Site 24/ Landfill 29, MARBO Operable Unite, AAFB	Ikehara, Gregg N. 36 CES/CEVR	653
30-Nov-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies of the Final Environmental Cleanup Report for Site 24/Landfill 29, MARBO Operable Unit, AAFB	Ikehara, Gregg N. 36 CES/CEVR	654
01-Dec-00	Final Management Action Plan (MAP)	EA Engineering, Science and Technology	655
01-Dec-00	RA, Environmental Cleanup Plan, Vol II of II, Marbo Annex, Site 2	IT Corp.	656
05-Dec-00	Base Letter to GEPA Regarding Transmittal of Copies of for the Amendment of the Record of Decision of the MARBO Operable Unit	Ikehara, Gregg N. 36 CES/CEVR	657
05-Dec-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies for the Amendment of the Record of Decision of the MARBO Operable Unit		658
13-Dec-00	Base Letter to GEPA Regarding Variances for IRP IRP Basewide QAPP, 3/99 for AAFB	Ikehara, Gregg N. 36 CES/CEVR	659
13-Dec-00	Base Letter to USEPA Region IX Regarding Variances for IRP Basewide QAPP, 3/99 for AAFB	Ikehara, Gregg N. 36 CES/CEVR	660
13-Dec-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies for the Draft Proposed Plan for the Harmon Operable Unit	Ikehara, Gregg N. 36 CES/CEVR	661
15-Dec-00	USEPA Region IX Letter to Base Regarding a Request for Variances (13 Dec 00) for IRP Basewide Quality Assurance Project Plan (3/99) for AAFB	Ripperda, Mark USEPA Region IX	662
15-Dec-00	Base Letter to GEPA Regarding Transmittal of Copies for the Final Environmental Cleanup Plan Report for Site 5/LF 7, Main Base Operable Unit, AAFB	Ikehara, Gregg N. 36 CES/CEVR	663
15-Dec-00	Base Letter to GEPA Regarding Transmittal of Copies for the Final Environmental Cleanup Plan Report for Site 2/Landfill 2	Ikehara, Gregg N.	664
15-Dec-00	Base Letter to USEPA Region IX Regarding Transmittal of Copies for the Final Environmental Cleanup Plan Report for Site 2/Landfill 2, AAFB	Ikehara, Gregg N. 36 CES/CEVR	665

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
15-Dec-00	Base Letter to GEPA Regarding Transmittal of Copies for the Final Environmental Cleanup Plan Report for Site 2/Landfill 2	Ikehara, Gregg N.	666
16-Jan-01	Base Letter to RAB Members Regarding Quarterly RAB Meeting	Schoeck, Edward Colonel, USAF ABW,CV	667
23-Jan-01	GEPA Letter to Base Regarding Comments on the Record of Decision Amendment for the MARBO Annex	Salas, Jesus T. GEPA	668
23-Jan-01	OU Site 24/Landfill 29 GEPA Letter to Base Regarding Comments on the to the Sampling and Analysis Plan for Remedial Investigation/ Feasibility Study (RI/FS) for Urunao Dumpsites 1 & 2	Salas, Jesus T. GEPA	669
24-Jan-01	News Article, "Private Firm to Remove Unexploded Ordnance"	Duenas, Joseph E. Guam Variety	670
01-Feb-01			671
01-Feb-01	Fact Sheet, Final Proposed Plan, Harmon Annex	36 CES/CEVR	672
06-Feb-01	News Article, "Notice of Availability for Proposed Plan for the Harmon Annex Operable Unit"	36 CES/CEVR Pacific Daily News	673
07-Feb-01	News Article, "Notice of Availability for Proposed Plan for the Harmon Annex Operable Unit	36 CES/CEVR Pacific Daily News	674
08-Feb-01	News Article, "Notice of Availability for Proposed Plan for the Harmon Annex Operable Unit	36 CES/CEVR Pacific Daily News	675
08-Feb-01	Base Letter to GEPA Regarding Transmittal of Copies for the Final Asphalt Removal Report, Site 6/Landfill 8, AAFB	Ikehara, Gregg N. 36 CES/CEVR	676
08-Feb-01	Base Letter to USEPA Region IX Regarding Transmittal of Copies for the Final Asphalt Removal Report, Site 6/LF 8	Ikehara, Gregg N. 36 CES/CEVR	677
13-Feb-01	Base Letter to RAB Members Regarding the Proposed Plan for the Harmon Annex Operable Unit	Ikehara, Gregg N. 36 CES/CEVR	678
19-Feb-01	News Article, "Public Notice Announcement for the RAB Meeting and the Proposed Plan for the Harmon Annex Operable Unit Meeting	36 CES/CEVR Pacific Daily News	679
20-Feb-01	News Article, "Public Notice Announcement for the RAB Meeting and the Proposed Plan for the Harmon Annex Operable Unit Meeting	36 CES/CEVR Pacific Daily News	680
21-Feb-01	RPM Meeting Minutes, 21 Feb 01	EA Engineering	681
21-Feb-01	News Article, "Public Notice Announcement for the RAB Meeting and the Proposed Plan for the Harmon Annex Operable Unit Meeting	36 CES/CEVR Pacific Daily News	682
21-Feb-01	Base Letter to USEPA Region IX Regarding Transmittal of Copies for Draft EE/CA for Site 36/Ritidian Dump Site, Northwest Field Operable Unit	Ikehara, Gregg N. 36 CES/CEVR	683
21-Feb-01	Base Letter to GEPA Regarding Transmittal of Copies for the Draft EE/CA for Site 36/Ritidian Dump Site, Northwest Field Operable Unit	Ikehara, Gregg N. 36 CES/CEVR	684
21-Feb-01	Base Letter to GEPA Regarding Transmittal of Copies for the Revision for ARAR's in the MARBO ROD Amendment	Ikehara, Gregg N. 36 CES/CEVR	685
22-Feb-01	Base Letter to USEPA Region IX Regarding Transmittal of the Revised MARBO ROD Amendment	Ikehara, Gregg N. 36 CES/CEVR	686
00-Feb-01	Final Quality Program Plan & Final Environmental Cleanup Plan for Site 24/Landfill 29 (CD-ROM)	Arnsfield, Chris IT Corporation	687

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBEF
00-Feb-01	Final Quality Program Plan & Final Environmental	Arnsfield, Chris	688
	Cleanup Plan for Site2/Landfill 2 (CD-ROM)	IT Corporation	
00-Feb-01	Final Quality Program Plan & Final Environmental	Arnsfield, Chris	689
	Cleanup Plan for Site 5/Landfill 7 (CD-ROM)	IT Corporation	
01-Mar-01	Final Groundwater	URS Corp.	690
	Monitoring Report, Fall 2000	L.	
01-Mar-01	RI/FS, Final SAP, Site 40	EA Engineering,	691
		Science and	
		Technology	
16-Mar-01	Base Letter to EA Engineering Regarding Site 15/LF 20	Poland, D. Joan	692
	Natural Resources Clearance	36 CES/CEVR	
26-Mar-01	Base Letter to GEPA Regarding Final SAP for RI/FS	Ikehara, Gregg N.	693
20 10101 01	Urunao Dumpsites 1 & 2, Urunao OU	36 CES/CEVR	075
27-Mar-01	Base Letter to GEPA Regarding Transmittal of Copies for	Ikehara, Gregg N.	694
27-10101-01	the Final EE/CA report for Site 8/Landfills	36 CES/CEVR	074
	10A, 10B, 10C, Main Base Operable Unit AAFB	50 CES/CEVR	
01 Apr 01		36 CES/CEVR	695
01-Apr-01	ROD, Amendment, MARBO	JU CES/CEVR	095
00 4	Annex, Site 24		(0)(
09-Apr-01	GEPA Letter to Base	Salas, Jesus T	696
	Concerning Comments on	Guam	
	Draft Proposed Plan,	Environmental	
	Harmon Annex	Protection Agency	
	GEPA Letter to Base	Salas, Jesus T	
09-Apr-01	Concerning Approval of	Guam	697
	Remediation	Environmental	
	Verification Report,	Protection Agency	
	MARBO Annex, Site 2		
09-Apr-01	GEPA Letter to Base	Salas, Jesus T	698
	Concerning Comments on	Guam	
	Remediation	Environmental	
	Verification Report,	Protection Agency	
	Site 38		
09-Apr-01	GEPA Letter to Base	Salas, Jesus T	699
07 1 - p1 01	Concerning Approval of	Guam	0,,,,
	Final Environmental	Environmental	
	Cleanup Plan, MARBO	Protection Agency	
	Annex, Site 24	Totection Agency	
09-Apr-01	GEPA Letter to Base	Salas, Jesus T	700
09-Api-01			700
	Concerning Comments on	Guam	
	Final RI, Harmon Annex	Environmental	
00 1 01		Protection Agency	
09-Apr-01	GEPA Letter to Base	Salas, Jesus T	701
	Concerning Comments on	Guam	
	Revisions to Analyte	Environmental	
	List	Protection Agency	
09-Apr-01	GEPA Letter to Base	Salas, Jesus T	702
	Concerning Comments on	Guam	
	Final Environmental	Environmental	
	Cleanup Plan, Main Base	Protection Agency	
	Annex, Site 2	- •	
19-Apr-01	Newspaper Article, "Andersen Landfill Waiting	The Pacific Daily	703
1	for Cleanup"	News	
01-May-01	Fact Sheet, Landfill 7,	36 CES/CEVR	704
	Site 5		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
17-May-01	RPM Meeting Minutes, 17 May 2001	EA Engineering,	705
		Science and	
		Technology	
17-May-01	RPM Meeting Minutes, dtd 17 May 01	EA Engineering	706
22-May-01	Base Letter to GEPA Regarding Transmittal of Copies for	Ikehara, Gregg N.	707
	the Agency Draft Harmon Annex OU Record of Decision	36 CES/CEVR	
01-Jun-01	RPM Meeting Minutes, 21 February 2001	EA Engineering,	708
		Science and	
		Technology	
01-Jun-01	RPM Meeting Minutes, 15 Nov 2000	EA Engineering,	709
		Science and	
		Technology	
14-Jun-01	Newspaper Article,	Tropic Topics	710
	"Notice to Residents of	Base Newspaper	
	Capehart Housing", Site 5	1 1	
10-Jul-01	GEPA Letter to Base	Salas, Jesus T	711
	Concerning Groundwater	Guam	
	Monitoring, MARBO Annex	Environmental	
	6 ⁷	Protection Agency	
27-Jul-01	Newspaper Article, "RAB	The Pacific	712
	Meeting Announcement"	Daily News	
31-Jul-01	RAB Meeting Minutes, 31 Jul 2001	EA Engineering,	713
		Science and	
		Technology	
01-Aug-01	NFRAP, Final Decision	EA Engineering,	714
U	Document, Site 25	Science and	
		Technology	
01-Aug-01	Quality Program Plan,	IT Corp.	715
U	Vol I of II, Addendum,	L	
	Northwest Field Annex,		
	Main Base Annex		
01-Aug-01	Environmental Cleanup	IT Corp.	716
	Plan, Vol II of II,	- I	
	Northwest Field Annex,		
	Site 16, 31		
01-Aug-01	EE/CA, Final Report,	URS Corp.	717
	Site 36	I I I I I I	
23-Aug-01	RPM Meeting Minutes, 23 August 2001	EA Engineering,	718
U		Science and	
		Technology	
01-Sep-01	Final Groundwater	URS Corp.	719
	Monitoring Report,	L.	
	Spring 01		
11-Sep-01	Newspaper Article,	The Pacific	720
~· P	"Field Work in Federal	Daily News	
	Audit of DOD Records	j i i i i i	
	Completed: Nationwide		
	Audit on Military Sites		
	Starts with Guam"		
01-Nov-01	Environmental Cleanup	IT Corp.	721
01 1107 01	Plan, Vol II of II,	II corp.	121
	Main Base Annex, Site		
	10, 34		

DOC. DATE	SUBJECT OR TITLE	AUTHOR or CORP. AUTHOR	FILE NUMBER
01-Dec-01	ROD, Final, Harmon Annex	EA Engineering,	722
		Science and	
		Technology	
02-Jan-02	SAP, Final Work Plan,	EA Engineering,	723
	Amendment, Site 6	Science and	
		Technology	
05-Jul-02	Administrative Record	LABAT-ANDERSON	1
	Index	INCORPORATED	

Bolded/Shaded items indicate applicability to the MARBO OU Record of Decision

Appendix B

First Five-Year Interviews For MARBO Record of Decision

INTERVIEW DOCUMENTATION FORM

The following is a list of individuals interviewed for this five-year review. See the attached contact record(s) for a detailed summary of the interviews.

1 Joan	nne M. Salas Brown	Senator	GovGuam	27 October 2003
	Name	Title/Position	Organization	Date
2	Fred M. Castro	Administrator	GEPA	07 November 2003
	Name	Title/Position	Organization	Date
t To	rry F. Kasperbauer	Senator	GovGuam	10 November 2003
) <u>La</u>	Name	Title/Position	Organization	Date
4 Vict	or Wuerch	Hydrogeologist	GEPA	05 December 2003
⁴ Vict	or Wuerch Name	Hydrogeologist Title/Position	GEPA Organization	05 December 2003 Date
4 <u>Vict</u>				

INTERVIEW RECO	RD				
Site Name: MARBO Annex, Guam	EPA ID No.:				
Subject: 5-Year Interview for MARBO ROD	Time: Date: 10:00 am 27 October 2003				
Type:□TelephoneX□Visit□OtherLocation of Visit:Guam Legislator Building	□ Incoming □ Outgoing				
Contact Made By:					
Names:Titles:Organizations1) Toraj Ghofrani1) Site Manger1) EA Engine	eering Science and Technology, Inc. AFB 36 CES/CEVR				
Individual Contacted:					
Name: Joanne M. Salas Brown Title: Senator	Organization: GovGuam				
Telephone No.: 671-472-3450 Street Address:	GCIC Building, Suite 709 414 W. Soledad Ave., Hagatna, Guam 96910				
Summary of Conversation					
 1.0 What is your overall impression of the project? (general sentiment) Senator Brown stated that: I first given a tour of MARBO Annex about 9 years ago, when some sites were under excavation. MARBO Annex is a sizable site. Overall, I feel we have been updated with the progress of MARBO quite regularly during Restoration Advisory Board (RAB) meetings. The communications have been open and very direct. Representative from Andersen Air Force Base (AFB) have done a fair job explaining all aspects of project status to general public. I have never had the impression that Andersen AFB has tried to hide information. The RAB members are a good cross section of our community, including representatives from public, business sectors, landowners, and scientific community. RAB has been effective in sharing information and results have been very positive because we do not hear public hostile 					
 complain and mistrust that was once existed between the military and the civilian community. 2.0 Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results. Senator Brown stated that: As I explained earlier there has been routine communication with regard to the status of the Andersen AFB sites. In terms of site inspection, I think it will be effective if Andersen AFB can arrange another tour to show the progress of the cleanup sites at AMRBO Annex. 3.0 Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? If so, please give details of the events and results of the responses. Senator Brown stated that: Although I receive numerous complains to my office regarding the quality of groundwater as the source of potable water, and the fact that some landowners would like to have their land returned and cleaned, 					
but I have not received any complain directly related to sites at MARBO 4.0 Do you feel well informed about the site's activities and progress?	аннел.				
Senator Brown stated that: Yes. Andersen AFB slide presentations are very clear and effective and we are always given a hard copy of the slide show where we can write our notes, questions, or comments. Andersen AFB may not have the answer to all questions during the meeting, but they do take notes and follow up during the next meeting.					
Senator Brown stated that: I am concerned about the shutting down of the Maui Well can be invaluable source of water for the island. I am equally authority to take over the operation of Tumon Maui Well when the well her source of the senator of t	Senator Brown stated that: Yes. Andersen AFB slide presentations are very clear and effective and we are always given a hard copy of the slide show where we can write our notes, questions, or comments. Andersen AFB may not have the answer to all questions during the meeting, but they do take notes and follow up during the next meeting. 5.0 Do you have any comments, suggestions, or recommendations regarding the site's management or operation? Senator Brown stated that: I am concerned about the shutting down of the Maui Well treatment system knowing that Maui Well can be invaluable source of water for the island. I am equally concerned about the Guam Water Work authority to take over the operation of Tumon Maui Well when the well has TCE contamination. I understand that Andersen AFB may have other wells that can be utilized as a source of potable water, but we also expect the properties				

		INTERV	IEW RECC	RD		
Site Name: MARBO Annex, Guam				EPA ID No.:	EPA ID No.:	
Subject: 5-Year Interview for MARBO ROD				Time: 11:00 am	Date: 07 November 2003	
Type:□TelephoneX□Visit□OtherLocation of Visit:GEPA Conference Room				□ Outgoing		
Contact Made By:						
Names: 1) Toraj Ghofrani 2) Gregg Ikehara 3) Paul Dusenbury 4) Michael Cruz	Names:Titles:Organization1) Toraj Ghofrani1) Site Manger1) EA Engin2) Gregg Ikehara2) IRP Project Manager2) Andersen3) Paul Dusenbury3) Contractor Oversight Manager3) Booz-Alle			ons: ineering Science and Technology, Inc. en AFB 36 CES/CEVR len Hamilton		
			dual Contacted:	1		
Name: Fred M. Ca		Title: Administr		Organization:		
Telephone No.: 671- 4 Fax No.: 671-477-94 E-mail Address:			Street Address: GEPA, P.O. Box 22439 City, State, Zip: Barrigada, Guam 96921			
		Summar	y of Conversation	1		
concern about the Te Well. However, for asked if M. Cruz had	ted that: Overall t CE and PCE in th the most part the l any comments to	he MARBO Anne: he groundwater at Installation Restor add. M. Cruz sai	x had a good pro MARBO and the cation Program (id that he had no	at may affect th (IRP) has been one.	regulatory point of view, w eare ne groundwater at Tumon Maui a good program. Mr. Castro	
office regarding t	he site? If so, plea	se give purpose and	l results.		activities, etc.) conducted by your	
 Mr. Fred Castro stated that: There has been routine and adequate communication regarding the MARBO Annex. 3.0 Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? If so, please give details of the events and results of the responses. Mr. Fred Castro stated that: I am not aware of any complaints or violation with regard to MARBO Annex, other than some public illegal dumping at the site. M. Cruz added that public illegal dumping at site is recurring incident dispite of Andersen AFB's limiting access to the site using fence and chains blocks. 						
4.0 Do you feel well informed about the site's activities and progress? Mr. Fred Castro stated that: I feel I am well informed about projects at Andersen AFB especially because I my position as co-chair for the Restoration Advisory Board (RAB).						
5.0 Do you have any o	comments, suggest ted that: My only	ions, or recommend comment is with 1			pement or operation? come up with a consensus as to Page1 of1	

	_	INTERV	IE	W RECO	RD	
Site Name: MARBO Annex, Guam				EPA ID No.:		
Subject: 5-Year Interview for MARBO ROD				Time: 4:00 pm	Date: 10 November 2003	
Type: □ Telephone X□ Visit □ Other Location of Visit: Sinajana Office Conference Room				□ Outgoing		
	Ð		tact	Made By:		
Names: 1) Toraj Ghofrani	Names:Titles:Organ1) Toraj Ghofrani1) Site Manger1) EA		Organizations 1) EA Engine	eering Science	and Technology, Inc.	
2) Gregg Ikehara	2) IRP Project M				AFB 36 CES/	CEVR
3) Paul Dusenbury	3) Contractor O	versight Manager		3) Booz-Aller	1 Hamilton	
Name: Larry F. Kas	parbauar	Title: Senator	uua	i Contacteu.	Organization	· CovCuam
Telephone No.: 671-4 Fax No.: 671-475-200 E-mail Address:	75-5437	The Schator			Sinajana Mall	Phase II, Suite 16B Sinajana, Guam 96926
L-man Address.		Summar	v of	f Conversation		
1.0 What is your overall impression of the project? (general sentiment) Larry F. Kasperbauer stated that: I feel that Andersen AFB is upfront about the status of their projects and whenever I requested information, the information was provided to me. I would like to make sure that Andersen AFB continues to work with USEPA and GEPA to resolve some of the groundwater issues at MARBO. I was surprised to see how some of the sites at MARBO Annex expanded during the cleanup phase of the project, but I noted that the excavated soils were treated and transported to Andersen AFB landfill.					that Andersen AFB continues to was surprised to see how some of	
 2.0 Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results. Larry F. Kasperbauer stated that: I have attended many of the Restoration Advisory Board (RAB) meetings and I always felt the information that was presented was adequate. But, that is my own impression and not that of the legislators, or public. 3.0 Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? If so, 						
	s of the events and er stated that: I have				egard to MAR	BO Annex, specifically,
Larry F. Kasperbauer stated that: I have not heard any complain with regard to MARBO Annex, specifically. 4.0 Do you feel well informed about the site's activities and progress? Larry F. Kasperbauer stated that: Yes. Gregg Ikehara has been available to provide information I need in the past. I needed a copy of MARBO Record of Decision (ROD), and that was mailed to me a few days after I called.						
USEPA and resolve t	er stated that: As he groundwater p nference rooms w	I said I would like problem at MARE there some public	e to BO A ma	see Andersen Annex. I also y feel intimida	AFB continue would like to	agement or operation? e its cooperation with GEPA and suggest holding some of the RAB e ambiance. These meeting should Page1_ of1_

		INTERVII	EW RECO	RD				
Site Name: MARBO	Annex, Guam			EPA ID No.:				
Subject: 5-Year Inter	view for MARBC) ROD		Time: 11:00 am	Date: 05 December 2003			
Type: T Location of Visit: GE		Visit 🗆 Other Room	ſ		□ Outgoing			
		Contac	t Made By:					
Names:	Titles:		Organizations	s:				
1) Toraj Ghofrani	1) Site Manger				and Technology, Inc.			
2) Gregg Ikehara	2) IRP Project N			AFB 36 CES/C	CEVR			
3) Paul Dusenbury		versight Manager	/	ooz-Allen Hamilton				
4) Michael Cruz	4) Project Mana	<u> </u>	4) GEPA					
NT THE T			al Contacted:					
Name: Victor Wue		Title: Hydrogeolog		Organization:				
Telephone No.: 671-4				GEPA, P.O. Bo				
Fax No.: 671-477-94	02	C	ity, State, Zip:	Barrigada, Gu	am 96921			
E-mail Address:		<u> </u>	f Como di an					
1.0 What is your over	nall impression of t	•	of Conversation					
				the CERCLA	protocol. The progress is as			
					ARBO Annex, I had a major			
					loes not impact, the groundwater			
					as part of the 5-year review of			
the ROD, but it took		-	g					
			e visits, inspecti	ons, reporting a	activities, etc.) conducted by your			
		se give purpose and r						
Mr. Victor Wuerch s	stated that: Our	routine communicati	ons are via Re	medial Project	Manager (RPM) meetings,			
					ith Andersen AFB. Federal			
					P) Sites and have done so. The			
			GEPA has miss	ed many dead	lines for review, but that is given			
when considering the								
				the site requiring	g a response by your office? If so,			
		results of the respons						
					GEPA may have some concerns a groundwater sampling have			
been conducted satis		techniques, but ever	since we switch		ie groundwater sampning nave			
4.0 Do you feel well		site's activities and r	rogress?					
				erned, ves. I fe	eel I have been well informed.			
Ever since Gregg Ike								
					en AFB were uptight and			
					very forthcoming and the line of			
communication is op	en.		-					
5.0 Do you have any c			0 0		1			
	stated that: I hav	e to add that Anders	en AFB has do	ne a good job v	with regard to MARBO Annex			
projects.								
I am interacted to	noive and maria	ha Wank Dlan far 41	a threa farmer and	Among of Carra	\mathbf{AOC}_{a} that have turned to			
					cern (AOCs) that have turned to the TCE and PCE in			
groundwater at AMI	, , ,	nu AUU-34) anu see	in they relate t	o the source of	the FCE and FCE III			
Broundwater at All					Page1 of1			
					<i>u</i>			

Appendix C

Historical Groundwater Monitoring Results for Long-Term Groundwater Monitoring (LTGM) Program at MARBO Annex

NOTES AND QUALIFIERS FOR APPENDIX C DATA TABLES

Notes

- MCL = USEPA SDWA Maximum Contaminant Level
- F = Final
- P = Proposed

Bold & shaded = Concentration exceeds the MCL

- ‡ = Analyte detected in associated field or laboratory blank
- --- = Not Analyzed
- TT = USEPA SDWA Action Level
- RL = Andersen QAPP Reporting Limit

USEPA Qualifiers

- J = Estimated value.
- B = (Organics) Value may be affected by laboratory contamination.
- E = (Organics) Concentration exceeds the calibration range of the GC/MS.
- D = Dilution required.
- B = (Inorganics) Reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E = (Inorganics) Reported value is estimated because the presence of interference.
- N = Spiked sample recovery is not within the control limits.
- W = Postdigestion spike for furnace AAS analysis is out of control limits (85%) and sample absorbence is less than 50% of spike absorbence.
- * = Duplicate analysis is not within control limits.

Qualifiers for Validated Data

- J = (nondetects) Value is estimated
- J = (detected) Concentration is approximate
- B = Blank contamination associated with result
- R = Result rejected
- NJ = Analyte is tentatively identified and concentration is approximate
- $\mathbf{F} = \mathbf{A}\mathbf{n}\mathbf{a}\mathbf{l}\mathbf{y}\mathbf{t}\mathbf{e}$ positively identified at a concentration below the Reporting Limit
- $\mathbf{U}=\mathbf{T}\mathbf{h}\mathbf{e}$ analyte was analyzed for, but not detected.

Sample Ident	ifier			D-1	D-1	D-1
Sample Date				10/24/1996	4/14/1997	10/14/1997
Sampling Ro	und		Jul-02	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATILE	ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	11	<1	<1
INORGANIC	CS					
6010	ALUMINUM	μg/L	N/A	61 B	84 B	112 B
6010	CALCIUM	μg/L	N/A	64700	74500	72300 E
6010	MAGNESIUM	μg/L	N/A	10600	12100	11500 E
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.12 B
6010	POTASSIUM	μg/L	N/A	1740 B	1790 B	1740 B
6010	SILVER	μg/L	N/A	<3	<4	4.2 B
6010	SODIUM	μg/L	N/A	31000	34200	32800 E
WATER QU	ALITY PARAMETERS					
325.2	CHLORIDE	mg/L	N/A	53	79	63
375.4	SULFATE	mg/L	N/A	7.7	9.3	9.8
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	219	225	215
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.72
310.1	ALKALINITY, TOTAL	mg/L	N/A	219	225	215
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	258	308	389

TABLE C-1. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-1, MARBO ANNEX, GUAM

Sample Io	dentifier			D-2	D-2	D-2	D-2	D-2	D-2
Sample D	Date			10/24/1996	4/14/1997	10/14/1997	4/8/1998	10/14/1998	4/6/1999
Sampling	Round	1	Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8
Method	Analyte	Units	USEPA MCLs						
VOLATI	LE ORGANIC COMPOUNDS								
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1
8260	CARBON DISULFIDE	$\mu g/L$	N/A	17	<1	<1	<1	<1	<1
8260	CHLOROFORM	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1
8260	TOLUENE	$\mu g/L$	1,000 F	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F	<1	<1	<1	<1	<1	<1
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	0.4 J	<1	<1	<1	<1
INORGA	NICS								
6010	ALUMINUM	μg/L	N/A	99 B	98 B	122 B			
5010/7060	ARSENIC	$\mu g/L$	10	<2	<2	1.8 BW			
6010	CALCIUM	$\mu g/L$	N/A	66100	74400	73400 E			
6010	MAGNESIUM	$\mu g/L$	N/A	9770	11100	10500 E			
6010	MANGANESE	$\mu g/L$	N/A	<6	<6	47			
7470	MERCURY	$\mu g/L$	2 F	< 0.2	< 0.2	0.11 B			
6010	POTASSIUM	$\mu g/L$	N/A	1920 B	2010 B	2400 B			
6010	SODIUM	μg/L	N/A	30200	33800	31100 E			
WATER	QUALITY PARAMETERS								
325.2	CHLORIDE	mg/L	N/A	56	82	59			
375.4	SULFATE	mg/L	N/A	7	9.6	8.1			
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	217	223	205			
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.43			
310.1	ALKALINITY, TOTAL	mg/L	N/A	217	223	205			
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	330	349	486			

TABLE C-2. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-2, MARBO ANNEX, GUAM

Sample I	dentifier			D-2	D-2	D-2	D-2	D-2	D-2	D-2
Sample I	Date			10/14/1999	4/20/2000	4/12/2001	10/3/2001	4/18/2002	11/13/2002	4/3/2003
Sampling Round Jul-02		Jul-02	Round 9	Round 10	Round 12	Round 13	Round 14	Round 15	Round 16	
Method	Analyte	Units	USEPA MCLs	Validated	Validated					
VOLATI	VOLATILE ORGANIC COMPOUNDS									
8260	BROMODICHLOROMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	27	<1
8260	CARBON DISULFIDE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	$\mu g/L$	N/A	<1	<1	<1	<1	<1	26	<1
8260	CHLOROMETHANE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	0.5	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	<1	0.2	0.5 J	<1	<1
8260	TOLUENE	$\mu g/L$	1,000 F	0.2	<1	< 0.1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F	0.1	0.2 F	< 0.1	0.5	<1	<1	<1
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.3	0.4 F	0.4 F	0.6	<1	<1	0.4
INORGA									-	-
6010	ALUMINUM	$\mu g/L$	N/A							
5010/7060	ARSENIC	$\mu g/L$	10							
6010	CALCIUM	$\mu g/L$	N/A							
6010	MAGNESIUM	$\mu g/L$	N/A							
6010	MANGANESE	$\mu g/L$	N/A							
7470	MERCURY	$\mu g/L$	2 F							
6010	POTASSIUM	$\mu g/L$	N/A							
6010	SODIUM	µg/L	N/A							
WATER	QUALITY PARAMETERS								-	-
325.2	CHLORIDE	mg/L	N/A		60	42				
375.4	SULFATE	mg/L	N/A		11	8.4				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A		208	204				
310.1	ALKALINITY, CARBONATE	mg/L	N/A		<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A		208	204				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A		344					

TABLE C-2. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-2, MARBO ANNEX, GUAM

Sample Ider	ntifier			D-3	D-3	D-3
Sample Dat	e			10/24/1996	4/21/1997	10/14/1997
Sampling R	Sampling Round			Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATILE	CORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	17	<1	<1
INORGAN	ICS					
6010	ALUMINUM	µg/L	N/A	74 B	88 B	125 B
6010	CALCIUM	µg/L	N/A	73900	83500	79500 E
6010/7421	LEAD	µg/L	15 TT	<1	<1	2.1 B
6010	MAGNESIUM	µg/L	N/A	6450	7470	6200 E
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	0.16
6010	POTASSIUM	µg/L	N/A	1980 B	1870 B	2310 B
6010	SODIUM	µg/L	N/A	17300	19900	16400 E
WATER Q	UALITY PARAMETERS					
325.2	CHLORIDE	mg/L	N/A	34	37	30
375.4	SULFATE	mg/L	N/A	4.7	4.1	5
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	222	224	221
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<0.5	0.5	0.55
310.1	ALKALINITY, TOTAL	mg/L	N/A	222	224	221
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	296	302	273

TABLE C-3. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-3, MARBO ANNEX, GUAM

Sample Ide				D-4	D-4	D-4
Sample Da Sampling H			Jul-02	10/24/1996 Round 3	4/21/1997 Round 4	10/14/1997 Round 5
Method	Analyte	Units USEPA				
VOLATIL	E ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	9	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	2
INORGAN	ICS					
6010	ALUMINUM	μg/L	N/A	75 B	83 B	140 B
6010/7041	ANTIMONY	μg/L	6 F	<2	<2	1.7 B
6010	ARSENIC	μg/L	10	<2	<2	1.4 BW
6010	CALCIUM	μg/L	N/A	71400	79800	74300 E
6010	MAGNESIUM	μg/L	N/A	8630	9810	8940 E
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.23 B
6010	POTASSIUM	μg/L	N/A	1880 B	1730 B	2000 B
6010	SODIUM	μg/L	N/A	20700	22400	20400 E
WATER Q	UALITY PARAMETERS					
325.2	CHLORIDE	mg/L	N/A	40	41	38
375.4	SULFATE	mg/L	N/A	4.8	5.6	5.5
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	220	228	216
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.48
310.1	ALKALINITY, TOTAL	mg/L	N/A	220	228	216
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	300	320	322

TABLE C-4. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-4, MARBO ANNEX, GUAM

Sample Id	lentifier			D-5	D-5	D-5	D-5	D-5	D-5	D-5
Sample D	ate	10/24/1996	4/14/1997	10/14/1997	4/6/1998	10/14/1998	4/6/1999	10/14/1999		
Sampling	Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATI	LE ORGANIC COMPOUNDS									
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	CARBON DISULFIDE	µg/L	N/A	11	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	<1	<1	<1	0.1 F
8260	TRICHLOROETHENE (TCE)	µg/L	5 F	2	1	0.9 J	0.8 J	<1	1 J	1.3
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.2 J	0.4 J	<1	<1	<1	<1	0.4 F
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A	65 B	94 B	124 B				
6010/7041	ANTIMONY	μg/L	6 F	<2	<2	1.6 B				
6010	CALCIUM	µg/L	N/A	74100	74700	72600 E				
6010/7421	LEAD	μg/L	15 TT	1.3 B	<1	1.4 B				
6010	MAGNESIUM	µg/L	N/A	5800	5640	5260 E				
6010	POTASSIUM	μg/L	N/A	2360 B	2330 B	2250 B				
6010	SODIUM	μg/L	N/A	33100	30600	27700 E				
6010	ZINC	μg/L	N/A	16 B	26	35				
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	56	57	53				
375.4	SULFATE	mg/L	N/A	7.5	9.1	7.4				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	194	202	194				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	0.7	1.4				
310.1	ALKALINITY, TOTAL	mg/L	N/A	194	202	194				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	282	328	300				

TABLE C-5. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-5, MARBO ANNEX, GUAM

