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ii NICKEL 

DISCLAIMER 

The use of company or product name(s) is for identification only and does not imply endorsement by the 
Agency for Toxic Substances and Disease Registry. 



 
 
 
 
 

 
 

 

 
 

 
 
 

 
 

 
 
 
 

 

iii NICKEL 

UPDATE STATEMENT 


A Toxicological Profile for Nickel, Draft for Public Comment was released in September 2004.  This 
edition supersedes any previously released draft or final profile.   

Toxicological profiles are revised and republished as necessary.  For information regarding the update 
status of previously released profiles, contact ATSDR at: 

Agency for Toxic Substances and Disease Registry
 
Division of Toxicology/Toxicology Information Branch 


1600 Clifton Road NE 

Mailstop F-32 


Atlanta, Georgia 30333 








 
 
 
 
 

 

  

 

 
 
 
 

 

vi NICKEL 

*Legislative Background 

The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization 
Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980 (CERCLA or Superfund).  This public law directed ATSDR to 
prepare toxicological profiles for hazardous substances most commonly found at facilities on the 
CERCLA National Priorities List and that pose the most significant potential threat to human health, as 
determined by ATSDR and the EPA.  The availability of the revised priority list of 275 hazardous 
substances was announced in the Federal Register on November 17, 1997 (62 FR 61332).  For prior 
versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 
17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 
1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 
28, 1994 (59 FR 9486).  Section 104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR 
to prepare a toxicological profile for each substance on the list. 
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances will find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3: Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length 
of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies are 
reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting. Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics: Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Section 1.6 How Can (Chemical X) Affect Children? 

Section 1.7 How Can Families Reduce the Risk of Exposure to (Chemical X)? 

Section 3.7 Children’s Susceptibility 

Section 6.6 Exposures of Children 


Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center  
Phone: 1-888-42-ATSDR or (404) 498-0110 Fax: (770) 488-4178 
E-mail: atsdric@cdc.gov Internet: http://www.atsdr.cdc.gov 

The following additional material can be ordered through the ATSDR Information Center: 

Case Studies in Environmental Medicine: Taking an Exposure History—The importance of taking an 
exposure history and how to conduct one are described, and an example of a thorough exposure 
history is provided.  Other case studies of interest include Reproductive and Developmental 

http:http://www.atsdr.cdc.gov
mailto:atsdric@cdc.gov


 
 
 
 
 

 

 
 

 
 

 
 

 
 

 

 
  

 
 

 

 

 

 
 
 
 

 

NICKEL viii 

Hazards; Skin Lesions and Environmental Exposures; Cholinesterase-Inhibiting Pesticide 
Toxicity; and numerous chemical-specific case studies. 

Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 
incident. Volumes I and II are planning guides to assist first responders and hospital emergency 
department personnel in planning for incidents that involve hazardous materials.  Volume III— 
Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care 
professionals treating patients exposed to hazardous materials. 

Fact Sheets (ToxFAQs) provide answers to frequently asked questions about toxic substances. 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace. Contact: NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, 
GA 30341-3724 • Phone: 770-488-7000 • FAX: 770-488-7015. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 200 Independence Avenue, 
SW, Washington, DC 20201 • Phone: 800-356-4674 or NIOSH Technical Information Branch, 
Robert A. Taft Laboratory, Mailstop C-19, 4676 Columbia Parkway, Cincinnati, OH 45226-1998 
• Phone: 800-35-NIOSH. 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone: 919-541-3212. 

Referrals 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone:  202-347-4976 
• FAX: 202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact: ACOEM, 55 West Seegers Road, Arlington Heights, 
IL 60005 • Phone:  847-818-1800 • FAX:  847-818-9266. 

http:http://www.aoec.org
mailto:AOEC@AOEC.ORG
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CONTRIBUTORS 
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THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 

1. 	 Health Effects Review.  The Health Effects Review Committee examines the health effects 
chapter of each profile for consistency and accuracy in interpreting health effects and classifying 
end points. 

2.	 Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to 
substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each 
profile, and makes recommendations for derivation of MRLs. 

3. 	 Data Needs Review.  The Research Implementation Branch reviews data needs sections to assure 
consistency across profiles and adherence to instructions in the Guidance. 

4. 	 Green Border Review.  Green Border review assures the consistency with ATSDR policy. 
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PEER REVIEW 

A peer review panel was assembled for nickel.  The panel consisted of the following members:  

1. 	 George Daston, Ph.D., Research Fellow, Miami Valley Laboratories, The Procter & Gamble 
Company, Cincinnati, OH; 

2. 	 A. Phillip Leber, Ph.D., DABT, Consultant in Toxicology, Akron, OH; and 

3. 	 Sam Kacew, Ph.D., ATS, Professor, Department of Cellular and Molecular Medicine, University 
of Ottawa, Ottawa, ON, Canada. 

These experts collectively have knowledge of nickel's physical and chemical properties, toxicokinetics, 
key health end points, mechanisms of action, human and animal exposure, and quantification of risk to 
humans.  All reviewers were selected in conformity with the conditions for peer review specified in 
Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, and Liability Act, as 
amended. 

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
reviewers' comments and determined which comments will be included in the profile.  A listing of the 
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their 
exclusion, exists as part of the administrative record for this compound.   

The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content. The responsibility for the content of this profile lies with the ATSDR. 
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1 NICKEL 

1. PUBLIC HEALTH STATEMENT 


This public health statement tells you about nickel and the effects of exposure to it.   

The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in 

the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for 

long-term federal clean-up activities.  Nickel has been found in at least 882 of the 1,662 current 

or former NPL sites.  Although the total number of NPL sites evaluated for this substance is not 

known, the possibility exists that the number of sites at which nickel is found may increase in the 

future as more sites are evaluated.  This information is important because these sites may be 

sources of exposure and exposure to nickel may harm you. 

When a substance is released either from a large area, such as an industrial plant, or from a 

container, such as a drum or bottle, it enters the environment. Such a release does not always 

lead to exposure. You can be exposed to a substance only when you come in contact with it.  

You may be exposed by breathing, eating, or drinking the substance, or by skin contact. 

If you are exposed to nickel, many factors will determine whether you will be harmed.  These 

factors include the dose (how much), the duration (how long), and how you come in contact with 

it. You must also consider any other chemicals you are exposed to and your age, gender, diet, 

family traits, lifestyle, and state of health. 

1.1 WHAT IS NICKEL? 

Pure nickel is a hard, silvery-white metal, which has properties that make it very desirable for 

combining with other metals to form mixtures called alloys.  Some of the metals that nickel can 

be alloyed with are iron, copper, chromium, and zinc.  These alloys are used in making metal 

coins and jewelry and in industry for making items such as valves and heat exchangers.  Most 

nickel is used to make stainless steel.  There are also compounds consisting of nickel combined 

with many other elements, including chlorine, sulfur, and oxygen.  Many of these nickel 



 
 

 
 

 

 

 

 

 
 

 

 
 
 
 

2 NICKEL 

1. PUBLIC HEALTH STATEMENT 

compounds are water soluble (dissolve fairly easily in water) and have a characteristic green 

color. Nickel and its compounds have no characteristic odor or taste.  Nickel compounds are 

used for nickel plating, to color ceramics, to make some batteries, and as substances known as 

catalysts that increase the rate of chemical reactions. 

Nickel combined with other elements occurs naturally in the earth's crust.  It is found in all soil, 

and is also emitted from volcanoes.  Nickel is the 24th most abundant element.  In the 

environment, it is primarily found combined with oxygen or sulfur as oxides or sulfides.  Nickel 

is also found in meteorites and on the ocean floor in lumps of minerals called sea floor nodules.  

The earth's core is composed of 6% nickel.  Nickel is released into the atmosphere during nickel 

mining and by industries that make or use nickel, nickel alloys, or nickel compounds.  These 

industries also might discharge nickel in waste water.  Nickel is also released into the atmosphere 

by oil-burning power plants, coal-burning power plants, and trash incinerators. 

There are no nickel mining operations in the United States.  Much of our nickel used in 

industries comes from recycling nickel-containing alloys or is imported mainly from Canada and 

Russia. 

See Chapters 4 and 5 of this profile for more information on the properties, sources, and uses of 

nickel and its compounds. 

1.2 WHAT HAPPENS TO NICKEL WHEN IT ENTERS THE ENVIRONMENT? 

Nickel may be released to the environment from the stacks of large furnaces used to make alloys 

or from power plants and trash incinerators.  The nickel that comes out of the stacks of power 

plants attaches to small particles of dust that settle to the ground or are taken out of the air in rain 

or snow. It usually takes many days for nickel to be removed from the air.  If the nickel is 

attached to very small particles, it can take more than a month to settle out of the air.  Nickel can 

also be released in industrial waste water.  A lot of nickel released into the environment ends up 

in soil or sediment where it strongly attaches to particles containing iron or manganese.  Under 

acidic conditions, nickel is more mobile in soil and might seep into groundwater.  Nickel does 
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not appear to concentrate in fish. Studies show that some plants can take up and accumulate 

nickel. However, it has been shown that nickel does not accumulate in small animals living on 

land that has been treated with nickel-containing sludge. 

See Chapter 6 for more information on the fate of nickel in the environment. 

1.3 HOW MIGHT I BE EXPOSED TO NICKEL? 

Nickel normally occurs at very low levels in the environment, so very sensitive methods are 

needed to detect nickel in most environmental samples.  Food is the major source of exposure to 

nickel. You may also be exposed to nickel by breathing air, drinking water, or smoking tobacco 

containing nickel. Skin contact with soil, bath or shower water, or metals containing nickel, as 

well as, metals plated with nickel can also result in exposure.  Stainless steel and coins contain 

nickel. Some jewelry is plated with nickel or made from nickel alloys.  Patients may be exposed 

to nickel in artificial body parts made from nickel-containing alloys.  Exposure of an unborn 

child to nickel is through the transfer of nickel from the mother’s blood to fetal blood.  Likewise, 

nursing infants are exposed to nickel through the transfer of nickel from the mother to breast 

milk.  However, the concentration of nickel in breast milk is either similar or less than the 

concentration of nickel in infant formulas and cow’s milk. 

We often do not know the exact form of nickel we are exposed to, including at most hazardous 

waste sites. Much of the nickel found in air, soil, sediment, and rock is so strongly attached to 

dust and soil particles or embedded in minerals that it is not readily taken up by plants and 

animals and, therefore, cannot easily affect your health.  In water and waste water, nickel can 

exist either dissolved in water or attached to material suspended in water.   

Nickel in air is attached to small particles.  Over a 6-year period (1977–1982) in the United 

States, average nickel concentrations in cities and in the country ranged from 7 to 12 nanograms 

per cubic meter (ng/m3; 1 ng/m3 is equivalent to 1 billionth of a gram in a cubic meter of air).  

More recently, EPA estimates that the average nickel concentration in air in the United States has 

decreased to 2.2 ng/m3, based on air quality information obtained from 1996. 
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The concentration of nickel in the water of rivers and lakes is very low, with the average 

concentration usually less than 10 parts of nickel in a billion parts of water (ppb).  The level of 

nickel in water is often so low that we cannot measure it unless we use very sensitive 

instruments.  The average concentration of nickel in drinking water in the United States is 

between 2 and 4.3 ppb. However, you may be exposed to higher-than-average levels of nickel in 

drinking water if you live near industries that process or use nickel. The highest levels of nickel 

in drinking water, about 72 ppb, were found near areas of a large natural nickel deposit where 

nickel is mined and refined. 

Soil usually contains between 4 and 80 parts of nickel in a million parts of soil (ppm; 

1 ppm=1,000 ppb).  The highest soil concentrations (up to 9,000 ppm) are found near industries 

that extract nickel from ore.  High concentrations of nickel occur as dust that is released into air 

from stacks during processing and settles on the ground.  You may be exposed to nickel in soil 

by skin contact. Children may also be exposed to nickel by eating soil. 

Food contains nickel and is the major source of nickel exposure for the general population.  You 

eat about 170 micrograms (µg; 1 µg=1 millionth of a gram) of nickel in your food every day.  