Sample Io	lentifier			D-5	D-5	D-5	D-5	D-5	D-5	D-5
Sample D	ate			4/20/2000	10/16/2000	4/12/2001	11/13/2001	4/18/2002	10/9/2002	4/3/2003
Sampling Round Jul-02			Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16	
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATILE ORGANIC COMPOUNDS										
8260	ACETONE	μg/L	N/A	<5	<5	<5	1	<5	2.4 J	<5
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	2	2.2	1.9	2	1.4	1.9	1.7
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.6 F	0.5 F	0.3 F	0.6	0.4 J	0.5 J	0.4
INORGA	NICS									
6010	ALUMINUM	µg/L	N/A							
6010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010/7421	LEAD	μg/L	15 TT							
6010	MAGNESIUM	μg/L	N/A							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
6010	ZINC	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	49	52 B	54				
375.4	SULFATE	mg/L	N/A	14	16 B	16				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	204	210 B	246				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	204	210 B	246				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	314	315.0					

TABLE C-5. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-5, MARBO ANNEX, GUAM

Sample Id	entifier			D-14	D-14	D-14	D-14	D-14	D-14	D-14
Sample Da	ate			10/24/1996	4/21/1997	10/14/1997	4/6/1998	10/13/1998	4/11/1999	10/12/1999
Sampling	Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATII	LE ORGANIC COMPOUNDS									
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	1	<1 J
8260	BROMOMETHANE	μg/L	N/A	<1	<1	<1	<1			0.1 F‡
8260	CHLOROFORM	μg/L	N/A	<1	<1	<1	<1	<1	3‡	<1 J
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.1 F‡
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.5 J	0.3 J	<1	<1	<1	<1	0.5 F
PESTICIDES/PCBs										
8080/8081	DIELDRIN	μg/L	N/A	0.051	0.064	0.06				
INORGA	NICS									-
6010	ALUMINUM	μg/L	N/A	84 B	92 B	121 B				
6010/7041	ANTIMONY	μg/L	6 F	<2	<2	2.2 B				
6010	CALCIUM	μg/L	N/A	81100	91800	82900 E				
6010	MAGNESIUM	μg/L	N/A	4800	5010	4450 E				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.17 B				
6010	POTASSIUM	μg/L	N/A	2330 B	2260 B	2100 B				
6010	SODIUM	μg/L	N/A	36300	36600	31400 E				
WATER (QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	68	66	59				
375.4	SULFATE	mg/L	N/A	11	8.7	9.5				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	203	228	217				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.51				
310.1	ALKALINITY, TOTAL	mg/L	N/A	203	228	217				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	499	360	332				

TABLE C-6. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-14, MARBO ANNEX, GUAM

Sample Id				D-14	D-14	D-14	D-14	D-14	D-14	D-14
Sample Da	ate			4/20/2000	10/16/2000	4/12/2001	10/3/2001	4/18/2002	10/10/2002	4/3/2003
Sampling	Round		Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATII	LE ORGANIC COMPOUNDS									
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	2.5 J	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
8260	BROMOMETHANE	μg/L	N/A			< 0.1		<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	0.1 F	<1	< 0.1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	1.1	< 0.2	<1	<1	<1	<1
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	0.3	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	0.2	<1	0.2 J	<1
8260	TOLUENE	μg/L	1000	<1	<1	<1	0.5	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.4 F	0.4 F	0.3 F	0.3	<1	0.3 J	<1
PESTICII	DES/PCBs									
8080/8081	DIELDRIN	μg/L	N/A							
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
6010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
WATER (QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	74	75 B	66				
375.4	SULFATE	mg/L	N/A	12	13 B	13				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	214	222 B	226				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	214	222 B	226				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	352	355					

TABLE C-6. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL D-14, MARBO ANNEX, GUAM

Sample Id	entifier			GPA-1	GPA-1-D	GPA-1	GPA-1-D	GPA-1	GPA-1	GPA-1	GPA-1	GPA-1
Sample Da	nte			10/22/1996	10/22/1996	4/21/1997	4/21/1997	10/22/1997	4/6/1998	10/25/1998	4/11/1999	10/18/1999
Sampling	Round			Round 3	Round 3	Round 4	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
			Jul-02		Duplicate		Duplicate					
Method	Analyte	Units	USEPA MCLs									Validated
VOLATII	E ORGANIC COMPOUNDS											
8260	1,1-DICHLOROETHENE	µg/L	7 F	<1	<1	<1	<1	<1	<1	<1	<1	0.2 F
8260	1,2,4-TRICHLOROBENZENE	µg/L	70 F	<1	<1	<1	<1	<1	<1	<1	<1	0.1 F
8260	2-HEXANONE	μg/L	N/A									
	4-METHYL-2-PENTANONE	μg/L	N/A									
	ACETONE	μg/L	N/A	<5	<5	<5	<5	63	<5	4 JB‡	<5	<1.2
8260	BROMODICHLOROMETHANE	μg/L	N/A									
8260	BROMOMETHANE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1			0.1 F‡
8260	CARBON DISULFIDE	μg/L	N/A	4	<1	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	<1	<1	<1	<1		<1		<1	<1
8260	CHLOROMETHANE	μg/L	N/A									
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	<1	<1	0.7 J	<1	<1	<1	<1
8260	METHYL ETHYL KETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5	<5
	NAPHTHALENE	μg/L	N/A									
8260	TERT-BUTYL METHYL ETHER	μg/L	N/A									
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.4 J	0.4 J	0.3 J	0.3 J	<1	<1	<1	<1	0.3 F
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	10	9	9	9	0.6 J	0.6 J	<1	0.6 J	0.3 F
	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.3 J	<1	<1	<1	<1	<1	<1	<1	0.2 F
INORGAN						-					-	-
	ALUMINUM	μg/L	N/A	126 B	123 B	112 B	102 B	104 B				
	CALCIUM	μg/L	N/A	84200	83400	82700	84600	80300 E				
	IRON	µg/L	N/A	<40	<40	147	132	<52				
6010/7421	LEAD	µg/L	15 TT	<1	<1	<1	<1	1.7 B				
6010	MAGNESIUM	μg/L	N/A	5850	3800	4990	5250	1730 E				
6010	MANGANESE	μg/L	N/A	<6	<6	13 B	12 B	<8				
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	< 0.2	0.21 BN	< 0.1				
6010	NICKEL	μg/L	N/A	<15	<15	<15	<15	5.9 B				
6010	POTASSIUM	µg/L	N/A	6350	5820	4340 B	4380 B	4370 B				
6010/7740	SELENIUM	$\mu g/L$	50 F	1.2 B	<1	<1	<1	<0.7				
	SODIUM	μg/L	N/A	44900	27200	27000	29100	9110 E				
	QUALITY PARAMETERS											
	CHLORIDE	mg/L	N/A	155	74	46	46	12				
	SULFATE	mg/L	N/A	23	10	6.2	6.6	2.5				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	218	216	217	213	215				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	< 0.5	< 0.5	0.62				
310.1	ALKALINITY, TOTAL	mg/L	N/A	218	216	217	213	215				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	482	352	312	313	241				

TABLE C-7. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL GPA-1, MARBO ANNEX, GUAM

TABLE C-7. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL GPA-1, MARBO ANNEX, GUAM

Sample Id	entifier			GPA-1	GPA-1	GPA-1	GPA-1	GPA-1	GPA-1	GPA-1	GPA-1-D	GPA-1	GPA-1-D
Sample Da	nte			4/26/2000	10/11/2000	4/11/2001	10/18/2001	5/14/2002	10/7/2002	4/24/2003	4/24/2003	10/15/2003	10/15/2003
Sampling	Round			Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16	Round 16	Round 17	Round 17
			Jul-02								Duplicate		Duplicate
Method	Analyte	Units	USEPA MCLs	Validated							_		_
VOLATII	E ORGANIC COMPOUNDS												
8260	1,1-DICHLOROETHENE	µg/L	7 F	0.3 F	<1	< 0.2	<1	<1	<1	<1	<1	<1	<1
8260	1,2,4-TRICHLOROBENZENE	µg/L	70 F						<1	<1	<1	<1	<1
8260	2-HEXANONE	µg/L	N/A									<5	3.1 J
8260	4-METHYL-2-PENTANONE	µg/L	N/A									<5	2.7 J
8260	ACETONE	µg/L	N/A	<1	<1	2.9 F	2.1	2.3 J	<5	<5	<5	<5	4.5 J
8260	BROMODICHLOROMETHANE	µg/L	N/A			0.3 F	0.9	0.7 J	0.7 J	0.6	0.6	0.7 J	0.6 J
8260	BROMOMETHANE	μg/L	N/A			< 0.1			< 0.1	< 0.1	< 0.1		
8260	CARBON DISULFIDE	μg/L	N/A	0.1 UJ				<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	µg/L	N/A	0.3 F	0.5 F	1.0	2.8	2.3	2.2	2.4	2.4	2.2	2
8260	CHLOROMETHANE	μg/L	N/A		2.0	0.7 F	0.2	0.3	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	0.2	<1	<1	0.2	<1	<1	<1
8260	METHYL ETHYL KETONE	µg/L	N/A	<5	<5	<5	0.6	<5	<5	<5	<5	<5	3.4 J
8260	NAPHTHALENE	μg/L	N/A									<1	0.3 J
8260	TERT-BUTYL METHYL ETHER	µg/L	N/A									0.6 J	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	0.4 F	0.2 F	0.3 F	0.4	0.4 J	0.4 J	0.4 J	0.4 J	<1	<1
8260	TOLUENE	μg/L	1000	<1	<1	<1	0.2	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	8.6	0.9 F	9	9.1	14	6.6	<1	0.4	1.9	1.6
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.3 F	0.3 F	0.3 F	0.3	<1	0.3 J	0.4	0.4	0.3 J	0.3 J
INORGAN													
6010	ALUMINUM	µg/L	N/A										
6010	CALCIUM	µg/L	N/A										
6010	IRON	µg/L	N/A										
6010/7421	LEAD	µg/L	15 TT										
6010	MAGNESIUM	µg/L	N/A										
6010	MANGANESE	µg/L	N/A										
7470	MERCURY	µg/L	2 F										
6010	NICKEL	µg/L	N/A										
6010	POTASSIUM	µg/L	N/A										
6010/7740	SELENIUM	µg/L	50 F										
6010	SODIUM	µg/L	N/A										
WATER (QUALITY PARAMETERS												
325.2	CHLORIDE	mg/L	N/A	601	558 B	139							
375.4	SULFATE	mg/L	N/A	80	83 B	139							
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	231	228 B	230							
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0							
310.1	ALKALINITY, TOTAL	mg/L	N/A	231	228 B	230							
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	1370	1214 B								

Sample Id	lentifier			GPA-2	GPA-2	GPA-2	GPA-2	GPA-2	GPA-2	GPA-2
Sample D	ate			10/22/1996	4/22/1997	10/21/1997	4/6/1998	10/25/1998	4/11/1999	10/18/199
Sampling	Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validate
VOLATI	LE ORGANIC COMPOUNDS									
8260	1,1-DICHLOROETHENE	μg/L	7							
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMOMETHANE	μg/L	N/A	<1	<1	<1	<1			0.3 F‡
8260	CHLOROFORM	μg/L	N/A	<1	0.1 J	<1	0.6 J‡	<1	0.6 J‡	0.5 F
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1	0.2 F
8260	METHYL ETHYL KETONE	$\mu g/L$	N/A	<5	<5	<5	<5	<5	<5	<5
8260	TETRACHLOROETHENE (PCE)	μg/L	5							
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.1 F
8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F	0.8 J	1	0.5 J	<1	<1	<1	0.5 F
8260	TRICHLOROFLUOROMETHANE	µg/L	N/A	0.7 J	<1	<1	<1	<1	<1	0.4 F
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A	152 B	211 B	113 B				
5010/7041	ANTIMONY	μg/L	6 F	<2	<2	1.5 B				
6010	CALCIUM	μg/L	N/A	90800	90100	84800 E				
6010	CHROMIUM, TOTAL	$\mu g/L$	100 F	<6	6.3 B	<4				
6010	IRON	$\mu g/L$	N/A	160	729	<52				
6010	MAGNESIUM	μg/L	N/A	18200	14000	13100 E				
6010	MANGANESE	µg/L	N/A	<6	15.4 B	<8				
6010	POTASSIUM	µg/L	N/A	5700	4550 B	4020 B				
6010	SODIUM	µg/L	N/A	149000	118000	107000 E				
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	284	212	206				
375.4	SULFATE	mg/L	N/A	52	27	26				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	209	205	204				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.65				
310.1	ALKALINITY, TOTAL	mg/L	N/A	209	205	204				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	786	599	578				

TABLE C-8. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL GPA-2, MARBO ANNEX, GUAM

Sample Io	lentifier			GPA-2	GPA-2	GPA-2	GPA-2	GPA-2	GPA-2	GPA-2
Sample D	ate			4/26/2000	10/11/2000	4/11/2001	10/18/2001	5/14/2002	10/7/2002	4/24/2003
Sampling	Round		Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATI	LE ORGANIC COMPOUNDS	_				-	_	-	-	-
8260	1,1-DICHLOROETHENE	µg/L	7		0.2 F	< 0.2	<1	<1	<1	<1
8260	ACETONE	µg/L	N/A	<5	<5	<5	3.8	3.1 J	<5	<5
8260	BROMOMETHANE	µg/L	N/A			< 0.1			< 0.1	< 0.1
8260	CHLOROFORM	μg/L	N/A	0.5 F	0.7 F	0.4 F	0.5	0.5 J	0.4 J	0.4
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	0.5	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
8260	METHYL ETHYL KETONE	μg/L	N/A	<5	<5	<5	0.6	<5	<5	<5
8260	TETRACHLOROETHENE (PCE)	μg/L	5		0.4 F	0.1 F	0.2	<1	0.2 J	<1
8260	TOLUENE	µg/L	1,000 F	0.1 F	<1	< 0.1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.9 F	6.7	1.0	1.6	1.7	0.8 J	<1
8260	TRICHLOROFLUOROMETHANE	µg/L	N/A	0.4 F	0.3 F	0.2 F	0.4	<1	0.5 J	<1
INORGA	NICS					-		-	-	-
6010	ALUMINUM	μg/L	N/A							
6010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010	CHROMIUM, TOTAL	µg/L	100 F							
6010	IRON	µg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
6010	MANGANESE	μg/L	N/A							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	µg/L	N/A							
WATER	QUALITY PARAMETERS					-		-	-	
325.2	CHLORIDE	mg/L	N/A	82	82 B	576				
375.4	SULFATE	mg/L	N/A	29	56 B	74				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	224	224 B	230				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	224	224 B	230				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	400	435					

TABLE C-8. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL GPA-2, MARBO ANNEX, GUAM

Sample Id Sample D	ate			IRP-1 10/3/1996	IRP-1 4/7/1997	IRP-1 10/15/1997	IRP-1 3/29/1998	IRP-1 10/18/1998	IRP-1 4/5/1999	IRP-1 10/13/1999
Sampling	Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATI	LE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	11	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	1	<1	<1
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.1 F
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.3 F
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A	<25	104 B	139 B				
6010/7041	ANTIMONY	μg/L	6 F	<2	<2	1.4 B				
6010	CALCIUM	μg/L	N/A	75000	78100	74800 E				
6010	MAGNESIUM	μg/L	N/A	855 B	849 B	842 BE				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.19 B				
6010	POTASSIUM	μg/L	N/A	3790 B	3180 B	1510 BE				
6010	SODIUM	μg/L	N/A	6490	6300	5280 E				
6010	ZINC	μg/L	N/A	14.3 B	24.3	19.5 B				
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	5.7	5.6	6.5				
9056	SULFATE	mg/L	N/A							
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	217	213	214				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.47				
310.1	ALKALINITY, TOTAL	mg/L	N/A	217	213	214				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	223	242	230				

TABLE C-9. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-1, MARBO ANNEX, GUAM

Sample Id Sample D				IRP-1 4/18/2000	IRP-1 10/2/2000	IRP-1 4/2/2001	IRP-1 10/1/2001	IRP-1 4/16/2002	IRP-1 10/2/2002	IRP-1 3/31/2003
Sampling	Round		Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATI	LE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	µg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	1.0	9.0	<1	0.7 J	<1	0.3
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	0.3	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	0.2 F	<1	<1	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	0.5	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
5010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
6010	ZINC	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	6 B	6.7 B	7.2				
9056	SULFATE	mg/L	N/A		2.0 B	1.9				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	218	214 B	213				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5				
310.1	ALKALINITY, TOTAL	mg/L	N/A	218	214 B	213				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	233	231					

TABLE C-9. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-1, MARBO ANNEX, GUAM

Sample Id				IRP-2	IRP-2-D	IRP-2	IRP-2	IRP-2	IRP-2	IRP-2	IRP-2
Sample Da	ate			10/8/1996	10/8/1996	4/6/1997	10/19/1997	3/30/1998	10/18/1998	4/5/1999	10/13/1999
Sampling	Round	-	Jul-02	Round 3	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs		Duplicate						Validated
VOLATII	LE ORGANIC COMPOUNDS										
8260	CARBON DISULFIDE	μg/L	N/A	2	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A								
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	0.2 F‡
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	<1	0.1 F‡
INORGA	NICS										
6010	ALUMINUM	μg/L	N/A	93	95	93 B	91 B				
6010	CALCIUM	μg/L	N/A	76200	75300	76100	69900 E				
6010	MAGNESIUM	μg/L	N/A	630	627	672 B	663 BE				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	< 0.2	0.14 B				
6010	POTASSIUM	μg/L	N/A	9210	9020	9310	9730 E				
6010/7740	SELENIUM	µg/L	50 F	<1	<1	<1	1.4 BN				
6010	SODIUM	µg/L	N/A	12500	12700	13100	12900 E				
6010	ZINC	µg/L	N/A	14	16	<12	22				
WATER (QUALITY PARAMETERS										
325.2	CHLORIDE	mg/L	N/A	11	11	10	11				
375.4	SULFATE	mg/L	N/A	2.6	2.4	5.6	8.1				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	210	210	213	196				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	< 0.5	3.3				
310.1	ALKALINITY, TOTAL	mg/L	N/A	210	210	213	196				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	239	244	255	272				

TABLE C-10. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-2, MARBO ANNEX, GUAM

Sample Id Sample D				IRP-2 4/18/2000	IRP-2 10/2/2000	IRP-2 4/2/2001	IRP-2 10/1/2001	IRP-2 4/15/2002	IRP-2 10/3/2002	IRP-2 4/1/2003
Sample D			Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated	1000100 11	1000110 12	1000100 10	itounu i i	riouna re	1000100 10
VOLATI	LE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	0.3 F				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A		0.9 F	5.7	<1	0.3	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	0.5	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
6010	CALCIUM	μg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	POTASSIUM	μg/L	N/A							
6010/7740) SELENIUM	μg/L	50 F							
6010	SODIUM	μg/L	N/A							
6010	ZINC	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	12 B	11 B	10				
375.4	SULFATE	mg/L	N/A	5	5.1 B	5.5				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	182	202 B	197				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5				
310.1	ALKALINITY, TOTAL	mg/L	N/A	182	202 B	197				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	228	229					

TABLE C-10. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-2, MARBO ANNEX, GUAM

Sample Sample	Identifier Date			IRP-8 10/8/1996	IRP-8 4/14/1997	IRP-8-D 4/14/1997	IRP-8 10/21/1997	IRP-8 3/31/1998	IRP-8 10/20/1998	IRP-8 4/10/1999	IRP-8 10/14/1999
-	ng Round		Jul-02	Round 3	Round 4	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method		Units	USEPA MCLs			Duplicate					Validated
	TILE ORGANIC COMPOUNDS	-	27/4	-	-	-	-	-	-	-	-
	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5
	CHLOROMETHANE	μg/L	N/A								
	METHYLENE CHLORIDE	μg/L	N/A								
	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.2 J	<1	<1	0.6 J	<1	<1	<1	0.1 F
	ANICS										
	ALUMINUM	μg/L	N/A	104	94.1 B	91.2 B	108 B				
6010	CADMIUM	μg/L	5 F	<1	1.2 B	<1	<3				
6010	CALCIUM	μg/L	N/A	78800	76900	77000	76500 E				
6010	CHROMIUM, TOTAL	μg/L	100 F	10.5	<6	<6	<4				
6010	IRON	μg/L	N/A	94	222	196	<52				
6010	MAGNESIUM	μg/L	N/A	1110	1050	1050	1250 E				
7470	MERCURY	μg/L	2 F	1.4	< 0.2	0.29 B	< 0.1				
6010	POTASSIUM	μg/L	N/A	3600	4550 B	4660 B	4090 B				
6010	SODIUM	μg/L	N/A	12300	11900	11900	12300 E				
WATE	R QUALITY PARAMETERS									-	-
325.2	CHLORIDE	mg/L	N/A	18	17	17	18				
375.4	SULFATE	mg/L	N/A	<2	2.3	2.7	2.9				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	209	213	211	205				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	< 0.5	0.82				
310.1	ALKALINITY, TOTAL	mg/L	N/A	209	213	211	205				
	TOTAL DISSOLVED SOLIDS	mg/L	N/A	234	254	260	260				

TABLE C-11. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-8, MARBO ANNEX, GUAM

Sample Sample	e Identifier 2 Date			IRP-8 4/19/2000	IRP-8 10/3/2000	IRP-8 4/3/2001	IRP-8 11/13/2001	IRP-8 5/8/2002	IRP-8 10/1/2002	IRP-8 4/17/2003
	ng Round		Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	<u> </u>	Units	USEPA MCLs	Validated						
VOLA	FILE ORGANIC COMPOUNDS									
8260	ACETONE	μg/L	N/A	<5	<5	<5	0.9	<5	<5	<5
8260	CHLOROMETHANE	μg/L	N/A		2.2	2.6	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A		0.2 F	< 0.1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.2 F	0.2 F	< 0.1	0.2	<1	<1	<1
INORG	GANICS									
6010	ALUMINUM	μg/L	N/A							
6010	CADMIUM	$\mu g/L$	5 F							
6010	CALCIUM	μg/L	N/A							
6010	CHROMIUM, TOTAL	μg/L	100 F							
6010	IRON	μg/L	N/A							
6010	MAGNESIUM	$\mu g/L$	N/A							
7470	MERCURY	$\mu g/L$	2 F							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	8	8.9 B	9.2				
375.4	SULFATE	mg/L	N/A	3	2.7 B	2.6				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	201	200 B	204				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	201	200 B	204				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	231	207					

TABLE C-11. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-8, MARBO ANNEX, GUAM

Sample Identifie	er			IRP-10	IRP-10	IRP-10	IRP-10	IRP-10	IRP-10	IRP-10
Sample Date				10/7/1996	4/14/1997	10/15/1997	4/5/1998	10/19/1998	4/10/1999	10/14/1999
Sampling Round	d		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATILE OR	RGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	17	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	0.8 J	<1	<1	<1
8260	DICHLORODIFLUOROMETHANE	µg/L	N/A	<1	<1	<1	<1			0.8 F
8260	METHYLENE CHLORIDE	µg/L	N/A	3 B	<1	<1	<1	<1	<1	0.1 F
8260	TOLUENE	µg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.7 F
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.3 J	<1	<1	0.3 J	<1	<1	0.3 F
INORGANICS										
6010	ALUMINUM	µg/L	N/A	119 B	93.1 B	162 B	125 B	142 B	<56	61 F
6010/7041	ANTIMONY	μg/L	6 F	<2	<2	1.3 B	<1	<1	<1	<0.5 J
6010/7060	ARSENIC	µg/L	10	<2	<2	<1	<1	2.6 B	<2	<0.6 J
6010/7060	BARIUM	μg/L	2000	<100	<100	<100	<100	<100	<100	<100
6010	CALCIUM	µg/L	N/A	83300	85200	80200 E	88900	85600	83400 E	86100
6010	CHROMIUM, TOTAL	µg/L	100 F	<6	<6	<4	<4	<4	3.4 B	2.3 F
6010	COPPER	µg/L	1,300 TT	<6	<6	<5	<5	<5	<5	1.7 F
6010	IRON	µg/L	N/A	<40	<40	<52	<52	<52	<52	57
6010/7421	LEAD	µg/L	15 TT	<1	<1	<1	<1	1.5 B‡	1.6 B‡	< 0.5
6010	MAGNESIUM	μg/L	N/A	2870	2930	3030 E	3330 E	3460	3230	3520
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.21 B	< 0.1	0.15 B‡	< 0.1	< 0.1
6010	NICKEL	µg/L	N/A	<15	<15	<5	<5	5.2 B‡	<2	<8
6010	POTASSIUM	µg/L	N/A	14900	11400	10400 E	8280	6740	5140	4950 F
6010/7740	SELENIUM	µg/L	50 F	<1	<1	< 0.7	1.8 B	<2	2.2 B	< 0.6
6010	SILVER	µg/L	N/A							
6010	SODIUM	μg/L	N/A	16800	17500	16800 E	16600	15600	13300	14900
6010	VANADIUM	μg/L	N/A	<8	<8	<3	<3	6.8 B‡	<3	<2
6010	ZINC	μg/L	N/A	<12	<12	<12	<12	<12	<12	9.2 F‡
01X/335.X/9010)BCYANIDE	μg/L	200 F	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
WATER QUAL	ITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	18	19	19	19	19	25	17 B
375.4	SULFATE	mg/L	N/A	2.5	4.1	4.6	5	9.3	2.7	7.1 B
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	251	250	238	242	238	237	240
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.54	< 0.4	0.6	0.74	<3
310.1	ALKALINITY, TOTAL	mg/L	N/A	251	250	238	242	238	237	240
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	274	334	309	273	317	300	273

TABLE C-12. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-10, MARBO ANNEX, GUAM

Sample Identifier				IRP-10	IRP-10	IRP-10	IRP-10	IRP-10	IRP-10	IRP-10
Sample Date				4/18/2000	10/4/2000	4/4/2001	11/14/2001	4/17/2002	10/3/2002	4/3/2003
Sampling Round			Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATILE ORG	GANIC COMPOUNDS						-		-	
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	µg/L	N/A	<1	1.6	4.0	<1	0.5 J	<1	<1
8260	DICHLORODIFLUOROMETHANE	µg/L	N/A	<1	<1	< 0.1			<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	0.2 F	< 0.1	<1	0.2 J	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	< 0.1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.3 F	0.2 F	0.2 F	<1	<1	<1	<1
INORGANICS										
6010	ALUMINUM	μg/L	N/A	18 F	19 F	28 F	36	27 B	<500	18 B
6010/7041	ANTIMONY	μg/L	6 F					0.5 B	<6	<6
6010/7060	ARSENIC	μg/L	10			<0.7 M	<5	<5	<5	<5
6010/7060	BARIUM	μg/L	2000	<100	<100	<100	<100	<100	1.4 B	3.2 B
6010	CALCIUM	μg/L	N/A	82900 J	85300 B	94100 M	96800	90600	87300	88800
6010	CHROMIUM, TOTAL	μg/L	100 F		<3	2.6 F	<50	<50	<50	<50
6010	COPPER	µg/L	1,300 TT		<2	<1.2	<50	<50	<50	3.4 B
6010	IRON	μg/L	N/A	7.0 U UJ	9.5 F	5.8 F	8.7	<50	<50	<50
6010/7421	LEAD	μg/L	15 TT		<1	0.3 F	<5	<5	0.6 BW	1.2 B
6010	MAGNESIUM	μg/L	N/A	3470 J	3390	4190	4120	4050	3710	3590
7470	MERCURY	μg/L	2 F				0.2		<2	<2
6010	NICKEL	µg/L	N/A		<1	<6.0	<100	<100	<100	<100
6010	POTASSIUM	μg/L	N/A	4000 F	4890 F	4020 F	4110	3240 B	3190 B	3130
6010/7740	SELENIUM	µg/L	50 F				<5	<5	<5	<5
6010	SILVER	µg/L	N/A		2.6 F		<50	1.3 B	<50	<50
6010	SODIUM	µg/L	N/A	13000 J	14000 J	15700	15200	14500	13800	12500
6010	VANADIUM	µg/L	N/A	2.2 F	2.1 F	3.4 F	1.7	<2	2.4 B	1.6 B
6010	ZINC	µg/L	N/A	2.6 F			<20	<1	6.5 B	3.4 B
01X/335.X/9010E	CYANIDE	μg/L	200 F			< 0.004	< 0.02	< 0.02	0.004	
WATER QUALI	TY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	17 B	16 B	16	<1	16	16	
375.4	SULFATE	mg/L	N/A	8.1	6.3 B	7.7	<1	8.5	6.9	
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	236	234 B	239	228	236	236	
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0	<1			
310.1	ALKALINITY, TOTAL	mg/L	N/A	236	234 B	239	228	236	236	
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	291	274					

TABLE C-12. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-10, MARBO ANNEX, GUAM

Sample Id Sample Da				IRP-12 9/30/1996	IRP-12 4/6/1997	IRP-12 10/26/1997	IRP-12 3/31/1998	IRP-12 10/24/1998	IRP-12 4/5/1999	IRP-12 10/13/1999
Sampling	Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATII	LE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	0.4 J	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A							
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	1	<1	<1	0.1 F
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.2 J	<1	<1	<1	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.2 F
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A	<25	93 B	106 B				
6010	CALCIUM	μg/L	N/A	69700	74800	75400				
6010	MAGNESIUM	μg/L	N/A	4080	5040	5640				
6010	POTASSIUM	μg/L	N/A	1920 B	1590 B	1360 B				
6010/7740	SELENIUM	μg/L	50 F	<1	<1	2 B				
6010	SILVER	μg/L	N/A	6.7 B	<4	<3				
6010	SODIUM	μg/L	N/A	11700	13400	13800				
WATER (QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	19	21	23				
375.4	SULFATE	mg/L	N/A	4.3	5.8	8.9				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	228	202	202				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.7 J	< 0.5	< 0.4				
310.1	ALKALINITY, TOTAL	mg/L	N/A	228	202	202				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	215	253	216				

TABLE C-13. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-12, MARBO ANNEX, GUAM

Sample Id				IRP-12	IRP-12	IRP-12	IRP-12	IRP-12	IRP-12	IRP-12
Sample D				4/19/2000	10/3/2000	4/3/2001	10/2/2001	4/15/2002	10/12/2002	4/1/2003
Sampling	Round	-	Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATI	LE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A		0.9 F	4.8	<1	0.3 J	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	<1	<1	< 0.1	<1	<1	<1	0.3
8260	TOLUENE	μg/L	1,000 F	0.5 F	<1	< 0.1	0.5	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
6010	CALCIUM	µg/L	N/A							
6010	MAGNESIUM	µg/L	N/A							
6010	POTASSIUM	µg/L	N/A							
6010/7740	SELENIUM	µg/L	50 F							
6010	SILVER	μg/L	N/A							
6010	SODIUM	µg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	8	8 B	10				
375.4	SULFATE	mg/L	N/A	7	7.1 B	6.8				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	210	198 B	204				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	210	198 B	204				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	230	220					

TABLE C-13. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-12, MARBO ANNEX, GUAM

TABLE C-14. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-14, MARBO ANNEX, GUAM

Sample I	dentifier			IRP-14	IRP-14-D	IRP-14	IRP-14	IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14-D
Sample I	Date			10/2/1996	10/2/1996	4/2/1997	10/21/1997	10/21/1997	3/31/1998	3/31/1998	10/24/1998	10/24/1998
Sampling	g Round			Round 3	Round 3	Round 4	Round 5	Round 5	Round 6	Round 6	Round 7	Round 7
			Jul-02		Duplicate			Duplicate		Duplicate		Duplicate
Method	Analyte	Units	ISEPA MCI									
VOLATI	LE ORGANIC COMPOUNDS											
8260	ACETONE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	CARBON DISULFIDE	μg/L	N/A	3	0.7 J	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	<1	0.1 J	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	0.7 J	<1	<1	<1
8260	M,P-XYLENES	μg/L	10,000	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	9	10	11	7	7	7	8	6	7
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	<1	<1	<1
SEMIVO	LATILE ORGANIC COMPOUNDS											
8270	BENZOIC ACID	μg/L	N/A	4 J	<50	<50	<50	<50				
8270	N-NITROSODI-N-PROPYLAMINE	μg/L	N/A	9 J	<10	<10	<10	<10				
INORGA	NICS											
6010	ALUMINUM	µg/L	N/A	<25	<25	96.6 B	116 B	97.5 B				
6010	CALCIUM	µg/L	N/A	76300	7600	77900	75800 E	78500 E				
010/7421	LEAD	μg/L	15 TT	1.4 B	<1	<1	3.3 B	<1				
6010	MAGNESIUM	μg/L	N/A	1310	1280	1250	1220 E	1260 E				
6010	POTASSIUM	μg/L	N/A	4640 B	4420 B	5430	7350	7590				
6010	SODIUM	μg/L	N/A	8080	8310	7100	6200 E	6210 E				
WATER	QUALITY PARAMETERS											
325.2	CHLORIDE	mg/L	N/A	11.9	12	10.3	8.9	9.1				
375.4	SULFATE	mg/L	N/A	4.1	2.2	4.2	3.7	3.8				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	208	209	215	205	213				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	0.9 J	< 0.5	< 0.4	1.1				
310.1	ALKALINITY, TOTAL	mg/L	N/A	208	209	215	205	213				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	240	236	254	254	271				

TABLE C-14. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-14, MARBO ANNEX, GUAM

Sample I	ample Identifier				IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14-D	IRP-14
Sample I	Date			4/11/1999	4/11/1999	10/13/1999	10/13/1999	4/17/2000	4/17/2000	10/3/2000	10/3/2000	4/3/2001
Sampling	g Round			Round 8	Round 8	Round 9	Round 9	Round 10	Round 10	Round 11	Round 11	Round 12
			Jul-02		Duplicate	Validated	Duplicate	Validated	Duplicate		Duplicate	
Method	Analyte	Units	ISEPA MCI				Validated		Validated			
	LE ORGANIC COMPOUNDS					-			-		-	-
8260	ACETONE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1			0.2 F	0.2 F	<1	<1	< 0.1
8260	CARBON DISULFIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1			
8260	CHLOROFORM	μg/L	N/A	<1	<1	< 0.1	<1	0.2 F	0.2 F	<1	<1	< 0.1
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	3.8
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	< 0.1	0.2 F	<1	<1	0.2 F	<1	< 0.1
8260	M,P-XYLENES	μg/L	10,000	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	5	6	5.8	5.3	4.6	4.6	4.5	4.4	3.3
8260	TOLUENE	µg/L	1,000 F	<1	<1	0.2 F	0.2 F	<1	<1	<1	<1	< 0.1
SEMIVO	LATILE ORGANIC COMPOUNDS											
8270	BENZOIC ACID	µg/L	N/A									
8270	N-NITROSODI-N-PROPYLAMINE	μg/L	N/A									
INORGA	NICS											
6010	ALUMINUM	μg/L	N/A									
6010	CALCIUM	μg/L	N/A									
010/7421	LEAD	μg/L	15 TT									
6010	MAGNESIUM	μg/L	N/A									
6010	POTASSIUM	μg/L	N/A									
6010	SODIUM	μg/L	N/A									
WATER	QUALITY PARAMETERS											
325.2	CHLORIDE	mg/L	N/A					6 B	6 B	6.1 B	6.1 B	5.9
375.4	SULFATE	mg/L	N/A					5	5	5.2 B	2.7 B	5
310.1	ALKALINITY, BICARBONATE	mg/L	N/A					214	214	208 B	208 B	200
310.1	ALKALINITY, CARBONATE	mg/L	N/A					<2	<2	<2	<2	<2
310.1	ALKALINITY, TOTAL	mg/L	N/A					214	214	208 B	208 B	200
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A					230	236	217	207	