Foods naturally high in nickel include chocolate, soybeans, nuts, and oatmeal.  Our daily intake 

of nickel from drinking water is only about 2 µg.  We breathe in between 0.1 and 1 µg 

nickel/day, excluding nickel in tobacco smoke.  We are exposed to nickel when we handle coins 

and touch other metals containing nickel. 

You may be exposed to higher levels of nickel if you work in industries that process or use 

nickel. You also may be exposed to nickel by breathing dust or fumes (as from welding) or by 

skin contact with nickel-containing metal and dust or solutions containing dissolved nickel 

compounds.  A national survey conducted from 1980 to 1983 estimated that 727,240 workers are 

potentially exposed to nickel metal, nickel alloys, or nickel compounds. 

For more information on the potential for exposure to nickel, please see Chapter 6. 



 
 

 
 

 

 

 

 
 

 

 

 
 
 
 

5 NICKEL 

1. PUBLIC HEALTH STATEMENT 

1.4 HOW CAN NICKEL ENTER AND LEAVE MY BODY? 

Nickel can enter your body when you breathe air containing nickel, when you drink water or eat 

food that contains nickel, and when your skin comes into contact with nickel.  If you breathe air 

that contains nickel, the amount of nickel you inhale that reaches your lungs and enters your 

blood depends on the size of the nickel particles.  If the particles are large, they stay in your nose.  

If the particles are small, they can enter deep into your lungs.  More nickel is absorbed from your 

lungs into your body when the nickel particles can dissolve easily in water.  When the particles 

do not dissolve easily in water, the nickel may remain in your lungs for a long time.  Some of 

these nickel particles can leave the lungs with mucus that you spit out or swallow.  More nickel 

will pass into your body through your stomach and intestines if you drink water containing 

nickel than if you eat food containing the same amount of nickel.  A small amount of nickel can 

enter your bloodstream from skin contact.  After nickel gets into your body, it can go to all 

organs, but it mainly goes to the kidneys.  The nickel that gets into your bloodstream leaves in 

the urine. After nickel is eaten, most of it leaves quickly in the feces, and the small amount that 

gets into your blood leaves in the urine. For more information on how nickel can enter and leave 

your body, see Chapter 3. 

1.5 HOW CAN NICKEL AFFECT MY HEALTH? 

Scientists use many tests to protect the public from harmful effects of toxic chemicals and to find 

ways for treating persons who have been harmed. 

One way to learn whether a chemical will harm people is to determine how the body absorbs, 

uses, and releases the chemical.  For some chemicals, animal testing may be necessary.  Animal 

testing may also help identify health effects such as cancer or birth defects.  Without laboratory 

animals, scientists would lose a basic method for getting information needed to make wise 

decisions that protect public health.  Scientists have the responsibility to treat research animals 

with care and compassion.  Scientists must comply with strict animal care guidelines because 

laws today protect the welfare of research animals. 
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The most common harmful health effect of nickel in humans is an allergic reaction.  

Approximately 10–20% of the population is sensitive to nickel.  A person can become sensitive 

to nickel when jewelry or other items containing nickel are in direct contact and prolonged 

contact with the skin. Wearing jewelry containing nickel in ears or other body parts that have 

been newly pierced may also sensitize a person to nickel.  However, not all jewelry containing 

nickel releases enough of the nickel ion to sensitize a person.  Once a person is sensitized to 

nickel, further contact with the metal may produce a reaction.  The most common reaction is a 

skin rash at the site of contact.  In some sensitized people, dermatitis (a type of skin rash) may 

develop in an area of the skin that is away from the site of contact.  For example, hand eczema 

(another type of skin rash) is fairly common among people sensitized to nickel.  Some workers 

exposed to nickel by inhalation can become sensitized and have asthma attacks, but this is rare.  

People who are sensitive to nickel have reactions when nickel comes into prolonged contact with 

the skin. Some sensitized individuals react when they eat nickel in food or water or breathe dust 

containing nickel.  More women are sensitive to nickel than men.  This difference between men 

and women is thought to be a result of greater exposure of women to nickel through jewelry and 

other metal items. 

People who are not sensitive to nickel must eat very large amounts of nickel to suffer harmful 

health effects. Workers who accidentally drank light-green water containing 250 ppm of nickel 

from a contaminated drinking fountain had stomach aches and suffered adverse effects in their 

blood (increased red blood cells) and kidneys (increased protein in the urine).  This concentration 

of nickel is more than 100,000 times greater than the amount usually found in drinking water.   

The most serious harmful health effects from exposure to nickel, such as chronic bronchitis, 

reduced lung function, and cancer of the lung and nasal sinus, have occurred in people who have 

breathed dust containing certain nickel compounds while working in nickel refineries or nickel-

processing plants. The levels of nickel in these workplaces were much higher than usual 

(background) levels in the environment.  Lung and nasal sinus cancers occurred in workers who 

were exposed to more than 10 mg nickel/m3 as nickel compounds that were hard to dissolve 

(such as nickel subsulfide). Exposure to high levels of nickel compounds that dissolve easily in 

water (soluble) may also result in cancer when nickel compounds that are hard to dissolve (less 
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soluble) are present, or when other chemicals that can produce cancer are present.  The 

concentrations of soluble and less-soluble nickel compounds that were found to have produced 

cancers were 100,000 to 1 million times greater than the usual level of nickel in the air in the 

United States. The U.S. Department of Health and Human Services (DHHS) has determined that 

nickel metal may reasonably be anticipated to be a carcinogen and nickel compounds are known 

human carcinogens.  The International Agency for Research on Cancer (IARC) has determined 

that some nickel compounds are carcinogenic to humans and that metallic nickel may possibly be 

carcinogenic to humans.  The EPA has determined that nickel refinery dust and nickel subsulfide 

are human carcinogens.  These cancer classifications were based on studies of nickel workers 

and laboratory animals. 

Lung inflammation and damage to the nasal cavity have been observed in animals exposed to 

nickel compounds.  At high concentrations, the lung damage is severe enough to affect lung 

function. Long-term exposure to lower levels of a nickel compound that dissolves easily in 

water did not produce cancer in animals.  Lung cancer developed in rats exposed for a long time 

to nickel compounds that do not dissolve easily in water. 

Oral exposure of humans to high levels of soluble nickel compounds through the environment is 

extremely unlikely.  Because humans have only rarely been exposed to high levels of nickel in 

water or food, much of our knowledge of the harmful effects of nickel is based on animal 

studies. Eating or drinking levels of nickel much greater than the levels normally found in food 

and water have been reported to produce lung disease in dogs and rats and to affect the stomach, 

blood, liver, kidneys, and immune system in rats and mice, as well as their reproduction and 

development. 

See Chapter 3 for more information on the health effects of nickel exposure. 

1.6 HOW CAN NICKEL AFFECT CHILDREN? 

This section discusses potential health effects in humans from exposures during the period from 

conception to maturity at 18 years of age.  
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It is likely that the health effects seen in children exposed to nickel will be similar to the effects 

seen in adults. We do not know whether children differ from adults in their susceptibility to 

nickel. Human studies that examined whether nickel can harm the developing fetus are 

inconclusive. Animal studies have found increases in newborn deaths and decreases in newborn 

weight after ingesting nickel. These doses are 1,000 times higher than levels typically found in 

drinking water. It is likely that nickel can be transferred from the mother to an infant in breast 

milk and can cross the placenta.  The nickel levels in breast milk are likely to be similar to the 

levels in cow’s milk-based or soy-milk-based infant formula. 

1.7 	 HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO NICKEL? 

If your doctor finds that you have been exposed to substantial amounts of nickel, ask whether 

your children might also have been exposed.  Your doctor might need to ask your state health 

department to investigate. 

People may be exposed to nickel by wearing jewelry that contains nickel.  In some people, 

wearing jewelry that contains nickel produces skin irritation.  Avoiding jewelry containing nickel 

will eliminate risks of exposure to this source of this metal. 

Other sources of nickel exposure are through foods that you eat and drinking water.  However, 

the amount of nickel in foods and drinking water are too low to be of concern.  

1.8 	 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN 
EXPOSED TO NICKEL? 

Measurements of the amount of nickel in your blood, feces, and urine can be used to estimate 

your exposure to nickel. More nickel was found in the urine of workers who were exposed to 

nickel compounds that dissolve easily in water (soluble) than in the urine of workers exposed to 

compounds that are hard to dissolve (less soluble).  This means that it is easier to tell if you have 

been exposed to soluble nickel compounds than less-soluble compounds.  The nickel 
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measurements do not accurately predict potential health effects from exposure to nickel.  More 

information on medical tests can be found in Chapters 3 and 7. 

1.9 	 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO 
PROTECT HUMAN HEALTH? 

The federal government develops regulations and recommendations to protect public health.  

Regulations can be enforced by law. The EPA, the Occupational Safety and Health 

Administration (OSHA), and the Food and Drug Administration (FDA) are some federal 

agencies that develop regulations for toxic substances.  Recommendations provide valuable 

guidelines to protect public health, but cannot be enforced by law.  The Agency for Toxic 

Substances and Disease Registry (ATSDR) and the National Institute for Occupational Safety 

and Health (NIOSH) are two federal organizations that develop recommendations for toxic 

substances. 

Regulations and recommendations can be expressed as “not-to-exceed” levels, that is, levels of a 

toxic substance in air, water, soil, or food that do not exceed a critical value that is usually based 

on levels that affect animals; they are then adjusted to levels that will help protect humans.  

Sometimes these not-to-exceed levels differ among federal organizations because they used 

different exposure times (an 8-hour workday or a 24-hour day), different animal studies, or other 

factors. 

Recommendations and regulations are also updated periodically as more information becomes 

available. For the most current information, check with the federal agency or organization that 

provides it. Some regulations and recommendations for nickel include the following: 

OSHA has set an enforceable limit of 1.0 mg nickel/m3 for metallic nickel and nickel compounds 

in workroom air to protect workers during an 8-hour shift over a 40-hour work week.  EPA 

recommends that drinking water levels for nickel should not be more than 0.1 mg per liter.   
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1.10 WHERE CAN I GET MORE INFORMATION? 

If you have any more questions or concerns, please contact your community or state health or 

environmental quality department, or contact ATSDR at the address and phone number below. 

ATSDR can also tell you the location of occupational and environmental health clinics.  These 

clinics specialize in recognizing, evaluating, and treating illnesses that result from exposure to 

hazardous substances. 

Toxicological profiles are also available on-line at www.atsdr.cdc.gov and on CD-ROM. You 

may request a copy of the ATSDR ToxProfilesTM CD-ROM by calling the toll-free information 

and technical assistance number at 1-888-42ATSDR (1-888-422-8737), by e-mail at 

atsdric@cdc.gov, or by writing to: 

Agency for Toxic Substances and Disease Registry 
  Division of Toxicology 

1600 Clifton Road NE 
  Mailstop F-32 
  Atlanta, GA 30333 
  Fax: 1-770-488-4178 

Organizations for-profit may request copies of final Toxicological Profiles from the following: 

National Technical Information Service (NTIS) 

5285 Port Royal Road 


  Springfield, VA 22161 

  Phone: 1-800-553-6847 or 1-703-605-6000 

  Web site: http://www.ntis.gov/ 


http:http://www.ntis.gov
mailto:atsdric@cdc.gov
http:www.atsdr.cdc.gov
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2. RELEVANCE TO PUBLIC HEALTH 


2.1 	 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO NICKEL IN THE UNITED 
STATES 

Nickel is a very hard metal that occurs naturally in soils and volcanic dust.  Nickel is used in combination 

with other metals to form alloys used for coins, jewelry, and stainless steel.  Nickel compounds are used 

for electroplating, to color ceramics, and in battery production. 

Nickel is released to the atmosphere by windblown dust, volcanoes, combustion of fuel oil, municipal 

incineration, and industries involved in nickel refining, steel production, and other nickel alloy 

production. The form of nickel emitted to the atmosphere is dependent upon the source.  Complex nickel 

oxides, nickel sulfate, and metallic nickel are associated with combustion, incineration, and smelting and 

refining processes.  Ambient air concentrations of nickel range between 7 and 12 ng/m3, mainly in the 

form of aerosols and can be as high as 150 ng/m3 near point sources. Based on 1996 air quality data, EPA 

has reported average U.S. ambient air levels of 2.2 ng/m3. Ambient air levels of nickel are expected to be 

higher in urban air than in rural air.  Concentrations of nickel in indoor air are generally 10 ng/m3. 

Background levels of nickel in soils vary widely depending on local geology and anthropogenic inputs, 

but concentrations typically range between 4 and 80 ppm.  Some areas of the United States may contain 

natural levels as high as 5,000 ppm.  Concentrations of nickel in household dust can be high and therefore 

pose an increased risk to young children who have greater contact with floors.  Nickel concentrations in 

surface water and groundwater range between 3 and 10 µg/L.  Nickel levels in drinking water in the 

United States generally range from 0.55 to 25 µg/L and average between 2 and 4.3 µg/L.  Based on these 

average nickel concentrations and a reference water intake of 2 L/day, the estimated average intake of 

nickel from drinking water ranges from 4 to 8.6 µg/day.  Elevated levels of nickel may exist as a result of 

the corrosion and leaching of nickel alloys used in valves and faucets.  For the general population, the 

predominant route of exposure to nickel is through food intake.  Nickel intake in the United States ranges 

between 69 and 162 µg/day for adults (>18 years of age).  Based on these average water and food nickel 

levels, a daily dose of 0.001–0.0024 mg/kg/day can be estimated using a reference body weight of 70 kg. 

In children, mean daily nickel intakes of 9, 39, 82, and 99 µg/day have been determined for children aged 

0–6 months, 7–12 months, 1–3 years, and 4–8 years, respectively. The mean daily dietary intakes of 
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nickel in children aged 9–18 years (128–137 µg/day in males and 101–109 µg/day for females) are similar 

to the mean intakes determined in adults (>18 years of age). 

A 70 kg reference man contains 10 mg of nickel, giving an average body concentration of 0.1 ppm.  

Reference values for nickel in healthy adults is 0.2 µg/L in serum and 1–3 µg/L in urine.  A National 

Health and Nutritional Examination Survey II of hair found mean nickel levels of 0.39 ppm, with 10% of 

the population having levels >1.50 ppm. 

About 20–35% of the inhaled nickel that is retained in the lungs is absorbed into the blood.  Absorption of 

nickel following oral exposure has been shown to vary (3–40%) depending on whether the nickel was in 

drinking water or food, with greater absorption occurring with drinking water.  Fasting individuals have 

also been shown to absorb more nickel from the gastrointestinal tract. Most of the absorbed nickel is 

excreted in the urine, regardless of the route of exposure.   

Nickel does not bioaccumulate to a great extent in animals.  There is evidence of uptake and accumulation 

in certain plants. 

Nickel is an essential trace element in animals, although the functional importance of nickel has not been 

clearly demonstrated.  It is considered essential based on reports of nickel deficiency in several animal 

species (e.g., rats, chicks, cows, goats).  Nickel deficiency is manifested primarily in the liver; effects 

include abnormal cellular morphology, oxidative metabolism, and increases and decreases in lipid levels.  

Decreases in growth and hemoglobin concentration and impaired glucose metabolism have also been 

observed. The essentiality of nickel in humans has not been established, and nickel dietary 

recommendations have not been established for humans. 

2.2 SUMMARY OF HEALTH EFFECTS  

The general population can be exposed to nickel via inhalation, oral, and dermal routes of exposure.  

Based on occupational exposure studies, reports of allergic contact dermatitis, and animal exposure 

studies, the primary targets of toxicity appear to be the respiratory tract following inhalation exposure, the 

immune system following inhalation, oral, or dermal exposure, and possibly the reproductive system and 

the developing organism following oral exposure.  
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The most commonly reported adverse health effect associated with nickel exposure is contact dermatitis. 

Contact dermatitis is the result of an allergic reaction to nickel that has been reported in the general 

population and workers exposed via dermal contact with airborne nickel, liquid nickel solution, or 

prolonged contact with metal items such as jewelry and prosthetic devices that contain nickel.  After an 

individual becomes sensitized to nickel, dermal contact with a small amount of nickel or oral exposure to 

fairly low doses of nickel can result in dermatitis.  Approximately 10–20% of the general population is 

sensitized to nickel. 

Adverse respiratory effects have been reported in humans and animals exposed to nickel compounds at 

concentrations much higher than typically found in the environment.  The available data on noncancerous 

respiratory effects in humans are limited.  In nickel workers, exposure to nickel did not result in increases 

in the risk of death from nonmalignant respiratory system disease.  Studies examining potential nonlethal 

respiratory effects have not found consistent results.  Animal data provide strong evidence that nickel is a 

respiratory toxicant; lung inflammation is the predominant effect.  Evidence of lung inflammation has 

been observed following acute-, intermediate-, and chronic-duration exposure of rats to nickel sulfate, 

nickel subsulfide, or nickel oxide.  Nickel sulfate was the most toxic of the three compounds and nickel 

oxide was the least toxic. For all three compounds, the threshold for lung effects decreased as the 

duration of exposure increased.  Exposure to nickel sulfate or nickel subsulfide also produced damage to 

the nasal olfactory epithelium.  Human and animal data provide strong evidence that inhalation exposure 

to some nickel compounds can induce lung cancer.  As described in greater detail later in this section, 

carcinogenic responses have been observed following inhalation exposure to nickel subsulfide and nickel 

oxide; in the absence of exposure to other carcinogenic agents, nickel sulfate does not appear to be 

carcinogenic following inhalation exposure. 

The potential for nickel compounds to induce reproductive effects has not been firmly established.  

Several animal studies have reported adverse effects in the male reproductive system following oral 

exposure to nickel sulfate, nickel chloride, or nickel nitrate.  The observed effects included histological 

alterations in the epididymis and seminal vesicles, decreases in sperm concentration, motility, and 

abnormalities, and decreases in fertility following male exposure, but not female only exposure.  

However, the poor reporting of study results, particularly incidence data and statistical analysis, limits the 

interpretation of these studies.  Additionally, other studies have not found histological alterations in the 

male reproductive system following long-term oral exposure or impaired fertility following oral exposure.  

A number of studies have reported decreases in survival of the offspring of animals exposed prior to 

mating and during the gestation and lactation periods.  Interpretation of these data are complicated by 
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maternal toxicity, particularly decreases in body weight gain, which frequently occurred at the same dose 

levels. 

The most consistently reported adverse effects resulting from exposure to nickel are contact dermatitis 

and respiratory effects, including cancer; a more detailed discussion of these effects follows.  The reader 

is referred to Section 3.2, Discussion of Health Effects by Route of Exposure, for additional information 

on other health effects.   

Contact Dermatits.    Nickel sensitivity is a form of delayed hypersensitivity that is found in 10–20% 

of the general population. The prevalence of nickel sensitivity is higher among young women than any 

other segment of the population, which is probably the result of higher rates of ear and other types of 

body piercing rather than increased susceptibility to sensitization.  There is some evidence of a genetic 

susceptibility factor that may predispose certain individuals to the development of nickel sensitivity.  A 

significant increase in human leukocyte antigen (HLA)-DRw6 antigens were found among individuals 

with nickel contact dermatitis compared to individuals with no history of atopy or contact dermatitis.  The 

relative risk of individuals with the HLA-DRw6 allele developing nickel sensitivity was estimated to 

be 3.3. 

Nickel sensitization typically involves initial prolonged contact with nickel or exposure to a very large 

nickel dose. In the general population, the initial nickel contact often comes from body piercing with 

jewelry that releases large amount of nickel ions.  The resulting dermatitis, which is an inflammatory 

reaction mediated by type IV hypersensitivity, typically occurs beneath the metal object.  With repeated 

exposure, the area of sensitization can spread to other locations, particularly the hands.  Shorter contact 

with nickel items, such as nickel-plated coins or door handles, does not result in nickel sensitization.  

After an individual becomes sensitized to nickel, much lower concentrations are needed to elicit a 

response. There is limited information on nickel levels resulting in sensitization.  One study found that 

the sensitizing nickel level was 100–1,000 times higher than the level eliciting dermatitis in a previously 

sensitized individual. Among sensitized individuals, a direct relationship between nickel exposure level 

and severity of the dermatitis has been found.  A weak reaction has been reported in individuals exposed 

to nickel alloys that release nickel ions at a rate of <0.5 µg/cm2/week; a strong reaction was observed for 

nickel alloys that release >1 µg/cm2/week. No reaction was seen in nickel-sensitized subjects undergoing 

patch testing with 0.01% nickel as nickel sulfate in petrolatum; however, exposure to 0.03% nickel 

resulted in dermatitis.  Similarly, an oral challenge dose of 0.02 mg Ni/kg can induce dermatitis in a small 

percentage of nickel-sensitized individuals, whereas exposure to higher doses (0.06 mg Ni/kg) will often 



 

 
 

 

 

 

 

 

 

  

   

 

 

 
 
 
 

 

NICKEL 15 

2. RELEVANCE TO PUBLIC HEALTH 

result in dermatitis in most nickel-sensitized individuals.  Exposure to these nickel concentrations will not 

result in dermatitis in nonsensitized individuals. 

Respiratory Effects.    Both noncancerous and cancerous respiratory effects have been observed in 

humans and animals exposed to airborne nickel compounds.  Chronic bronchitis, emphysema, pulmonary 

fibrosis, and impaired lung function have been observed in nickel welders and foundry workers.  These 

effects were not consistently seen across studies, and co-exposure to other toxic metals such as uranium, 

iron, lead, and chromium confounds the interpretation of the results.  Studies examining the risk of death 

from nonmalignant respiratory disease among nickel workers have not found significant increases; 

however, many studies found that the number of observed deaths were significantly lower than expected, 

suggesting a healthy worker effect.   

In animals, the predominant noncancerous effect is lung inflammation following exposure to nickel 

sulfate, nickel subsulfide, and nickel oxide.  The toxicity of nickel in the respiratory tract appears to be 

related to the solubility of the individual nickel compounds, with soluble nickel sulfate being the most 

toxic and insoluble nickel oxide being the least toxic.  The pulmonary toxicity appears to be related to 

exposure concentration rather than nickel lung burden.  It has been postulated that the higher toxicity of 

soluble nickel is due to the higher concentrations of free nickel ions, which can diffuse across the cell 

membrane and interact with cytoplasmic proteins.  In contrast, insoluble nickel compounds are 

phagocytized and a smaller amount of nickel ions interact with cytoplasmic proteins.  Following an 

intermediate-duration exposure, the respective no-observed-adverse effect level (NOAEL) and lowest

observed-adverse effect level (LOAEL) values for lung inflammation were 0.06 and 0.11 mg Ni/m3 for 

nickel sulfate, 0.11 and 0.22 mg Ni/m3 for nickel subsulfide, and 2 and 3.9 mg Ni/m3 for nickel oxide. At 

approximately 0.4 mg Ni/m3 as nickel sulfate, nickel subsulfide, and nickel oxide, the lung burdens 

following a 13-week exposure were 6, 7, and 80 µg Ni/g lung, respectively.  For all durations and nickel 

compounds tested, rats appear to be more sensitive to the lung effects than mice; significant increases in 

the incidence of lung inflammation were observed at lower concentrations in the rats than mice.  

However, mice were more susceptible to the lethal effects (presumably from impaired lung function) than 

rats. In addition to the pulmonary effects, atrophy of the nasal olfactory epithelium was observed in rats 

exposed to nickel sulfate or nickel subsulfide for acute, intermediate, and chronic durations; nasal effects 

were not observed following exposure to nickel oxide. 

The carcinogenicity of nickel has been well documented in occupationally-exposed individuals.  

Significant increases in the risk of mortality from lung or nasal cancers were observed in several cohorts 
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of nickel refinery workers.  Studies of workers in other nickel industries, including nickel mining and 

smelting, nickel alloy production, stainless steel production, or stainless steel welding, which typically 

involve exposure to lower concentrations of nickel, have not found significant increases in cancer risks.  