TABLE C-14. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-14, MARBO ANNEX, GUAM

Sample 1	ldentifier			IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14-D	IRP-14	IRP-14
Sample I	Date			4/3/2001	10/2/2001	10/2/2001	4/16/2002	4/16/2002	10/2/2002	10/2/2002	4/1/2003	4/1/2003	10/13/2003	5/3/2004
Samplin	g Round			Round 12	Round 13	Round 13	Round 14	Round 14	Round 15	Round 15	Round 16	Round 16	Round 17	Round 18
			Jul-02	Duplicate		Duplicate		Duplicate		Duplicate		Duplicate		
Method	Analyte	Units	ISEPA MCI											
VOLAT	ILE ORGANIC COMPOUNDS													
8260	ACETONE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	1.6	<1	<5	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	<.01	0.2	0.3	<1	<1	<1	<1	<1	<1	0.2 J	<1
8260	CARBON DISULFIDE	μg/L	N/A				<1	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	< 0.1	0.2	0.2	<1	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	3.5	<1	<1	<1	0.6 J	<1	<1	<1	<1	<1	0.3 J
8260	ETHYLBENZENE	μg/L	700	<1		0.3			<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	< 0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	M,P-XYLENES	μg/L	10,000	<1		0.8			<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	3.5	3.6	3.6	1.6	2.3	2.3	2.2	2.5	2.3	1.8	1.8
8260	TOLUENE	μg/L	1,000 F	< 0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
SEMIVO	DLATILE ORGANIC COMPOUNDS													
8270	BENZOIC ACID	μg/L	N/A											
8270	N-NITROSODI-N-PROPYLAMINE	μg/L	N/A											
INORGA			-						-		-	-		
6010	ALUMINUM	μg/L	N/A											
6010	CALCIUM	μg/L	N/A											
6010/7421		μg/L	15 TT											
6010	MAGNESIUM	μg/L	N/A											
6010	POTASSIUM	μg/L	N/A											
6010	SODIUM	μg/L	N/A											
	QUALITY PARAMETERS		•						-		-	-		
325.2	CHLORIDE	mg/L	N/A	5.9										
	SULFATE	mg/L	N/A	5										
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	201										
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2										
310.1	ALKALINITY, TOTAL	mg/L	N/A	201										
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A											

Sample Identifier				IRP-15	IRP-15	IRP-15	IRP-15	IRP-15	IRP-15	IRP-15
Sample Date				10/7/1996	4/13/1997	10/19/1997	4/5/1998	10/19/1998	4/10/1999	10/27/1999
Sampling Round			Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATILE ORG	ANIC COMPOUNDS									
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	1.4 F‡
8260	CARBON DISULFIDE	μg/L	N/A	6	<1	<1	<1	<1	<1	0.5 F
8260	CHLOROMETHANE	μg/L	N/A							
8260	METHYLENE CHLORIDE	μg/L	N/A	4 B	<1	<1	<1	<1	<1	<1
8260	METHYL ETHYL KETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
SEMIVOLATILE	CORGANIC COMPOUNDS									
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL	<10	<10	<10	<10	2 J	<10	<1.4 J
INORGANICS										
6010	ALUMINUM	μg/L	N/A	98 B	37 B	86 B	94 B	133 B	67 B	26 B
6010	BARIUM	µg/L	2000	<100	<100	<100	<100	<100	<100	<100
6010	CALCIUM	μg/L	N/A	76500	31500	70600 E	75800	74800	64100 E	73700
6010	CHROMIUM, TOTAL	μg/L	100 F	<6	<6	<4	<4	<4	4.4 B	<2
6010	IRON	μg/L	N/A	<40	<40	<52	<52	<52	<52	26 F
6010/7421	LEAD	μg/L	15 TT	1 BN	<1	<1	<1	1.2 B‡	<1	0.8 F
6010	MAGNESIUM	µg/L	N/A	1190	491 B	1070 E	1140 E	1190	1110	1180
6010	MANGANESE	μg/L	N/A	<6	<6	<8	<8			<1
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.11 B	< 0.1	0.36 B‡	< 0.1	< 0.1
6010	NICKEL	μg/L	N/A	<15	<15	<5	<5	8.5 B‡	2.8 B	<8
6010	POTASSIUM	μg/L	N/A	1260 B	578 B	2010 BE	2190	1940 B	1290	1310 F
6010/7740	SELENIUM	μg/L	50 F	<1	<1	<0.7	1.5 BW	<2	<2	<0.6
6010/7761	SILVER	μg/L	N/A	<1	<4	<3	<1	<1	1.6 B	<2
6010	SODIUM	μg/L	N/A	5590	2650	7920 E	7660	7850	6890	6500 B
7841	THALLIUM	μg/L	2			<1	<1			
6010	VANADIUM	μg/L	N/A	<8	<8	<3	<3	6.1 B‡	<3	2.1 F
6010	ZINC	μg/L	N/A	<12	<12	<12	<12	<12	<12	3.1 F
901X/335.X/9010E		μg/L	200 F	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.002 F‡
	TY PARAMETERS	•								
325.2	CHLORIDE	mg/L	N/A	10	9.3	14	12	12	17	10
375.4	SULFATE	mg/L	N/A	<2	2.5	2.7	2.9	2.5 ‡	<2	2.9 B
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	200	190	188	192	189	191	192
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.66	< 0.4	0.5	0.84	<3
310.1	ALKALINITY, TOTAL	mg/L	N/A	200	190	188	192	190	192	192
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	60	208	257	197	233	236	213

TABLE C-15. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-15, MARBO ANNEX, GUAM

Sample Identifier				IRP-15	IRP-15	IRP-15	IRP-15	IRP-15	IRP-15	IRP-15
Sample Date				4/18/2000	10/4/2000	4/4/2001	11/1/2001	4/17/2002	10/9/2002	4/3/2003
Sampling Round			Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATILE ORG	GANIC COMPOUNDS							•		
8260	ACETONE	μg/L	N/A	<1	<2	1.5 F	2	<5	3.9 J	2.2
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A			4.0	0.5	<1	0.5 J	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	< 0.1	<1	<1	0.2 J	<1
8260	METHYL ETHYL KETONE	µg/L	N/A	<5	<5	<5	<5	<5	0.9 J	<5
SEMIVOLATILE	E ORGANIC COMPOUNDS									
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL						< 0.2	< 0.2
INORGANICS		•						-		
6010	ALUMINUM	µg/L	N/A	21 F	<17	16 F	<500	<500	<500	17 B
6010	BARIUM	µg/L	2000	<100	<100	<100	<100	<100	<100	3.2 B
6010	CALCIUM	µg/L	N/A	71500 J	73900 B	79100	84100	78900	80700	79400
6010	CHROMIUM, TOTAL	μg/L	100 F		4.3 F	3.1 F	<50	<50	<50	1.7 B
6010	IRON	µg/L	N/A	30 F	30 F	32 F	21	71	84	21 B
6010/7421	LEAD	μg/L	15 TT		<1	0.5 F	<5	<5	<5	<5
6010	MAGNESIUM	μg/L	N/A	1130 J	1170	1300	1320	1210	1230	1170
6010	MANGANESE	μg/L	N/A	1.5 F	1.8 F	<2.0	<20	4.2 B	4.2 B	1.8 B
7470	MERCURY	µg/L	2 F				<1		< 0.2	< 0.2
6010	NICKEL	µg/L	N/A		12 F	7.3 F	7.4	25 B	24 B	<100
6010	POTASSIUM	µg/L	N/A	1080 F	1820 F	1210 F	917	802 B	926 B	1130
6010/7740	SELENIUM	µg/L	50 F				<5	<5	<5	<5
6010/7761	SILVER	µg/L	N/A		2.1 F		<50	2 B	<50	<50
6010	SODIUM	µg/L	N/A	5810 J	6200 J	6800	6640	6460	6210	6100
7841	THALLIUM	μg/L	2	0.9 F			<2	<2	<2	<2
6010	VANADIUM	μg/L	N/A	2.5 F		1.8 F	<80	<80	<80	1.2 B
6010	ZINC	µg/L	N/A	3.5 F			<20	<1	1.8 B	<20
901X/335.X/9010H	3 CYANIDE	µg/L	200 F			< 0.004	0.003	< 0.02	< 0.02	
	FY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	9.7 B	9.7 B	9.6	<1	9.4	9.6	
375.4	SULFATE	mg/L	N/A	2.8	2.8 B	2.7	<1	2.8	2.8	
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	202	190 B	193	192	194	193	
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0	<1			
310.1	ALKALINITY, TOTAL	mg/L	N/A	202	190 B	193	192	194	193	
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	218	209					

TABLE C-15. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-15, MARBO ANNEX, GUAM

TABLE C-16. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-16, MARBO ANNEX, GUAM

Sample Ide	entifier			IRP-16	IRP-16	IRP-16	IRP-16	IRP-16	IRP-16	IRP-16	IRP-16
Sample Dat				10/7/1996	4/13/1997	10/20/1997	4/5/1998	10/19/1998	4/13/1999	10/27/1999	10/27/1999
Sampling F	Round			Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9	Round 9
			Jul-02							Total	Dissolved
Method	Analyte	Units	USEPA MCLs							Validated	Validated
VOLATIL	E ORGANIC COMPOUNDS										
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5
8260	BROMOMETHANE	µg/L	N/A	<1	<1	<1	<1			0.4 F‡	
8260	CARBON DISULFIDE	µg/L	N/A	<1	<1	<1	<1	<1	<1	0.4 F	
8260	CHLOROMETHANE	µg/L	N/A								
8260	DICHLORODIFLUOROMETHANE	μg/L	N/A	<1	<1	<1	<1			0.6 F	
8260	METHYLENE CHLORIDE	μg/L	N/A	3 B	<1	<1	<1	<1	<1	0.1 F	
8260	METHYL ETHYL KETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.2 F	
SEMIVOL	ATILE ORGANIC COMPOUNDS										
8270	BENZO(A)PYRENE	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
8270	BIS(2-ETHYLHEXYL) PHTHALATE	µg/L	10 RL	<10	<10	<10	<10	3 J	<10	<1.4 J	
INORGAN	ICS										
6010	ALUMINUM	μg/L	N/A	108 B	97 B	155 B	161 B	145 B	117 B	48 F	61 F
6010/7041	ANTIMONY	µg/L	6 F	<2	<2	<1	1.3 B	1.6 B	<1	<0.5 J	6 J
6010/7060	ARSENIC	µg/L	10 *	<2	<2	<1	<1	4.1 B	<2	<0.6	<0.6
6010/7060	BARIUM	µg/L	2000	<100	<100	<100	<100	<100	<100	<100	<100
6010	CALCIUM	µg/L	N/A	88800	78200	80900 E	95600	91100	94100 E	99300	88200
6010	CHROMIUM, TOTAL	μg/L	100 F	<6	<6	<4	<4	<4	3.3 B	<2	<2
6010	COPPER	μg/L	1,300 TT	<6	<6	<5	<5	<5	<5	1.3 F	1.6 F
6010	IRON	μg/L	N/A	<40	<40	<52	<52	<52	<52	46 F	128
6010/7421	LEAD	µg/L	15 TT	<1	1.5 B	<1	<1	<1	1.5 B‡	0.9 F	< 0.5
6010	MAGNESIUM	µg/L	N/A	1360	1230	1320 E	1410 E	1460	1400	1460	1450
6010	MANGANESE	µg/L	N/A	<6	<6	<8	<8	<8	<8	3.4 F	1.7 F
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	< 0.1	< 0.1	0.13 B‡	< 0.1	< 0.1	< 0.1
6010	POTASSIUM	µg/L	N/A	1050 B	900 B	733 BE	649 B	607 B‡	437 B	<300	402 F
6010/7740	SELENIUM	µg/L	50 F	<1	<1	< 0.7	0.94 B	4.6 B	<2	<0.6	<0.6
6010	SILVER	µg/L	N/A	<100	<100	<100	<100	<100	<100	<100	<100
6010	SODIUM	μg/L	N/A	6820	6480	6480 E	5960	6100	5540	5800 B	5930 B
6010	VANADIUM	μg/L	N/A	<8	<8	<3	<3	6 B	<3	2.2 F	2.2 F
6010	ZINC	μg/L	N/A	<12	<12	<12	<12	<12	<12	2.1 F	3.2 F
901X/335.X	CYANIDE	μg/L	200 F	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.002 F‡	
	UALITY PARAMETERS									· ·	
325.2	CHLORIDE	mg/L	N/A	11	10	11	10	10	16	11	
375.4	SULFATE	mg/L	N/A	2.7	3.2	3.2	2.7	2.7 ‡	<2	3.6 B	
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	232	223	222	214	226	245	254	
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.59	< 0.4	0.72	0.16	<3	
310	ALKALINITY, TOTAL	mg/L	N/A	232	223	222	214	226	245	254	
	TOTAL DISSOLVED SOLIDS	mg/L	N/A	264	266	240	239	277	283	251	

TABLE C-16. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-16, MARBO ANNEX, GUAM

Sample Ide	entifier			IRP-16	IRP-16	IRP-16	IRP-16	IRP-16	IRP-16	IRP-16	IRP-16
Sample Da	te			4/18/2000	4/18/2000	10/4/2000	4/5/2001	11/14/2001	5/17/2002	10/3/2002	4/3/2003
Sampling F	Round			Round 10	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
			Jul-02	Total	Dissolved						
Method	Analyte	Units	USEPA MCLs	Validated	Validated						
VOLATIL	E ORGANIC COMPOUNDS										
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	3.3	<5	<5	<5
8260	BROMOMETHANE	μg/L	N/A				< 0.1			<1	<1
8260	CARBON DISULFIDE	μg/L	N/A	<1					<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A			1.4	< 0.2	0.6	<1	<1	<1
8260	DICHLORODIFLUOROMETHANE	μg/L	N/A	<1		0.2 F	0.2 F			<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1		<1	< 0.1	<1	0.2 J	<1	<1
8260	METHYL ETHYL KETONE	μg/L	N/A	<5	<5	<5	<5	0.6	<5	<5	<5
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.2 F		0.2 F	< 0.1	0.2	<1	<1	<1
SEMIVOL	ATILE ORGANIC COMPOUNDS										
8270	BENZO(A)PYRENE	µg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.006	< 0.2	< 0.2	< 0.2
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL							<10	<10
INORGAN											
6010	ALUMINUM	μg/L	N/A	59 F	26 F	27 F	30 F	35	28 B	22 B	25 B
6010/7041	ANTIMONY	μg/L	6 F		5.9 F				<6	<6	<6
6010/7060	ARSENIC	μg/L	10 *				0.7 F	1.2	1.8 B	<5	<5
6010/7060	-	µg/L	2000	<100	<100	<100	<100	<100	<100	1.5 B	4.3 B
6010	CALCIUM	μg/L	N/A	98500	86000 J	92200	98800	99700	99200	96700	96900
6010	CHROMIUM, TOTAL	μg/L	100 F			<3	2.3 F	<50	5.1 B	<50	<50
6010	COPPER	µg/L	1,300 TT			2.8 F	2.5 F	<50	<50	<50	<50
6010	IRON	µg/L	N/A	48 F	52 J	23 F	31 F	20	64	27 B	8 B
6010/7421	LEAD	μg/L	15 TT			0.6 F	< 0.3	<5	<5	0.8 BW	<5
6010	MAGNESIUM	μg/L	N/A	1390 J	1350 J	1340	1490	1480	1440	1420	1450
6010	MANGANESE	μg/L	N/A	4.1 F	1.6 F	2.3 F	2.5F	<20	3.7 B	2.2 B	<20
7470	MERCURY	μg/L	2 F					<1		< 0.2	< 0.2
6010	POTASSIUM	μg/L	N/A	917 F	861 F	945 F	854 F	726	658 B	<5000	873 B
6010/7740	SELENIUM	μg/L	50 F					<50	<5	<5	<5
6010	SILVER	μg/L	N/A	<100	<100	2.6 F		<1000	<50	<50	<50
6010	SODIUM	μg/L	N/A	5400 J	5420 J	5870 J	6460	6520	6780	6590	8820
6010	VANADIUM	μg/L	N/A	2.2 F	1.9 F	3.1 F	2.2 F	<80	<80	<80	1.5 B
6010	ZINC	μg/L	N/A	4.6 F	4 F			<20	2 B	3.7 B	<20
	CYANIDE	μg/L	200 F				< 0.004	< 0.02	< 0.02	0.006	
	UALITY PARAMETERS										
325.2	CHLORIDE	mg/L	N/A	11 B		11 B	110	<1	12	12	
375.4	SULFATE	mg/L	N/A	3.6		3.6 B	3.5	<1	3.6	3.5	
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	234		232 B	228	214	230	230	
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2		<2	<5.0	<2			
310	ALKALINITY, TOTAL	mg/L	N/A	234		232 B	228	214	230	230	
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	252		234	234				

TABLE C-17. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-23, MARBO ANNEX, GUAM

Sample	Identifier			IRP-23	IRP-23	IRP-23	IRP-23	IRP-23	IRP-23	IRP-23
Sample	Date			7/1/2002	4/7/1997	10/13/1997	3/30/1998	10/13/1998	4/4/1999	10/12/1999
Sampli	ng Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLA	FILE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	2	<1	<1	<1	<1	<1	<1 J
8260	CHLOROMETHANE	μg/L	N/A							
8260	NAPHTHALENE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.2 F
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1
INOR	GANICS									
6010	ALUMINUM	μg/L	N/A	<25	79 B	122 B				
6010	CALCIUM	μg/L	N/A	61100	62700	62300 E				
6010	MAGNESIUM	μg/L	N/A	823 B	800 B	733 BE				
6010	POTASSIUM	μg/L	N/A	325 B	178 B	1450 BE				
6010	SODIUM	μg/L	N/A	4310	5530	5220 E				
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	6.7	6.1	6				
375.4	SULFATE	mg/L	N/A	<2	3.6	2.4				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	170	182	172				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.8 J	< 0.5	0.48				
310.1	ALKALINITY, TOTAL	mg/L	N/A	170	182	172				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	207	209	204				

TABLE C-17. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-23, MARBO ANNEX, GUAM

Sample	Identifier			IRP-23	IRP-23	IRP-23	IRP-23	IRP-23	IRP-23	IRP-23
Sample	Date			4/17/2000	10/2/2000	4/2/2001	10/1/2001	4/16/2002	10/2/2002	3/31/2003
Sampli	ng Round		Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLA	FILE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A		0.5 F	6.5	<1	0.5 J	<1	<1
8260	NAPHTHALENE	μg/L	N/A	<1			<1	<1	<1	<1
8260	TOLUENE	μg/L	1000	<1	<1	<1	0.5	<1	<1	<1
INORG	GANICS									
6010	ALUMINUM	μg/L	N/A							
6010	CALCIUM	μg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	5.4 B	5 B	4.8				
375.4	SULFATE	mg/L	N/A	2.6	2.7 B	2.6				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	178	178 B	176				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	178	178 B	176				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	169	194					

Sample Id Sample D				IRP-24 7/1/2002	IRP-24 4/7/1997	IRP-24 10/13/1997	IRP-24 3/30/1998	IRP-24 10/14/1998	IRP-24 4/4/1999	IRP-24 10/12/1999
Sample D Sampling		ĺ	.Jul-02	Round 3	4///1997 Round 4	Round 5	3/30/1998 Round 6	Round 7	4/4/1999 Round 8	Round 9
Method	Analyte	Units	USEPA MCLs	Kounu 5	Kouliu 4	Kouliu 5	Kouna o	Kounu /	Kouna o	Validated
	LE ORGANIC COMPOUNDS	emis	Colliniticus							, unduted
8260	1,2,4-TRICHLOROBENZENE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	μg/L	N/A	<1	<1	<1	<1			0.1 F‡
8260	CARBON DISULFIDE	μg/L	N/A	7	<1	<1	<1	<1	<1	<1 J
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.2 F‡
8260	NAPHTHALENE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.5 J	0.5 J	0.4 J	0.4 J	<1	<1	0.3 F
8260	TOLUENE	µg/L	1000	<1	<1	<1	<1	<1	<1	<1
INORGA	NICS					-				
6010	ALUMINUM	µg/L	N/A	<25	89 B	93 B				
6010/7041	ANTIMONY	µg/L	6 F	<2	<2	1.7 B				
6010	CALCIUM	µg/L	N/A	70400	66800	65900 E				
6010	CHROMIUM, TOTAL	µg/L	100 F	6.7 B	<6	<4				
6010	MAGNESIUM	µg/L	N/A	9070	9680	9380 E				
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	0.15 B				
6010	POTASSIUM	µg/L	N/A	1260 B	1200 B	1220 BE				
6010	SODIUM	µg/L	N/A	28800	28500	29600 E				
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	52	55	58				
375.4	SULFATE	mg/L	N/A	6.8	7.2	6.2				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	205	211	203				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<1	< 0.5	0.56				
310	ALKALINITY, TOTAL	mg/L	N/A	205	211	203				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	319	311	267				

TABLE C-18. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-24, MARBO ANNEX, GUAM

Sample Id Sample D				IRP-24 5/23/2000	IRP-24 10/9/2000	IRP-24 4/9/2001	IRP-24 10/16/2001	IRP-24 5/7/2002	IRP-24 9/30/2002	IRP-24 4/16/2003
Sample D Sampling		1	Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	4/10/2005 Round 16
Method	Analyte	Units	USEPA MCLs	Validated	1100110 11	1104114 12	itounu ito	1100110 11	riouna re	100110 10
VOLATI	LE ORGANIC COMPOUNDS									
8260	1,2,4-TRICHLOROBENZENE	µg/L	N/A	<1	<1	<1	<1	<1	2.2	<1
8260	BROMOMETHANE	µg/L	N/A			< 0.1			<1	<1
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	1.4	< 0.2	<1	<1	<1	<1
8260	NAPHTHALENE	μg/L	N/A	<1	<1	<1	<1	<1	4	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	<1	0.4	0.4 F	0.5	0.5 J	0.7 J	0.6
8260	TOLUENE	μg/L	1000	<1	<1	<1	0.6	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
6010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	µg/L	N/A							
6010	CHROMIUM, TOTAL	μg/L	100 F							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	µg/L	2 F							
6010	POTASSIUM	µg/L	N/A							
6010	SODIUM	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	53 B	51 B	51				
375.4	SULFATE	mg/L	N/A	8.6 B	8.6 B	8.1				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	214	210 B	205				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310	ALKALINITY, TOTAL	mg/L	N/A	214	210 B	205				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	302	315					

TABLE C-18. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-24, MARBO ANNEX, GUAM

TABLE C-19. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-25, MARBO ANNEX, GUAM

Sample	dentifier			IRP-25	IRP-25	IRP-25	IRP-25	IRP-25	IRP-25	IRP-25
Sample	e Date			7/1/2002	4/13/1997	10/19/1997	3/29/1998	10/18/1998	4/10/1999	10/12/1999
Sampli	ng Round		Jul-02	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method		Units	USEPA MCLs							Validated
VOLA	TILE ORGANIC COMPOUNDS									
8260	BROMOMETHANE	μg/L	N/A	<1	<1	<1	<1			0.1 F‡
8260	CARBON DISULFIDE	μg/L	N/A	8	<1	<1	<1	<1	<1	<1 J
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.3 F‡
8260	CIS-1,2-DICHLOROETHENE	μg/L	70 F	<1	<1	<1	1 J	<1	<1	<1 J
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	0.7 J	<1	<1	<1 J
8260	M,P-XYLENES	μg/L	10000	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	0.3 J	0.2 J	<1	<1	<1	<1	0.3 F
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	2	2	2	1	2	2	1.8 J
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	<1	0.5 J	<1	<1	<1 J
INOR	GANICS									
6010	ALUMINUM	µg/L	N/A	<25	80 B	97 B				
6010	CALCIUM	µg/L	N/A	67400	65400	67600 E				
6010	CHROMIUM, TOTAL	μg/L	100 F	30 B	<6	<4				
6010	IRON	μg/L	N/A	733	132	<52				
6010	MAGNESIUM	μg/L	N/A	2880	2660	2300 E				
6010	MANGANESE	µg/L	N/A	48	<6	<8				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.18 B				
6010	NICKEL	µg/L	N/A	76 B	23 B	13 B				
6010	POTASSIUM	µg/L	N/A	935 B	682 B	554 BE				
6010	SODIUM	µg/L	N/A	7160	6700	6440 E				
	ZINC	μg/L	N/A	<12	32.1	<12				
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	12	10	12				
375.4	SULFATE	mg/L	N/A	3.9	5.9	5				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	188	184	185				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.9 J	< 0.5	0.79				
310.1	ALKALINITY, TOTAL	mg/L	N/A	189	184	185				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	229	236	227				

Sample Identifier			IRP-25	IRP-25	IRP-25	IRP-25	IRP-25	IRP-25	IRP-25
Sample Date			4/17/2000	10/2/2000	4/2/2001	10/1/2001	4/15/2002	10/3/2002	3/31/2003
Sampling Round		Jul-02	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 1
Method Analyte	Units	USEPA MCLs	Validated						
VOLATILE ORGANIC COMPOUNDS									
8260 BROMOMETHANE	μg/L	N/A			0.4 F			<1	<1
8260 CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260 CHLOROMETHANE	μg/L	N/A	<1	0.9 F	3.2	<1	0.3	<1	<1
8260 CIS-1,2-DICHLOROETHENE	μg/L	70 F	<1				<1	<1	<1
8260 METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
8260 M,P-XYLENES	μg/L	10000	<1	<1	<1	0.8		<1	<1
8260 TETRACHLOROETHENE (PCE)	μg/L	5 F	0.3 F	0.3 F	< 0.1	<1	0.2 J	<1	0.3
8260 TOLUENE	μg/L	1000	<1	<1	<1	0.5	<1	<1	<1
8260 TRICHLOROETHENE (TCE)	μg/L	5 F	1.4	1.4	1.2	<1	1.2 J	0.8 J	1.2
8260 TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
INORGANICS		-							
6010 ALUMINUM	μg/L	N/A							
6010 CALCIUM	μg/L	N/A							
6010 CHROMIUM, TOTAL	μg/L	100 F							
6010 IRON	μg/L	N/A							
6010 MAGNESIUM	µg/L	N/A							
6010 MANGANESE	µg/L	N/A							
7470 MERCURY	µg/L	2 F							
6010 NICKEL	µg/L	N/A							
6010 POTASSIUM	µg/L	N/A							
6010 SODIUM	µg/L	N/A							
6010 ZINC	µg/L	N/A							
WATER QUALITY PARAMETERS									
325.2 CHLORIDE	mg/L	N/A	7 B	7.2 B	7.2				
375.4 SULFATE	mg/L	N/A	4	4.27 B	4.17				
310.1 ALKALINITY, BICARBONATE	mg/L	N/A	192	192 B	192				
310.1 ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	< 5.0				
310.1 ALKALINITY, TOTAL	mg/L	N/A	192	192 B	192				
160.1 TOTAL DISSOLVED SOLIDS	mg/L	N/A	199	202					

TABLE C-19. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-25, MARBO ANNEX, GUAM

Sample Id				IRP-26	IRP-26	IRP-26	IRP-26	IRP-26	IRP-26	IRP-26
Sample Da			2002	9/30/96	5/13/97	10/15/97	4/5/98	10/14/98	4/5/99	10/12/99
Sampling Method		TT *4	2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
	Analyte	Units	USEPA MCLs							Validated
			NT / A	.1	.1	.1	.1	.1	.1	.1
8260	1,2,4-TRICHLOROBENZENE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	µg/L	N/A	<1	<1	<1	<1			0.1 F‡
8260	CARBON DISULFIDE	μg/L	N/A	0.7 J	<1	<1	<1	<1	<1	<1 J
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.3 F‡
8260	NAPHTHALENE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.6 J	0.2 J	<1	0.4 J	<1	<1	0.2 F
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	<1	0.9 J	<1	<1	<1	<1	<1 J
INORGAN										
6010	ALUMINUM	μg/L	N/A	<25	84 B	132 B				
	ANTIMONY	μg/L	6 F	<2	<2	1.8 B				
6010	CALCIUM	μg/L	N/A	69500	68200	67200 E				
6010	CHROMIUM, TOTAL	μg/L	100 F	30 B	10 B	11 B				
6010	IRON	μg/L	N/A	140	<40	<52				
6010/7421		μg/L	15 TT	<1	1.6 BN	1.1 B				
6010	MAGNESIUM	μg/L	N/A	10100	9390	8380 E				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.1 B				
6010	NICKEL	μg/L	N/A	28 B	<15	<5				
6010	POTASSIUM	μg/L	N/A	1830 B	14900	15600 E				
6010/7740	SELENIUM	μg/L	50 F	1.1 BN	<1	< 0.7				
6010	SODIUM	μg/L	N/A	34800	24400	22700 E				
WATER (QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	61	33	22				
375.4	SULFATE	mg/L	N/A	11	15	11				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	211	243	228				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.7 J	< 0.5	0.66				
310.1	ALKALINITY, TOTAL	mg/L	N/A	211	243	228				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	282	308	293				

TABLE C-20. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-26, MARBO ANNEX, GUAM

Sample Id				IRP-26	IRP-26	IRP-26	IRP-26	IRP-26	IRP-26	IRP-26
Sample Da		1		4/24/00	10/12/2000	4/16/2001	10/22/2001	5/8/2002	9/30/2002	4/16/2003
Sampling			2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
	LE ORGANIC COMPOUNDS						1			1
8260	1,2,4-TRICHLOROBENZENE	µg/L	N/A	<1	<1	<1	<1	<1	1.9	<1
8260	BROMOMETHANE	µg/L	N/A			1.6			<1	<1
8260	CARBON DISULFIDE	µg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	µg/L	N/A	<1	2.0	6.3	<1	<1	<1	<1
8260	NAPHTHALENE	µg/L	N/A	<1	<1	<1	<1	<1	3.6	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	0.2 F	0.2 F	0.1 F	0.2	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	<1	<1	< 0.1	<1	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	µg/L	N/A							
6010/7041	ANTIMONY	µg/L	6 F							
6010	CALCIUM	µg/L	N/A							
6010	CHROMIUM, TOTAL	µg/L	100 F							
6010	IRON	µg/L	N/A							
6010/7421	LEAD	μg/L	15 TT							
6010	MAGNESIUM	µg/L	N/A							
7470	MERCURY	µg/L	2 F							
6010	NICKEL	µg/L	N/A							
6010	POTASSIUM	μg/L	N/A							
6010/7740	SELENIUM	μg/L	50 F							
6010	SODIUM	µg/L	N/A							
WATER (QUALITY PARAMETERS				-		-	-	-	-
325.2	CHLORIDE	mg/L	N/A	11 B	9.1 B	11				
375.4	SULFATE	mg/L	N/A	4 B	3.2 B	3.6				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	229	222 B	216				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	< 5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	229	222 B	216				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	262	237					

TABLE C-20. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-26, MARBO ANNEX, GUAM

Sample Id Sample D				IRP-27 9/30/1996	IRP-27 4/6/1997	IRP-27 10/20/1997	IRP-27 3/31/1998	IRP-27 10/20/1998	IRP-27 4/4/1999	IRP-27 10/13/1999
Sampling	Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATI	LE ORGANIC COMPOUNDS	-					-			-
8260	CARBON DISULFIDE	$\mu g/L$	N/A	1	<1	<1	<1	<1	<1	<1
8260	CARBON TERACHLORIDE	$\mu g/L$	5	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	$\mu g/L$	N/A							
8260	ETHYLBENZENE	$\mu g/L$	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	2	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	$\mu g/L$	5 F	<1	1	1	1	1	1	1.1
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.2 F
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A	<25	87 B	73 B				
5010/7041	ANTIMONY	$\mu g/L$	6 F	<2	2.8 B	<1				
6010	CALCIUM	µg/L	N/A	63500	67900	60600 E				
6010	CHROMIUM, TOTAL	μg/L	100 F	22 B	146	5.3 B				
6010	COPPER	$\mu g/L$	1,300 TT	<6	11.1 B	<5				
6010	IRON	$\mu g/L$	N/A	106	489	<52				
6010	MAGNESIUM	$\mu g/L$	N/A	9050	9390	9370 E				
6010	MANGANESE	$\mu g/L$	N/A	<6	6.4 B	<8				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.16 B				
6010	NICKEL	$\mu g/L$	N/A	43 B	66 B	15 B				
6010	POTASSIUM	μg/L	N/A	1350 B	1530 B	2510 BE				
6010	SODIUM	µg/L	N/A	20800	26400	22900 E				
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	38	42	39				
375.4	SULFATE	mg/L	N/A	5.6	7.8	6.9				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	193	203	197				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	1	< 0.5	0.89				
310.1	ALKALINITY, TOTAL	mg/L	N/A	193	203	197				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	254	302	256				

TABLE C-21. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-27, MARBO ANNEX, GUAM