In most of the occupational exposure studies, the workers were exposed to several nickel species, thus 

making it difficult to compare carcinogenic potential across nickel species.  An extensive re-evaluation of 

the studies published prior to 1990 found the strongest evidence of carcinogenicity for sulfidic nickel; 

exposure to high concentrations (>10 mg Ni/m3) resulted in increased lung cancer risks.  There is weaker 

evidence that high concentrations (>10 mg Ni/m3) of oxidic nickel, particularly when there is co-exposure 

to soluble nickel, is also carcinogenic.  Soluble nickel does not appear to be carcinogenic in the absence 

of exposure to other carcinogenic agents.  There is no evidence that exposure to low levels of nickel is 

carcinogenic in humans.  The conclusions drawn from the occupational exposure studies are supported by 

animal inhalation studies.  Significant increases in the incidence of lung tumors were observed in rats 

chronically exposed to nickel subsulfide or nickel oxide.  The carcinogenic response was stronger for 

nickel subsulfide compared to nickel oxide.  In contrast, no increases in lung tumor incidences were 

observed in rats exposed to nickel sulfate; however, the highest concentration tested (0.11 mg Ni/m3) was 

lower than the cancer effect levels for nickel subsulfide (0.73 mg Ni/m3) or nickel oxide (1 mg Ni/m3). 

Although the evidence is sufficient to consider less-soluble nickel compounds as carcinogens following 

inhalation exposure, how environmental exposure to nickel affects cancer risk is not clear.  Nickel levels 

in the environment are much lower than those that were associated with cancer in workers.  In the 

environment, nickel is also more likely to be in the form of a mineral lattice rather than the more active 

nickel refinery dust that contains nickel subsulfide, the form of nickel most consistently associated with 

cancer. Although soluble nickel compounds may not be directly carcinogenic, as indicated by the 

negative results in the nickel sulfate bioassay, inhalation of nickel sulfate did result in an inflammatory 

response in the lungs of animals.  Because sustained tissue damage can serve to promote carcinogenesis, 

epidemiology studies of humans who are exposed to many substances may not be able to distinguish 

between the carcinogenic activity of less-soluble nickel compounds and the promoting activity of toxic 

concentrations of soluble nickel compounds. 

The Department of Health and Human Services has determined that metallic nickel may reasonably be 

anticipated to be a human carcinogen and nickel compounds are known to be human carcinogens.  

Similarly, IARC classified metallic nickel in group 2B (possibly carcinogenic to humans) and nickel 

compounds in group 1 (carcinogenic to humans).  EPA has classified nickel refinery dust and nickel 

subsulfide in Group A (human carcinogen).  Other nickel compounds have not been classified by the 
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EPA. Based on the occupational data, inhalation unit risk levels of 2.4x10-4 (µg/m3)-1 and 


4.8x10-4 (µg/m3)-1 were derived by EPA for nickel refinery dust and nickel subsulfide, respectively.
 

2.3 MINIMAL RISK LEVELS 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been made for nickel.  An 

MRL is defined as an estimate of daily human exposure to a substance that is likely to be without an 

appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure.  MRLs are 

derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive 

health effect(s) for a specific duration within a given route of exposure.  MRLs are based on 

noncancerous health effects only and do not consider carcinogenic effects.  MRLs can be derived for 

acute, intermediate, and chronic duration exposures for inhalation and oral routes.  Appropriate 

methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis. As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs may be revised. 

Inhalation MRLs 

The acute toxicity of nickel has been assessed in several animal studies involving exposure to nickel 

sulfate (Evans et al. 1995; NTP 1996c), nickel chloride (Adkins et al. 1979; Graham et al. 1978), nickel 

subsulfide (Benson et al. 1995b; NTP 1996b), and nickel oxide (NTP 1996a).  The observed effects 

include inflammatory changes in the lungs (Benson et al. 1995a; NTP 1996a, 1996b, 1996c), atrophy of 

the nasal olfactory epithelium (Evans et al. 1995; NTP 1996b, 1996c), hyperplasia in the bronchial and 

mediastinal lymph nodes (NTP 1996b, 1996c), impaired immune function (Adkins et al. 1979; Graham et 

al. 1978), and decreases in body weight gain (NTP 1996b, 1996c), which are probably secondary to the 

lung damage.  NOAEL values for respiratory tract effects were not established for nickel sulfate or nickel 

subsulfide. In studies by the National Toxicology Program (NTP 1996b, 1996c) (6 hours/day for 12 days 

in a 16-day period), chronic lung inflammation and atrophy of the nasal olfactory epithelium were 
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observed at the lowest tested nickel sulfate (0.7 mg Ni/m3) and nickel subsulfide (0.44 mg Ni/m3) 

concentrations. At 0.7 and 3.65 mg Ni/m3 as nickel sulfate and nickel subsulfide, respectively, the 

inflammation was accompanied by labored breathing, suggestive of impaired lung function.  Alveolitis 

was also observed in rats exposed to 0.22 mg Ni/m3 as nickel subsulfide 6 hours/day for 7 days (Benson et 

al. 1995b).  In mice, the LOAELs for chronic lung inflammation were 0.7 and 1.83 mg Ni/m3 for nickel 

sulfate and nickel subsulfide, respectively.  Nickel oxide was less toxic than the other two nickel 

compounds.  The NOAEL and LOAEL values for acute lung inflammation were 3.9 and 7.9 mg Ni/m3 in 

rats, respectively; in mice, the highest concentration tested (23.6 mg Ni/m3) was a NOAEL for respiratory 

effects. Based on these data and data from longer-term studies (NTP 1996a, 1996b, 1996c), nickel sulfate 

appears to be the most toxic to the respiratory tract of the three nickel compounds tested by NTP.  

Although the acute-duration nickel subsulfide study used lower concentrations than the nickel sulfate 

study, there is some evidence to suggest that the nickel sulfate effects were more severe.  At 0.7 mg 

Ni/m3 as nickel sulfate, the chronic lung inflammation was given a severity score of 1.2–1.8 (minimal to 

mild) and was accompanied by labored breathing and a 28% decrease in body weight.  The lung 

inflammation in rats exposed to 0.44 or 0.88 mg Ni/m3 as nickel subsulfide was scored as minimal (1.0) 

and was not accompanied by altered respiration or body weight effects. 

These acute-duration studies provide strong evidence that the respiratory tract is the most sensitive target 

following inhalation exposures.  The three NTP (1996a, 1996b, 1996c) studies demonstrate that nickel 

sulfate is more toxic to the lungs than nickel subsulfide or nickel oxide.  Because the lowest concentration 

tested in the nickel sulfate study (0.7 mg Ni/m3) was a serious LOAEL for respiratory and body weight 

effects, this study cannot be used for MRL derivation.  An immunotoxicity study by Graham et al. (1978) 

established a lower LOAEL (0.25 mg Ni/m3) for a soluble nickel compound, nickel chloride; the NOAEL 

was 0.1 mg Ni/m3. This study was not selected as the basis for MRL because the respiratory tract was not 

examined and it is not known if the NOAEL for immunotoxicity would also be a NOAEL for respiratory 

effects. 

• An MRL of 0.0002 mg Ni/m3 has been derived for intermediate-duration exposure to nickel. 

The intermediate-duration toxicity of nickel has been assessed in several animal studies involving 

exposure to metallic nickel, nickel sulfate, nickel chloride, nickel subsulfide, and nickel oxide.  The 

observed effects include inflammatory changes in the lungs (Benson et al. 1995b; Horie et al. 1985; NTP 

1996a, 1996b, 1996c), alveolar macrophage hyperplasia (Benson et al. 1995b; Johansson and Camner 

1986; NTP 1996a, 1996b, 1996c), atrophy of the nasal olfactory epithelium (NTP 1996b, 1996c), 
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hyperplasia in the bronchial and mediastinal lymph nodes (NTP 1996b, 1996c), impaired immune 

function (Adkins et al. 1979; Graham et al. 1978; Haley et al. 1990; Johansson et al. 1980, 1987, 1988a, 

1989; Johansson and Camner 1986; Morimoto et al. 1995; Spiegelberg et al. 1984), decreases in body 

weight gain which are probably secondary to the lung damage (NTP 1996b, 1996c; Weischer et al. 1980), 

decreased sperm concentration (NTP 1996a), and developmental toxicity (Weischer et al. 1980).  

As with the acute-duration studies, the most sensitive target of nickel toxicity is the lungs.  Chronic lung 

inflammation was observed at the lowest-adverse-effect levels following 13-week (6 hours/day, 

5 days/week) exposures to nickel sulfate, nickel subsulfide, or nickel oxide (NTP 1996a, 1996b, 1996c).  

Intermediate-duration studies clearly demonstrate that nickel sulfate is more toxic than nickel subsulfide 

and nickel oxide.  In rats, the respective NOAEL and LOAEL values for chronic lung inflammation were 

0.06 and 0.11 mg Ni/m3 for nickel sulfate (NTP 1996c), 0.11 and 0.22 mg Ni/m3 for nickel subsulfide 

(NTP 1996b), and 2.0 and 3.9 mg Ni/m3 for nickel oxide (NTP 1996a). Atrophy of the nasal olfactory 

epithelium was observed at 0.22 and 0.44 mg Ni/m3 as nickel sulfate (NTP 1996c) and nickel subsulfide 

(NTP 1996b), respectively.  Similar effects were observed in mice.  For nickel sulfate and nickel 

subsulfide, the LOAEL values for mice were higher than the LOAELs identified in rats; the LOAEL for 

chronic inflammation following exposure to nickel oxide was the same in rats and mice.  The LOAEL 

values for immunotoxicity, reproductive toxicity, and developmental toxicity were higher than the 

LOAEL values for respiratory effects in rats exposed to nickel sulfate.  

Derivation of an intermediate-duration MRL based on the NTP study of nickel sulfate (NTP 1996c) 

would be protective against the toxicity of other nickel compounds.  In the nickel sulfate study, alveolar 

macrophage hyperplasia was observed in rats exposed at the two lowest concentrations (0.03 and 0.06 mg 

Ni/m3). NTP noted that when lung effects only consisted of alveolar macrophage hyperplasia, there was 

only a slight increase in the number of alveolar macrophages and the differences between controls and 

nickel-exposed animals were subtle; the severity score for the alveolar macrophage hyperplasia was 

1.0 (minimal).  The minimal alveolar macrophage hyperplasia was not considered adverse because it is 

considered to be part of the normal physiologic response to inhaled particles and it is not believed to 

compromise the lung’s ability to clear foreign matter.  This is supported by the Benson et al. (1995a) 

study, which found no effect on the clearance of a nickel sulfate tracer in animals exposed to 0.03 or 

0.11 mg Ni/m3 as nickel sulfate for 6 months. Thus, the 0.06 mg Ni/m3 concentration was identified as a 

NOAEL and adjusted for intermittent exposure (NOAELADJ). 
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The intermediate-duration inhalation MRL of 0.0002 mg Ni/m3 was derived by dividing the NOAELHEC 

of 0.0052 mg Ni/m3 by an uncertainty factor of 30 (3 for species to species extrapolation with dosimetric 

adjustments and 10 for human variability).  The NOAELHEC was calculated using the following equations: 

NOAELADJ = 0.06 mg Ni/m3 x 6 hours/24 hours x 5 days/7 days = 0.011 mg Ni/m3

 NOAELHEC = NOAELADJ x RDDR = 0.011 mg Ni/m3 x 0.474 = 0.0052 mg Ni/m3 

The regional deposited dose ratio (RDDR) for the pulmonary region was used to extrapolate deposited 

doses in rats to deposited doses in humans.  The RDDR was calculated using EPA software and the 

following parameters:  particle size (mass median aerodynamic diameter, MMAD) of 2.11 µm with a 

geometric standard deviation (sigma g) of 2.7 (as reported in Table K1 of NTP 1996c); default human 

body weight (70 kg), minute volume (13 L), and pulmonary surface area (54 m2); and default female 

F344 rat body weight (0.124 kg), minute volume (101.3 mL), and pulmonary surface area (0.34 m2). 

No intermediate-duration human inhalation exposure studies were identified; a number of chronic 

exposure studies have examined the potential of nickel and nickel compounds to induce respiratory 

effects in workers.  Most of these studies are cohort mortality studies that did not find significant 

increases in the number of deaths from nonmalignant respiratory system disease (Arena et al. 1998; Cox 

et al. 1981; Cragle et al. 1984; Egedahl et al. 2001; Enterline and Marsh 1982; Redmond 1984; Roberts et 

al. 1989b; Shannon et al. 1984b, 1991).  A few studies have examined workers for possible nonlethal 

respiratory effects.  Two studies examined chest x-rays of workers:  one found an increased risk of 

moderate pulmonary fibrosis (Berge and Skyberg 2003) and the other did not find any significant 

alterations (Muir et al. 1993).  Although most of occupational exposure studies did not report exposure 

levels, workers were typically exposed to nickel levels that far exceed levels found in ambient air.  

• An MRL of 9x10-5 mg Ni/m3 has been derived for chronic-duration exposure to nickel. 

One human study (Vyskocil et al. 1994a) and several animal studies (NTP 1996a, 1996b, 1996c; 

Ottolenghi et al. 1974; Takenaka et al. 1985; Tananka et al. 1988) assessed the noncarcinogenic toxicity 

of nickel sulfate, nickel chloride, nickel subsulfide, and nickel oxide.  These studies found inflammatory 

changes in the lungs (NTP 1996a, 1996b, 1996c; Ottolenghi et al. 1974; Tanaka et al. 1988), atrophy of 

the nasal olfactory epithelium (NTP 1996b, 1996c), evidence of renal damage (Vyskocil et al. 1994a), 

adverse adrenal effects (NTP 1996a), decreased body weight gain, which was probably associated with 
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impaired lung function (NTP 1996b, 1996c; Takenaka et al. 1985), and damage to the bronchial lymph 

nodes (NTP 1996a, 1996b, 1996c).   

As with the acute- and intermediate-duration exposures, chronic exposure to nickel sulfate, nickel 

subsulfide, or nickel oxide resulted in chronic active lung inflammation.  A 2-year exposure (6 hours/day, 

5 days/week) to nickel sulfate (NTP 1996c) resulted in chronic lung inflammation and bronchialization at 

0.06 mg Ni/m3 and atrophy of the olfactory epithelium at 0.11 mg Ni/m3; no adverse respiratory effects 

were observed at 0.03 mg Ni/m3. A similar exposure to nickel subsulfide (NTP 1996b) resulted in 

chronic inflammation, alveolar epithelium hyperplasia, fibrosis, and rapid and shallow breathing at 

0.11 mg Ni/m3, and atrophy of the nasal olfactory epithelium at 0.73 mg Ni/m3. Chronic lung 

inflammation and alveolar epithelial hyperplasia were observed at the lowest nickel oxide concentration 

tested (0.5 mg Ni/m3) (NTP 1996a).  Similar effects were observed in mice exposed to nickel sulfate, 

nickel subsulfide, or nickel oxide for 2 years; however, the LOAEL values were higher than for rats.  The 

NTP (1996c) study of nickel sulfate identified the lowest LOAEL for respiratory effects (0.06 mg Ni/m3); 

the NOAEL of 0.03 mg Ni/m3 associated with this LOAEL was used to derive a chronic-duration 

inhalation MRL for nickel.  

The chronic-duration inhalation MRL of 9x10-5 mg Ni/m3 was derived by dividing the NOAELHEC of 

0.0027 mg Ni/m3 by an uncertainty factor of 30 (3 for species to species extrapolation with dosimetric 

adjustments and 10 for human variability).  The NOAELHEC was calculated using the following equations: 

NOAELADJ = 0.03 mg Ni/m3 x 6 hours/24 hours x 5 days/7 days = 0.0054 mg Ni/m3

 NOAELHEC = NOAELADJ x RDDR = 0.0054 mg Ni/m3 x 0.506 = 0.0027 mg Ni/m3 

The RDDR for the pulmonary region was used to extrapolate deposited doses in rats to deposited doses in 

humans.  The following parameters were used to calculated the RDDR:  mean particle size (MMAD) of 

2.5 µm with a geometric standard deviation (sigma g) of 2.38 (as reported in Table K1 of NTP 1996c); 

default human body weight (70 kg), minute volume (13 L), and pulmonary surface area (54 m2); and 

default female F344 rat body weight (0.229 kg), minute volume (167.3 mL), and pulmonary surface area 

(0.34 m2). 

As discussed for the intermediate-duration inhalation MRL, the potential of nickel to induce 

nonmalignant respiratory tract effects has been examined in a number of cohort mortality studies.  In 

general, these studies did not find significant increases in the risk of dying from nonmalignant respiratory 
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system disease (Arena et al. 1998; Cox et al. 1981; Cragle et al. 1984; Egedahl et al. 2001; Enterline and 

Marsh 1982; Redmond 1984; Roberts et al. 1989b; Shannon et al. 1984b, 1991).  Mixed results have been 

found in the few studies examining nonlethal respiratory tract effects.  Two studies examined chest x-rays 

of nickel workers:  one found an increased risk of moderate pulmonary fibrosis (Berge and Skyberg 2003) 

and the other did not find any significant alterations (Muir et al. 1993).  Although most of occupational 

exposure studies did not report exposure levels, workers were typically exposed to nickel levels that far 

exceed levels found in ambient air. 

Oral MRLs 

Information on the acute oral toxicity of nickel in humans comes from reports of accidental exposures and 

studies of nickel-sensitized individuals.  Gastrointestinal upset (vomiting, cramps, diarrhea) and 

neurological symptoms (giddiness, headache, weariness) were observed in workers accidentally ingesting 

water containing approximately 7.1–35.7 mg Ni/kg as nickel sulfate and nickel chloride; boric acid was 

also present in the water (Sunderman et al. 1988).  Allergic dermatitis was observed in previously nickel-

sensitized individuals ingesting a single challenge dose of greater than 0.01 mg Ni/kg as nickel sulfate 

(Hindsén et al. 2001; Jensen et al. 2003; Menne and Maibach 1987).  Reliable data on the acute oral 

toxicity of nickel in animals is limited to two studies that examined a limited number of end points.  A 

reproductive toxicity study in mice found significant increases in sperm head abnormalities in mice 

exposed to a single gavage dose of 23 mg Ni/kg as nickel nitrate (Sobti and Gill 1989).  No 

developmental effects were observed in the offspring of mice exposed via gavage to 90.6 mg Ni/kg/day as 

nickel chloride on gestational days 8–12 (Seidenberg et al. 1986).  Intermediate-duration studies suggest 

that the developing organism may be a sensitive target of nickel toxicity; however, this end point has not 

been adequately examined following acute-duration exposure; thus, an acute-duration oral MRL for 

nickel has not been derived. 

A number of animal studies have assessed the toxicity of nickel following intermediate-duration oral 

exposure. Significant decreases in body weight and organ weight (liver, kidney, pituitary) were 

consistently observed in rats exposed to 8.6 mg Ni/kg/day and higher as nickel chloride (American 

Biogenics Corporation 1988; RTI 1988a, 1988b), nickel acetate (Hanger 1973), or nickel sulfate (Dieter 

et al. 1988). Other systemic effects included kidney damage (minimal convoluted tubular damage) at 

108 mg Ni/kg/day as nickel sulfate (Dieter et al. 1988) and adverse lung effects at 8.6 and 20 mg 

Ni/kg/day as nickel chloride (American Biogenic Corporation 1988; RTI 1988b).  Inconsistent results 

have been reported for the reproductive toxicity of nickel.  Decreased sperm motility and count and sperm 
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abnormalities were observed at 1.9 mg Ni/kg/day and higher as nickel sulfate (Pandey and Srivastava 

2000; Pandey et al. 1999) and decreased fertility was observed in studies in which males and females 

were exposed to 3.6 mg Ni/kg/day as nickel chloride (Käkelä et al. 1999).  However, impaired 

reproduction has not been observed in multigeneration studies of rats orally exposed to nickel sulfate or 

nickel chloride (RTI 1988a, 1988b; Springborn Laboratories 2000a).  There is stronger evidence that 

prenatal exposure to nickel results in decreased survival, as measured by live litter size and neonatal 

mortality, in pups of rat dams exposed to nickel chloride in drinking water prior to mating and during 

gestation and lactation (Ambrose et al. 1976; Käkelä et al. 1999; RTI 1988a, 1988b; Smith et al. 1993; 

Springborn Laboratories 2000b).  Interpretation and comparison of the studies is complicated by 

differences in study design and maternal toxicity, which often occurs at the same dose levels as the 

developmental effects.  The available data are not sufficient to establish a threshold for developmental 

effects to nickel chloride in rats; the lowest LOAEL values identified in the studies range from 1.3 to 

90 mg Ni/kg/day and the highest NOAEL values range from 2.2 to 45 mg Ni/kg/day.  Because decreased 

pup survival is considered a serious LOAEL and a NOAEL for developmental effects has not been clearly 

identified, an intermediate-duration oral MRL was not derived for nickel. 

Data on the chronic toxicity of ingested nickel are limited to one animal study that found significant 

decreases in body weight and liver weights in rats exposed to 75 mg Ni/kg/day as nickel sulfate in the diet 

and decreases in body weight, increases in liver weight, and adverse renal and lung effects in dogs 

62.5 mg Ni/kg/day (Ambrose et al. 1976).  The available chronic-duration database was considered 

inadequate for MRL derivation because intermediate-duration studies found significant decreases in 

survival of the offspring of rats exposed to ≥1.3 mg Ni/kg/day (Ambrose et al. 1976; Käkelä et al. 1999; 

RTI 1988a, 1988b; Smith et al. 1993; Springborn Laboratories 2000b). 
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3.1 INTRODUCTION 


The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of nickel.  It 

contains descriptions and evaluations of toxicological studies and epidemiological investigations and 

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

Several different nickel compounds are discussed in this profile.  These compounds can be grouped 

according to their solubility in water:  soluble compounds include nickel chloride, nickel sulfate, and 

nickel nitrate, and less-soluble compounds include nickel oxide and nickel subsulfide.  Both the soluble 

and less-soluble nickel compounds are important with regard to all relevant routes of exposure.  

Generally, the soluble compounds are considered more toxic than the less-soluble compounds, although 

the less-soluble compounds are more likely to be carcinogenic at the site of deposition.  Metallic nickel is 

also considered in this profile.  All doses are presented as the amount or concentration of nickel to which 

subjects were exposed. Nickel carbonyl, a highly toxic nickel compound, is not considered in this profile.  

The data regarding the toxicity of nickel carbonyl are substantial; however, the likelihood of exposure at 

hazardous waste sites is very low.  In ambient air, nickel carbonyl is relatively unstable with a half-life of 

≈100 seconds (Stedman and Hiked 1980).  Because nickel carbonyl is highly reactive, it is not likely to be 

found at hazardous waste sites.  Also, nickel carbonyl is not very soluble in water; therefore, it will not be 

found in drinking water. 

3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE  

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by end point (death, systemic, immunological, neurological, reproductive, 

developmental, and carcinogenic effects).  These data are discussed in terms of three exposure periods:  

acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 
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Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects.  "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death). "Less serious" effects are those that are not expected to produce significant dysfunction or 

death, or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 

"less serious" and "serious" effects.  The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 

the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health. 

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of nickel are 

indicated in Table 3-1 and Figure 3-1. Because cancer effects could occur at lower exposure levels, 

Figure 3-1 also shows a range for the upper bound of estimated excess risks, ranging from a risk of 1 in 

10,000 to 1 in 10,000,000 (10-4 to 10-7), as developed by EPA. 