Sample Ic				IRP-27	IRP-27	IRP-27	IRP-27	IRP-27	IRP-27	IRP-27
Sample D				4/19/2000	10/3/2000	4/3/2001	10/2/2001	4/16/2002	10/2/2002	4/1/2003
Sampling			2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 10
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATI	LE ORGANIC COMPOUNDS	-			-	-				
8260	CARBON DISULFIDE	$\mu g/L$	N/A	<1				<1	<1	<1
8260	CARBON TERACHLORIDE	$\mu g/L$	5	<1	<1	<1	0.2	<1	<1	0.2
8260	CHLOROMETHANE	$\mu g/L$	N/A		0.9 F	4.4	<1	0.5 J	<1	0.4
8260	ETHYLBENZENE	$\mu g/L$	700	<1	<1	<1	0.3		<1	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	< 0.1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	1	1.1	0.8 F	0.9	0.5 J	1.2	1.5
8260	TOLUENE	µg/L	1,000 F	<1	<1	< 0.1	0.5	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
5010/7041	ANTIMONY	µg/L	6 F							
6010	CALCIUM	µg/L	N/A							
6010	CHROMIUM, TOTAL	µg/L	100 F							
6010	COPPER	µg/L	1,300 TT							
6010	IRON	µg/L	N/A							
6010	MAGNESIUM	µg/L	N/A							
6010	MANGANESE	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	NICKEL	µg/L	N/A							
6010	POTASSIUM	µg/L	N/A							
6010	SODIUM	µg/L	N/A							
WATER	QUALITY PARAMETERS		•		•					
325.2	CHLORIDE	mg/L	N/A	23	23 B	22				
375.4	SULFATE	mg/L	N/A	8	7.5 B	7.3				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	210	210 B	215				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5				
310.1	ALKALINITY, TOTAL	mg/L	N/A	210	210 B	215				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	269	247					

TABLE C-21. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-27, MARBO ANNEX, GUAM

Sample Ider	ntifier			IRP-28	IRP-28	IRP-28
Sample Dat	e			10/8/1996	4/9/1997	10/22/1997
Sampling R	ound		2002	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATILE	E ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	2	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	<1	<1	<1
INORGAN	ICS					
6010	ALUMINUM	µg/L	N/A	114	72 B	115 B
6010/7060	ARSENIC	µg/L	10	<2	<2	1.6 BW
6010	BARIUM	µg/L	2,000 F	<22	<22	6.4 B
6010	CALCIUM	µg/L	N/A	73100	68700	72500 E
6010	MAGNESIUM	µg/L	N/A	3450	2770	2320 E
6010	POTASSIUM	µg/L	N/A	1030	758 B	808 B
6010	SODIUM	µg/L	N/A	8790	11700	10700 E
WATER Q	UALITY PARAMETERS	-				
325.2	CHLORIDE	mg/L	N/A	16	14	14
375.4	SULFATE	mg/L	N/A	2.1	3.9	3.6
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	195	203	186
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.73
310.1	ALKALINITY, TOTAL	mg/L	N/A	195	203	186
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	216	247	221

Sample Id				IRP-29	IRP-29-D	IRP-29	IRP-29	IRP-29	IRP-29-D	IRP-29	IRP-29-D	IRP-29
Sample D	ate			11/4/1996	11/4/1996	5/14/1997	10/20/1997	4/8/1998	4/8/1998	10/18/1998	10/18/1998	4/5/1999
Sampling	Round		2002	Round 3	Round 3	Round 4	Round 5	Round 6	Round 6	Round 7	Round 7	Round 8
		-	USEPA MCLs		Duplicate				Duplicate		Duplicate	
Method	Analyte	Units										
VOLATII	LE ORGANIC COMPOUNDS											
8260	ACETONE	µg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5	<5
8260	BENZENE	µg/L	5 F	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1			
8260	CARBON TETRACHLORIDE	µg/L	5 F	<1	<1	0.7 J	0.7 J	0.7 J	0.7 J	<1	<1	<1
8260	CHLOROFORM	µg/L	N/A			<1	<1	<1	<1			<1
8260	CHLOROMETHANE	µg/L	N/A									
8260	METHYL ETHYL KETONE	µg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5	<5
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	8	8	14	8	13	13	14	15	9
8260	TOLUENE	µg/L	1,000 F	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	µg/L	5 F	<1	<1	0.4 J	0.6 J	0.4 J	0.4 J	2	1	<1
INORGA	NICS											
6010	ALUMINUM	μg/L	N/A	105 B	107 B	91 B	85 B					
6010	CADMIUM	μg/L	5 F	<1	5.4	<4	<0.6					
6010	CALCIUM	μg/L	N/A	73700	73800	77300	68400 E					
6010	CHROMIUM, TOTAL	μg/L	100 F	35 B	78	21 B	<4					
6010	IRON	µg/L	N/A	117	248	64.7	<52					
6010/7421	LEAD	µg/L	15 TT	<1	1.4 B	<1	<1					
6010	MAGNESIUM	µg/L	N/A	10900	11100	6360	5760 E					
6010	NICKEL	μg/L	N/A	22 B	30 B	<15	<5					
6010	POTASSIUM	µg/L	N/A	5040 E	5140 E	5730	5940 E					
6010	SODIUM	µg/L	N/A	85000	89000	44800	38900 E					
6010	ZINC	µg/L	N/A	22	31	<12	<12					
WATER	QUALITY PARAMETERS											
325.2	CHLORIDE	mg/L	N/A	188	189	84	73					
375.4	SULFATE	mg/L	N/A	25	26	15	12					
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	180	185	198	190					
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.5	0.8	< 0.5	0.68					
310.1	ALKALINITY, TOTAL	mg/L	N/A	180	184	198	190					
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	552	543	372	346					

TABLE C-23. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-29, MARBO ANNEX, GUAM

Sample Id	entifier			IRP-29-D	IRP-29	IRP-29-D	IRP-29	IRP-29-D	IRP-29	IRP-29-D	IRP-29	IRP-29-D
Sample D	ate			4/5/1999	10/13/1999	10/13/1999	4/25/2000	4/25/2000	10/10/2000	10/10/2000	4/10/2001	4/10/2001
Sampling	Round		2002	Round 8	Round 9	Round 9	Round 10	Round 10	Round 11	Round 11	Round 12	Round 12
			USEPA MCLs	Duplicate		Duplicate		Duplicate		Duplicate		Duplicate
Method	Analyte	Units		-	Validated	Validated	Validated	Validated		-		-
VOLATII	LE ORGANIC COMPOUNDS						•	•				
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5	<5
8260	BENZENE	μg/L	5 F	<1	0.1 F	0.1 F	<1	<1				
8260	BROMOMETHANE	µg/L	N/A		< 0.1	0.1 F‡					< 0.1	0.5 F
8260	CARBON TETRACHLORIDE	µg/L	5 F	<1	0.5 F	0.4 F	1.1	1.2	0.5 F	0.5 F	0.4 F	0.4 F
8260	CHLOROFORM	µg/L	N/A	<1	<1	<1	0.3 F	0.3 F	<1	<1	< 0.1	< 0.1
8260	CHLOROMETHANE	µg/L	N/A								0.2 F	2.2
8260	METHYL ETHYL KETONE	µg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5	<5
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	8	7.4	6.5	5.1	5.4	5.6 J	6.0 J	4.5	4.9
8260	TOLUENE	µg/L	1,000 F	<1	0.2 F	0.3 F	0.1 F	0.1 F	<1	<1	< 0.1	< 0.1
8260	TRICHLOROETHENE (TCE)	µg/L	5 F	<1	0.2 F	0.2 F	0.4 F	0.4 F	0.2 F	0.2 F	1.0	0.9 F
INORGA	NICS											
6010	ALUMINUM	µg/L	N/A									
6010	CADMIUM	µg/L	5 F									
6010	CALCIUM	µg/L	N/A									
6010	CHROMIUM, TOTAL	µg/L	100 F									
6010	IRON	μg/L	N/A									
6010/7421	LEAD	μg/L	15 TT									
6010	MAGNESIUM	μg/L	N/A									
6010	NICKEL	μg/L	N/A									
6010	POTASSIUM	µg/L	N/A									
6010	SODIUM	µg/L	N/A									
	ZINC	μg/L	N/A									
WATER	QUALITY PARAMETERS											
325.2	CHLORIDE	mg/L	N/A				224 B	221 B	192 B	203 B	220	219
375.4	SULFATE	mg/L	N/A				32 B	32 B	32 B	30 B	34	34
310.1	ALKALINITY, BICARBONATE	mg/L	N/A				185	182	186 B	186 B	186	186
310.1	ALKALINITY, CARBONATE	mg/L	N/A				<2	<2	<2	<2	<5.0	<5.0
310.1	ALKALINITY, TOTAL	mg/L	N/A				185 B	182 B	186 B	186 B	186	186
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A				626 B	628 B	576	561		

TABLE C-23. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-29, MARBO ANNEX, GUAM

TABLE C-23. GROUNDWATER ANALYTICAL RESULTS FOR MONITORING WELL IRP-29, MARBO ANNEX, GUAM

Sample Identifier				IRP-29	IRP-29-D	IRP-29	IRP-29-D	IRP-29	IRP-29-D	IRP-29	IRP-29-D	IRP-29	IRP-29
Sample Date				10/17/2001	10/17/2001	4/4/2002	4/4/2002	10/1/2002	10/1/2002	4/17/2003	4/17/2003	10/14/2003	5/11/2004
Sampling Round 2002			Round 13	Round 13	Round 14	Round 14	Round 15	Round 15	Round 16	Round 16	Round 17	Round 18	
			USEPA MCLs		Duplicate		Duplicate		Duplicate		Duplicate		
Method	Analyte	Units			-		-		-		-		
VOLATILE ORGANIC COMPOUNDS													
8260	ACETONE	µg/L	N/A		3.6	<5	<5	<5	<5	<5	<5	<5	<5
8260	BENZENE	µg/L	5 F			<1	<1	<1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	µg/L	N/A					<1	<1	<1	<1		
8260	CARBON TETRACHLORIDE	µg/L	5 F	0.8	0.7	0.5 J	0.5 J	0.5 J	0.4 J	0.5	0.5	0.4 J	0.5 J
8260	CHLOROFORM	µg/L	N/A	0.3	0.2	<1	<1	0.2 J	0.2	<1	<1	<1	0.2 J
8260	CHLOROMETHANE	µg/L	N/A	0.3	0.4	<1	<1	<1	<1	<1	<1	<1	0.2 J
8260	METHYL ETHYL KETONE	µg/L	N/A	0.6		<5	<5	<5	<5	<5	<5	<5	<5
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	5.8	5.3	5.4	5.5	9.4	9.3	16	15	14	18
8260	TOLUENE	µg/L	1,000 F	0.2	0.2	<1	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	µg/L	5 F	0.3	0.3	1.1	1.1	<1	<1	0.3	0.3	<1	0.5 J
INORGANICS								-					
6010	ALUMINUM	µg/L	N/A										
6010	CADMIUM	μg/L	5 F										
6010	CALCIUM	μg/L	N/A										
6010	CHROMIUM, TOTAL	µg/L	100 F										
6010	IRON	µg/L	N/A										
6010/7421	LEAD	µg/L	15 TT										
6010	MAGNESIUM	µg/L	N/A										
6010	NICKEL	µg/L	N/A										
6010	POTASSIUM	μg/L	N/A										
6010	SODIUM	μg/L	N/A										
6010	ZINC	μg/L	N/A										
WATER QUALITY PARAMETERS													
325.2	CHLORIDE	mg/L	N/A										
	SULFATE	mg/L	N/A										
310.1	ALKALINITY, BICARBONATE	mg/L	N/A										
310.1	ALKALINITY, CARBONATE	mg/L	N/A										
310.1	ALKALINITY, TOTAL	mg/L	N/A										
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A										

Sample	Identifier			IRP-30	IRP-30	IRP-30	IRP-30	IRP-30	IRP-30	IRP-30	IRP-30
Sample	Date			10/2/1996	4/13/1997	10/15/1997	3/29/1998	10/20/1998	4/6/1999	10/12/1999	4/17/2000
Samplir	ng Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9	Round 10
Method	Analyte	Units	USEPA MCLs							Validated	Validated
VOLAI	TILE ORGANIC COMPOUNDS										
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5
8260	CARBON DISULFIDE	μg/L	N/A	6	<1	<1	<1	<1	<1	<1 J	<1
8260	CHLOROMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1	0.2 F‡	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	0.5 JB	<1	<1	<1	<1	<1 J	<1
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.2 J	0.2 J	<1	<1	<1	0.5 J	0.1 F	<1
INORG	ANICS					-					
6010	ALUMINUM	μg/L	N/A	<25	99.5 B	130 B					
6010	CALCIUM	µg/L	N/A	76900	76200	74600 E					
6010	MAGNESIUM	µg/L	N/A	957 B	949 B	857 BE					
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.23 B					
6010	POTASSIUM	μg/L	N/A	302 B	231 B	2410 BE					
6010	SODIUM	μg/L	N/A	5980	7080	8890 E					
WATEI	R QUALITY PARAMETERS									-	
325.2	CHLORIDE	mg/L	N/A	9.2	8.9	9.9					8 B
375.4	SULFATE	mg/L	N/A	31	5.2	8.3					6
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	201	204	203					210
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.5 J	< 0.5	0.45					<2
310.1	ALKALINITY, TOTAL	mg/L	N/A	201	204	203					210
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	224	581	230					222

Sample	Identifier			IRP-30	IRP-30	IRP-30D	IRP-30	IRP-30	IRP-30	IRP-30	IRP-30	IRP-30
Sample	Date			10/4/2000	4/5/2001	4/5/2001	10/2/2001	4/15/2002	10/10/2002	3/31/2003	10/13/2003	5/6/2004
Samplin	ng Round		2002	Round 11	Round 12	Round 12	Round 13	Round 14	Round 15	Round 16	Round 17	Round 18
Method	Analyte	Units	USEPA MCLs			Duplicate						
VOLAT	FILE ORGANIC COMPOUNDS											
8260	ACETONE	µg/L	N/A	<5	<5	<5	<5	<5	2.4 J	<5	<5	2 J
8260	CARBON DISULFIDE	µg/L	N/A					<1	<1	<1	<1	<1
8260	CHLOROMETHANE	µg/L	N/A	<1	0.9 F	0.2 F	<1	0.3	<1	<1	<1	0.3 J
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	< 0.1	< 0.1	<1	<1	<1	<1	<1	<1
8260	TOLUENE	µg/L	1000	<1	<1	<1	0.5	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	<1	< 0.1	< 0.1	<1	<1	0.2 J	<1	<1	0.2 J
INORG	ANICS											
6010	ALUMINUM	µg/L	N/A									
6010	CALCIUM	μg/L	N/A									
6010	MAGNESIUM	μg/L	N/A									
7470	MERCURY	μg/L	2 F									
6010	POTASSIUM	μg/L	N/A									
6010	SODIUM	μg/L	N/A									
WATE	R QUALITY PARAMETERS											
325.2	CHLORIDE	mg/L	N/A	7.6 B	7.5	7.5						
375.4	SULFATE	mg/L	N/A	6.21 B	6.17	6.14						
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	204 B	212	212						
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<5.0	<5.0						
310.1	ALKALINITY, TOTAL	mg/L	N/A	204 B	212	212						
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	224								

Sample Id	entifier			IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D
Sample Da	ate			11/5/1996	11/5/1996	5/13/1997	5/13/1997	10/19/1997	10/19/1997	4/1/1998	4/1/1998	10/18/1998	10/18/1998
Sample De	epth (bgs)												
Sampling 1	Round		2002	Round 3	Round 3	Round 4	Round 4	Round 5	Round 5	Round 6	Round 6	Round 7	Round 7
			USEPA MCLs		Duplicate		Duplicate		Duplicate		Duplicate		Duplicate
Method	Analyte	Units											
VOLATIL	LE ORGANIC COMPOUNDS							-			-		
8260	1,1,1,2-TETRACHLOROETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1	0.4 J	0.4 J	<1	<1
8260	1,1,2-TRICHLOROETHANE	µg/L	5 F	1	1	3	3	5	5	6	6	4	4
8260	1,1-DICHLOROETHENE	μg/L	7 F	0.3 J	0.7 J	2	2	3	3	4	4	3	3
	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
8260	BENZENE	μg/L	5 F	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1		
8260	CARBON DISULFIDE	µg/L	N/A	<1	10	<1	<1	<1	<1	<1	<1	<1	<1
8260	CARBON TETRACHLORIDE	µg/L	5 F	<1	<1	<1	<1	<1	<1	<1	0.4 J	<1	<1
8260	CHLOROFORM	µg/L	N/A	0.3 J	0.3 J	0.5 J	0.5 J	0.9 J	0.9 J	1	1	<1	<1
8260	CHLOROMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	CIS-1,2-DICHLORETHENE	µg/L	70	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	0.9 J	1	2	2	3	3	6	5	5	5
8260	TOLUENE	µg/L	1,000 F	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	TRICHLOROETHENE (TCE)	μg/L	5 F	130 D	110	210 D	200 D	310 D	350 D	440 D	440 D	380 D	330 D
INORGAN						-				-	_		
	ALUMINUM	μg/L	N/A	87 B	84 B	80 B	89 B	113 B	80 B				
6010/7041	ANTIMONY	μg/L	6 F	<2	6.7 B	<2	<2	<1	1.7 B				
6010	CALCIUM	μg/L	N/A	65000	64900	68600	69500	78800 E	76500 E				
	CHROMIUM, TOTAL	μg/L	100 F	22.3 B	17.4 B	13 B	9 B	<4	<4				
	IRON	μg/L	N/A	104	85.8	203	58.2	<52	<52				
6010	MAGNESIUM	μg/L	N/A	9490	9390	7930	7960	3760 E	3690 E				
	NICKEL	μg/L	N/A	95 B	91 B	41 B	35 B	28 B	25 B				
	POTASSIUM	µg/L	N/A	4530 BE	4440 BE	6890	7040	2890 BE	2920 BE				
	SELENIUM	μg/L	50 F	<1	<1	<1	<1	< 0.7	1.2 BN				
	SODIUM	μg/L	N/A	87200	82500	63300	64200	17900 E	17800 E				
	ZINC	μg/L	N/A	14 B	<10	<12	24	<12	19 B				
	QUALITY PARAMETERS											-	
	CHLORIDE	mg/L	N/A	175	171	124	191	32	32				
	SULFATE	mg/L	N/A	17	28	11	10	5.9	3.8				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	159	164	176	174	197	198				
	ALKALINITY, CARBONATE	mg/L	N/A	0.7	1.7	< 0.5	< 0.5	1.6	0.85				
	ALKALINITY, TOTAL	mg/L	N/A	159	162	176	174	197	198				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	419	420	394	405	294	301				

Sample Id	entifier			IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D
Sample Da	ate			4/6/1999	4/6/1999	10/13/1999	10/13/1999	4/25/2000	4/25/2000	10/10/2000	10/10/2000
Sample D	epth (bgs)										
Sampling	Round		2002	Round 8	Round 8	Round 9	Round 9	Round 10	Round 10	Round 11	Round 11
		-	USEPA MCLs		Duplicate		Duplicate		Duplicate		Duplicate
Method	Analyte	Units				Validated	Validated	Validated	Validated		
	LE ORGANIC COMPOUNDS		-		-			-			-
8260	1,1,1,2-TETRACHLOROETHANE	μg/L	N/A	<1	<1	0.6 F	0.5 F	0.2 F	0.2 F	<1	<1
8260	1,1,2-TRICHLOROETHANE	μg/L	5 F	4	4	2.7	2.6	2.5	2.6	1.4	1.4
8260	1,1-DICHLOROETHENE	μg/L	7 F	4	4	0.5 F	3.2 J	3.6	3.8	2.0	2.0
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5	<5
8260	BENZENE	µg/L	5 F	<1	<1	2.2	2.3	1.9	2		
8260	BROMOMETHANE	μg/L	N/A			0.1 F‡	0.2 F‡				
8260	CARBON DISULFIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1		
8260	CARBON TETRACHLORIDE	μg/L	5 F	<1	<1	0.2 F	<1	0.2 F	0.3 F	<1	<1
8260	CHLOROFORM	μg/L	N/A	1 ‡	1‡	0.8 F	0.8 F	0.7 F	0.7 F	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1
8260	CIS-1,2-DICHLORETHENE	μg/L	70	<1	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	0.1 F	<1	<1	<1	0.2 F	0.2 F
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	5	5	4.4	4.3	2.7	2.9	1.8	1.8
8260	TOLUENE	μg/L	1,000 F	<1	<1	0.2 F	0.2 F	<1	0.8 F	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	460 D	460 D	467 J	395 J	322	301	220	214
INORGA		•					•				
6010	ALUMINUM	μg/L	N/A								
6010/7041	ANTIMONY	μg/L	6 F								
6010	CALCIUM	μg/L	N/A								
6010	CHROMIUM, TOTAL	μg/L	100 F								
6010	IRON	μg/L	N/A								
6010	MAGNESIUM	μg/L	N/A								
6010	NICKEL	μg/L	N/A								
6010	POTASSIUM	μg/L	N/A								
	SELENIUM	μg/L	50 F								
6010	SODIUM	μg/L	N/A								
6010	ZINC	µg/L	N/A								
	QUALITY PARAMETERS						T	0			
325.2	CHLORIDE	mg/L	N/A					114 B	122 B	160 B	159 B
375.4	SULFATE	mg/L	N/A					12 B	12 B	16 B	17 B
310.1	ALKALINITY, BICARBONATE	mg/L	N/A					183	183	170 B	170 B
310.1	ALKALINITY, CARBONATE	mg/L	N/A					<2	<2	<2	<2
310.1	ALKALINITY, TOTAL	mg/L	N/A					183 B	183 B	170 B	170 B
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A					401 B	418 B	449	460

Sample Id	entifier			IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31-D
Sample Da	ate			4/10/2001	4/10/2001	10/17/2001	10/17/2001	4/4/2002	4/4/2002	10/10/2002	10/10/2002
Sample De	epth (bgs)										
Sampling	Round		2002	Round 12	Round 12	Round 13	Round 13	Round 14	Round 14	Round 15	Round 15
			USEPA MCLs		Duplicate		Duplicate		Duplicate		Duplicate
Method	Analyte	Units									
VOLATII	LE ORGANIC COMPOUNDS										
8260	1,1,1,2-TETRACHLOROETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1	<1
8260	1,1,2-TRICHLOROETHANE	µg/L	5 F	1.2	1.2	1	1	0.8	0.9	1.3 DJ	1.4 DJ
8260	1,1-DICHLOROETHENE	µg/L	7 F	1.4	1.5	1.5	1.7	1.5	<10	3.2 DJ	3 DJ
8260	ACETONE	µg/L	N/A	<5	<5	<5	<5	<5	<5	2.4	2.4
8260	BENZENE	µg/L	5 F					<10	<10	0.4	0.4
8260	BROMOMETHANE	μg/L	N/A	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
8260	CARBON DISULFIDE	µg/L	N/A					<10	<10	<10	<10
8260	CARBON TETRACHLORIDE	μg/L	5 F	< 0.1	< 0.1	<1	<1	<10	<10	<10	<10
8260	CHLOROFORM	µg/L	N/A	0.3 F	0.3 F	0.3	0.3	0.3	0.3	0.4	0.4
8260	CHLOROMETHANE	µg/L	N/A	<1	<1	0.2	0.3	<10	<10	<10	<10
8260	CIS-1,2-DICHLORETHENE	µg/L	70	<1	<1	0.2	0.2	<10	<10	<10	<10
8260	METHYLENE CHLORIDE	µg/L	N/A	< 0.1	< 0.1	<1	1.2	<10	<10	<10	<10
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	1.4	1.5	1.4	1.4	1.1	1.0	1.8 DJ	1.7 DJ
8260	TOLUENE	μg/L	1,000 F	< 0.1	< 0.1	<1	<1	<10	<10	<10	<10
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	175	172	129	138	153	150	197 D	205 D
INORGAN											
6010	ALUMINUM	µg/L	N/A								
6010/7041		μg/L	6 F								
6010	CALCIUM	μg/L	N/A								
6010	CHROMIUM, TOTAL	μg/L	100 F								
6010	IRON	μg/L	N/A								
6010	MAGNESIUM	μg/L	N/A								
6010	NICKEL	μg/L	N/A								
6010	POTASSIUM	μg/L	N/A								
11	SELENIUM	µg/L	50 F								
6010	SODIUM	μg/L	N/A								
6010	ZINC	μg/L	N/A								
	QUALITY PARAMETERS					-		-			
325.2	CHLORIDE	mg/L	N/A	185	184						
375.4	SULFATE	mg/L	N/A	18	18						
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	175	176						
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<5.0	<5.0						
310.1	ALKALINITY, TOTAL	mg/L	N/A	175	176						
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A								

Sample Id	lentifier			IRP-31	IRP-31-D	IRP-31	IRP-31-D	IRP-31	IRP-31	IRP-31
Sample D				4/21/2003	4/21/2003	10/15/2003	10/15/2003	11/10/2003	11/10/2003	5/11/2004
	epth (bgs)					456 feet	456 feet	456 feet	447 feet	480
Sampling			2002	Round 16	Round 16	Round 17	Round 17	Round 17	Round 17	Round 18
			USEPA MCLs		Duplicate		Duplicate			
Method	Analyte	Units			-		-			
VOLATI	LE ORGANIC COMPOUNDS									
8260	1,1,1,2-TETRACHLOROETHANE	μg/L	N/A	<1	<1					
8260	1,1,2-TRICHLOROETHANE	μg/L	5 F	3.7	3.4	3.5	4.2	4	3.7	4.3
8260	1,1-DICHLOROETHENE	μg/L	7 F	7.6	7.2	5.7	6	5.4	4.9	5.3
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BENZENE	μg/L	5 F	<1	<1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	μg/L	N/A	< 0.1	< 0.1					
8260	CARBON DISULFIDE	μg/L	N/A	<1	<1	<1	<1	<1		<1
8260	CARBON TETRACHLORIDE	μg/L	5 F	0.4	0.4	0.4 J	0.4 J	0.3 J	0.3 J	0.4 J
8260	CHLOROFORM	μg/L	N/A	1.2	1.2	1.1	1.2	1.1	1	1.3
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.3 J
8260	CIS-1,2-DICHLORETHENE	μg/L	70	<1	<1	<1	<1	<1	<1	0.2 J
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	0.2 J	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	6	5.6	5.2	5.5	4.9	4.5	6.1
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	605	589	470 D	469 D	450 D	419 D	567 D
INORGA										
6010	ALUMINUM	μg/L	N/A							
6010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010	CHROMIUM, TOTAL	μg/L	100 F							
6010	IRON	μg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
6010	NICKEL	μg/L	N/A							
6010	POTASSIUM	μg/L	N/A							
6010/7740	SELENIUM	μg/L	50 F							
6010	SODIUM	μg/L	N/A							
6010	ZINC	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A							
375.4	SULFATE	mg/L	N/A							
310.1	ALKALINITY, BICARBONATE	mg/L	N/A							
310.1	ALKALINITY, CARBONATE	mg/L	N/A							
310.1	ALKALINITY, TOTAL	mg/L	N/A							
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A							

Sample Ide Sample Dat				IRP-32B 10/3/1996	IRP-32B 4/8/1997	IRP-32B 10/21/1997
Sampling R	Round		2002	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATILI	E ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	µg/L	N/A	2	<1	<1
8260	CHLOROFORM	µg/L	N/A	0.3 J	<1	<1
INORGAN	ICS					
6010	ALUMINUM	μg/L	N/A	<25	69 B	<56
6010	ANTIMONY	µg/L	6 F	<2	<2	1.8 B
6010	CALCIUM	µg/L	N/A	25200	25500	39600 E
6010	CHROMIUM, TOTAL	µg/L	100 F	74	43 B	63
6010	IRON	μg/L	N/A	<40	<40	83.3
6010	MAGNESIUM	µg/L	N/A	7070	7870	11200 E
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	0.13 B
6010	NICKEL	µg/L	N/A	<15	<15	20.5 B
6010	POTASSIUM	µg/L	N/A	149000	126000	60600
6010	SODIUM	µg/L	N/A	87800	76600	37800 E
6010	ZINC	μg/L	N/A	27	42	32
WATER Q	UALITY PARAMETERS					
325.2	CHLORIDE	mg/L	N/A	14	12	20
375.4	SULFATE	mg/L	N/A	30	23	11
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	458	400	284
310.1	ALKALINITY, CARBONATE	mg/L	N/A	1.5	0.9	1.2
310.1	ALKALINITY, TOTAL	mg/L	N/A	458	400	284
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	622	522	358

Sample	e Identifier			IRP-33	IRP-33	IRP-33	IRP-33	IRP-33	IRP-33	IRP-33
Sample	e Date			9/26/1996	4/8/1997	10/20/1997	4/1/1998	10/20/1998	4/11/1999	10/14/1999
Sampli	ing Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLA	TILE ORGANIC COMPOUNDS									
8260	ACETONE	$\mu g/L$	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMOMETHANE	$\mu g/L$	N/A	<1	<1	<1	<1			0.3 F‡
8260	CARBON DISULFIDE	$\mu g/L$	N/A	18	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	$\mu g/L$	N/A							
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	1	<1	<1	<1	0.2 F‡
8260	TOLUENE	$\mu g/L$	1,000 F	<1	<1	<1	<1	<1	<1	0.1 F
8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F	<1	<1	<1	0.4 J	<1	<1	<1
INOR	GANICS									
6010	ALUMINUM	μg/L	N/A	<25	76 B	201 B				
6010	CALCIUM	$\mu g/L$	N/A	63500	62300	64300 E				
6010	MAGNESIUM	$\mu g/L$	N/A	8690	11000	9080 E				
7470	MERCURY	$\mu g/L$	2 F	< 0.2	< 0.2	0.19 B				
6010	NICKEL	$\mu g/L$	N/A	21 B	43 B	15 B				
6010	POTASSIUM	$\mu g/L$	N/A	2020 B	2570 B	2890 BE				
	SODIUM	$\mu g/L$	N/A	26300	43700	27700 E				
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	52	85	49				
375.4	SULFATE	mg/L	N/A	2.9	12	5.7				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	199	211	195				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	1.2	< 0.5	0.71				
310.1	ALKALINITY, TOTAL	mg/L	N/A	199	211	195				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	281	378	315				

Sample	Identifier			IRP-33	IRP-33	IRP-33	IRP-33	IRP-33	IRP-33
Sample	Date			4/19/2000	10/5/2000	4/5/2001	10/3/2001	10/10/2002	4/2/2003
Sampli	ng Round		2002	Round 10	Round 11	Round 12	Round 13	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated					
VOLA	FILE ORGANIC COMPOUNDS								
8260	ACETONE	$\mu g/L$	N/A	<5	<5	<5	<5	2.4 J	<5
8260	BROMOMETHANE	$\mu g/L$	N/A			< 0.1		<1	<1
8260	CARBON DISULFIDE	$\mu g/L$	N/A	<1				<1	0.5
8260	CHLOROMETHANE	$\mu g/L$	N/A		1.6	0.3 F	<1	<1	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	0.2 F	< 0.1	<1	<1	<1
8260	TOLUENE	$\mu g/L$	1,000 F	<1	<1	< 0.1	0.5	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	<1	<1	< 0.1	<1	<1	<1
INOR	GANICS								
6010	ALUMINUM	$\mu g/L$	N/A						
6010	CALCIUM	$\mu g/L$	N/A						
6010	MAGNESIUM	$\mu g/L$	N/A						
7470	MERCURY	$\mu g/L$	2 F						
6010	NICKEL	$\mu g/L$	N/A						
6010	POTASSIUM	$\mu g/L$	N/A						
	SODIUM	µg/L	N/A						
WATE	R QUALITY PARAMETERS							_	
325.2	CHLORIDE	mg/L	N/A	49	54 B	52			
375.4	SULFATE	mg/L	N/A	8	7.7 B	8			
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	198	204 B	202			
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0			
310.1	ALKALINITY, TOTAL	mg/L	N/A	198	204 B	202			
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	304	288				

Sample	Identifier			IRP-34	IRP-34	IRP-34	IRP-34	IRP-34	IRP-34	IRP-34
Sample	Date	_		9/26/1996	5/5/1997	10/22/1997	4/1/1998	10/20/1998	4/11/1999	10/14/1999
Samplir	ng Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method		Units	USEPA MCLs							Validated
	TILE ORGANIC COMPOUNDS									
	ACETONE	$\mu g/L$	N/A	<5	<5	<5	<5	<5	<5	<5
	CARBON DISULFIDE	$\mu g/L$	N/A	2	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1	0.2 F‡
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1	0.2 F‡
8260	TOLUENE	$\mu g/L$	1,000 F	<1	<1	<1	<1	<1	<1	0.1 F
8260	TRICHLOROFLUOROMETHANE	$\mu g/L$	N/A	<1	<1	<1	<1	<1	<1	0.1 F
INORG	ANICS									
6010	ALUMINUM	$\mu g/L$	N/A	<25	83 B	104 B				
010/706	ARSENIC	$\mu g/L$	10	<2	<1	1.2 BW				
6010	CALCIUM	$\mu g/L$	N/A	72900	74700	72000 E				
6010	CHROMIUM, TOTAL	$\mu g/L$	100 F	6.8 B	<6	<4				
6010	IRON	$\mu g/L$	N/A	57	<40	<52				
6010	MAGNESIUM	$\mu g/L$	N/A	3200	2530	2110 E				
7470	MERCURY	$\mu g/L$	2 F	< 0.2	< 0.2	0.11 B				
6010	POTASSIUM	$\mu g/L$	N/A	862 B	440 B	641 B				
6010	SODIUM	μg/L	N/A	8790	7880	7370 E				
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	14	12	11				
375.4	SULFATE	mg/L	N/A	5.3	11	7.8				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	194	181	190				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.6	< 0.5	0.87				
310.1	ALKALINITY, TOTAL	mg/L	N/A	194	181	190				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	229	241	229				

Sample	Identifier			IRP-34	IRP-34	IRP-34	IRP-34	IRP-34	IRP-34
Sample	Date			4/19/2000	10/5/2000	4/5/2001	10/3/2001	10/10/2002	4/2/2003
Samplin	ng Round		2002	Round 10	Round 11	Round 12	Round 13	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated					
VOLAT	TILE ORGANIC COMPOUNDS								
8260	ACETONE	$\mu g/L$	N/A	<5	<5	<5	<5	3.5 J	<5
8260	CARBON DISULFIDE	$\mu g/L$	N/A	<1				<1	0.6
8260	CHLOROMETHANE	$\mu g/L$	N/A	<1	1.5	2.8	<1	<1	<1
8260	METHYLENE CHLORIDE	$\mu g/L$	N/A	<1	<1	< 0.1	<1	<1	0.2
8260	TOLUENE	$\mu g/L$	1,000 F	<1	<1	< 0.1	0.5	<1	<1
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	0.1 F	< 0.1	0.2	<1	<1
INORG	ANICS								
6010	ALUMINUM	μg/L	N/A						
010/706	ARSENIC	$\mu g/L$	10						
6010	CALCIUM	$\mu g/L$	N/A						
6010	CHROMIUM, TOTAL	$\mu g/L$	100 F						
6010	IRON	$\mu g/L$	N/A						
6010	MAGNESIUM	$\mu g/L$	N/A						
7470	MERCURY	$\mu g/L$	2 F						
6010	POTASSIUM	$\mu g/L$	N/A						
6010	SODIUM	μg/L	N/A						
WATE	R QUALITY PARAMETERS								
325.2	CHLORIDE	mg/L	N/A	9	10 B	10			
375.4	SULFATE	mg/L	N/A	9	8.9 B	8.6			
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	196	196 B	192			
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0			
310.1	ALKALINITY, TOTAL	mg/L	N/A	196	196 B	192			
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	231	218				