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 
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3.2.1 Inhalation Exposure 

3.2.1.1 Death 

Death from adult respiratory distress syndrome was reported in one person who sprayed nickel with a 

metal arc process without wearing personal protective equipment (Rendell et al. 1994).  Several days after 

the exposure, urinary concentrations of nickel were 700 µg/L, in comparison to levels of <0.1–13.3 µg/L 

in persons not occupationally exposed to nickel (Sunderman 1993).  The death occurred 13 days after the 

90-minute exposure to an estimated concentration of 382 mg Ni/m3 of principally metallic nickel with the 

majority of particle sizes of <1.4 µm.  Histological examination of the lungs revealed alveolar wall 

damage and edema in alveolar spaces, and marked tubular necrosis was noted in the kidneys. 

Human data regarding chronic inhalation exposure to nickel are limited to occupational exposure studies.  

The majority of these studies analyzed the toxicity of nickel, usually in the form of nickel oxide, metallic 

nickel, or nickel refinery dust, by calculating Standard Mortality Ratios (SMR) for all causes of death.  

Generally, the studies report a higher incidence of cancer deaths from lung and nasal cancers in the 

exposed workers (see Section 3.2.1.8).  Two studies have also reported a higher incidence of deaths 

resulting from nonmalignant respiratory disease (Cornell and Landis 1984; Polednak 1981). However, all 

of the workers were exposed to other metals (arsenic, uranium, iron, lead, chromium), so it cannot be 

concluded that nickel was the sole causative agent.  Other studies of humans occupationally exposed to 

nickel compounds have not reported increased mortality resulting from respiratory diseases (Cox et al. 

1981; Cragle et al. 1984; Enterline and Marsh 1982; Redmond 1984; Shannon et al. 1984b, 1991). 

During the first 2 days after a single 2-hour exposure, 4 of 28 rats died after exposure to nickel sulfate at 

36.5 mg Ni/m3 (Hirano et al. 1994b).  Severe hemorrhage of the lungs was observed in the lungs of the 

rats that died. During inhalation exposure of 6 hours/day, 5 days/week, for up to 12 exposures, rats and 

mice exposed to 12.2 or 1.4 mg Ni/m3, respectively, as nickel sulfate and mice exposed to 7.33 mg Ni/m3 

as nickel subsulfide died, but those exposed to nickel oxide did not (NTP 1996a, 1996b, 1996c).  Mice 

were more sensitive to lethality than rats; at 1.4 mg Ni/m3 as nickel sulfate, all mice and no rats died, and 

at 7.33 mg Ni/m3 as nickel subsulfide, all mice and 2 of 10 rats died.  No rats or mice died following 

exposure to 23.6 mg Ni/m3 as nickel oxide.  No deaths were reported in rats or mice following 13 weeks 

of exposure (6 hours/day, 5 days/week) to nickel at 7.9, 1.83, or 0.44 mg Ni/m3 as nickel oxide, nickel 

subsulfide, or nickel sulfate, respectively (NTP 1996a, 1996b, 1996c).  Hamsters survived exposure to 

≤48.4 mg Ni/m3 as nickel oxide for 15 or 61 days (Werner and Craig 1972). 
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Significant mortality was observed during the last 26 weeks of a 78-week inhalation study of rats exposed 

to 0.7 mg Ni/m3 as nickel subsulfide (Ottolenghi et al. 1974).  Less than 5% of the treated rats survived 

the study (78 weeks of exposure plus 30 weeks of observation) compared to 31% of the controls 

(Ottolenghi et al. 1974).  All rats, guinea pigs, and mice exposed to 15 mg Ni/m3 as metallic nickel for 

≤21 months died before the end of the study, with most of the guinea pigs and mice dying by 15 months 

(Hue per 1958).  Lung lesions including edema, hyperemia, and hemorrhage were the principal effects 

noted. However, no controls were used in this study.  A significant decrease in mean survival time was 

observed in rats exposed 23 hours/day for life to 0.06 mg Ni/m3 as nickel oxide (Takenaka et al. 1985).  

The average survival times for rats exposed to 0 or 0.06 mg Ni/m3 were 125.2 and 87.7 weeks, 

respectively. Survival was not affected in rats exposed to nickel oxide, nickel subsulfide, or nickel sulfate 

at concentrations up to 2, 0.73, or 0.11 mg Ni/m3, respectively, for 104 weeks (NTP 1996a, 1996b, 

1996c). Survival of mice was also not affected by exposure to nickel oxide, nickel subsulfide, or nickel 

sulfate at concentrations up to 3.9, 0.88, or 0.22 mg Ni/m3, respectively, for 104 weeks (NTP 1996a, 

1996b, 1996c). 

LOAEL values from each reliable study for death in each species, duration category, and nickel 

compound are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.2 Systemic Effects  

No studies were located regarding ocular effects in humans or animals after inhalation exposure to nickel.  

Other systemic effects are discussed below.  The highest NOAEL values and all LOAEL values from 

each reliable study for systemic effects in each species, duration category, and nickel compound are 

recorded in Table 3-1 and plotted in Figure 3-1. 

Respiratory Effects.   A number of human studies have examined the potential of nickel and nickel 

compounds to induce respiratory effects.  Most of these studies were cohort mortality studies in nickel-

exposed workers.  A significant excess of deaths from nonmalignant respiratory system disease was found 

among foundry workers that was associated with the duration of foundry employment, regardless of 

exposure to nickel (Cornell and Landis 1984).  Other studies of refinery workers or workers exposed to 

nickel alloys have not found increases in deaths from respiratory disease (Arena et al. 1998; Cox et al. 

1981; Cragle et al. 1984; Egedahl et al. 2001; Enterline and Marsh 1982; Redmond 1984; Roberts et al. 

1989b; Shannon et al. 1984b, 1991).  Two studies of welders also did not find significant increases in the  



477
382

395

36.5

615

12.2

642

7.33

619

1.4

472

0.22

368
0.635

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Human 90 min 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

382 M (death of one man) 

Reference 
Chemical Form 

Rendall et al. 1994 
metal 

2 Rat 
(Wistar) 

2 hr 36.5 M (4/28 died) Hirano et al. 1994b 
sulfate 

3 Rat 
(Fischer- 344) 

12 days in 16 
day period 
6 hr/day 

12.2 F (5/5 died) NTP 1996c 
sulfate 

4 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hours/day 

7.33 (10/10 died) NTP 1996b 
subsulfide 

5 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hr/day 

Systemic 
6 Rat 

(Fischer- 344) 
1, 2, 4, 7, 12 d 
6hr/d Resp 0.22 (alveolitis) 

1.4 (10/10 died) NTP 1996c 
sulfate 

Benson et al. 1995b 
subsulfide 

7 Rat 
(Long- Evans) 

4, 8, 12 or 16 d 
6 hr/d Resp 0.635 M (atrophy of olfactory 

epithelium) 
Evans et al. 1995 
sulfate 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS
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682

3.9 7.9

23.6

23.6

23.6

23.6

23.6

23.6

23.6

23.6

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

8 Rat 
(Fischer- 344) 

12 days in 16 
day period 
6 hours/day 

Resp 3.9 F 7.9 F (acute lung inflammation) NTP 1996a 
oxide 

Cardio 23.6 

Gastro 23.6 

Musc/skel 23.6 

Hepatic 23.6 

Renal 23.6 

Endocr 23.6 

Dermal 23.6 

Bd Wt 23.6 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS

30



672

0.44

3.65

7.33

7.33

7.33

7.33

7.33

7.33

1.83

3.65

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ LOAEL 
Duration/ 

a
Key to 
Figure 

Species 
(Strain) 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

9 Rat 
(Fischer- 344) 

12 days in 16 
day period 
6 hours/day 

Resp 0.44 (chronic lung 
inflammation, atrophy of 
olfactory epithelium) 

Cardio 

Gastro 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

7.33 

7.33 

7.33 

7.33 

7.33 

7.33 

1.83 

Serious 
(mg/m³) 

3.65 F (chronic lung 
inflammation with 
necrosis and labored 
breathing) 

3.65	 (22-28% decrease in 
body weight gain) 

Reference 
Chemical Form 

NTP 1996b 
subsulfide 

N
IC

K
E

L
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E

A
LTH

 E
FFE

C
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616
0.7

12.2

12.2

12.2

12.2

12.2

12.2

12.2

0.7

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/
 
Duration/
 

a
 FrequencyKey to Species (Route)Figure (Strain)	 System 

10 Rat 12 days in 16 Respday period(Fischer- 344) 
6 hr/day 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

LOAEL 

NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

Reference 
Chemical Form 

0.7	 (chronic lung NTP 1996c 
inflammation; sulfate 
degeneration of 
bronchiolar epithelium; 
labored breathing; 
atrophy of olfactory 
epithelium) 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

12.2 

0.7 M (final body weights 28% 
lower than controls) 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS

32



688

23.6

23.6

23.6

23.6

23.6

23.6

23.6

23.6

643

0.44

1.83

0.88

7.33

7.33

7.33

7.33

7.33

7.33

7.33

1.83 3.65

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to Species (Route)Figure (Strain) 

11 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hours/day 

12 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hours/day 

System 

Resp 

Cardio 

Gastro 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

Resp 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

LOAEL 

NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

Reference 
Chemical Form 

23.6 NTP 1996a 
oxide 

23.6 

23.6 

23.6 

23.6 

23.6 

23.6 

23.6 

0.44 1.83 (chronic lung 
inflammation) 

NTP 1996b 
subsulfide 

0.88 (atrophy of olfactory 
epithelium) 

7.33 

7.33 

7.33 

7.33 

7.33 

7.33 

7.33 

1.83 M 3.65 M (emaciation) 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE
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620
0.7 1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

0.7

1.4

683

23.6

673

7.33

714

0.7

1.4

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to	 Species (Route)Figure (Strain) 

13	 Mouse 
(B6C3F1) 

Immuno/ Lymphoret 
14 Rat 

(Fischer- 344) 

15	 Rat 
(Fischer- 344) 

16	 Rat 
(Fischer- 344) 

12 days in 16 
day period 
6 hr/day 

12 days in 16 
day period 
6 hours/day 

12 days in 16 
day period 
6 hours/day 

12 days in 16 
day period 
6 hr/day 

System 

Resp 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

LOAEL 

NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

Reference 
Chemical Form 

0.7 (chronic lung 
inflammation) 

1.4 (necrotizing lung 
inflammation) 

NTP 1996c 
sulfate 

1.4 

1.4 

1.4 

1.4 

1.4 

1.4 

1.4 

0.7 1.4 (animals appeared 
emaciated) 

23.6 NTP 1996a 
oxide 

7.33 NTP 1996b 
subsulfide 

0.7 F 1.4 F (hyperplasia in bronchial 
and mediastinal lymph 
nodes) 

NTP 1996c 
sulfate 

N
IC

K
E

L
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E

A
LTH

 E
FFE

C
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094
0.499

0.369

712
0.657

713
0.455

098

0.1

0.25

689

23.6

644

0.44

0.88

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to Species 
Figure (Strain) 

17 Mouse 
(CD-1) 

18 Mouse 
(CD-1) 

19 Mouse 
(CD-1) 

20 Mouse 
(Swiss) 

21 Mouse 
(B6C3F1) 

22 Mouse 
(B6C3F1) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

2 hr 0.499 F (increased susceptibility 
to Streptococcal 
infection) 

Adkins et al. 1979 
chloride 

0.369 F 

2 hr 0.657 F (decreased ability to 
clear bacteria from lungs) 

Adkins et al. 1979 
chloride 

2 hr 0.455 F (increased susceptibility 
to Streptococcal 
infection) 

Adkins et al. 1979 
sulfate 

2 hr 0.1 F 0.25 F (impaired humoral 
immunity) 

Graham et al. 1978 
chloride 

12 days in 16 
day period 
6 hours/day 

23.6 NTP 1996a 
oxide 

12 days in 16 
day period 
6 hours/day 

0.44 0.88 (lymphoid hyperplasia in 
bronchial lymph nodes) 