Sample Id	lentifier			IRP-35	IRP-35	IRP-35	IRP-35	IRP-35	IRP-35	IRP-35
Sample D	ate			10/3/1996	5/14/1997	10/19/1997	4/5/1998	10/13/1998	4/10/1999	10/12/1999
Sampling	Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATI	LE ORGANIC COMPOUNDS									
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMOMETHANE	μg/L	N/A	<1	<1	<1	<1			0.1 F‡
8260	CARBON TETRACHLORIDE	μg/L	5							
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	DICHLORODIFLUOROMETHANE	μg/L	N/A	<1	<1	<1	<1			0.7 F
8260	METHYL ETHYL KETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	<1	0.4 J	0.4 J	0.4 J	<1	<1	0.3 F
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.8 J	0.5 J	<1	0.6 J	<1	<1	0.7 F
NORGA	NICS	-								
6010	ALUMINUM	μg/L	N/A	<25	91.9 B	104 B				
010/7041	ANTIMONY	μg/L	6 F	<2	<2	1 B				
6010	CALCIUM	μg/L	N/A	76200	78700	71200 E				
6010	IRON	μg/L	N/A	96	48.7 B	<52				
6010	MAGNESIUM	μg/L	N/A	5830	5220	6110 E				
6010	NICKEL	μg/L	N/A	21.3 B	<15	<5				
6010	POTASSIUM	μg/L	N/A	2190 B	1130 B	1000 BE				
6010	SODIUM	μg/L	N/A	19700	16400	19500 E				
6010	ZINC	μg/L	N/A	57.9	47.4	26.5				
VATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	32.4	31.3	37.1				
375.4	SULFATE	mg/L	N/A	4.1	4.7	4.7				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	227	215	201				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	1.4	< 0.5	1.8				
310.1	ALKALINITY, TOTAL	mg/L	N/A	227	215	201				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	285	301	293				

Sample Id				IRP-35	IRP-35	IRP-35	IRP-35	IRP-35	IRP-35	IRP-35
Sample D		1		4/24/2000	10/9/2000	4/9/2001	10/16/2001	5/9/2002	10/9/2002	4/21/2003
Sampling			2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
	LE ORGANIC COMPOUNDS									
	ACETONE	μg/L	N/A	<5	<5	<5	3.1	<5	<5	<5
	BROMOMETHANE	μg/L	N/A			0.2 F			<1	<1
	CARBON TETRACHLORIDE	μg/L	5		0.2 F	< 0.1	0.2	<1	0.2 J	0.3
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	0.3	<1	<1	<1
8260	DICHLORODIFLUOROMETHANE	μg/L	N/A	<1	0.1 F	< 0.1			<1	<1
8260	METHYL ETHYL KETONE	µg/L	N/A	<5	<5	<5	0.6	<5	<1	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	<1	<1	0.2 J	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.3 F	0.3 F	0.3 F	0.3	<1	0.5 J	1.2
8260	TOLUENE	μg/L	1000	<1	<1	<1	0.3	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	1	1.1	1.0	1.1	0.9 J	0.8 J	2.3
INORGA	NICS	-			-	-	-			
6010	ALUMINUM	μg/L	N/A							
5010/7041	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010	IRON	μg/L	N/A							
6010	MAGNESIUM	μg/L	N/A							
6010	NICKEL	μg/L	N/A							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
6010	ZINC	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	50 B	35.91 B	44.6				
375.4	SULFATE	mg/L	N/A	7 B	8.53 B	5.60				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	224	222 B	222				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	224	222 B	222				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	333	297					

Sample Ide				M-5	M-5	M-5
Sample Dat	e			10/23/1996	4/27/1997	10/21/1997
Sampling R	ound	-	2002	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATILI	E ORGANIC COMPOUNDS					
8260	BROMOFORM	$\mu g/L$	N/A	<1	<1	4
8260	CARBON DISULFIDE	µg/L	N/A	22	<1	<1
8260	DIBROMOCHLOROMETHANE	µg/L	100 P	<1	<1	0.8 J
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	0.6 J	<1	<1
PESTICIDI	ES/PCBs					
8080	DIELDRIN	μg/L	N/A	0.11	0.11	0.067
INORGAN	ICS					
6010	ALUMINUM	µg/L	N/A	93 B	82 B	58 B
6010	CADMIUM	µg/L	5 F	1.8 B	<1	<3
6010	CALCIUM	µg/L	N/A	74800	70900	56800 E
6010	IRON	µg/L	N/A	41.3 B	<40	<52
6010/7421	LEAD	µg/L	15 TT	1.1 B	1.1 BN	1.3 B
6010	MAGNESIUM	µg/L	N/A	10700	9830	14400 E
6010	POTASSIUM	μg/L	N/A	1530 B	1340 B	2350 B
6010	SODIUM	μg/L	N/A	35600	31400	38100 E
6010	ZINC	μg/L	N/A	<12	12.6 B	<12
WATER Q	UALITY PARAMETERS					
325.2	CHLORIDE	mg/L	N/A	63	63	80
375.4	SULFATE	mg/L	N/A	8.8	6.4	8.7
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	216	223	182
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	1.5
310.1	ALKALINITY, TOTAL	mg/L	N/A	216	223	182
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	415	306	329

	Identifier Data			M-6 10/23/1996	M-6 4/27/1997	M-6 10/19/1997	M-6 4/1/1998	M-6 11/9/1998	M-6 4/11/1999	M-6 10/14/1999
Sample l Samplin	g Round	ĺ	2002	Round 3	4/2//199/ Round 4	Round 5	4/1/1998 Round 6	Round 7	4/11/1999 Round 8	Round 9
Method		Units	USEPA MCLs	Round 5	Rouna 4	Kouna 5	Kouna o	Round 7	Kounu o	Validated
VOLAT	ILE ORGANIC COMPOUNDS									
8260	BROMOFORM	μg/L	N/A							
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.3 F‡
8260	NAPHTHALENE	μg/L	N/A							
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	<1	<1	<1	<1	<1	<1	0.1 F
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.3 F
INORGANICS										
6010	ALUMINUM	μg/L	N/A	89.5 B	83.9 B	97.9 B				
6010	CALCIUM	μg/L	N/A	78400	75000	70500 E				
6010	MAGNESIUM	μg/L	N/A	9980	7890	6220 E				
7470	MERCURY	μg/L	2 F	0.25 B	< 0.2	0.1 B				
6010	POTASSIUM	μg/L	N/A	2760 B	2210 B	1770 BE				
6010	SODIUM	μg/L	N/A	64400	47900	32400 E				
6010	ZINC	μg/L	N/A	<12	<12	13.7 B				
WATER	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	117	92.9	64				
375.4	SULFATE	mg/L	N/A	17.7	9	8.7				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	200	203	203				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	1.3				
310.1	ALKALINITY, TOTAL	mg/L	N/A	200	203	203				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	369	307	337				

Sample I Sample I	Identifier Doto			M-6 4/20/2000	M-6 10/16/2000	M-6 4/12/2001	M-6 10/3/2001	M-6 4/18/2002	M-6 4/3/2003
-	lg Round	1	2002	4/20/2000 Round 10	Round 11	4/12/2001 Round 12	Round 13	4/18/2002 Round 14	4/5/2005 Round 16
Method	0	Units	USEPA MCLs	Validated	Kouliu 11	Kounu 12	Koulu 15	Kouliu 14	Kouliu 10
	TILE ORGANIC COMPOUNDS	enno	Collinatello	, undurou			I		
8260	BROMOFORM	µg/L	N/A		1.5				<1
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	0.3		<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	0.5 J	<1
8260	NAPHTHALENE	μg/L	N/A					0.3 J	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.2 F	0.2 F	0.2 F	0.2	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	< 0.1	0.5	<1	<1
INORG	ANICS						-		
6010	ALUMINUM	µg/L	N/A						
6010	CALCIUM	μg/L	N/A						
6010	MAGNESIUM	μg/L	N/A						
7470	MERCURY	μg/L	2 F						
6010	POTASSIUM	μg/L	N/A						
6010	SODIUM	μg/L	N/A						
6010	ZINC	μg/L	N/A						
WATER	R QUALITY PARAMETERS								
325.2	CHLORIDE	mg/L	N/A	118	162.4 B	206.6			
375.4	SULFATE	mg/L	N/A	16	22.27 B	30.57			
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	200	208 B	208			
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0			
310.1	ALKALINITY, TOTAL	mg/L	N/A	200	208 B	208			
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	427	494				

Sample Id	entifier			M-7	M-7	M-7	M-7	M-7	M-7	M-7
Sample Da	ate			10/23/1996	4/27/1997	10/19/1997	4/1/1998	10/13/1998	4/11/1999	10/14/1999
Sampling	Round		Jun-05	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATII	LE ORGANIC COMPOUNDS									
8260	ACETONE	µg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMODICHLOROMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	BROMOFORM	µg/L	N/A							
8260	CARBON DISULFIDE	µg/L	N/A	3	<1	<1	<1	<1	<1	0.6 F
8260	CHLOROMETHANE	µg/L	N/A							
8260	DIBROMOCHLOROMETHANE	µg/L	N/A							
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	<1	<1	<1	0.2 F‡
8260	M,P-XYLENES	µg/L	10000	<1	<1	<1	<1	<1	<1	<1
8260	NAPHTHALENE	µg/L	N/A							
8260	TETRACHLOROETHENE (PCE)	µg/L	5 F	0.3 J	<1	<1	<1	<1	<1	0.2 F
8260	TOLUENE	µg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.1 F
PESTICII										
8080/8081	DIELDRIN	µg/L	N/A	0.031	0.046	0.035 P				
INORGAN										
6010	ALUMINUM	µg/L	N/A	91.3 B	70.7 B	63.3 B				
6010	CALCIUM	µg/L	N/A	73400	73700	69900 E				
6010	MAGNESIUM	µg/L	N/A	5530	5940	4880 E				
7470	MERCURY	µg/L	2 F	0.3 B	< 0.2	< 0.1				
6010	POTASSIUM	µg/L	N/A	1460 B	1380 B	1420 BE				
6010	SODIUM	µg/L	N/A	21800	23000	19900 E				
WATER (QUALITY PARAMETERS									
325	CHLORIDE	mg/L	N/A	40.3	42.1	<1				
	SULFATE	mg/L	N/A	4.4	4	4.6				
310	ALKALINITY, BICARBONATE	mg/L	N/A	203	196	194				
310	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.87				
310	ALKALINITY, TOTAL	mg/L	N/A	203	196	195				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	268	281	264				

Sample Id	entifier			M-7	M-7	M-7	M-7	M-7	M-7
Sample Da	ate			4/20/2000	10/16/2000	10/3/2001	4/18/2002	10/9/2002	4/3/2003
Sampling	Round		Jun-05	Round 10	Round 11	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated					
VOLATII	LE ORGANIC COMPOUNDS								
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	2.2 J	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	0.2
8260	BROMOFORM	μg/L	N/A		2.4			<1	<1
8260	CARBON DISULFIDE	μg/L	N/A	<1			<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A		0.5 F	<1	0.4	<1	<1
8260	DIBROMOCHLOROMETHANE	μg/L	N/A		0.2 F			<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	0.4 J	<1	<1
8260	M,P-XYLENES	μg/L	10000	<1	<1	0.8		<1	<1
8260	NAPHTHALENE	μg/L	N/A				0.4	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.3 F	0.3 F	0.3	<1	0.2 J	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	0.5	<1	<1	<1
PESTICII	DES/PCBs								
8080/8081	DIELDRIN	μg/L	N/A						
INORGA	NICS								
6010	ALUMINUM	μg/L	N/A						
6010	CALCIUM	µg/L	N/A						
6010	MAGNESIUM	µg/L	N/A						
7470	MERCURY	µg/L	2 F						
6010	POTASSIUM	µg/L	N/A						
6010	SODIUM	μg/L	N/A						
WATER (QUALITY PARAMETERS								
325	CHLORIDE	mg/L	N/A	36	61.3 B				
375	SULFATE	mg/L	N/A	6	9.53 B				
310	ALKALINITY, BICARBONATE	mg/L	N/A	202	210 B				
310	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2				
310	ALKALINITY, TOTAL	mg/L	N/A	202	210 B				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	290	301				

Sample Ide	entifier			M-15	M-15	M-15
Sample Da	te			10/24/1996	4/27/1997	10/21/1997
Sampling I	Round		2002	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATIL	E ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	4	<1	<1
SEMIVOL	ATILE ORGANIC COMPOUNDS					
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL	<10	2 J	<10
PESTICID	DES/PCBs					
8080	DIELDRIN	μg/L	N/A	0.055	0.034	< 0.02
INORGAN	NICS					
6010	ALUMINUM	μg/L	N/A	68 B	77 B	88 B
6010	CALCIUM	μg/L	N/A	72700	75400	73700 E
6010	CHROMIUM, TOTAL	μg/L	100 F	<6	<6	9.2 B
6010	MAGNESIUM	μg/L	N/A	7090	5520	9270 E
6010	NICKEL	μg/L	N/A	<15	<2	7.4 B
6010	POTASSIUM	μg/L	N/A	2020 B	1680 B	1270 B
6010	SODIUM	μg/L	N/A	36100	25400	27900 E
6010	ZINC	μg/L	N/A	<12	<12	14 B
WATER Q	UALITY PARAMETERS					
325	CHLORIDE	mg/L	N/A	66	46	50
375.4	SULFATE	mg/L	N/A	7.4	4.9	6.2
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	203	208	207
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	1.3	1
310.1	ALKALINITY, TOTAL	mg/L	N/A	203	208	207
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	12	300	335

Sample Id	lentifier			MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1-D
Sample D	ate			10/9/1996	4/9/1997	10/14/1997	4/28/1998	11/7/1998	4/6/1999	4/6/1999
Sampling	Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 8
			USEPA MCLs							Duplicate
Method	Analyte	Units								
VOLATI	LE ORGANIC COMPOUNDS									
8260	2-HEXANONE	μg/L	N/A							
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	4	1	<1	<1	<1	<1	<1
8260	BROMOMETHANE	μg/L	N/A	<1	<1	<1				
8260	CARBON DISULFIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	2	<1	<1	0.3 J‡	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A							
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	1 J	<1	<1	<1	<1
8260	NAPHTHALENE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5	<1	<1	<1	<1	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.6 J	0.3 J	<1	0.6 J	1	0.8 J	0.8 J
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A	129 B	72 B	141 B				
6010	CALCIUM	μg/L	N/A	72800	70600	72000 E				
6010	IRON	μg/L	N/A	53	<40	<52				
6010/7421	LEAD	μg/L	15 TT	1.1 B	<1	<1				
6010	MAGNESIUM	μg/L	N/A	8160	7800	7860 E				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.14 B				
6010	POTASSIUM	μg/L	N/A	1050 B	1120 B	1050 B				
6010	SODIUM	μg/L	N/A	25600 N	24500	22000 E				
WATER	QUALITY PARAMETERS									
325	CHLORIDE	mg/L	N/A	49	54	43				
375.4	SULFATE	mg/L	N/A	6.6	8.1	6.1				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	215	220	209				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	0.9 J	< 0.5	0.65				
310	ALKALINITY, TOTAL	mg/L	N/A	215	220	209				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	333	323	303				

TABLE C-34. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-1, GUAM

Sample Id	lentifier			MW-1	MW-1-D	MW-1	MW-1-D	MW-1	MW-1D	MW-1
Sample D	ate			10/18/1999	10/18/1999	4/20/2000	4/20/2000	10/5/2000	10/5/2000	4/12/2001
Sampling	Round		2002	Round 9	Round 9	Round 10	Round 10	Round 11	Round 11	Round 12
			USEPA MCLs		Duplicate		Duplicate		Duplicate	
Method	Analyte	Units		Validated	Validated	Validated	Validated			
VOLATI	LE ORGANIC COMPOUNDS									
8260	2-HEXANONE	μg/L	N/A							
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	<5	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	0.3 F	0.3 F	<1	0.4 F	0.4 F
8260	BROMOMETHANE	μg/L	N/A	<1	0.1 F‡					1.7
8260	CARBON DISULFIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	<1	0.3 F	0.4 F	0.4 F	0.5 F	0.5 F	0.5 F
8260	CHLOROMETHANE	μg/L	N/A							4.4
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	0.2 F	< 0.1
8260	NAPHTHALENE	μg/L	N/A	<1	0.7 F					
8260	TETRACHLOROETHENE (PCE)	μg/L	5	<1	<1	<1	<1	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	0.2 F	<1	<1	0.5 F	<1	<1	< 0.1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.8 F	0.8 F	1.2	1.2	1.9	1.9	< 0.1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
6010	CALCIUM	μg/L	N/A							
6010	IRON	μg/L	N/A							
6010/7421	LEAD	μg/L	15 TT							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	POTASSIUM	μg/L	N/A							
6010	SODIUM	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325	CHLORIDE	mg/L	N/A			40	40	37 B	37 B	40
375.4	SULFATE	mg/L	N/A			9	9	8.1 B	8.1 B	7.9
310.1	ALKALINITY, BICARBONATE	mg/L	N/A			206	202	214 B	214 B	218
310.1	ALKALINITY, CARBONATE	mg/L	N/A			<2	<2	<2	<2	< 5.0
310	ALKALINITY, TOTAL	mg/L	N/A			206	202	214 B	214 B	218
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A			285	286	281	273	

TABLE C-34. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-1, GUAM

Sample Id	lentifier			MW-1	MW-1D	MW-1	MW-1D	MW-1	MW-1D	MW-1	MW-1
Sample D	ate			10/4/2001	10/4/2001	5/22/2002	5/22/2002	10/8/2002	10/8/2002	4/2/2003	10/16/2003
Sampling	Round		2002	Round 13	Round 13	Round 14	Round 14	Round 15	Round 15	Round 16	Round 17
			USEPA MCLs		Duplicate		Duplicate		Duplicate		
Method	Analyte	Units									
VOLATI	LE ORGANIC COMPOUNDS										
8260	2-HEXANONE	μg/L	N/A			<5	3.4 J	<1	<1	<1	<5
8260	ACETONE	μg/L	N/A	2.2	<5	<5	<5	<5	<5	<5	<5
8260	BROMODICHLOROMETHANE	µg/L	N/A	1.1	1.2	0.8 J	0.8 J	0.8 J	0.8 J	4.3	10.2
8260	BROMOMETHANE	μg/L	N/A					<1	<1	<1	
8260	CARBON DISULFIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.5	<1
8260	CHLOROFORM	μg/L	N/A	1	1	0.6 J	0.6 J	0.7 J	0.7 J	3	9
8260	CHLOROMETHANE	μg/L	N/A	0.4	0.2	<1	<1	<1	<1	<1	<1
8260	ETHYLBENZENE	μg/L	700		0.3			<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	0.4 J	0.3 J	0.2 J	<1	0.2	<1
8260	NAPHTHALENE	µg/L	N/A	<1	<1	0.4 J	0.4 J	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5	0.2	0.2	<1	<1	0.2 J	0.2 J	<1	<1
8260	TOLUENE	μg/L	1,000 F	0.5	0.5	<1	<1	<1	<1	<1	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	2.6	2.7	0.9 J	0.9 J	1.1	1.1	0.4	<1
INORGA	NICS										
6010	ALUMINUM	μg/L	N/A								
6010	CALCIUM	μg/L	N/A								
6010	IRON	µg/L	N/A								
6010/7421	LEAD	μg/L	15 TT								
6010	MAGNESIUM	μg/L	N/A								
7470	MERCURY	μg/L	2 F								
6010	POTASSIUM	μg/L	N/A								
	SODIUM	μg/L	N/A								
WATER	QUALITY PARAMETERS										
	CHLORIDE	mg/L	N/A								
	SULFATE	mg/L	N/A								
	ALKALINITY, BICARBONATE	mg/L	N/A								
	ALKALINITY, CARBONATE	mg/L	N/A								
	ALKALINITY, TOTAL	mg/L	N/A								
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A								

TABLE C-34. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-1, GUAM

Sample Id	entifier			MW-2	MW-2-D	MW-2	MW-2	MW-2-D	MW-2	MW-2-D	MW-2	MW-2-D
Sample Da				10/9/1996	10/9/1996	12/19/1996	4/9/1997	4/9/1997	10/20/1997	10/20/1997	4/28/1998	4/28/1998
Sampling			2002	Round 3	Round 3		Round 4	Round 4	Round 5	Round 5	Round 6	Round 6
			USEPA MCLs		Duplicate			Duplicate		Duplicate		Duplicate
Method	Analyte	Units			_			_		_		_
VOLATIL	LE ORGANIC COMPOUNDS											
8260	1,2,4-TRICHLOROBENZENE	µg/L	N/A	<1	<1		<1	<1	<1	<1		
8260	ACETONE	µg/L	N/A	<5	<5		<5	<5	<5	<5	<5	<5
8260	BROMODICHLOROMETHANE	µg/L	N/A									
8260	BROMOMETHANE	µg/L	N/A	<1	<1		<1	<1	<1	<1		
8260	CHLOROFORM	µg/L	N/A	<1	<1		<1	<1	<1	<1	0.7 J‡	0.7 J‡
8260	CHLOROMETHANE	µg/L	N/A	<1	<1		<1	<1	<1	<1	<1	<1
8260	DIBROMOCHLOROMETHANE	µg/L	N/A									
8260	METHYLENE CHLORIDE	µg/L	N/A									
8260	NAPHTHALENE	μg/L	N/A	<1	<1		<1	<1	<1	<1	<1	<1
8260	TOLUENE	µg/L	1,000 F	<1	<1		<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5									
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	4	5	4.6	4	4	0.8 J	0.8 J	0.4 J	0.4 J
524.2	1,1 - DICHLOROETHYLENE	μg/L	7			ND						
524.2	TRICHLOROETHYLENE	μg/L	5			1						
524.2	TETRACHLOROETHYLENE	μg/L	5			ND						
SEMIVOI	LATILE ORGANIC COMPOUNDS											
	BIS(2-ETHYLHEXYL) PHTHALATE	µg/L	10 RL	<10	<10		20 B	<10	<10	<10		
INORGAN	NICS	-				-			-			
6010	ALUMINUM	µg/L	N/A	95 B	89 B		84 B	82 B	108 B	81 B		
6010/7041	ANTIMONY	µg/L	6 F	<2	<2		<2	<2	1.2 B	<1		
6010	CALCIUM	µg/L	N/A	71100	71400		70300	71300	70700 E	70500 E		
6010	MAGNESIUM	µg/L	N/A	8410	8350		8790	8830	8100 E	8180 E		
6010	POTASSIUM	µg/L	N/A	1420 B	1360 B		1550 B	1510 B	1050 BE	994 BE		
6010/7740	SELENIUM	µg/L	50 F	1.3 B	1.2 B		<1	<1	< 0.7	< 0.7		
6010	SODIUM	µg/L	N/A	39700 N	39000 N		42000	42800	21600 E	21600 E		
6010	ZINC	µg/L	N/A	19.1 B	53.1		<12	22.3	<12	<12		
WATER (QUALITY PARAMETERS											
325	CHLORIDE	mg/L	N/A	67	67		65	65	37	37		
375	SULFATE	mg/L	N/A	31	30		42	41	11	12		
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	216	213		215	215	210	212		
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5		< 0.5	< 0.5	0.82	0.55		
310.1	ALKALINITY, TOTAL	mg/L	N/A	216	213		215	215	210	212		
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	393	396		402	394	308	319		

Sample Id				MW-2
Sample Da			-	11/17/1998
Sampling	Round		2002	Round 7
			USEPA MCLs	
Method	Analyte	Units		
VOLATII	LE ORGANIC COMPOUNDS			
8260	1,2,4-TRICHLOROBENZENE	μg/L	N/A	
8260	ACETONE	μg/L	N/A	<5
8260	BROMODICHLOROMETHANE	µg/L	N/A	
8260	BROMOMETHANE	µg/L	N/A	
8260	CHLOROFORM	µg/L	N/A	<1
8260	CHLOROMETHANE	μg/L	N/A	<1
8260	DIBROMOCHLOROMETHANE	μg/L	N/A	
8260	METHYLENE CHLORIDE	μg/L	N/A	
8260	NAPHTHALENE	μg/L	N/A	<1
8260	TOLUENE	μg/L	1,000 F	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5	
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	<1
524.2	1,1 - DICHLOROETHYLENE	μg/L	7	
524.2	TRICHLOROETHYLENE	μg/L	5	
524.2	TETRACHLOROETHYLENE	μg/L	5	
SEMIVO	LATILE ORGANIC COMPOUNDS			
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL	
INORGA	NICS	-		
6010	ALUMINUM	μg/L	N/A	
6010/7041	ANTIMONY	μg/L	6 F	
6010	CALCIUM	μg/L	N/A	
6010	MAGNESIUM	μg/L	N/A	
6010	POTASSIUM	μg/L	N/A	
6010/7740	SELENIUM	μg/L	50 F	
6010	SODIUM	μg/L	N/A	
6010	ZINC	μg/L	N/A	
WATER (QUALITY PARAMETERS			
325	CHLORIDE	mg/L	N/A	
375	SULFATE	mg/L	N/A	
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	
310.1	ALKALINITY, CARBONATE	mg/L	N/A	
310.1	ALKALINITY, TOTAL	mg/L	N/A	
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	

Sample Id	entifier			MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Sample Da				4/6/1999	10/14/1999	4/27/2000	10/12/2000	4/16/2001	10/4/2001	5/22/2002	10/8/2002	4/22/2003
Sampling			2002	Round 8	Round 9	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Sumpling			USEPA MCLs	Round o	Round 2	Round 10	Round 11	Itounu 12	Round 10	Itounu II	Round Ie	Round 10
Method	Analyte	Units	C D L I I I I C L S		Validated	Validated						
VOLATII	LE ORGANIC COMPOUNDS											L
8260	1,2,4-TRICHLOROBENZENE	μg/L	N/A		0.1 F						<1	<1
8260	ACETONE	μg/L	N/A	<5	<5	<5	<5	<5	1.6	1.2 J	<5	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A				1.1	11	3.9	<1	<1	<1
8260	BROMOMETHANE	µg/L	N/A		0.2 F			0.5 F			<1	<1
8260	CHLOROFORM	μg/L	N/A	<1	<1	1.2	2.8	18.4	7.8	0.3 J	0.2 J	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	0.5 F	<1	2.7	2.5	<1	<1	<1	<1
8260	DIBROMOCHLOROMETHANE	μg/L	N/A					0.2 F			<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A				0.2 F	0.1 F	<1	<1	0.2 J	<1
8260	NAPHTHALENE	µg/L	N/A	<1	0.8 F				<1	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	0.2 F	0.6 F	<1	< 0.1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5				0.2 F	< 0.1	<1	<1	0.2 J	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	1	2.6	4.9	5.4	2.2	5.8	5.7	6	1.5
524.2	1,1 - DICHLOROETHYLENE	μg/L	7									
524.2	TRICHLOROETHYLENE	μg/L	5									
524.2	TETRACHLOROETHYLENE	μg/L	5									
SEMIVOI	LATILE ORGANIC COMPOUNDS											
	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL									
INORGAN		-						-				
6010	ALUMINUM	μg/L	N/A									
6010/7041	ANTIMONY	μg/L	6 F									
6010	CALCIUM	μg/L	N/A									
6010	MAGNESIUM	μg/L	N/A									
	POTASSIUM	μg/L	N/A									
6010/7740	SELENIUM	μg/L	50 F									
6010	SODIUM	μg/L	N/A									
6010	ZINC	μg/L	N/A									
	QUALITY PARAMETERS											
	CHLORIDE	mg/L	N/A			14 B	14 B	22				
	SULFATE	mg/L	N/A			5 B	5.1 B	6				
	ALKALINITY, BICARBONATE	mg/L	N/A			213	210 B	210				
11	ALKALINITY, CARBONATE	mg/L	N/A			<2	<2	<5.0				
	ALKALINITY, TOTAL	mg/L	N/A			213	210 B	210				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A			241	241					

Sample Id Sample Da				MW-2 10/16/2003
Sampling			2002	Round 17
			USEPA MCLs	
Method	Analyte	Units		
VOLATII	LE ORGANIC COMPOUNDS			
8260	1,2,4-TRICHLOROBENZENE	μg/L	N/A	<1
8260	ACETONE	μg/L	N/A	<5
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1
8260	BROMOMETHANE	μg/L	N/A	
8260	CHLOROFORM	μg/L	N/A	<1
8260	CHLOROMETHANE	μg/L	N/A	<1
8260	DIBROMOCHLOROMETHANE	μg/L	N/A	
8260	METHYLENE CHLORIDE	μg/L	N/A	<1
8260	NAPHTHALENE	μg/L	N/A	<1
8260	TOLUENE	μg/L	1,000 F	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5	<1
8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.9 J
524.2	1,1 - DICHLOROETHYLENE	μg/L	7	
524.2	TRICHLOROETHYLENE	μg/L	5	
524.2	TETRACHLOROETHYLENE	μg/L	5	
SEMIVOI	LATILE ORGANIC COMPOUNDS		•	
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL	
INORGAI	NICS	-	-	
6010	ALUMINUM	μg/L	N/A	
6010/7041	ANTIMONY	μg/L	6 F	
6010	CALCIUM	μg/L	N/A	
6010	MAGNESIUM	μg/L	N/A	
6010	POTASSIUM	μg/L	N/A	
6010/7740	SELENIUM	μg/L	50 F	
6010	SODIUM	μg/L	N/A	
6010	ZINC	μg/L	N/A	
WATER (QUALITY PARAMETERS			
325	CHLORIDE	mg/L	N/A	
375	SULFATE	mg/L	N/A	
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	
310.1	ALKALINITY, CARBONATE	mg/L	N/A	
310.1	ALKALINITY, TOTAL	mg/L	N/A	
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	

Sample Id	entifier			MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
Sample Da	ate			10/9/1996	4/22/1997	10/14/1997	4/28/1998	10/14/1998	4/6/1999	4/20/2000
Sampling	Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 10
Method	Analyte	Units	USEPA MCLs							Validated
VOLATII	LE ORGANIC COMPOUNDS									
8260	BROMODICHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROFORM	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5							
8260	TOLUENE	μg/L	1000	<1	<1	<1	<1	<1	<1	<1
INORGAN	NICS									
6010	ALUMINUM	μg/L	N/A	121 B	73 B	106 B				
6010	ANTIMONY	μg/L	6 F	<2	<2	1.2 B				
6010	CALCIUM	µg/L	N/A	74100	80500	74700 E				
6010	MAGNESIUM	μg/L	N/A	7620	8380	7500 E				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.12 B				
6010	POTASSIUM	µg/L	N/A	1210 B	1330 B	1400 B				
6010	SODIUM	μg/L	N/A	15100 N	16400	15100 E				
6010/7740	SELENIUM	μg/L	50 F	<1	<1	0.76 B				
WATER (QUALITY PARAMETERS									
325	CHLORIDE	mg/L	N/A	28	29	27				26
375.4	SULFATE	mg/L	N/A	5	4.8	4.5				6
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	228	229	222				216
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.57				<2
310.1	ALKALINITY, TOTAL	mg/L	N/A	228	229	222				216
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	312	282	288				266

TABLE C-36. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-3, GUAM

Sample Id	entifier			MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
Sample Da	ite			10/5/2000	4/12/2001	10/4/2001	5/22/2002	10/8/2002	4/2/2003
Sampling	Round		2002	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs						
VOLATII	E ORGANIC COMPOUNDS								
8260	BROMODICHLOROMETHANE	µg/L	N/A	<1	<1	0.2	<1	0.2 J	<1
8260	CHLOROFORM	µg/L	N/A	<1	<1	0.2	<1	0.2 J	<1
8260	CHLOROMETHANE	μg/L	N/A	1.4	0.2 F	0.3	0.5 J	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	0.2 J	<1
8260	TETRACHLOROETHENE (PCE)	µg/L	5	0.2 F	0.2 F	0.2	<1	0.2 J	<1
8260	TOLUENE	μg/L	1000	<1	<1	0.5	<1	<1	<1
INORGAN	NICS								
6010	ALUMINUM	µg/L	N/A						
6010	ANTIMONY	µg/L	6 F						
6010	CALCIUM	µg/L	N/A						
6010	MAGNESIUM	µg/L	N/A						
7470	MERCURY	µg/L	2 F						
6010	POTASSIUM	µg/L	N/A						
6010	SODIUM	µg/L	N/A						
6010/7740	SELENIUM	μg/L	50 F						
WATER (QUALITY PARAMETERS								
325	CHLORIDE	mg/L	N/A	24 B	25				
375.4	SULFATE	mg/L	N/A	5.6 B	5.4				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	222 B	218				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	222 B	218				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	262					

TABLE C-36. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-3, GUAM

Sample Id	entifier			MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
- Sample Da	ate			10/9/1996	4/2/1997	10/14/1997	4/28/1998	10/14/1998	4/6/1999	10/18/1999
Sampling	Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATII	LE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	μg/L	N/A	4	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A							
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	<1	<1	<1	0.1 F‡
8260	TOLUENE	μg/L	1,000 F	<1	0.3 J	<1	<1	<1	<1	0.1 F
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1	<1
INORGA	NICS					-				
6010	ALUMINUM	μg/L	N/A	72 B	65 B	120 B				
6010	ANTIMONY	μg/L	6 F	<2	<2	1 B				
6010	CALCIUM	μg/L	N/A	55200	56100	56200 E				
6010/7421	LEAD	μg/L	15 TT	<1	<1	2.2 B				
6010	MAGNESIUM	μg/L	N/A	10100	11200	11700 E				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.23 B				
6010	POTASSIUM	μg/L	N/A	983 B	1030 B	1260 B				
6010/7740	SELENIUM	μg/L	50 F	1.6 B	<1	1 B				
6010	SODIUM	μg/L	N/A	25600 N	23600	30400 E				
WATER (QUALITY PARAMETERS									
325	CHLORIDE	mg/L	N/A	51	45	57				
375.4	SULFATE	mg/L	N/A	5.9	7.9	8.1				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	193	186	178				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.49				
310	ALKALINITY, TOTAL	mg/L	N/A	193	186	178				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	301	264	279				