NTP 1996b 
subsulfide 

N
IC

K
E

L
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E

A
LTH

 E
FFE
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621

3.1

369
0.635

685

23.6

675

7.33

618

12.2

690

23.6

646

3.65

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

23 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hr/day 

Neurological 
24 Rat 

(Long- Evans) 
4, 8, 12, 16 d 
6 hr/d 

3.1 

0.635 M (decrease in number of 
bipolar receptor cells in 
nasal olfactory 
epithelium) 

NTP 1996c 
sulfate 

Evans et al. 1995 
sulfate 

Reproductive 
25 Rat 

(Fischer- 344) 
12 days in 16 
day period 
6 hours/day 

23.6 NTP 1996a 
oxide 

26 Rat 
(Fischer- 344) 

12 days in 16 
day period 
6 hours/day 

7.33 NTP 1996b 
subsulfide 

27 Rat 
(Fischer- 344) 

12 days in 16 
day period 
6 hr/day 

12.2 NTP 1996c 
sulfate 

28 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hours/day 

23.6 NTP 1996a 
oxide 

29 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hours/day 

3.65 NTP 1996b 
subsulfide 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS

36



623

1.4

374

0.49

1.96

1.96

377
0.11

124

0.12

125
0.109

270

0.5

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

30 Mouse 
(B6C3F1) 

12 days in 16 
day period 
6 hr/day 

INTERMEDIATE EXPOSURE 
Systemic 
31 Rat 

(Fischer- 344) 
up to 6 mo 
5d/wk 
6hr/d 

Resp 

1.4 

0.49 M 1.96 M (moderate alveolitis that 
persisted at least 4 
months after the 
exposure) 

NTP 1996c 
sulfate 

Benson et al. 1995a 
oxide 

Bd Wt 1.96 M 

32 Rat 
(Fischer- 344) 

up to 6 mo 
5d/wk 
6hr/d 

Resp 0.11 M (alveolitis that persisted 
for 4 months after 
exposure) 

Benson et al. 1995a 
sulfate 

33 Rat 
(Wistar) 

> 2 wk 
6 d/wk 
12 hr/d 

Resp 0.12 M (alveolar wall thickening) Bingham et al. 1972 
oxide 

34 Rat 
(Wistar) 

>2 wk 
6 d/wk 
12 hr/d 

Resp 0.109 M (hyperplasia of the 
bronchial epithelium and 
peribronchial lymphocytic 
infiltration) 

Bingham et al. 1972 
chloride 

35 Rat 
(Wistar) 

1 mo 
5d/wk 
6hr/d 

Resp 0.5 M (interstitial pneumonia) Horie et al. 1985 
oxide 

N
IC

K
E
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E

A
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C
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702

2

3.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

Exposure/ LOAEL
 
Duration/
 

a

Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (mg/m³) (mg/m³) (mg/m³) Chemical Form 

36 Rat 
(Fischer- 344) 

13 weeks 
5d/wk 
6hr/d 

Resp 2 3.9 

Cardio 7.9 

Gastro 7.9 

Musc/skel 7.9 

Hepatic 7.9 

Renal 7.9 

Endocr 7.9 

Dermal 7.9 

Bd Wt 7.9 

(chronic active lung NTP 1996a 
inflammation and oxide 
granulmatous 
inflammation) 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
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667

0.11

0.22

0.44

1.83

1.83

1.83

1.83

1.83

1.83

1.83

1.83

1.83

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ LOAEL 
Duration/ 

a
Key to 
Figure 

Species 
(Strain) 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

37 Rat 
(Fischer- 344) 

13 weeks 
5 days/week 
6 hours/day 

Resp 0.11 0.22 (chronic inflammation 
and interstitial infiltrates) 

0.44 (atrophy of olfactory 
epithelium) 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

1.83 

1.83 

1.83 

1.83 

1.83 

1.83 

1.83 

1.83 

Reference 

(mg/m³) Chemical Form 
Serious 

1.83	 (labored breathing during NTP 1996b 
weeks 2-7) subsulfide 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS
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629

0.06

0.11

0.22

0.44

0.44

0.44

0.44

0.44

0.44

0.44

0.44

054

0.784

0.784

0.178

0.385

0.178

0.385

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to Species (Route)Figure (Strain) 

38 Rat	 13 weeks 
5 days/week(Fischer- 344) 
6 hours/day 

39 Rat	 28 d 
23.6 hr/d (Wistar) 

System 

Resp 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

Hepatic 

Renal 

Bd Wt 

Metab 

LOAEL 

NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

Reference 
Chemical Form 

b 
0.06 F 0.11 F (chronic lung 

inflammation, interstitial 
infiltrates) 

NTP 1996c 
sulfate 

0.22 (atrophy of olfactory 
epithelium) 

0.44 

0.44 

0.44 

0.44 

0.44 

0.44 

0.44 

0.44 

0.784 M 

0.784 M 

Weischer et al. 1980 
oxide 

0.178 M 0.385 M (30% decrease in body 
weight gain) 

0.178 M 0.385 M (increased serum 
glucose) 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS

40



055
0.8

0.8

375

0.98

3.93

376

0.06 0.22

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

Exposure/ LOAEL 
Duration/ 

a
Key to 
Figure 

Species 
(Strain) 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

40 Rat 
(Wistar) 

21 d 
23.6 hr/d Bd Wt 0.8 F (36% decrease in body 

weight gain) 

Metab 0.8 F (decreased serum 
glucose level) 

41 Mouse 
(B6C3F1) 

up to 6mo 
5d/wk 
6hr/d 

Resp 

Bd Wt 3.93 M 

0.98 M (interstitial pneumonia) 

42 Mouse 
(B6C3F1) 

up to 6mo 
5d/wk 
6hr/d 

Resp 0.06 M 0.22 M (interstitial pneumonia) 

Reference 
Chemical Form 

Weischer et al. 1980 
oxide 

Benson et al. 1995a 
oxide 

Benson et al. 1995a 
sulfate 

N
IC

K
E

L
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E

A
LTH
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FFE

C
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694

2

3.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

43 Mouse 
(B6C3F1) 

13 weeks 
5d/wk 
6hr/d 

Resp 2 F 3.9 F (perivascular lymphocytic 
infiltrates) 

NTP 1996a 
oxide 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

7.9 

7.9 

7.9 

7.9 

7.9 

7.9 

7.9 

7.9 

N
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A
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649

0.22

0.88

0.44

1.83

1.83

1.83

1.83

1.83

1.83

1.83

1.83

44 

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

Exposure/ LOAEL
 
Duration/
 

a

Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (mg/m³) (mg/m³) (mg/m³) Chemical Form 

Mouse 13 weeks Resp 0.22 M 0.88 M5 days/week(B6C3F1) 
6 hours/day 

0.44 M 

Cardio 1.83 

Gastro 1.83 

Hemato 1.83 

Musc/skel 1.83 

Renal 1.83 

Endocr 1.83 

Dermal 1.83 

Bd Wt 1.83 

(chronic lung NTP 1996b 
inflammation and subsulfide 
fibrosis) 

(atrophy of olfactory 
epithelium) 

N
IC

K
E

L

          3.  H
E

A
LTH

 E
FFE

C
TS

43



626

0.22

0.44

0.44

0.44

0.44

0.44

0.44

0.44

0.44

0.44

067
0.2

384
9.2

703

0.9

2

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to Species (Route)Figure (Strain) 

45 Mouse	 13 weeks 
5 days/week(B6C3F1) 
6 hours/day 

46 Rabbit	 1-8 mo 
5d/wk(NS) 
6hr/d 

Immuno/ Lymphoret 
47 Rat 4wk 

5d/wk(Wistar) 
8hr/d 

48 Rat	 13 weeks 
5d/wk(Fischer- 344) 
6hr/d 

System 

Resp 

Cardio 

Gastro 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

Resp 

NOAEL 
(mg/m³) 

0.22 F 

0.44 

0.44 

0.44 

0.44 

0.44 

0.44 

0.44 

0.44 

0.9 

LOAEL 

Less Serious	 Serious 
(mg/m³)	 (mg/m³) 

0.44 F (chronic lung 
inflammation and 
fibrosis) 

0.2 M (increased volume
 
density of alveolar type II
 
cells)
 

9.2 M (increased production of
 
tumor necrosis factor by
 
alveolar macrophages)
 

2	 (lymphoid hyperplasia in
 
bronchial lymph nodes)
 

Reference 
Chemical Form 

NTP 1996c 
sulfate 

Johansson and Camner 1986 
chloride or metallic 

Morimoto et al. 1995 
oxide 

NTP 1996a 
oxide 

N
IC
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E
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669

0.11

0.22

632

0.11

0.22

096

0.1

0.2

420

0.025

0.15

099
0.47

100

0.11

0.45

101

0.11

0.45

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

49 Rat 
(Fischer- 344) 

13 weeks 
5 days/week 
6 hours/day 

0.11 0.22 (lymphoid hyperplasia in 
bronchial lymph nodes) 

NTP 1996b 
subsulfide 

50 Rat 
(Fischer- 344) 

13 weeks 
5 days/week 
6 hours/day 

0.11 0.22 (lymphoid hyperplasia in 
bronchial and mediastinal 
lymph nodes) 

NTP 1996c 
sulfate 

51 Rat 
(Wistar) 

4 wk 
continuous 0.1 0.2 (impaired humoral 

immunity) 
Spiegelberg et al. 1984 
oxide 

52 Rat 
(Wistar) 

4 mo 
continuous 0.025 0.15 (impaired humoral 

immunity) 
Spiegelberg et al. 1984 
oxide 

53 Mouse 
(B6C3F1) 

65 d 
5d/wk 
6hr/d 

0.47 F (decreased alveolar 
macrophage activity) 

Haley et al. 1990 
oxide 

54 Mouse 
(B6C3F1) 

65 d 
5d/wk 
6hr/d 

0.11 F 0.45 F (decreased resistance to 
tumor challenge) 

Haley et al. 1990 
sulfate 

55 Mouse 
(B6C3F1) 

65 d 
5d/wk 
6hr/d 

0.11 F 0.45 F (decreased alveolar 
macrophage phagocytic 
activity) 

Haley et al. 1990 
subsulfide 
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0.9

2

651

0.44

0.88

715

0.22

0.44
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1
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0.6
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0.6

704

3.9

7.9

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

LOAEL 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

Reference 
Chemical Form 

56 Mouse 
(B6C3F1) 

13 weeks 
5d/wk 
6hr/d 

0.9 2 (lymphoid hyperplasia in 
bronchial lymph nodes) 

NTP 1996a 
oxide 

57 Mouse 
(B6C3F1) 

13 weeks 
5 days/week 
6 hours/day 

0.44 F 0.88 F (lymphoid hyperplasia in 
bronchial lymph nodes) 

NTP 1996b 
subsulfide 

58 Mouse 
(B6C3F1) 

13 weeks 
5 days/week 
6 hours/day 

0.22 F 0.44 F (hyperplasia of bronchial 
lymph nodes) 

NTP 1996c 
sulfate 

59 Rabbit 
(NS) 

3 or 6 mo 
5d/wk 
6hr/d 

1 M (inactive macrophage 
surfaces) 

Johansson et al. 1980 
metallic 

60 Rabbit 
(NS) 

4-6 wk 
5d/wk 
6hr/d 

0.6 M (decrease lysozyme 
activity in alveolar 
macrophages) 

Johansson et al. 1987 
chloride 

61 Rabbit 
(NS) 

4 mo 
5d/wk 
6hr/d 

0.6 M (decreased macrophage 
lysosomal activity) 

Johansson et al. 1988a, 1989 
chloride 

Reproductive 
62 Rat 

(Fischer- 344) 
13 weeks 
5d/wk 
6hr/d 

3.9 M 7.9 M (decreased sperm 
concentration) 

NTP 1996a 
oxide 
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1.83

631

0.44

696

7.9

650

1.83

628

0.44

089

0.8

1.6

297

15

267

0.7

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

63 Rat 
(Fischer- 344) 

13 weeks 
5 days/week 
6 hours/day 

1.83 NTP 1996b 
subsulfide 

64 Rat 
(Fischer- 344) 

13 weeks 
5 days/week 
6 hours/day 

0.44 NTP 1996c 
sulfate 

65 Mouse 
(B6C3F1) 

13 weeks 
5d/wk 
6hr/d 

7.9 NTP 1996a 
oxide 

66 Mouse 
(B6C3F1) 

13 weeks 
5 days/week 
6 hours/day 

1.83 NTP 1996b 
subsulfide 

67 Mouse 
(B6C3F1) 

Developmental 
68 Rat 

(Wistar) 