Sample Id				MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
Sample Da				4/20/2000	10/5/2000	4/12/2001	10/4/2001	4/18/2002	10/8/2002	4/2/2003
Sampling			2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATII	LE ORGANIC COMPOUNDS	-				-				
8260	CARBON DISULFIDE	$\mu g/L$	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	$\mu g/L$	N/A		1.0	< 0.2	0.2	<1	<1	<1
8260	ETHYLBENZENE	μg/L	700	<1	<1	<1	0.3		<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	0.2 J	<1
8260	TOLUENE	µg/L	1,000 F	<1	<1	< 0.1	0.5	<1	<1	<1
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	<1	0.2	<1	<1	<1
INORGA	NICS									
6010	ALUMINUM	μg/L	N/A							
6010	ANTIMONY	µg/L	6 F							
6010	CALCIUM	µg/L	N/A							
6010/7421	LEAD	μg/L	15 TT							
6010	MAGNESIUM	µg/L	N/A							
7470	MERCURY	µg/L	2 F							
6010	POTASSIUM	µg/L	N/A							
6010/7740	SELENIUM	µg/L	50 F							
6010	SODIUM	µg/L	N/A							
WATER (QUALITY PARAMETERS				-	-				
325	CHLORIDE	mg/L	N/A	48	45 B	46				
375.4	SULFATE	mg/L	N/A	8	7.4 B	7.7				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	174	190 B	186				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310	ALKALINITY, TOTAL	mg/L	N/A	174	190 B	186				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	264	255					

Sample I	dentifier			MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6
Sample D	Date			10/9/1996	4/2/1997	10/14/1997	4/26/1998	10/14/1998	4/6/1999	10/18/1999
Sampling	g Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLATI	LE ORGANIC COMPOUNDS									
8260	BROMOMETHANE	µg/L	N/A	<1	<1	<1				0.2 F‡
8260	CARBON DISULFIDE	µg/L	N/A	3	<1	<1	<1	<1	<1	0.6 F
8260	CHLOROMETHANE	µg/L	N/A	<1	<1	<1	<1	1	<1	<1
8260	METHYLENE CHLORIDE	µg/L	N/A	<1	<1	<1	0.6 JB‡	<1	<1	0.2 F‡
8260	NAPHTHALENE	µg/L	N/A							
8260	TOLUENE	µg/L	1,000 F	<1	0.4 J	<1	<1	<1	<1	0.1 F
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	<1	0.2 J	<1	<1	0.1 F
INORGA	NICS									-
6010	ALUMINUM	µg/L	N/A	81 B	66 B	100 B				
6010	ANTIMONY	µg/L	6 F	<2	<2	1.5 B				
6010	CALCIUM	µg/L	N/A	62100	57700	57600 E				
5010/7421	LEAD	µg/L	15 TT	<1	<1	1.6 B				
6010	MAGNESIUM	µg/L	N/A	9770	10200	10000 E				
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	0.19 B				
6010	POTASSIUM	µg/L	N/A	939 B	1050 B	1250 B				
5010/7740	SELENIUM	µg/L	50 F	2.1 BW	<1	< 0.7				
6010	SODIUM	μg/L	N/A	23600 N	26300	31800 E				
WATER	QUALITY PARAMETERS									-
325	CHLORIDE	mg/L	N/A	45	66	65				
375	SULFATE	mg/L	N/A	6.1	10	8.4				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	207	186	182				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.49				
310.1	ALKALINITY, TOTAL	mg/L	N/A	207	186	182				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	214	293	279				

Sample I Sample D				MW-6 4/20/2000	MW-6 10/5/2000	MW-6 4/12/2001	MW-6 10/4/2001	MW-6 4/18/2002	MW-6 10/8/2002	MW-6 4/2/2003
Sample 2 Sampling			2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATI	LE ORGANIC COMPOUNDS					•				
8260	BROMOMETHANE	μg/L	N/A			< 0.1			<1	<1
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	0.8 F	< 0.2	0.3	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	0.3 J	0.2 J	<1
8260	NAPHTHALENE	μg/L	N/A					0.3 J	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	<1	< 0.1	0.6	<1	<1	<1
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
INORGA	ANICS									
6010	ALUMINUM	μg/L	N/A							
6010	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
5010/7421	LEAD	μg/L	15 TT							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	POTASSIUM	μg/L	N/A							
5010/7740	SELENIUM	μg/L	50 F							
6010	SODIUM	μg/L	N/A							
WATER	QUALITY PARAMETERS									
325	CHLORIDE	mg/L	N/A	58	68 B	73				
375	SULFATE	mg/L	N/A	10	10 B	11				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	186	186 B	190				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	186	186 B	190				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	283	294					

Sample	Identifier			MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
Sample	Date			10/9/1996	4/2/1997	10/14/1997	4/26/1998	10/14/1998	4/6/1999	10/18/1999
Samplii	ng Round		2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
Method	Analyte	Units	USEPA MCLs							Validated
VOLAT	FILE ORGANIC COMPOUNDS									
8260	CARBON DISULFIDE	µg/L	N/A	16	<1	<1	<1	<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A							
8260	METHYLENE CHLORIDE	μg/L	N/A	<1	<1	<1	0.9 JB‡	<1	<1	<1
8260	TOLUENE	μg/L	1,000 F	<1	0.4 J	<1	<1	<1	<1	<1
8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	<1	0.1 J	<1	<1	<1
SEMIV	OLATILE ORGANIC COMPOUNDS									
8270	BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL	3 J	<10	71 B				
INORG	ANICS									
6010	ALUMINUM	μg/L	N/A	53 B	71 B	113 B				
6010	CALCIUM	μg/L	N/A	46100	61100	59700 E				
6010	MAGNESIUM	μg/L	N/A	9640	11000	9770 E				
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.14 B				
6010	POTASSIUM	μg/L	N/A	850 B	1090 B	965 B				
6010	SELENIUM	μg/L	50 F	1.5 B	<1	< 0.7				
6010	SODIUM	μg/L	N/A	20600 N	25400	24200 E				
WATE	R QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	45	47	44				
375.4	SULFATE	mg/L	N/A	6.6	16	3.2				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	185	184	186				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.61				
310.1	ALKALINITY, TOTAL	mg/L	N/A	185	184	186				
	TOTAL DISSOLVED SOLIDS	mg/L	N/A	276	276	223				

Sample Identifier			MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
Sample Date			4/20/2000	10/5/2000	4/12/2001	10/4/2001	4/18/2002	10/8/2002	4/2/2003
Sampling Round		2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method Analyte	Units	USEPA MCLs	Validated						
VOLATILE ORGANIC COMPOUNDS								-	
8260 CARBON DISULFIDE	µg/L	N/A	<1				<1	<1	<1
8260 CHLOROMETHANE	μg/L	N/A					0.3 J	<1	<1
8260 METHYLENE CHLORIDE	μg/L	N/A	<1	<1	< 0.1	<1	<1	0.2 J	<1
8260 TOLUENE	μg/L	1,000 F	<1	<1	< 0.1	<1	<1	<1	<1
8260 TRICHLOROFLUOROMETHANE	μg/L	N/A	<1	<1	< 0.1	<1	<1	<1	<1
SEMIVOLATILE ORGANIC COMPOUND	5								
8270 BIS(2-ETHYLHEXYL) PHTHALATE	μg/L	10 RL							
INORGANICS									
6010 ALUMINUM	μg/L	N/A							
6010 CALCIUM	μg/L	N/A							
6010 MAGNESIUM	μg/L	N/A							
7470 MERCURY	μg/L	2 F							
6010 POTASSIUM	μg/L	N/A							
6010 SELENIUM	µg/L	50 F							
6010 SODIUM	μg/L	N/A							
WATER QUALITY PARAMETERS									
325.2 CHLORIDE	mg/L	N/A	37	46 B	46				
375.4 SULFATE	mg/L	N/A	7	8.3 B	8				
310.1 ALKALINITY, BICARBONATE	mg/L	N/A	184	192 B	192				
310.1 ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1 ALKALINITY, TOTAL	mg/L	N/A	184	192 B	192				
160 TOTAL DISSOLVED SOLIDS	mg/L	N/A	250	253					

Sample Id				MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8
Sample Da		1	2002	10/9/1996	4/2/1997	10/14/1997		10/14/1998	4/6/1999	10/18/1999
Sampling Method		Units	2002	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9
	Analyte Æ ORGANIC COMPOUNDS	Units	USEPA MCLs							Validated
	ACETONE		N/A	<5	-5	<5	<5	-5	<5	<5
8260	BROMOMETHANE	μg/L	N/A N/A		<5	-		<5		-
		µg/L		<1	<1	<1				0.1 F
	CARBON DISULFIDE	µg/L	N/A	9	<1	<1	<1	<1	<1	< 0.1
	CHLOROMETHANE	µg/L	N/A	<1	<1	<1	<1	<1	<1	<1
	METHYLENE CHLORIDE	µg/L	N/A							
0200	TOLUENE	μg/L	1,000 F	<1	<1	<1	<1	<1	<1	0.2 F
INORGAN										1
	ALUMINUM	µg/L	N/A	77 B	92 B	129 B				
6010	ANTIMONY	µg/L	6 F	3.6 B	<2	<1				
6010	CALCIUM	µg/L	N/A	56200	63100	64100 E				
6010/7421	LEAD	µg/L	15 TT	<1	<1	1.2 B				
6010	MAGNESIUM	µg/L	N/A	10400	10200	9760 E				
7470	MERCURY	µg/L	2 F	< 0.2	< 0.2	0.22 B				
6010	POTASSIUM	µg/L	N/A	1180 B	1080 B	1100 B				
6010/7740	SELENIUM	μg/L	50 F	1.5 B	<1	< 0.7				
6010	SODIUM	μg/L	N/A	32600 N	26800	23100 E				
WATER (QUALITY PARAMETERS							-		-
325.2	CHLORIDE	mg/L	N/A	71	46	43				
375.4	SULFATE	mg/L	N/A	7.6	9.7	6.1				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	186	192	201				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.88				
310.1	ALKALINITY, TOTAL	mg/L	N/A	186	192	201				
	TOTAL DISSOLVED SOLIDS	mg/L	N/A	327	284	241				

Sample Identifier Sample Date				MW-8 4/20/2000	MW-8 10/5/2000	MW-8 4/12/2001	MW-8 10/4/2001	MW-8 4/18/2002	MW-8 10/8/2002	MW-8 4/2/2003
Sampling Round			2002	Round 10	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs	Validated						
VOLATILE ORGANIC COMPOUNDS										
8260	ACETONE	μg/L	N/A	<5	<5	<5	1.5	<5	<1	<1
8260	BROMOMETHANE	μg/L	N/A	<1		< 0.1			<1	<1
8260	CARBON DISULFIDE	μg/L	N/A	<1				<1	<1	<1
8260	CHLOROMETHANE	μg/L	N/A	<1	0.9 F	< 0.1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A					0.3 J	0.2 J	<1
8260	TOLUENE	μg/L	1,000 F	<1		< 0.1	<1	<1	<1	<1
INORGANICS										
6010	ALUMINUM	μg/L	N/A							
6010	ANTIMONY	μg/L	6 F							
6010	CALCIUM	μg/L	N/A							
6010/7421	LEAD	μg/L	15 TT							
6010	MAGNESIUM	μg/L	N/A							
7470	MERCURY	μg/L	2 F							
6010	POTASSIUM	μg/L	N/A							
6010/7740	SELENIUM	μg/L	50 F							
6010	SODIUM	μg/L	N/A							
WATER (QUALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	39	42 B	44				
375.4	SULFATE	mg/L	N/A	7	7.7 B	7.6				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	196	204 B	208				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	196	204 B	208				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	264	255					

TABLE C-41. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-9, MARBO ANNEX, GUAM

Sample	Identifier			MW-9	MW-9	MW-9	MW-9	MW-9	MW-9
Sample	Date			10/8/1996	4/2/1997	10/14/1997	4/28/1998	4/13/1999	4/20/2000
Samplir	ng Round		2002	Round 3	Round 4	Round 5	Round 6	Round 8	Round 10
Method	Analyte	Units	USEPA MCLs						Validated
VOLAT	TILE ORGANIC COMPOUNDS								
8260	ACETONE	µg/L	N/A	<5	<5	<5	<5	<5	<5
8260	CHLOROMETHANE	μg/L	N/A	<1	<1	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A						
8260	TETRACHLOROETHENE (PCE)	μg/L	5	<5	<5	<5	<5	<5	<5
INORGANICS									
6010	ALUMINUM	µg/L	N/A	82	79 B	127 B			
6010	CALCIUM	µg/L	N/A	64900	63300	62500 E			
6010	MAGNESIUM	μg/L	N/A	12000	11700	11300 E			
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.19 B			
6010	POTASSIUM	μg/L	N/A	1130	1280 B	1030 B			
6010	SODIUM	μg/L	N/A	26900	31600	24200 E			
WATE	R QUALITY PARAMETERS								
325.2	CHLORIDE	mg/L	N/A	47	47	44			53
375.4	SULFATE	mg/L	N/A	3.3	8.4	6.2			8
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	202	200	188			192
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.56			<2
310.1	ALKALINITY, TOTAL	mg/L	N/A	202	200	188			192
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	271	279	287			276

TABLE C-41. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL MW-9, MARBO ANNEX, GUAM

Sample	Identifier			MW-9	MW-9	MW-9	MW-9	MW-9	MW-9
Sample	Date			10/5/2000	4/12/2001	10/4/2001	4/18/2002	10/8/2002	4/2/2003
Samplir	ng Round		2002	Round 11	Round 12	Round 13	Round 14	Round 15	Round 16
Method	Analyte	Units	USEPA MCLs						
VOLAT	TILE ORGANIC COMPOUNDS								
8260	ACETONE	µg/L	N/A	<5	<5	1.9	<5	1.7	<5
8260	CHLOROMETHANE	µg/L	N/A	0.8 F	0.3 F	<1	<1	<1	<1
8260	METHYLENE CHLORIDE	μg/L	N/A				0.3 J	0.2	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5	0.4 F	0.4 F		<1	<1	<1
INORG	ANICS								
6010	ALUMINUM	µg/L	N/A						
6010	CALCIUM	µg/L	N/A						
6010	MAGNESIUM	μg/L	N/A						
7470	MERCURY	μg/L	2 F						
6010	POTASSIUM	μg/L	N/A						
6010	SODIUM	μg/L	N/A						
WATEI	R QUALITY PARAMETERS								
325.2	CHLORIDE	mg/L	N/A	48 B	46				
375.4	SULFATE	mg/L	N/A	8.3 B	7.7				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	196 B	196				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<5.0				
310.1	ALKALINITY, TOTAL	mg/L	N/A	196 B	196				
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	266					

Sample Ide	ntifier			Y-2	Y-2	Y-2
Sample Dat	e			10/31/1996	4/20/1997	10/20/1997
Sampling R	lound		2002	Round 3	Round 4	Round 5
Method	Analyte	USEPA MCLs				
VOLATILI	E ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	13	<1	<1
8260	TETRACHLOROETHENE (PCE)	μg/L	5 F	0.3 J	<1	<1
INORGAN	ICS					
6010	ALUMINUM	μg/L	N/A	91 B	86 B	84 B
6010	ANTIMONY	μg/L	6 F	<2	<2	1.2 B
6010	CALCIUM	μg/L	N/A	81200	85300	78300 E
6010/7421	LEAD	μg/L	15 TT	1.5 BW	<1	<1
6010	MAGNESIUM	μg/L	N/A	6790	6910	5750 E
7470	MERCURY	μg/L	2 F	< 0.2	0.2 BN	< 0.1
6010	POTASSIUM	μg/L	N/A	1410 BE	1290 B	1510 BE
6010	SODIUM	μg/L	N/A	13300	13700	14000 E
6010	ZINC	μg/L	N/A	11.5 B	<12	<12
WATER Q	UALITY PARAMETERS					
325	CHLORIDE	mg/L	N/A	22	23	24
375.4	SULFATE	mg/L	N/A	4.9	4.8	4.8
310	ALKALINITY, BICARBONATE	mg/L	N/A	212	235	225
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.5
310.1	ALKALINITY, TOTAL	mg/L	N/A	212	235	225
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	336	296	285

TABLE C-42. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL Y-2, MARBO ANNEX, GUAM

Sample Ide	entifier			Y-3	Y-3	Y-3
Sample Da	te			10/23/1996	4/22/1997	10/14/1997
Sampling I	Round		2002	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATIL	E ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	12	<1	<1
PESTICID	ES/PCBs					
8080	DIELDRIN	μg/L	N/A	0.022	0.023	< 0.02
INORGAN	ICS					
6010	ALUMINUM	µg/L	N/A	116 B	87 B	144 B
6010	ANTIMONY	μg/L	6 F	<2	<2	2.1 B
6010/7060	ARSENIC	μg/L	10	<2	<2	1.3 B
6010	CALCIUM	μg/L	N/A	86900	88500	81100 E
6010	MAGNESIUM	μg/L	N/A	4890	5210	4040 E
7470	MERCURY	μg/L	2 F	< 0.2	< 0.2	0.17 B
6010	POTASSIUM	μg/L	N/A	1670 B	1630 B	1410 B
6010	SODIUM	μg/L	N/A	10900	11900	10800 E
6010	ZINC	μg/L	N/A	13 B	25	18 B
WATER Q	UALITY PARAMETERS					
325	CHLORIDE	mg/L	N/A	17	17	18
375.4	SULFATE	mg/L	N/A	5.1	4.6	4.6
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	231	231	215
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	0.6	0.72
310	ALKALINITY, TOTAL	mg/L	N/A	231	231	215
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	265	277	273

Sample Ide	ntifier				Y-4	Y-4	Y-4	
Sample Dat	e				10/23/1996	4/21/1997	10/14/1997	
Sampling R	ound		2002		Round 3	Round 4	Round 5	
Method	Analyte	Units	USEPA I	MCLs				
VOLATILI	E ORGANIC COMPOUNDS							
8260	CARBON DISULFIDE	μg/L	N/A		11	<1	<1	
INORGAN	ICS							
6010	ALUMINUM	μg/L	N/A		95 B	134 B	155 B	
6010	ANTIMONY	µg/L	6	F	<2	<2	1.8 B	
6010/7060	ARSENIC	µg/L	10		<2	<2	1.7 BW	
6010	CALCIUM	µg/L	N/A		82400	84500	75800 E	
6010	IRON	µg/L	N/A		<40	763	<52	
6010	MAGNESIUM	µg/L	N/A		9110	10700	8130 E	
7470	MERCURY	µg/L	2	F	< 0.2	< 0.2	0.11 B	
6010	POTASSIUM	µg/L	N/A		1400 B	1420 B	1400 B	
6010	SODIUM	μg/L	N/A		14300	15000	14900 E	
WATER Q	UALITY PARAMETERS							
325	CHLORIDE	mg/L	N/A		26	24	27	
375.4	SULFATE	mg/L	N/A		3.6	4.5	4.6	
310	ALKALINITY, BICARBONATE	mg/L	N/A		230	234	226	
310.1	ALKALINITY, CARBONATE	mg/L	N/A		< 0.5	< 0.5	0.83	
310	ALKALINITY, TOTAL	mg/L	N/A		230	234	226	
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A		286	294	284	

TABLE C-44. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL Y-4, MARBO ANNEX, GUAM

TABLE C-45. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL Y-5, MARBO ANNEX, GUAM

Sample Iden	tifier			Y-5	Y-5	Y-5
Sample Date				10/23/1996	4/20/1997	10/21/1997
Sampling Ro	ound		2002	Round 3	Round 4	Round 5
Method	Analyte	Units	USEPA MCLs			
VOLATILE	ORGANIC COMPOUNDS					
8260	CARBON DISULFIDE	μg/L	N/A	9	<1	<1
INORGANI	CS					
6010	ALUMINUM	μg/L	N/A	91 B	83 B	91 B
6010/7060	ARSENIC	μg/L	10	<2	<2	1.3 BW
6010	CALCIUM	μg/L	N/A	81100	84200	80600 E
6010	MAGNESIUM	μg/L	N/A	6910	7080	6880 E
7470	MERCURY	μg/L	2 F	0.29 B	< 0.2	0.1 B
6010	POTASSIUM	μg/L	N/A	2210 B	2040 B	2230 B
6010	SILVER	μg/L	N/A	<3	<4	9.3 B
6010	SODIUM	μg/L	N/A	32500	32900	33100 E
WATER QU	ALITY PARAMETERS					
325	CHLORIDE	mg/L	N/A	57	59	16
375.4	SULFATE	mg/L	N/A	6.7	6.5	6.2
310	ALKALINITY, BICARBONATE	mg/L	N/A	215	214	204
310.1	ALKALINITY, CARBONATE	mg/L	N/A	< 0.5	< 0.5	0.86
310	ALKALINITY, TOTAL	mg/L	N/A	215	214	204
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A	335	343	333

TABLE C-46. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL Y-6, MARBO ANNEX, GUAM

Sample Ide	ntifier				Y-6	Y-6	Y-6
Sample Dat	te				10/23/1996	4/22/1997	10/20/1997
Sampling R	tound	2002		Round 3	Round 4	Round 5	
Method	Units	USEPA	MCLs				
VOLATIL	E ORGANIC COMPOUNDS						
8260	CARBON DISULFIDE	μg/L	N/A		14	<1	<1
INORGAN	ICS						
6010	ALUMINUM	μg/L	N/A		91 B	77 B	77 B
6010	ANTIMONY	μg/L	6	F	<2	<2	1.1 B
6010	CADMIUM	μg/L	5	F	1.3 B	<1	<0.6
6010	CALCIUM	μg/L	N/A		81400	83000	77800 E
6010	IRON	μg/L	N/A		80.8	<40	<52
6010	MAGNESIUM	μg/L	N/A		4400	4530	4150 E
7470	MERCURY	μg/L	2	F	0.24 B	< 0.2	0.14 B
6010	POTASSIUM	μg/L	N/A		1630 B	1700 B	1770 BE
6010	SODIUM	μg/L	N/A		12600	13000	12900 E
6010	ZINC	μg/L	N/A		14 B	<12	24
WATER Q	UALITY PARAMETERS						
325	CHLORIDE	mg/L	N/A		22	20	20
375.4	SULFATE	mg/L	N/A		3.9	3.6	3.7
310	ALKALINITY, BICARBONATE	mg/L	N/A		215	222	216
310.1	ALKALINITY, CARBONATE	mg/L	N/A		< 0.5	< 0.5	0.52
310	ALKALINITY, TOTAL	mg/L	N/A		215	222	216
160	TOTAL DISSOLVED SOLIDS	mg/L	N/A		250	275	277

TABLE C-47. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL Y-18, MARBO ANNEX, GUAM

Sample Identifie Sample Date Sampling Round	Y-18 5/19/2004 Round 18								
Method	Analyte	Units	USEPA MCLs						
VOLATILE OR	VOLATILE ORGANIC COMPOUNDS								
8260	ACETONE	μg/L	N/A	2.6 J					
8260	BROMODICHLOROMETHANE	μg/L	N/A	0.4 J					
8260	CHLOROMETHANE	μg/L	N/A	0.2 J					

TABLE C-48. GROUNDWATER ANALYTICAL RESULTS FOR PRODUCTION WELL Y-20, MARBO ANNEX, GUAM

Sample Identifie Sample Date Sampling Round	Y-20 5/19/2004 Round 18			
Method	Analyte	Units	USEPA MCLs	
VOLATILE OR	GANIC COMPOUNDS			
8260	BROMODICHLOROMETHANE	μg/L	N/A	1.7
8260	CHLOROFORM	μg/L	N/A	0.7 J

TABLE D-1. GROUNDWATER ANALYTICAL RESULTS FOR EX-6, HARMON, GUAM.

			Well ID	EX-6	EX-6 Shallow	EX-6 Deep	EX-6	EX-6	EX-6	EX-6
			Sample ID		LIX-0 Shanow	LA-0 Deep	02GX6L66F	02GX6L69F	02GX6L67F	02GX6L68F
			Sample Date		10/16/2000	10/16/2000	5/17/2004	5/18/2004	5/18/2004	5/18/2004
			Sampling Round		Round 11	Round 11	Round 18	Round 18	Round 18	Round 18
			nple Depth (feet)		320	415	325	446		
			ampling Method			-			448 (Sample 1)	448 (Sample 2)
Method	Analyte	Units	2002 MCL	Piston Pump	Piston Pump	Piston Pump	Piston Pump	Piston Pump	Piston Pump	Piston Pump
		Units	2002 MCL							
VOLATILE ORGANIC COMPOUNDS								0.01	1	
SW8260	CHLOROMETHANE	µg/L	N/A	ND	ND	ND	<1	0.2 J		<1
SW8260	1,1-DICHLOROETHENE	µg/L	7	< 1	< 1	< 1	<1	<1		<1
SW8260	CIS-1,2-DICHLOROETHENE	µg/L	70	< 1	< 1	< 1	<1	<1		<1
SW8260	TETRACHLOROETHENE (PCE)	µg/L	5	< 1	< 1	< 1	<1	<1		<1
SW8260	TRICHLOROETHENE (TCE)	μg/L	5	< 1	< 1	< 1	<1	<1		<1
WATER Q	UALITY PARAMETERS									
325.2	CHLORIDE	mg/L	N/A	8 B	8.07 B	9.44 B	11	119	3460	1500
375.4	SULFATE	mg/L	N/A	3 B	3.17 B	2.93 B				
310.1	ALKALINITY, BICARBONATE	mg/L	N/A	160	154 B	166 B				
310.1	ALKALINITY, CARBONATE	mg/L	N/A	<2	<2	<2				
310.1	ALKALINITY, TOTAL	mg/L	N/A	160	154 B	166 B				
160.1	TOTAL DISSOLVED SOLIDS	mg/L	N/A	181	178	196				
Notes:					•				·	•
MCL = EPA	Maximum Contaminant Level		N/A = Not Applica	able						
$\mu g/L = micr$	ograms per liter		B = Value may be		ratory contaminati	on				
	igrams per liter		J = Estimated valu		-					
Bold/Shade	d = Exceeds MCL		= Not Analyz	ed						

TABLE D-2. GROUNDWATER ANALYTICAL RESULTS FOR GEPA HARMON MONITORING WELL (HMW) #1.

		Well ID	HMW-1	HMW-1	HMW-1	HMW-1				
		Sample ID		HMW010202001	02GH1L16D	02GH1L17D				
		Sample Date		01/02/02	05/22/02	05/22/02				
		Depth (feet)		180.0	184.0	260.0				
		nple Method		Bailer	Piston Pump	Piston Pump				
Method Analyte	Units	2002 MCL								
VOLATILE ORGANIC COMPOUNDS (VOCs)										
SW8260 1,1-DICHLOROETHENE (1,1-DCE)	µg/L	7	<5	<5	< 1	< 1				
SW8260 CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	µg/L	70	<5	<5	< 1	< 1				
SW8260 TETRACHLOROETHENE (PCE)	µg/L	5	<5	<5	0.4 J	< 1				
SW8260 TRICHLOROETHENE (TCE)	µg/L	5	<5	<5	< 1	< 1				
WATER QUALITY PARAMETERS										
SW9056 CHLORIDE	mg/L	N/A								
Notes:										
MCL = EPA Maximum Contaminant Level			N/A = Not Applicable	:						
$\mu g/L = micrograms per liter$			B = Value may be affected.	ected by Laboratory co	ontamination					
mg/L = milligrams per liter		J = Estimated value.								
Bold/Shaded = Exceeds MCL			= Not Analyzed							
			PDB = Passive Diffus	ion Bag						

TABLE D-2. GROUNDWATER ANALYTICAL RESULTS FOR GEPA HARMON MONITORING WELL (HMW) #1.

			Well ID	HMW-1	HMW-1	HMW-1	HMW-1
				02GH1L58F	02GH1L59F	02GH1L60F	02GH1L61F
			Sample ID				
			Sample Date		05/12/04	05/12/04	05/12/04
		Sample	Depth (feet)	195.0	225.0	260.0	275.0
		San	nple Method	Piston Pump	Piston Pump	Piston Pump	Piston Pump
Method	Analyte	Units	2002 MCL				
VOLATI	LE ORGANIC COMPOUNDS (VOCs)		-				
SW8260	1,1-DICHLOROETHENE (1,1-DCE)	µg/L	7	<1	<1	<1	<1
SW8260	CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	μg/L	70	<1	<1	<1	<1
SW8260	TETRACHLOROETHENE (PCE)	µg/L	5	0.2 J	<1	<1	<1
SW8260	TRICHLOROETHENE (TCE)	µg/L	5	0.5 J	0.4 J	0.4 J	0.3 J
WATER	QUALITY PARAMETERS						
SW9056	CHLORIDE	mg/L	N/A	126	203	257	286
Notes:							
MCL = EH	PA Maximum Contaminant Level			N/A	= Not Applicable		
$\mu g/L = mi$	crograms per liter			$\mathbf{B} = \mathbf{V}$	Value may be affected	l by Laboratory conta	mination
mg/L = mi	illigrams per liter			$\mathbf{J} = \mathbf{E}$	stimated value.		
Bold/Shad	ded = Exceeds MCL			=	Not Analyzed		
		_		PDB	= Passive Diffusion I	Bag	

TABLE D-3. GROUNDWATER ANALYTICAL RESULTS FOR GEPA HARMON MONITORING WELL (HMW) #2.

		Well ID	HMW-2	HMW-2	HMW-2	HMW-2	HMW-2	HMW-2	HMW-2
		Sample ID		AAFB02GH220F	AAFB02GH221F	AAFB02GH222F	AAFB02GH223F	AAFB02GH224F	AAFB02GH225F
		Sample Date	6/4/2002	11/17/03	11/17/03	11/17/03	11/17/03	11/17/03	11/17/03
	Se	mple Horizon	Surface	A	В	С	D	E	F
		e Depth (feet)	180	191.4	211.4	231.4	251.4	271.4	291.4
	-	ample Method	Bailer	PDB	PDB	PDB	PDB	PDB	PDB
Madha 1 Annabada		1	Baller	PDB	PDB	PDB	PDB	FDB	PDB
Method Analyte	Units	2002 MCL							
VOLATILE ORGANIC COMPOUNDS (VOCs)									
SW8260 1,1-DICHLOROETHENE (1,1-DCE)	μg/L	7	< 5	< 1	< 1	< 1	< 1	< 1	< 1
SW8260 CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	μg/L	70	< 5	< 1	< 1	< 1	< 1	< 1	< 1
SW8260 TETRACHLOROETHENE (PCE)	μg/L	5	<5	<1	<1	<1	<1	<1	<1
SW8260 TRICHLOROETHENE (TCE)	μg/L	5	<5	<1	<1	0.4 F	<1	<1	<1
WATER QUALITY PARAMETERS									
SW9056 CHLORIDE	mg/L	N/A		0.2 F	0.2 F	0.19 F	0.24 F	0.23 F	0.19 F
Notes:									
MCL = EPA Maximum Contaminant Level		F = Analyte pos	itively identifi	ed at a concentration	below the Reporting	Limit			
$\mu g/L = micrograms$ per liter		B = Value may	be affected by	Laboratory contamin	ation				
mg/L = milligrams per liter		J = Estimated va	alue.						
N/A = Not Applicable		= Not Anal	yzed						
Bold/Shaded = Exceeds MCL		PDB = Passive	Diffusion Bag						

TABLE D-4. GROUNDWATER ANALYTICAL RESULTS FOR GEPA HARMON MONITORING WELL #3 (HMW-3).

		Well ID	HMW-3	HMW-3	HMW-3	HMW-3	HMW-3	HMW-3	HMW-3
		Sample ID	AAFB02GH313F	AAFB02GH314F	AAFB02GH315F	AAFB02GH316F	AAFB02GH317F	AAFB02GH318F	AAFB02GH319F
		Sample Date	11/17/03	11/17/03	11/17/03	11/17/03	11/17/03	11/17/03	11/17/03
	Sa	mple Horizon	А	В	С	D	Е	E Dup	F
	Sample	e Depth (feet)	258.9	288.9	318.9	348.9	358.9	358.9	368.9
	Sa	mple Method	PDB	PDB	PDB	PDB	PDB	PDB	PDB
Method Analyte	Units	2002 MCL							
VOLATILE ORGANIC COMPOUNDS (VOCs)									
SW8260 ACETONE	µg/L	N/A	2.7 F	<5	6.5	4.3 F	2.7 F	<5	8.5
SW8260 CHLOROMETHANE	µg/L	N/A	< 1	< 1	< 1	< 1	< 1	< 1	< 1
SW8260 1,1-DICHLOROETHENE (1,1-DCE)	µg/L	7	< 1	< 1	< 1	< 1	< 1	< 1	< 1
SW8260 CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	µg/L	70	< 1	< 1	< 1	< 1	< 1	< 1	< 1
SW8260 TETRACHLOROETHENE (PCE)	µg/L	5	<1	<1	<1	<1	<1	<1	<1
SW8260 TERT-BUTYL METHYL ETHER	µg/L	20	< 1	< 1	< 1	< 1	< 1	< 1	< 1
SW8260 TRICHLOROETHENE (TCE)	µg/L	5	<1	<1	<1	<1	<1	<1	<1
WATER QUALITY PARAMETERS									
SW9056 CHLORIDE	mg/L	N/A	0.3 F	0.2 F	<1	0.2 F	0.2 F	0.2 F	0.2 F
Notes:									
MCL = EPA Maximum Contaminant Level			\$ 1	•	ncentration below th	e Reporting Limit			
$\mu g/L = micrograms$ per liter			•	iffected by Laborato	ry contamination				
mg/L = milligrams per liter			J = Estimated value						
N/A = Not Applicable Bold/Shaded = Exceeds MCL			= Not Analyze PDB = Passive Diff						
Dolu/Shaucu – Excetus MCL			rDD = Passive Diff	usion bag					

Ir							I
			Well ID	HMW-3	HMW-3	HMW-3	HMW-3
			Sample ID	AAFB02GH3L62F	AAFB02GH3L63F	AAFB02GH3L64F	AAFB02GH3L65F
			Sample Date	05/13/04	05/13/04	05/13/04	05/13/04
		Sa	mple Horizon	N/A	N/A	N/A	N/A
		Sample	e Depth (feet)	270.0	345.0	366.0	372.0
		Sa	mple Method	Piston Pump	Piston Pump	Piston Pump	Piston Pump
Method	Analyte	Units	2002 MCL				
VOLATI	LE ORGANIC COMPOUNDS (VOCs)					-	-
SW8260	ACETONE	μg/L	N/A	<5	<5	<5	2 J
SW8260	CHLOROMETHANE	μg/L	N/A	<1	<1	0.2 J	0.2 J
SW8260	1,1-DICHLOROETHENE (1,1-DCE)	μg/L	7	<1	<1	<1	<1
SW8260	CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	μg/L	70	<1	<1	<1	<1
SW8260	TETRACHLOROETHENE (PCE)	μg/L	5	<1	0.3 J	<1	<1
SW8260	TERT-BUTYL METHYL ETHER	µg/L	20	0.2 J	<1	<1	<1
SW8260	TRICHLOROETHENE (TCE)	μg/L	5	0.2 J	0.2 J	<1	<1
WATER	QUALITY PARAMETERS						
SW9056	CHLORIDE	mg/L	N/A	9.8	133	6,050	3,160
Notes:							
MCL = EP	PA Maximum Contaminant Level			F = Analyte positively	identified at a concent	ration below the Repor	ting Limit
$\mu g/L = mic$	crograms per liter			B = Value may be affe	cted by Laboratory con	ntamination	
mg/L = mi	lligrams per liter			J = Estimated value.			
N/A = Not	Applicable			= Not Analyzed			
Bold/Shad	led = Exceeds MCL			PDB = Passive Diffusi	ion Bag		

TABLE D-4. GROUNDWATER ANALYTICAL RESULTS FOR GEPA HARMON MONITORING WELL #3 (HMW-3).

TABLE D-5 GROUNDWATER ANALYTICAL RESULTS FOR TUMON BAY SPRINGS.

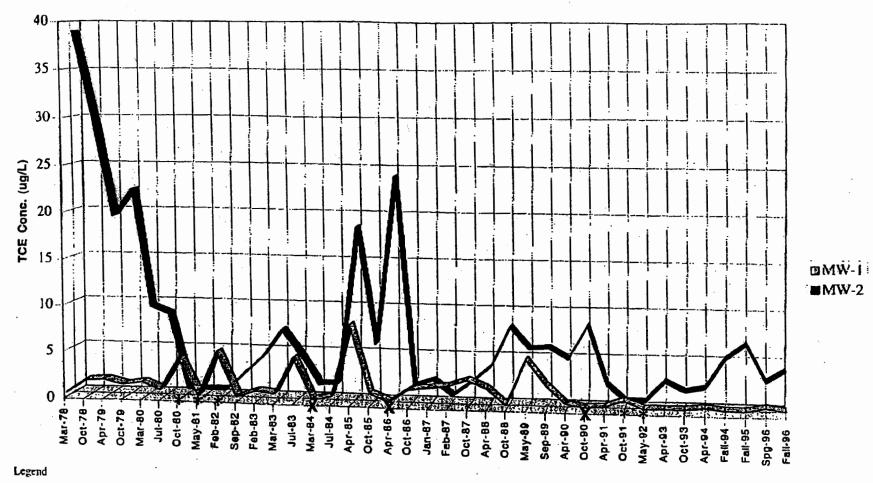
Method	Analyte	Units	MCL	Sample Location Sample Date	Hilton Onshore Spring	Marriott Onshore Spring	Reef Onshore Spring	Westin Onshore Spring	Outrigger Offshore Spring	Hyatt Offshore Spring	Wet Willie's Onshore Spring	Gun Beach Onshore Spring
VOLATI	LE ORGANIC COMPOUNDS (V	OCs)										
				Aug 2000	<1	<1	4.3	1.1	5.2	1.2	4.9	<1
SW8260	TETRACHLOROETHENE (PCE)		5	Feb/Mar 2001	<5	<5	<5	<5	<5	<5	<5	<5
SW 8200	TETRACHLOROETHENE (FCE)	µg/L	5	June 2001	<5	<5	<5	<5	<5	<5	<5	<5
				Aug 2001	<5	<5	5.4	<5	5.0	<5	<5	<5
				Aug 2000	<1	<1	1.6	3.9	3.9	<1	3.0	<1
SW8260	TRICHLOROETHENE (TCE)	uаЛ	5	Feb/Mar 2001	<5	<5	<5	<5	<5	<5	<5	<5
SW 8200	TRICHLOROETHENE (TCE)	µg/L	5	June 2001	<5	<5	<5	5.2	<5	<5	<5	<5
				Aug 2001	<5	<5	<5	<5	<5	<5	<5	<5
WATER	QUALITY PARAMETERS											
				Aug 2000	1,300	1,160	1,770	1,790	3,730	5,450	2,000	3,320
SW0056	CHLORIDE	ma/I	250	Feb/Mar 2001	2,300	1,800	760	2,900	1,400	9,200	2,600	4,300
3 11 9030	CHEORIDE	mg/L	230	June 2001	1,500	2,300	1,200	6,200	1,200	9,100	1,700	3,900
				Aug 2001	1,100	1,400	1,900	1,700	1,800	3,200	1,400	7,800
	CL = EPA Maximum Contaminant l d = Exceeds MCL	Level; µ	ug/L = m	icrograms per li	ter; mg/L =	= milligram	s per liter.					

TABLE D-6 HISTORICAL ANALYTICAL RESULTS FOR TUMON-MAUI WELL.

											Sa	imple Da	ate							
Method	Analyte	Units	MCL	Mar-78	Apr-78	Aug-78	May-81	Feb-82	Sep-82	Feb-83	Jul-83	Dec-83	Mar-84	Jul-84	Jan-85	Apr-85	Oct-87	Jan-88	Nov-88	Feb-89
VOLATILE O	RGANIC COMPOUNDS (VOCs)																			
SW8260	1,1-DICHLOROETHENE (1,1-DCE)	μg/L	7	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW8260	CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	μg/L	70	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW8260	TRANS-1,2-DICHLOROETHENE (TRANS 1,2-DCE)	μg/L	100	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW524.2/ SW8260	TETRACHLOROETHENE (PCE)	μg/L	5	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.5	0.7	1.8	2.7
SW524.2/ SW8260	TRICHLOROETHENE (TCE)	μg/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.5	<0.5	0.2	<0.5	2.7	<0.5	<0.5	DNA	DNA	DNA	DNA
	ACETONE	μg/L	5	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/SW8 260	CHLOROMETHANE	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW524.2	1,1,1-TRICHLOROETHANE (1,1,1-TCA)	μg/L	200	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW601	1,1,1-TRICHLOROETHENE (1,1,1-TCE)	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/ 524	BROMOFORM	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/ 524	CHLORODIBROMOMETHANE	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2	BROMODICHLOROMETHANE	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
WATER QUAL	LITY PARAMETERS																			
SW9056	CHLORIDE	mg/L	250	SNA	SNA	SNA	SNA	SNA	SNA	SNA	SNA	SNA	SNA	SNA	SNA	48	DNA	DNA	DNA	DNA
Notes: MCL = EPA Ma	aximum Contaminant Level			I = Esti	mated va	alue														
$\mu g/L = microgr$							vzed for	particula	ar param	eter										
mg/L = milligra	*				•		ble or a	•	•											
N/A = Not Appl	*				naded =				1											

TABLE D-6 HISTORICAL ANALYTICAL RESULTS FOR TUMON-MAUI WELL.

											Sa	imple Da	ite							
Method	Analyte	Units	MCL	May-89	Sep-89	Apr-90	Aug-90	Oct-90	Jan-91	Apr-91	Jul-91	Oct-91	Jan-92	Sep-92	Oct-92	Jun-93	Aug-93	Oct-93	Mar-94	Sep-94
VOLATILE O	RGANIC COMPOUNDS (VOCs)																			
SW8260	1,1-DICHLOROETHENE (1,1-DCE)	μg/L	7	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	<0.5
SW8260	CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	μg/L	70	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	<0.5
SW8260	TRANS-1,2-DICHLOROETHENE (TRANS 1,2-DCE)	μg/L	100	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	<0.5
SW524.2/ SW8260	TETRACHLOROETHENE (PCE)	μg/L	5	3.7	5	4.7	9	4.4	6.1	8.3	4.8	1.7	2.77	1.5	0.94	3.1	2.7	4.58	7.6	0.9
SW524.2/ SW8260	TRICHLOROETHENE (TCE)	μg/L	5	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	<0.5
	ACETONE	μg/L	5	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/SW8 260	CHLOROMETHANE	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	1.7
SW524.2	1,1,1-TRICHLOROETHANE (1,1,1-TCA)	μg/L	200	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	1.3
SW601	1,1,1-TRICHLOROETHENE (1,1,1-TCE)	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/ 524	BROMOFORM	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	7	0.65
SW502.2/ 524	CHLORODIBROMOMETHANE	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	3.3	0.66
SW502.2	BROMODICHLOROMETHANE	μg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	1.1	DNA
WATER QUA	LITY PARAMETERS																			
SW9056	CHLORIDE	mg/L	250	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	83
Notes:																				
	aximum Contaminant Level				mated va															
$\mu g/L = microgr$	*				-		yzed for		-											
mg/L = milligrates	*						ble or ar	alyte no	t reques	ted										
N/A = Not Appl	licable			Bold/Sl	naded =	Exceed	S MCL													


TABLE D-6 HISTORICAL ANALYTICAL RESULTS FOR TUMON-MAUI WELL.

							-	_			Samp	e Date		_	_	-	-		
Method	Analyte	Units	MCL	Dec-94	Mar-95	Apr-95	May-95	May-95	Sep-95	Sep-95	Sep-95	Dec-96	Feb-97	Feb-97	Feb-97	Feb-97	Mar-97	Oct-03	May-04
VOLATILE O	RGANIC COMPOUNDS (VOCs)																		
SW8260	1,1-DICHLOROETHENE (1,1-DCE)	µg/L	7	2.02	1.07	1.1	<0.5	1.5	NA	NA	NA	3	0.9	1.2	1.4	2.1	<0.5	<1	<1
SW8260	CIS-1,2-DICHLOROETHENE (CIS 1,2-DCE)	µg/L	70	<0.5	DNA	< 0.5	<0.5	DNA	< 0.5	< 0.5	<0.5	DNA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1
SW8260	TRANS-1,2-DICHLOROETHENE (TRANS 1,2-DCE)	µg/L	100	<0.5	DNA	<0.5	<0.5	DNA	<0.5	< 0.5	<0.5	DNA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	DNA
SW524.2/ SW8260	TETRACHLOROETHENE (PCE)	µg/L	5	14.6	11.6	11.6	12.9	13.1	13.4	2.1	9.4	11	11.2	18.2	19.9	19.5	22.4	0.7	0.6 J
SW524.2/ SW8260	TRICHLOROETHENE (TCE)	μg/L	5	<0.5	DNA	<0.5	<0.5	0.5	< 0.5	< 0.5	<0.5	DNA	2.3	<0.5	<0.5	<0.5	<0.5	<1	<1
SW8260	ACETONE	µg/L	5	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	2.1 J
SW502.2/SW8 260	CHLOROMETHANE	µg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.4 J
SW524.2	1,1,1-TRICHLOROETHANE (1,1,1-TCA)	µg/L	200	7.14	5.22	DNA	DNA	DNA	DNA	DNA	DNA	1.5	DNA						
SW601	1,1,1-TRICHLOROETHENE (1,1,1-TCE)	µg/L	N/A	DNA	DNA	DNA	DNA	3.7	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/ 524	BROMOFORM	µg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2/ 524	CHLORODIBROMOMETHANE	µg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
SW502.2	BROMODICHLOROMETHANE	µg/L	N/A	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA
WATER QUA	LITY PARAMETERS		-		-		-					-				-	-		
SW9056	CHLORIDE	mg/L	250	SNA	DNA	SNA	SNA	DNA	SNA	SNA	SNA	DNA	SNA	SNA	SNA	SNA	SNA	SNA	DNA
Notes:				J = Esti	mated va	lue.													
MCL = EPA M	aximum Contaminant Level			SNA =	Sample	not analy	yzed for	particula	ar param	neter									
$\mu g/L = microgr$	rams per liter							nalyte no	ot reques	sted									
mg/L = milligra	*			Bold/Sl	naded =	Exceed	s MCL												
N/A = Not App	licable																		

Appendix D

Historical Groundwater Analytical Results for Sampling Points Downgradient of MARBO Annex

FIGURE D-1 TCE CONCENTRATIONS FOR MW-1, MW-2

X Sample not obtained for MW-1

* Sample not obtained for MW-2

Note: All non-detected and not sampled results are plotted as <0.5 ug/L

Appendix E

Long-Term Groundwater Monitoring Program Technical Memoranda

Memo

- To: Joan Poland, Andersen AFB
- From: Joel Lazzeri, EA Pacific
- CC: Victor Wuerch, Guam EPA Mark Ripperda, USEPA Region IX John Q. Hill, AFCEE COR John Sullivan, PACAF Jim Rosacker, Booz-Allen Hamilton
- Date: February 16, 1998
- Re: Long-Term Groundwater Monitoring at MARBO

As per the 22 October 1997 Andersen AFB RPM Meeting please find an attached map that identifies which monitoring and production wells will remain in and which ones will be removed from the long-term groundwater monitoring program. The IRP will no longer sample the following production and monitoring wells: MW-1 through MW-3, MW-5 through MW-9, M-5, M-15, D-1, D-4, all Yseries, IRP-28 and IRP-32B. The wells that the IRP will continue to sample semi-annually, for volatile organic compounds (VOCs) will include: D-2, D-5, D-14, M-6, M-7, GPA-1, GPA-2, IRP-1, IRP-2, IRP-8, IRP-12, IRP-14, IRP-23 through IRP-27, IRP-29 through IRP-31, and IRP-33 through IRP-35. The monitoring wells around Waste Pile 7 (IRP-10, IRP-15, and IRP-16) will be sampled for VOCs, pesticides, polychlorinated biphenols (PCBs), and metals. In the event that any other constituents of concern (COCs) are detected during sampling of the Air Force (MW series) or Guam Waterworks Authority (D, M and Y-series) production wells the long-term monitoring target analyte list will be changed accordingly. If TCE or PCE concentrations increase in any of the wells, some of the wells may be added back into the long-term monitoring program. Additionally, although some of the monitoring wells will not be sampled as part of the long-term monitoring program, they will remain in place in the event that groundwater samples need to be collected from them in the future.

jjl:JJL

Encl:

EA®

To:	Gregg Ikehara, Andersen AFB
Cc:	John Hill, AFCEE
	Mike Knight, URS
	Mike Bone, Foster Wheeler
	Jim Rosacker, Unitech
From:	Joel Lazzeri, EA
Subject:	Variance Request to the Long Term Groundwater Monitoring Program (LTGMP) at the
	Main Base, Northwest Field, and MARBO Operable Units, Andersen AFB, Guam.
Date:	June 5, 2001

Gregg,

Pursuant to the 17 May 2001 Remedial Project Managers (RPM) meeting in Honolulu, herein is a revised variance request to discontinue specific groundwater parameters that are analyzed as part of the Long Term Groundwater Monitoring Program (LTGMP) at Andersen AFB, Guam. After completion of the Fall 2000 groundwater sampling event at the Main Base, Northwest Field and MARBO historical data for 11 biannual groundwater sampling events were reviewed and indicated that the following parameters should be removed from the LTGMP: polychlorinated biphenyls (PCBs) by method SW8082, semivolatile organic compounds (SVOCs) by method SW8270, and total dissolved solids (TDS) by method 160.1.

As presented in the 07 May 2001 Variance Request to the LTGMP at the Main Base, Northwest Field, and MARBO Operable Units, since October 1995, the Air Force has completed 11 biannual groundwater sampling events. The complete historical records of the groundwater sampling results are presented in Appendix A of the binannual groundwater monitoring reports that are submitted to Guam Environmental Protection Agency (GEPA). The supporting rationale are summarized in the following sections:

PCBs (8082)

Since October 1995, approximately 840 discrete groundwater samples have been collected and analyzed for PCBs as part of the Andersen AFB LTGMP. To date no PCB aroclors have been detected in a single groundwater sample. It is recommended that PCBs be removed from the LTGMP.

TDS (160.1)

Since October 1995, approximately 900 discrete groundwater samples were collected and analyzed for TDS as part of the Andersen AFB LTGMP. As none of the TDS data has been used in any meaningful way it is recommended that TDS be removed from the LTGMP.

SVOCs (8270)

Since October 1995, approximately 844 discrete groundwater samples have been collected and analyzed as part of the Andersen AFB LTGMP. Approximately 400 of these groundwater samples were collected at the Main Base Operable Unit and analyzed for SVOCs by method SW8270. To date only the following three SVOC analytes have been detected in the SW8270 analyses of Main Base groundwater samples: bis(2-ethylhexyl) phthalate, naphthalene, and pyrene (Table 1).

Naphthalene was only detected in a single groundwater sample (USGS-150 duplicate), during Sample Round 5, at a concentration of 8 micrograms per liter (μ g/L). Pyrene was detected in two groundwater samples (USGS-150 and USGS-150 duplicate) during Sample Round 1 (5J μ g/L each) and in one groundwater sample (USGS-150) during Sample Round (2 μ g/L). Naphthalene and pyrene are commonly associated with each other and other polynuclear aromatic hydrocarbons (PAHs), such as benzo(a)pyrene. The lower detection limits provided by method SW8310 versus method SW8270 make it the preferred method for analyzing PAHs.

Bis(2-ethylhexyl) phthalate was the only non-PAH analyte detected in any of the Main Base groundwater samples analyzed by method SW8270. Bis(2-ethylhexyl) phthalate was detected in groundwater samples collected during Rounds 3, 4, 5, 6, 7, 8, 9, and 10 (Table 1), but in a random arrangement. As bis(2-ethylhexyl) phthalate is used as a plasticizer it is readily available from plastic and rubber products, and is a common field or lab contaminant. In particular the bis(2-ethylhexyl) phthalate detected in samples IRP 4 and IRP 9 during Sample Round 7 (Table 1) were positively attributed to lab contamination.

Given that naphthalene and pyrene are more amenable to analysis by method SW8310 versus method SW8270, and that the occurrence of bis(2-ethylhexyl) is likely attributable to field and lab contamination, it is recommended that analysis of SVOCs by SW8270 be removed from the LTGMP.

GROUNDWATER ANALYTICAL RESULTS FOR MAIN BASE SVOCs (8270) AND PAHs (8310), ANDERSEN AFB, GUAM

					MO	CL	USE Region		IRP 3	IRP 3Dup	IRP 4	IRP 4 Dup	IRP 5	IRP 6	IRP 6 Dup	IRP 7	IRP 9	IRP 9 Dup
Sampling Event	Method	Analyte		Units	19	96	PRG (1	999)	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.
Semivolatile Org	ganic Compo	ounds (SVOCs) by 8270																
Round 3	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Round 4	SW8270	Bis(2-ethylhexyl) phthalate	•	µg/L	6.0	F	4.8	ca	<10	<10	<10		<10	<10		<10	<10	
Round 5	SW8270	Bis(2-ethylhexyl) phthalate	•	µg/L	6.0	F	4.8	ca	11	<10	<10		<10	3		3	33	
Round 6	SW8270	Bis(2-ethylhexyl) phthalate	•	µg/L	6.0	F	4.8	ca	<10	<10	<10		<10	<10		<10	<10	
Round 7	SW8270	Bis(2-ethylhexyl) phthalate	•	µg/L	6.0	F	4.8	ca	<10	<10	3 JB‡		<10	<10		<10	2 JB‡	
Round 8	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10	<10	<10		3 J	6 J		<10	<10	
Round 9	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10	<10	<10	I	<10	<10		<10	<10	
Round 10	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10	<10	<10	I	10	<10		<10	<10	
Round 5	SW8270	Naphthalene	S	µg/L			6.2	nc	<10	<10	<10		<10	<10		<10	<10	
Round 1	SW8270	Pyrene	Also AHs	µg/L			180	nc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Round 6	SW8270	Pyrene	P	µg/L			180	nc	<10	<10	<10		<10	<10		<10	<10	
Rounds 2 &11	SW8270	All non-detects				_												
Polynuclear Aro	matic Hydro	ocarbons (PAHs) by 8310																
Round 6	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	
Round 7	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	
Round 8	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	
Round 9	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	
Round 10	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	
Round 11	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	

GROUNDWATER ANALYTICAL RESULTS FOR MAIN BASE SVOCs (8270) AND PAHs (8310), ANDERSEN AFB, GUAM

				М	CL	USE Regio		IRP 11	IRP 13	IRP 17	IRP 17 Dup	IRP 18	IRP 19	IRP 20	IRP 39	IRP 39Dup	IRP 40	IRP 41	IRP 41 Dup
Sampling Event	Method	Analyte	Units	19	96	PRG (1	1999)	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.
Semivolatile Org	anic Compo	ounds (SVOCs) by 8270																	
Round 3	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10	<10	15	<10	<10	<10		<10	<10	<10
Round 4	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10		38	10 J	<10	<10		<10	<10	<10
Round 5	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Round 6	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	
Round 7	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10		<10	21	<10	<10	<10	<10	<10	4 J
Round 8	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	44	7 J		<10	4 J	<10	<10	<10	410 D	13	8 J
Round 9	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10		<10	9 J	<10	<10	<10	<10	<10	
Round 10	SW8270	Bis(2-ethylhexyl) phthalate	µg/L	6.0	F	4.8	ca	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	
Round 5	SW8270	Naphthalene	µg/L			6.2	nc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
Round 1	SW8270	Pyrene SIV	µg/L			180	nc	<10	<10	<10	<10	<10	<10	<10					
Round 6	SW8270	Pyrene	µg/L			180	nc	<10	<10	<10		<10	<10	<10	<10	<10	<10	<10	
Rounds 2 &11	SW8270	All non-detects																	
Polynuclear Aro	matic Hydro	ocarbons (PAHs) by 8310																	
Round 6	SW8310	Benzo(a)pyrene	µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Round 7	SW8310	Benzo(a)pyrene	µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Round 8	SW8310	Benzo(a)pyrene	µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Round 9	SW8310	Benzo(a)pyrene	µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Round 10	SW8310	Benzo(a)pyrene	µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	[]
Round 11	SW8310	Benzo(a)pyrene	µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	

GROUNDWATER ANALYTICAL RESULTS FOR MAIN BASE SVOCs (8270) AND PAHs (8310), ANDERSEN AFB, GUAM

					М	CL	USE Regio		IRP 42	IRP 42 Dup	IRP 48	IRP 48 Dup	IRP 49	IRP 49 Dup	IRP 50	IRP 51	IRP 51Dup	IRP 52
Sampling Event	Method	Analyte		Units	19	96	PRG (1	999)	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.
Semivolatile Org	anic Compo	ounds (SVOCs) by 8270																
Round 3	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	4 J	4 J	<10	<10	<10	<10	<10	<10		<10
Round 4	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10	<10	<10	<10	<10	<10	<10	<10		<10
Round 5	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10		<10	<10	<10		<10	<10		<10
Round 6	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10		<10		<10		<10	<10	<10	<10
Round 7	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10		<10		<10		<10	58	<10	<10
Round 8	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<11		<10		<10		9 J	<10		<10
Round 9	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10		2.5		<10		<10	<10	<10	<10
Round 10	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10		<10	[]	<10		<10	<10	<10	9
Round 5	SW8270	Naphthalene	so Hs	μg/L			6.2	nc	<10		<10	<10	<10		<10	<10		<10
Round 1	SW8270	Pyrene	Alsc AH	µg/L			180	nc										
Round 6	SW8270	Pyrene	d 7	µg/L			180	nc	<10		<10		<10		<10	<10	<10	<10
Rounds 2 &11	SW8270	All non-detects			_									-		-		
Polynuclear Aro	matic Hydro	ocarbons (PAHs) by 8310																
Round 6	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2		< 0.2		< 0.2	< 0.2	< 0.2	< 0.2
Round 7	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2		< 0.2		< 0.2	< 0.2	< 0.2	< 0.2
Round 8	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2		< 0.2		< 0.2	< 0.2		< 0.2
Round 9	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2		< 0.2		< 0.2	< 0.2	< 0.2	< 0.2
Round 10	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2		< 0.2		< 0.2	< 0.2	< 0.2	< 0.2
Round 11	SW8310	Benzo(a)pyrene		μg/L	0.2	F	0.2	ca	< 0.2		< 0.2		< 0.2		< 0.2	< 0.2	< 0.2	< 0.2

GROUNDWATER ANALYTICAL RESULTS FOR MAIN BASE SVOCs (8270) AND PAHs (8310), ANDERSEN AFB, GUAM

					MO	CL	USE Region		IRP 52 Dup	IRP 53	IRP 54	IRP 55	IRP 56	IRP 56 Dup	IRP 57	IRP 57 Dup	IRP 58	IRP 59
Sampling Event	Method	Analyte		Units	19	96	PRG (1	999)	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.
Semivolatile Organic Compounds (SVOCs) by 8270																		
Round 3	SW8270	Bis(2-ethylhexyl) phthalate µg/L		6.0	F	4.8	ca	<10	<10	<10	<10	<10	<10	<10		<10	<10	
Round 4	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10	<10	<10	<10	<10	<10	<10		<10	<10
Round 5	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca	<10	<10	5	<10	<10		3		7	<10
Round 6	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca		<10	<10	<10	<10		<10		<10	<10
Round 7	SW8270	Bis(2-ethylhexyl) phthalat	e	µg/L	6.0	F	4.8	ca		<10	<10	<10	<10		<10		<10	<10
Round 8	SW8270			µg/L	6.0	F	4.8	ca		<10	<10	<10	8 J		<10		4 J	<10
Round 9	SW8270	Bis(2-ethylhexyl) phthalate µg/L		µg/L	6.0	F	4.8	ca		<10	<10	<10	<10		<10		<10	<10
Round 10	SW8270			µg/L	6.0	F	4.8	ca		<10	<10	<10	<10		<10		<10	<10
Round 5	SW8270	Naphthalene	S	µg/L			6.2	nc	<10	<10	<10	<10	<10		<10		<10	<10
Round 1	SW8270	Pyrene	Also AHs	μg/L			180	nc					-					
Round 6	SW8270	Pyrene	d 7	µg/L			180	nc		<10	<10	<10	<10		<10		<10	<10
Rounds 2 &11	SW8270	All non-detects				_												
Polynuclear Aro	matic Hydro	ocarbons (PAHs) by 8310																
Round 6	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca		< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2
Round 7	SW8310	Benzo(a)pyrene µg/L		µg/L	0.2	F	0.2	ca		< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2
Round 8	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca		< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2
Round 9	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca		< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2
Round 10	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca		< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2
Round 11	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca		< 0.2	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2

GROUNDWATER ANALYTICAL RESULTS FOR MAIN BASE SVOCs (8270) AND PAHs (8310), ANDERSEN AFB, GUAM

					М	CL	USE Regio		IRP 60	IRP 60 Dup	LF1-1	LF1-2	LF1-2 Dup	LF1-3	LF1-3 Dup	LF1-4	USGS 75	USGS 150	USGS 150 Dup	USGS 128
Sampling Event	Method	Analyte		Units	19	96	PRG (1	1999)	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.
Semivolatile Org	ganic Compo	ounds (SVOCs) by 8270																		
Round 3	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	<10	<10	<10	<10	<10	<10	<10		<10
Round 4	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	<10	<10	2 J	<10	<10	<10	<10		<10
Round 5	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	<10	14	<10		<10	<10	<10	6	
Round 6	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	<10		<10		52	7	<10	<10	<10
Round 7	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	<10		<10	<10	<10	<10	<10	<10	<10
Round 8	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	<10		<10		<10	7 J	<10	<10	<10
Round 9	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10		<10	1.6 J		<10		<10	<10	<10	<10	<10
Round 10	SW8270	Bis(2-ethylhexyl) phthalate	e	µg/L	6.0	F	4.8	ca	<10	<10	<10	<10		<10		<10	<10	<10		<10
Round 5	SW8270	Naphthalene	S	µg/L			6.2	nc	<10		<10	<10	<10	<10		<10	<10	<10	8	
Round 1	SW8270	Pyrene	Also AHs	µg/L			180	nc									<10	5 J	5 J	<10
Round 6	SW8270	Pyrene	Ρ	µg/L			180	nc	<10		<10	<10		<10		<10	<10	2	<10	<10
Rounds 2 &11	SW8270	All non-detects																		
Polynuclear Aro	matic Hydro	ocarbons (PAHs) by 8310																		
Round 6	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2	< 0.2		< 0.2		< 0.2	< 0.2	1.2	0.93	< 0.2
Round 7	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	0.21	< 0.2	< 0.2
Round 8	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2	< 0.2		< 0.2		< 0.2	<2	0.55	0.48	< 0.2
Round 9	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2		< 0.2	< 0.2		< 0.2		< 0.2	< 0.2	0.263	0.242	< 0.2
Round 10	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2	0.44		< 0.2
Round 11	SW8310	Benzo(a)pyrene		µg/L	0.2	F	0.2	ca	< 0.2	< 0.2	< 0.2	< 0.2		< 0.2		< 0.2	< 0.2	0.116		< 0.2

Technical Memorandum

30 July 2003

- To: John Hill, AFCEE Gregg Ikehara, Andersen AFB Jim Rosacker, Booz-Allen Hamilton Mark Ripperda, Region IX EPA Victor Wuerch, GEPA
- cc: Pam Moss, TTFWI Joel Lazzeri, EA Toraj Ghofrani, EA
- From: Jeff Morrell, EA
- Subject: Reduction of Monitoring Points, Sampling Frequency, and Analytical Parameters for Long-term Groundwater Monitoring at MARBO Annex Operable Unit

Pursuant to the 09 April and 10 July 2003 Remedial Program Manager (RPM) meetings, this memorandum proposes a reduction of the number of monitoring points, sampling frequency, and selected analytical parameters for the Long-term Groundwater Monitoring (LTGM) Program at the MARBO Annex Operable Unit (OU).

BACKGROUND

Groundwater monitoring was initiated in October 1995 in accordance with the approved Groundwater Monitoring Plan (GWMP) (EA, 1995). The goals of the GWMP were to:

- establish baseline groundwater elevation and water quality data at monitoring and production wells,
- evaluate the baseline data and identify critical sampling locations, install new monitoring wells in those critical sampling locations, determine monitoring frequency, and select analytical methods for a Long-term Groundwater Monitoring (LTGM) Program, and
- implement the LTGM Program.

Initially 46 monitoring and production wells were sampled on a semiannual basis and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs), metals, cyanide, and water quality parameters (total dissolved solids, alkalinity, chlorides, and sulfate).

In 1997, these 46 monitoring and production wells were evaluated according to criteria established

in the GWMP (EA, 1995) to determine whether they should be retained in the LTGM Program. Wells meeting the following criteria were recommended for retention:

- wells with detected target analyte concentrations at or above Applicable or Relevant and Appropriate Requirements (ARARs), including the most current *Drinking Water Standards and Health Advisories* Maximum Contaminant Levels (MCLs),
- wells located down-gradient of a potential source area, and
- wells that provide a strategic monitoring location.

A February 1998 memorandum for the MARBO Annex OU (EA, 1998), requested that 12 monitoring and production wells be removed from the LTGM Program based on a review of the trends observed from four groundwater sampling events (Fall 1995 through Spring 1997). This memorandum also requested that the analytical parameters for the remaining 34 wells (Table 1 and Figure 1) be reduced to VOCs, only, with the exception of three wells (IRP-10, IRP-15, and IRP-16) located near Waste Pile 7. In support of the remedial action (a soil cover) for Waste Pile 7, IRP-10, IRP-15, and IRP-16 were to be monitored for VOCs, PAHs, pesticides, metals, cyanide, SVOCs, PCBs, and water quality parameters. The United States Environmental Protection Agency (USEPA) and Guam Protection Agency (GEPA) approved this request. A subsequent memorandum (EA, 2001), based on the evaluation of additional data, recommended that SVOCs and PCBs be removed as analytical parameters from IRP-10, IRP-15, and IRP-16. The USEPA and GEPA approved this request.

Upon completion of the Fall 2002 groundwater sampling event there are 15 rounds of historical groundwater analytical data available for evaluation. Historical groundwater data trends support an additional reduction of total number of wells, sampling frequency, and analytical parameters at the MARBO Annex OU as outlined in the following paragraphs.

LTGM PROGRAM RECOMMENDATIONS

IRP Monitoring Wells

Five IRP monitoring wells (IRP-1, IRP-2, IRP-12, IRP-23, and IRP-26) are recommended for removal from the LTGM program. The remaining 14 IRP monitoring wells (IRP-8, IRP-10, IRP-14, IRP-15, IRP-16, IRP-24, IRP-25, IRP-27, IRP-29, IRP-30, IRP-31, IRP-33, IRP-34, and IRP-35) are recommended for retention in the LTGM program. As presented in Table 2, concentrations of VOCs in groundwater samples collected from IRP-1, IRP-2, IRP-12, IRP-23, and IRP-26 have either been non detect (ND), or have been detected at concentrations below action level (BAL). Continued sampling of these wells does not advance the current understanding of groundwater quality and dynamics at the MARBO Annex OU. Tetrachloroethene (PCE) and trichloroethene (TCE) have been detected consistently, at concentrations exceeding the MCL, in groundwater samples collected from IRP-14, IRP-29, and IRP-31. These wells are recommended for retention in the LTGM Program. VOC concentrations in groundwater samples collected from IRP-8, IRP-30, IRP-33, and IRP-34 have either been ND or BAL however, due to their strategic locations they are recommended for retention in the LTGM Program. IRP-8 is upgradient and IRP-27 is downgradient of Site 38/MARBO Laundry (PCE source). IRP-25 and IRP-30 are located adjacent to IRP-31 (TCE > MCL). IRP-24 and IRP-35 are both deep-screened groundwater monitoring wells, and IRP 33 and

IRP-34 provide upgradient monitoring points along the MARBO property. The remaining IRP monitoring wells IRP-10, IRP-15, and IRP-16 are recommended for retention due to their proximity to IRP Site 20/Waste Pile 7. Groundwater samples collected from IRP-10, IRP-15, and IRP-16 have been analyzed for VOCs, PAHs, pesticides, metals, cyanide, and water quality parameters. As presented in Table 5, concentrations of PAHs and cyanide in groundwater samples collected from IRP-10, IRP-15 and IRP-16 have been ND. Therefore only VOCs, pesticides, and metals are proposed for analysis of groundwater samples collected from IRP-10, IRP-15, and IRP-16.

Guam Waterworks Authority Production Wells

Four of the five Guam Waterworks Authority (GWA) production wells (D-2, D-5, M-6, and M-7) are recommended for removal from the LTGM program. GWA production well D-14 is recommended for retention due to its downgradient location from MARBO Annex. As presented in Table 3, VOC concentrations in groundwater samples collected from (D-2, D-5, M-6, and M-7) wells have either been ND, or have been detected at concentrations BAL. Continued sampling of these wells does not advance the current understanding of groundwater quality and dynamics at the MARBO Annex OU.

Andersen AFB Production Wells

Five of the eight Andersen AFB production wells (MW-3, MW-5, MW-6, MW-7, and MW-8) are recommended for removal from the LTGM program and three production wells (MW-1, MW-2, and MW-9) are recommended for retention. As presented in Table 4, VOC concentrations in groundwater samples collected from (MW-3, MW-5, MW-6, MW-7, and MW-8) have either been ND, or have been detected at concentrations BAL. Continued sampling of these wells does not advance the current understanding of groundwater quality and dynamics at the MARBO Annex OU. TCE has been detected consistently, at concentrations exceeding the MCL, in groundwater samples collected from MW-2. MW-9 is located downgradient of Site 38/MARBO Laundry (PCE source) and MW-1 is located adjacent to IRP-31 (TCE > MCL).

Guam Power Authority Monitoring Wells

Guam Power Authority (GPA) monitoring wells GPA-1 and GPA-2 are recommended for retention in the LTGM Program. TCE has been detected at concentrations above the MCL; seven times in GPA-1 and once in GPA-2.

Sampling Frequency

A reduction in sampling frequency from a semiannual to annual basis is recommended for the wells remaining in the LTGM Program: D-14, GPA-1, GPA-2, IRP-8, IRP-10, IRP-14, IRP-15, IRP-16, IRP-24, IRP-25, IRP-27, IRP-29, IRP-30, IRP-31, IRP-33, IRP-34, IRP-35, MW-1, MW-2, and MW-9. A review of historical groundwater elevation and analytical data indicate that there is minimal variation in between wet and dry season data. However, based on GEPA's recommendation during 10 July 2003 RPM meeting, the annual sampling will be performed in fall.

REFERENCES

EA (EA Engineering, Science and Technology, Inc.), 1995. *Final Groundwater Monitoring Plan, Andersen Air Force Base, Guam.* October 1995.

EA (EA Engineering, Science, and Technology, Inc.), 1997. *Technical Memorandum on Groundwater Pump Corrosion, Andersen AFB, Guam.* June 1997.

EA (EA Engineering, Science, and Technology, Inc.), 1998. Long-Term Groundwater Monitoring at MARBO. February 1998.

EA (EA Engineering, Science, and Technology, Inc.), 2001. Variance Request to the Long Term Groundwater Monitoring Program (LTGM Program) at the Main Base, Northwest Field, and MARBO Operable Units, Andersen AFB, Guam. June 2001.

TABLE 1. RECOMMENDED LONG-TERM GROUNDWATER MONITORING POINTS FOR MARBO ANNEX, ANDERSEN AFB, GUAM.

						s	a te	= 9		P	aram	eter L	ist	
Well Identification	Location	Sampling Method	Well Type	Screened Interval (feet below ground surface)	Borehole Total Depth (feet below ground surface)	Concentrations Exceeding ARARs	Upgradient IRP Site Under Investigation	Downgradient Well Location Relative to IRP Site	VOCs (+MTBE)	PAHs	Pesticides	Metals	Cyanide	Water Quality
D-2	MARBO Annex	Well-head/Spigot	Production	383-418	418	No			Х	-	-	-	-	-
D-5	MARBO Annex	Well-head/Spigot	Production	372-412	412	No			Х	-	-	-	-	-
D-14	MARBO Annex	Well-head/Spigot	Production	330-370	375	No			Х	-	-	-	-	-
GPA-1	MARBO Annex	Portable Pump	Full	Unknown	Unknown	Yes		No	Х	-	-	-	-	-
GPA-2	MARBO Annex	Portable Pump	Full	Unknown	Unknown	No			Х	-	-	-	-	-
IRP-1	MARBO Annex	Dedicated Pump	Shallow	276-316	320	No			Х	-	-	-	-	-
IRP-02	MARBO Annex	Dedicated Pump	Shallow	360-400	404	No			Х	-	-	-	-	-
IRP-08	MARBO Annex	Portable Pump	Shallow	350-390	400	No	Downgradient from Site 38/ MARBO Laundry	Yes	x	-	-	-	-	-
IRP-10	MARBO Annex	Dedicated Pump	Shallow	292-331	338	Yes	Site 20/ Waste Pile 7	Yes	х	х	х	х	х	Х
IRP-12	MARBO Annex	Dedicated Pump	Shallow	329-369	376	No			Х	-	-	-	-	-
IRP-14	MARBO Annex	Dedicated Pump	Shallow	362-402	412	Yes	Site 38/ MARBO Laundry	No	х	-	-	-	-	-
IRP-15	MARBO Annex	Dedicated Pump	Shallow	294-334	338	Yes	Site 20/ Waste Pile 7	Yes	х	Х	Х	Х	х	Х
IRP-16	MARBO Annex	Dedicated Pump	Shallow	281-321	326	Yes	Site 20/ Waste Pile 7	Yes	х	Х	х	х	х	Х
IRP-23	MARBO Annex	Dedicated Pump	Shallow	307-327	460	No			Х	-	-	-	-	-
IRP-24	MARBO Annex	Portable Pump	Deep	410-430	445	No			Х	-	-	-	-	-
IRP-25	MARBO Annex	Dedicated Pump	Shallow	353-373	480	No			Х	-	-	-	-	-
IRP-26	MARBO Annex	Portable Pump	Shallow	310-330	460	No			Х	-	-	-	-	-
IRP-27	MARBO Annex	Dedicated Pump	Shallow	324-344	460	No			Х	-	-	-	-	-
IRP-29	MARBO Annex	Portable Pump	Deep	459-479	520	Yes	Site 38/ MARBO Laundry	No	х	-	-	-	-	-
IRP-30	MARBO Annex	Dedicated Pump	Shallow	349-369	480	No	Site 38/ MARBO Laundry	Yes	х	-	-	-	-	-
IRP-31	MARBO Annex	Portable Pump	Deep	445-465	480	Yes	Site 38/ MARBO Laundry	Yes	х	-	-	-	-	-
IRP-33	MARBO Annex	Dedicated Pump	Shallow	472-492	520	No	Upgradient Boundary Wells	No	х	-	-	-	-	-
IRP-34	MARBO Annex	Dedicated Pump	Deep	392-412	520	No	Upgradient Boundary Wells	No	х	-	-	-	-	-
IRP-35	MARBO Annex	Portable Pump	Deep	380-400	412	No			Х	-	-	-	-	-
M-6	MARBO Annex	Well-head/Spigot	Production	320-405	405	No			Х	-	-	-	-	-
M-7	MARBO Annex	Well-head/Spigot	Production	290-340	340	No			Х	-	-	-	-	-
MW-1	MARBO Annex	Well-head/Spigot	Production	345-385	385	No			Х	-	-	-	-	-
MW-2	MARBO Annex	Portable Pump	Production	349-379	379	Yes	Site 38/ MARBO Laundry	Yes	х	-	-	-	-	-
MW-3	MARBO Annex	Well-head/Spigot	Production	408-428	428	No			Х	-	-	-	-	-
MW-5	MARBO Annex	Well-head/Spigot	Production	Unknown	475	No			Х	-	-	-	-	-
MW-6	MARBO Annex	Well-head/Spigot	Production	Unknown	497	No			Х	-	-	-	-	-
MW-7	MARBO Annex	Well-head/Spigot	Production	Unknown	408	No			Х	-	-	-	-	-
MW-8	MARBO Annex	Well-head/Spigot	Production	Unknown	390	No			Х	-	-	-	-	-
MW-9	MARBO Annex	Well-head/Spigot	Production	Unknown	472	No			Х	-	-	-	-	-
	osed for removal from L ecific target analyte list	TGM Program												

TABLE 2. HIGHEST DETECTED GROUNDWATER ANALYTICAL RESULTS FOR INSTALLATION RESTORATION PROGRAM MONITORING WELLS AT MARBO ANNEX, ANDERSEN AFB, GUAM.

			1						
				MCL	IRP-1	IRP-2	IRP-12	IRP-23	IRP-26
Sampling	Method	Analyte	Units	2002	IKP-1	IKP-2	IKP-12	IKP-25	IKP-20
Event		-							
Volatile Orga Round 15	SW8260	inds (VOCs) by SW8260 1.2.4-TRICHLOROBENZENE	μg/L	N/A					1.9
Round 9	SW8260	BROMOMETHANE	μg/L μg/L	N/A					1.9
Round 12	SW8260	BROMOMETHANE	μg/L	N/A					
Round 3	SW8260	CARBON DISULFIDE	μg/L	N/A	11	2	0.4 J	2	0.7 J
Round 10	SW8260	CARBON DISULFIDE	μg/L	N/A		0.3 F			
Round 9	SW8260	CHLOROMETHANE	μg/L	N/A	1.0				0.3 F‡
Round 11	SW8260	CHLOROMETHANE	μg/L	N/A	9.0	0.9 F	0.9 F	0.5 F	2.0
Round 12	SW8260	CHLOROMETHANE	μg/L	N/A		5.7	4.8	6.5	6.3
Round 13	SW8260	CHLOROMETHANE	μg/L	N/A					
Round 14	SW8260	CHLOROMETHANE	μg/L	N/A	0.7 J	0.3	0.3 J	0.5 J	
Round 6	SW8260	CIS-1,2-DICHLOROETHENE	μg/L	70 F					
Round 9	SW8260	DICHLORODIFLUOROMETHANE	$\mu g/L$	N/A					
Round 11	SW8260	DICHLORODIFLUOROMETHANE	μg/L	N/A					
Round 13	SW8260	ETHYLBENZENE	μg/L	700					
Round 13	SW8260	M,P-XYLENES	μg/L	10000					
Round 13 Round 5	SW8260 SW8260	METHYL ETHYL KETONE METHYLENE CHLORIDE	μg/L	N/A N/A					
Round 5 Round 6	SW8260 SW8260	METHYLENE CHLORIDE	μg/L μg/L	N/A N/A			1		
Round 9	SW8260	METHYLENE CHLORIDE	μg/L μg/L	N/A	0.1 F	0.2 F‡	0.9 F		
Round 11	SW8260	METHYLENE CHLORIDE	μg/L	N/A	0.1 F	0.214	0.71		
Round 13	SW8260	METHYLENE CHLORIDE	μg/L	N/A					
Round 15	SW8260	METHYLENE CHLORIDE	μg/L	N/A					
Round 9	SW8260	NAPHTHALENE	μg/L	N/A				0.2 F	
Round 15	SW8260	NAPHTHALENE	μg/L	N/A					3.6
Round 3	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F			0.2 J		0.6 J
Round 4	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F					0.2 J
Round 5	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F					0.4.1
Round 6 Round 7	SW8260 SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F 5 F					0.4 J
Round 7 Round 8	SW8260	TETRACHLOROETHENE(PCE) TETRACHLOROETHENE(PCE)	μg/L μg/L	5 F					
Round 9	SW8260	TETRACHLOROETHENE(PCE)	μg/L μg/L	5 F					0.2 F
Round 10	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F					0.2 F
Round 11	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F					0.2 F
Round 12	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F					0.1 F
Round 13	SW8260	TETRACHLOROETHENE(PCE)	µg/L	5 F					0.2
Round 14	SW8260	TETRACHLOROETHENE(PCE)	$\mu g/L$	5 F					
Round 15	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F					
Round 9	SW8260	TOLUENE	μg/L	1,000 F	0.3 F	0.1 F‡	0.2 F		
Round 10	SW8260	TOLUENE	μg/L	1,000 F	0.5	0.5	0.5 F	0.5	
Round 13 Round 3	SW8260	TOLUENE TRICHLOROETHENE (TCE)	μg/L	1,000 F	0.5	0.5	0.5	0.5	
Round 3 Round 4	SW8260 SW8260	TRICHLOROETHENE (TCE) TRICHLOROETHENE (TCE)	μg/L	5 F 5 F					0.9 J
Round 4 Round 5	SW8260 SW8260	TRICHLOROETHENE (TCE)	μg/L μg/L	5 F					0.7 J
Round 6	SW8260	TRICHLOROETHENE (TCE)	μg/L μg/L	5 F					
Round 7	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					
Round 8	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					
Round 9	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					
Round 10	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					
Round 11	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F					
Round 12	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					
Round 13	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					
Round 14 Round 15	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F 5 F					
Round 15 Round 6	SW8260 SW8260	TRICHLOROETHENE (TCE) TRICHLOROFLUOROMETHANE	μg/L	5 F N/A					
Round 6 Bold/Shaded			μg/L	11/17	1		1		
		Contaminant Level; μg/L=micrograms per liter; N	I/A=Not	Applicable	F(MCL)=Final·	J=Value is	sestimated	:
		ified at a concentration below the Reporting Limit							
result.	2	r - 3							

TABLE 3. HIGHEST DETECTED GROUNDWATER ANALYTICAL RESULTS FOR GUAM WATERWORKS AUTHORITY PRODUCTION WELLS AT MARBO ANNEX, ANDERSEN AFB, GUAM.

				MCL				
a 1'					D-2	D-5	M-6	M-7
Sampling Event	Method	Analyte	Units	2002				
Volatile Organ	ic Compound	ds (VOCs) by SW8260						
Round 13	SW8260	ACETONE	µg/L	N/A		1		
Round 15	SW8260	ACETONE	µg/L	N/A		2.5 J		2.2 J
Round 8	SW8260	BROMODICHLOROMETHANE	µg/L	N/A				
Round 15	SW8260	BROMODICHLOROMETHANE	µg/L	N/A	27.1			
Round 9	SW8260	BROMOMETHANE	µg/L	N/A				
Round 11	SW8260	BROMOFORM	μg/L	N/A			1.5	2.4
Round 3	SW8260	CARBON DISULFIDE	μg/L	N/A	17	11		3
Round 9	SW8260	CARBON DISULFIDE	μg/L	N/A				0.6 F
Round 8	SW8260	CHLOROFORM	μg/L	N/A				
Round 10	SW8260	CHLOROFORM	μg/L	N/A				
Round 15	SW8260	CHLOROFORM	μg/L	N/A	26.2			
Round 9	SW8260	CHLOROMETHANE	μg/L	N/A				
Round 11	SW8260	CHLOROMETHANE	μg/L	N/A				0.5 F
Round 14	SW8260	CHLOROMETHANE	μg/L	N/A				0.4
Round 15	SW8260	CHLOROMETHANE	μg/L	N/A	0.5			
Round 13	SW8260	ETHYLBENZENE	μg/L	700			0.3	
Round 9	SW8260	METHYLENE CHLORIDE	μg/L	N/A		0.1 F	0.3 F‡	0.2 F‡
Round 13	SW8260	METHYLENE CHLORIDE	μg/L	N/A	0.2	0.1.1	01014	0.214
Round 14	SW8260	METHYLENE CHLORIDE	μg/L	N/A	0.5 J		0.5 J	0.4 J
Round 15	SW8260	METHYLENE CHLORIDE	μg/L	N/A				
Round 14	SW8260	NAPHTHALENE	μg/L	N/A			0.3 J	0.4
Round 3	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F				0.3 J
Round 9	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F			0.1 F	0.2 F
Round 10	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F			0.2 F	0.3 F
Round 11	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F			0.2 F	0.3 F
Round 12	SW8260	TETRACHLOROETHENE(PCE)	µg/L	5 F			0.2 F	
Round 13	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F			0.2	0.3
Round 15	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F				0.2 J
Round 9	SW8260	TOLUENE	µg/L	1,000 F	0.2		0.3 F	0.1 F
Round 13	SW8260	TOLUENE	μg/L	1,000 F			0.5	0.5
Round 3	SW8260	TRICHLOROETHENE (TCE)	µg/L	5 F		2		
Round 4	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F		1		
Round 5	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F		0.9 J		
Round 6	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F		0.8 J		
Round 8	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F		1 J		
Round 9	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F	0.1	1.3		
Round 10	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F	0.2 F	2		
Round 11	SW8260	TRICHLOROETHENE (TCE)	$\mu g/L$	5 F		2.2		
Round 12	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F		1.9		
Round 13	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F	0.5	2		
Round 14	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F		1.4		
Round 15	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F		1.9		
Round 3	SW8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.1.7	0.2 J		
Round 4	SW8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.4 J	0.4 J		
Round 9	SW8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.3	0.4 F		
Round 10	SW8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	0.4 F	0.6 F		
Round 11	SW8260	TRICHLOROFLUOROMETHANE	μg/L	N/A	045	0.5 F		
Round 12 Round 13	SW8260	TRICHLOROFLUOROMETHANE TRICHLOROFLUOROMETHANE	μg/L	N/A N/A	0.4 F	0.3 F		
Round 13 Round 14	SW8260		μg/L	N/A N/A	0.6	0.6		
Round 14	SW8260	TRICHLOROFLUOROMETHANE	μg/L	N/A N/A		0.4 J		
Round 15	SW8260	TRICHLOROFLUOROMETHANE	μg/L	IN/A		0.5 J		
	Maximum Co	ontaminant Level; µg/L=micrograms per liter; N						3
		ively identified at a concentration below the Rep	orting Li	mit; $\ddagger = dete$	cted in b	ianks; B	=Blank	
contamination	associated w	iin resuit.						

TABLE 4. HIGHEST DETECTED GROUNDWATER ANALYTICAL RESULTS FOR ANDERSEN AFBPRODUCTION WELLS AT MARBO ANNEX, ANDERSEN AFB, GUAM.

				MCL	MW-3	MW-5	MW-6	MW-7	MW-8
Sampling Event	Method	Analyte	Units	2002	WIW-5	IVI W-3	IVI W -0	IVI VV - /	IVI VV - d
	nic Compou	unds (VOCs) by SW8260							
Round 14	SW8260	2-HEXANONE	μg/L	N/A					
Round 13	SW8260	ACETONE	μg/L	N/A					1.5
Round 3	SW8260	BROMODICHLOROMETHANE	µg/L	N/A					
Round 4	SW8260	BROMODICHLOROMETHANE	μg/L	N/A					
Round 10	SW8260	BROMODICHLOROMETHANE	μg/L	N/A					
Round 11	SW8260	BROMODICHLOROMETHANE	μg/L	N/A					
Round 12	SW8260	BROMODICHLOROMETHANE	μg/L	N/A					
Round 13	SW8260	BROMODICHLOROMETHANE	$\mu g/L$	N/A	0.2				
Round 14	SW8260	BROMODICHLOROMETHANE	μg/L	N/A					
Round 15	SW8260	BROMODICHLOROMETHANE	μg/L	N/A	0.2 J				
Round 9	SW8260	BROMOMETHANE	μg/L	N/A			0.2 F‡		0.1 F
Round 12	SW8260	BROMOMETHANE	μg/L	N/A					
Round 3	SW8260	CARBON DISULFIDE	μg/L	N/A		4.0	3.0	16.0	9.0
Round 9	SW8260	CARBON DISULFIDE	μg/L α	N/A			0.6 F		
Round 3	SW8260	CHLOROFORM CHLOROFORM	μg/L	N/A					
Round 6 Round 9	SW8260 SW8260	CHLOROFORM	μg/L	N/A N/A					
Round 9 Round 10	SW8260 SW8260	CHLOROFORM	μg/L μα/Ι	N/A N/A					
Round 11	SW8260 SW8260	CHLOROFORM	µg/L	N/A N/A					
Round 11 Round 12	SW8260	CHLOROFORM	μg/L μg/L	N/A					
Round 12 Round 13	SW8260	CHLOROFORM	μg/L μg/L	N/A	0.2				
Round 14	SW8260	CHLOROFORM	μg/L μg/L	N/A	0.2				
Round 15	SW8260	CHLOROFORM	μg/L	N/A	0.2 J				
Round 11	SW8260	CHLOROMETHANE	μg/L	N/A	1.4	1.0	0.8 F		0.9 F
Round 12	SW8260	CHLOROMETHANE	μg/L	N/A	0.2 F				
Round 13	SW8260	CHLOROMETHANE	μg/L	N/A	0.3	0.2	0.3		
Round 14	SW8260	CHLOROMETHANE	μg/L	N/A	0.5 J			0.3 J	
Round 13	SW8260	ETHYLBENZENE	μg/L	700		0.3			
Round 5	SW8260	METHYLENE CHLORIDE	μg/L	N/A					
Round 6	SW8260	METHYLENE CHLORIDE	μg/L	N/A				0.9 JB‡	
Round 9	SW8260	METHYLENE CHLORIDE	μg/L	N/A		0.1 F‡			
Round 11	SW8260	METHYLENE CHLORIDE	μg/L	N/A			0.2.1		0.2.1
Round 14 Round 15	SW8260 SW8260	METHYLENE CHLORIDE METHYLENE CHLORIDE	μg/L wa/I	N/A N/A	0.2 J	0.2 J	0.3 J 0.2 J	0.2 J	0.3 J 0.2 J
Round 9	SW8260	NAPHTHALENE	μg/L μg/L	N/A N/A	0.2 J	0.2 J	0.2 J	0.2 J	0.2 J
Round 14	SW8260	NAPHTHALENE	μg/L μg/L	N/A			0.3 J		
Round 11	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F	0.2 F		0.0.0		
Round 12	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F	0.2 F				
Round 13	SW8260	TETRACHLOROETHENE(PCE)	µg/L	5 F	0.2				
Round 15	SW8260	TETRACHLOROETHENE(PCE)	μg/L	5 F	0.2 J				
Round 4	SW8260	TOLUENE	μg/L	1,000 F		0.3 J	0.4 J	0.4 J	
Round 9	SW8260	TOLUENE	μg/L	1,000 F		0.1 F	0.1 F		0.2 F
Round 10 Round 12	SW8260	TOLUENE	μg/L	1,000 F	0.5	0.5	0.0		1
Round 13 Round 3	SW8260	TOLUENE TRICHLOROETHENE (TCE)	μg/L μg/Ι	1,000 F 5 F	0.5	0.5	0.6		
Round 3	SW8260 SW8260	TRICHLOROETHENE (TCE)	μg/L μg/L	5 F 5 F					1
Round 6	SW8260 SW8260	TRICHLOROETHENE (TCE)	μg/L μg/L	5 F					l
Round 7	SW8260	TRICHLOROETHENE (TCE)	μg/L μg/L	5 F					l
Round 8	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					1
Round 9	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					l
Round 10	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					l
Round 11	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					l
Round 13	SW8260	TRICHLOROETHENE (TCE)	μg/L	5 F					l
Round 14	SW8260	TRICHLOROETHENE (TCE)	μg/L wa/I	5 F					l
Round 15 Round 6	SW8260	TRICHLOROETHENE (TCE)	μg/L μg/I	5 F N/A	——————————————————————————————————————		0.2 J	0.1 J	
Round 6 Round 9	SW8260 SW8260	TRICHLOROFLUOROMETHANE TRICHLOROFLUOROMETHANE	μg/L μg/L	N/A N/A			0.2 J 0.1 F	0.1 J	l
Round 13	SW8260	TRICHLOROFLUOROMETHANE	μg/L μg/L	N/A		0.2	0.11		l
Bold/Shaded			μ <u>6</u> /L			0.2			L
		contaminant Level; μg/L=micrograms per liter	; N/A=N	lot Applicab	le; F(MC	L)=Final	; J=Valu	e is estima	ted;
=Analyte pos	itively identi	ified at a concentration below the Reporting L	.imit; ‡=	detected in	blanks; E	3=Blank o	contamina	ation assoc	iated v
esult.	-	1 0			,				

TABLE 5. GROUNDWATER ANALYTICAL RESULTS FOR INSTALLATIONRESTORATION PROGRAM MONITORING WELLS ASSOCIATED WITH SITE 20/WASTEPILE 7 AT MARBO ANNEX, ANDERSEN AFB, GUAM.

				MCL	IRP-10	IRP-15	IRP-16
Sampling Event	Method	Analyte	Units	2002		nu io	
Polycyckic Arim	atic Hydroc	arbons (PAHs) by SW8310					
Rounds 3 to 15	8310	ALL ANALYTES	μg/L	N/A	ND	ND	ND
Cyanide by SW9	012						
Rounds 3 to 15	9012	CYANIDE	μg/L	200 F	ND	ND	ND
Notes: MCL=Ma Detected.	aximum Cont	aminant Level; µg/L=micrograms per liter	; N/A=I	Not Applicabl	e; F(MCI	L)=Final;	ND=Not

Appendix F

Cross Sectional Information and Contaminant Migration Pathways

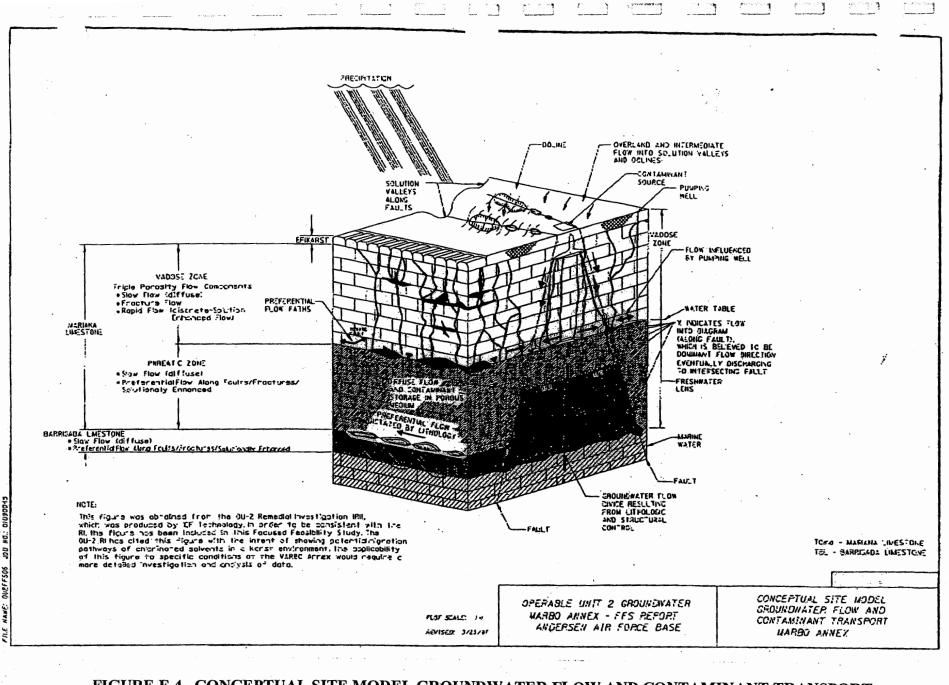


FIGURE F-4. CONCEPTUAL SITE MODEL GROUNDWATER FLOW AND CONTAMINANT TRANSPORT AT MARBO ANNEX.

Appendix G

Public Comments on the First Five-Year Review

Mr. John Jocson asked what is the next step with regards to remediation? Mr. Torres replied, that the issues at MARBO are Waste Pile 7 and the groundwater. The fate and transport of groundwater are not fully understood and the source for TCE and PCE has not been located. The AF is developing a plan to investigate the TCE and PCE source, and to expand the investigation to more areas to better understand how the groundwater flows out of the MARBO area. The next five-year review will determine if the plan implemented is effective. Mr. Jocson asked if a dye trace study will be used. Mr. Torres replied, it is one of the recommendations and the AF will address the dye trace study in the plan.

Mr. Fred Castro inquired whether there has been consideration in examining the fluctuations of the TCE and PCE detection levels? Mr. Ikehara explained that fluctuations of the TCE and PCE at particular wells were compared to atmospheric conditions, rainfall, and drought periods. Since the source of TCE and PCE have not been located, it is difficult to understand the mechanics that drive it and where to find it, which is deep in the aquifer. Part of the problem deep in the aquifer is the movement is slower in occurrence and not as quick as on top of the freshwater lens.

Mr. Mike Gawel questioned if one of the recommendations is to bore for migration through the freshwater lens and what would the difference be between a production well that captures at the top of the freshwater lens versus getting to the bottom of the lens? Also, how deep would these wells be to the lens and how much deeper to get to the bottom of the lens? Mr. Ikehara said, typically the production wells drilled in the Dededo/Yigo area are in the uppermost layer of the freshwater lens. There are probably 20-foot screened intervals at the top of the freshwater lens of the lens depends on the height of the water above the sea level. In this case, a water table about three to four feet above mean sea level, roughly equates to about 100 to 120 feet to the transition zone. The AF does sample the production wells to determine if there is any problem or vertical migration occurring. What has been noted is that the highest concentrations are at depth. Mr. Ikehara assured the audience that the AF is intent on being protective of the groundwater production sources that are in the uppermost part of the water column.

Senator Kasperbauer requested clarification on the contaminants buried 11-feet under and not knowing where the contaminants were located that are showing up. Also, where is this in relation to the Laundry Facility? Mr. Torres clarified that the buried contamination was at Waste Pile 7. He described Waste Pile 7 as a large quarry that was filled with metal debris. The average depth of the debris and soil was about 11-feet and the contaminants that were found in this soil were pesticides, PCBs, and lead. Rather than excavate and remove the soil, the protective measure was to construct a soil cover. By constructing the soil cover, the potential for human exposure was eliminated. Because the contaminants are still in place, groundwater wells in the area are monitored to ensure contaminants are not getting into the groundwater. *Senator Kasperbauer then asked if there is any plan for future removal?* Mr. Torres said the site is approximately 1.8 acres with an average depth of about 11-feet and that a substantial amount of soil would need to be removed. At the time of the implementation the soil cover was the most economically and feasible remedy agreed upon by the regulatory agencies. Colonel Wolborsky commented that the whole rationale behind the five-year review is because the AF did not take a more permanent measure and at the time the AF did not have the resources to implement a more permanent measure. By constructing the soil cover, the five-year review process was imposed.

Ms. Lucrina Concepcion inquired if the AF considered capping it like how a landfill would be capped to minimize contaminant migrations during heavy rainfall? Mr. Ikehara stated that the AF did consider the implementation of an impervious cap, but it was too expensive of an option. The primary risk factor was dermal exposure and not infiltration to the groundwater. He reiterated that there is groundwater sampling in and around the area that indicated there was no leaching of the contaminants into the groundwater. The soil cover option was most viable.

Mr. Castro asked what it would cost for complete removal, and what impact would it have on other cleanup projects that were funded? Mr. Ikehara explained that it would cost approximately \$4M to \$8M, which would probably have taken up one full year of study and remediation funding for other sites. *Mr.* Castro asked if it would have impacted the Urunao project. Mr. Ikehara agreed that it would affect Urunao and other projects. In this case, the AF believes it would be wiser to deal with the remediation of this site by covering it with soil and perhaps reconsider an alternative at a future date when funds become available.

Mrs. Chris Camacho, landowner, commented that she understands the cost consideration for a cleanup of this size. However pesticides, PCB, and lead are contaminants that concern her and other citizens. She urged the AF to consider complete removal seriously. Mr. Ikehara assured her that the AF does share her concerns as well, and it is the AF's intention to do the right thing. The AF will continue to address this issue.

Mr. Gawel asked what pesticides were found and what the potential is to leach at that site, and if it was bio-degradable in the years? Mr. Toraj Ghofrani, EA Engineering contractor, clarified that pesticides, such as DDTs are contaminants that do not migrate. The AF has been monitoring the groundwater for the past decade and have not had any hits of DDT. The pesticides at Waste Pile 7 consist of 4,4- DDE at 6.7 ppm, 4,4-DDT at 6.2 ppm, dieldrin at 0.12 ppm, alpha chlordane at 0.44 ppm, and gamma chlordane at 0.38 ppm.

Mr. Tom Camacho asked if the contaminants would affect any development to adjacent properties other than drilling the wells and tapping the lens. Would there be any restrictions? Mr. Ikehara informed him that there would be no significant impact to land use near those areas. The distance to the groundwater is about 300-feet or more and does not pose any risk to surface activity.

Mr. Camacho asked what concentrations of contaminants are present in the groundwater and if there been any time related studies based on population growth and use of the water lens. Mr. Ikehara estimated that at the bottom of freshwater lens it will take some time before the contaminants would disperse, either by physical or chemical means. The important fact is the highest contamination level is found at the bottom of the freshwater lens, which is non-potable water. In order for the AF to remediate it at that depth, it could possibly cause problems for the freshwater lens that overlays it. *Mr.* Castro had two questions. First, is there is any data that could characterize the groundwater age in the MARBO area, and secondly, in the five-year report is there any reference of the risk assessment study? Mr. Ikehara stated that, there have been hydrologic studies for the cycling of the groundwater on Guam, and it was estimated that it takes 7-10 years for recycling of the system, at least in the upper portion of the freshwater lens. For the deeper portion no data is available to suggest the longevity of that water because it moves at a much slower pace under different hydrodynamic forces. The seepage rate is dependant upon how much water is loaded on the freshwater lens. The challenge to make water available to the public is to intercept that recharge water and not cause degradation to the lens from saltwater intrusion. With regards to the risk assessment study, the AF always considers the risk assessment aspect when evaluating the remedial systems and protectiveness of human health and the environment.

Mrs. Camacho asked where she would be able to obtain copies of the MARBO ROD. Mr. Ikehara informed her that the documents were available at both information repositories, the RFK Memorial Library at UOG and the Nieves Flores Library in Hagatna.

Mr. Gawel inquired as to whether the pesticide listing for Landfill 2 and some information on the removal of the underground storage tanks at Tumon would be available tonight. Mr. Ikehara informed him that all the information would be provided at the next scheduled RAB.

Mr. Castro questioned if there was a plan in effect to the upcoming wet/dry groundwater sampling round. Mr. Ikehara said the AF has attempted to pare away the wells that no longer provide useful data. The AF is focusing on the wells that show significant changes and things that can compare to other wells to try and determine a cause and effect. There will be new well locations added to the groundwater sampling that should provide more meaningful data. A dye trace study combined with historical water table elevation data could determine the actual groundwater flow direction.

Mr. Frank Palomo asked how close is the contaminated site to private properties, and is there a possibility of releasing the property? Mr. Torres indicated on the slide that the next private property is approximately located about 1 to 2 miles away. Mr. Ikehara stated that as long as the contamination is present in the ground, it will not be released. The AF would have to determine if the contamination can be removed and the land made available for unrestricted use. In order to excess the property, all the contamination would need to be removed. Colonel Wolborsky commented that is one criteria that is considered, but there are also other factors that affect excessing property as well.