13 weeks 
5 days/week 
6 hours/day 

Gd 1-21 
23.6 hr/day 

0.44 

0.8 1.6 (decreased fetal body 
weights) 

NTP 1996c 
sulfate 

Weischer et al. 1980 
oxide 

CHRONIC EXPOSURE 
Death 
69 Rat 

(Wistar) 
21 mo 
4-5d/wk 
6hr/d 

15 (100/100 deaths) Hueper 1958 
metallic 

70 Rat 
(Fischer- 344) 

78 wk 
5d/wk 
6hr/d 

0.7 (<11/226 survived) Ottolenghi et al. 1974 
subsulfide 
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0.06

301

15

299

15

382
0.75

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

a
Key to Species 
Figure (Strain) 

71	 Rat 
(Wistar) 

72	 Mouse 
(C57) 

73	 Gn Pig 
(strain 13) 

Systemic 
74 Human 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

31 mo 
7d/wk 
23hr/d 

0.06 M (decreased survival time) Takenaka et al. 1985 
oxide 

21 mo 
4-5d/wk 
6hr/d 

15 F (20/20 died) Hueper 1958 
metallic 

21 mo 
4-5d/wk 
6hr/d 

15 (42/42 died) Hueper 1958 
metallic 

occupa-
tional Renal 0.75 F (increased urinary 

excretion of 
N-acetyl-b-D-
glucosamidase, total 
proteins, b2 
-microglobulin, and 
retinol binding protein) 

Vyskocil et al. 1994a 
sulfate, chloride 
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2
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Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

75 Rat 
(Fischer- 344) 

2 yr 
5d/wk 
6hrs/d 

Resp 0.5 (chronic lung 
inflammation) 

NTP 1996a 
oxide 

Cardio 2 

Gastro 2 

Hemato 2 

Musc/skel 

Hepatic 

Renal 

2 

2 

2 

Endocr 1 F 2 F (benign 
pheochromocytoma and 
adrenal medulla 
hyperplasia) 

Dermal 2 

Bd Wt 2 
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0.73

0.11

0.73

0.73

0.73

0.73

0.11

0.11

0.73

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ LOAEL 
Duration/ 

a FrequencyKey to Species	 NOAEL Less Serious
(Route)Figure (Strain)	 System (mg/m³) (mg/m³) 

76 Rat 
(Fischer- 344) 

2 years 
6 hours/day 
5 days/week 

Resp 0.73 (atrophy of nasal 
olfactory epithelium) 

Cardio 0.73 

Gastro 0.73 

Musc/skel 0.73 

Renal 0.73 

Endocr 0.11 M (pheochromocytoma) 

Bd Wt 0.11 0.73 (11-12% decrease in 
body weight gain) 

Serious 
(mg/m³) 

0.11	 (chronic inflammation, 
alveolar epithelium 
hyperplasia, fibrosis, 
rapid and shallow 
breathing) 

Reference 
Chemical Form 

NTP 1996b 
subsulfide 
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0.03

0.11

0.06

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.11

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

77 Rat 
(Fischer- 344) 

2 yr 
5d/wk 
6hr/d 

Resp 
c 

0.03 0.11 (atrophy of olfactory 
epithelium) 

NTP 1996c 
sulfate 

0.06 (chronic inflammation, 
bronchialization) 

Cardio 

Gastro 

Hemato 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 
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0.7

0.7

0.7

0.7

0.7

0.7

0.7

057
0.06

0.06

151

0.2

0.9

0.9

0.9

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

a
Key to 
Figure 

78 

79 

80 

Exposure/
 
Duration/
 

Frequency
Species (Route)(Strain) 

Rat	 78 wk 
5d/wk(Fischer- 344) 
6hr/d 

Rat	 31 mo 
7d/wk(Wistar) 
23hr/d 

Rat	 12 mo 
5d/wk(Wistar) 
7hr/d 

System 

Resp 

Cardio 

Gastro 

Hepatic 

Renal 

Endocr 

Bd Wt 

Resp 

Bd Wt 

Resp 

Hepatic 

Renal 

Bd Wt 

NOAEL 
(mg/m³) 

0.7 

0.7 

0.7 

0.7 

0.7 

0.9 

0.9 

0.9 

Less Serious 
(mg/m³) 

0.06 M (increased lung weight; 
congestion; alveolar 
proteinosis) 

LOAEL 

Serious 
(mg/m³) 

0.7	 (pneumonitis; bronchitis; 
emphysema) 

0.7	 (body weight 20-30%
 
less than controls)
 

0.06 M (weight loss amount not 
stated) 

0.2	 (pneumonia) 

Reference 
Chemical Form 

Ottolenghi et al. 1974 
subsulfide 

Takenaka et al. 1985 
oxide 

Tanaka et al. 1988 
oxide 
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1

3.9

3.9

3.9

3.9

3.9

3.9

3.9

3.9

3.9

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

81 Mouse 
(B6C3F1) 

2 yr 
5d/wk 
6hrs/d 

Resp 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

3.9 

3.9 

3.9 

3.9 

3.9 

3.9 

3.9 

3.9 

3.9 

LOAEL 

ReferenceLess Serious	 Serious 
(mg/m³)	 (mg/m³) Chemical Form 

1	 (chronic lung NTP 1996a
 
inflammation,
 oxide 
bronchialization, alveolar 
proteinosis) 
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0.88
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0.88

0.88

0.88

0.88

82 

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

Exposure/ LOAEL
 
Duration/
 

a

Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (mg/m³) (mg/m³) (mg/m³) Chemical Form 

Mouse 2 years Resp 0.446 hours/day(B6C3F1) 
5 days/week 

Cardio 0.88 

Gastro 0.88 

Hepatic 0.88 

Renal 0.88 

Endocr 0.88 

Dermal 0.88 

Bd Wt 0.88 

(chronic active lung NTP 1996b 
inflammation, subsulfide 
bronchialization, alveolar 
proteinosis, fibrosis) 
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0.11

0.06

0.22

0.22

0.22

0.22

0.22

0.22

0.22

0.22

194
0.5

662
0.11

716

0.06

0.11

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation	 (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to	 Species (Route)Figure (Strain) 

83	 Mouse 
(B6C3F1) 

Immuno/ Lymphoret 
84 Rat 

(Fischer- 344) 

85	 Rat 
(Fischer- 344) 

86	 Rat 
(Fischer- 344) 

2 yr 
5d/wk 
6hr/d 

2 yr 
5d/wk 
6hrs/d 

2 years 
6 hours/day 
5 days/week 

2 yr 
5d/wk 
6hr/d 

System 

Resp 

Cardio 

Gastro 

Hemato 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

NOAEL 
(mg/m³) 

0.22 

0.22 

0.22 

0.22 

0.22 

0.22 

0.22 

0.22 

0.06 

Less Serious 
(mg/m³) 

0.11 M (atrophy of olfactory 
epithelium) 

d 
0.06 F (chronic active lung 

inflammation, alveolar 
proteinosis) 

0.5 M (lymphoid hyperplasia in 
bronchial lymph node) 

0.11	 (lymphoid hyperplasia in 
bronchial lymph nodes) 

0.11	 (lymphoid hyperplasia in 
bronchial lymph nodes) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

NTP 1996c 
sulfate 

NTP 1996a 
oxide 

NTP 1996b 
subsulfide 

NTP 1996c 
sulfate 
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0.44

156

0.11

0.22

198

2

664

0.73

638

0.11

069

3.9

658

0.88

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

87 Mouse 
(B6C3F1) 

2 yr 
5d/wk 
6hrs/d 

1 (bronchial lymph node 
hyperplasia) 

NTP 1996a 
oxide 

88 Mouse 
(B6C3F1) 

2 years 
6 hours/day 
5 days/week 

0.44 (lymphoid hyperplasia in 
bronchial lymph nodes) 

NTP 1996b 
subsulfide 

89 Mouse 
(B6C3F1) 

2 yr 
5d/wk 
6hr/d 

Reproductive 
90 Rat 

(Fischer- 344) 
2 yr 
5d/wk 
6hr/d 

0.11 

2 

0.22 (bronchial lymph node 
hyperplasia) 

NTP 1996c 
sulfate 

NTP 1996a 
oxide 

91 Rat 
(Fischer- 344) 

2 years 
6 hours/day 
5 days/week 

0.73 NTP 1996b 
subsulfide 

92 Rat 
(Fischer- 344) 

2 yr 
5d/wk 
6hr/d 

0.11 NTP 1996c 
sulfate 

93 Mouse 
(B6C3F1) 

2 yr 
5d/wk 
6hr/d 

3.9 NTP 1996a 
oxide 

94 Mouse 
(B6C3F1) 

2 years 
6 hours/day 
5 days/week 

0.88 NTP 1996b 
subsulfide 
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0.22

154
10

721
1

708
1

661
0.73

Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

Exposure/ LOAEL 
Duration/ 

a
Key to 
Figure 

Species 
(Strain) 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

95 Mouse 
(B6C3F1) 

2 yr 
5d/wk 
6hr/d 

Cancer 
96 Human occupa-

tional 

0.22 

10 M (CEL: lung and nasal 
cancers) 

97 Human occupa-
tional 1 (CEL: lung and nasal 

cancers) 

98 Rat 
(Fischer- 344) 

2 yr 
5d/wk 
6hr/d 

1 M (CEL: 
alveolar/bronchiolar 
adenoma or carcinoma) 

99 Rat 
(Fischer- 344) 

2 years 
6 hours/day 
5 days/week 

0.73 (CEL:alveolar/bronchiolar 
adenoma or carcinoma) 

Reference 
Chemical Form 

NTP 1996c 
sulfate 

Int Committee on Ni 
Carcinogenesis in Man 1990 
soluble and less soluble forms 
combined 

Int Committee on Ni 
Carcinogenesis in Man 1990 
soluble 

NTP 1996a 
oxide 

NTP 1996b 
subsulfide 
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Table 3-1 Levels of Significant Exposure to Nickel - Inhalation (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form 

100 Rat 
(Fischer- 344) 

78 wk 
5d/wk 
6hr/d 

Ottolenghi et al. 1974 
subsulfide 

0.7 (CEL: lung adenomas, 
adenocarcinomas, 
squamous cell 
carcinoma, 14% treated, 
1% controls) 

a The number corresponds to entries in Figure 3-1. 

b Used to derive an intermediate-duration inhalation minimal risk level (MRL) of 0.0002 mg Ni/m3 ; concentration adjusted for intermittent exposure (6 hours/24 hours, 5 days/7 days), 
multiplied by the Regional Deposited Dose Ratio (RDDR) of 0.474 for the pulmonary region, and divided by an uncertainty factor of 30 (3 for extrapolation from animals to human with 
dosimetric adjustment, and 10 for human variability). 

c Used to derive a chronic-duration inhalation minimal risk level (MRL) of 0.00009 mg Ni/m3 ; concentration adjusted for intermittent exposure (6 hours/24 hours, 5 days/7 days), 
multiplied by the Regional Deposited Dose Ratio (RDDR) of 0.506 for the pulmonary region, and divided by an uncertainty factor of 30 (3 for extrapolation from animals to human with 
dosimetric adjustment, and 10 for human variability). 

d Differences in levels of health effects between male and females are not indicated in Figure 3-1. Where such differences exist, only the levels of effect for the most sensitive gender 
are presented. 

Bd Wt = body weight; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); Endocr = endocrine; F = Female; Gastro = gastrointestinal; Gd = gestational day; Gn pig = 
guinea pig; hemato = hematological; hr = hour(s); Immuno = immunological; LOAEL = lowest-observed-adverse-effect level; M = male; mo = month(s); Musc/skel = musculoskeletal; 
Ni = nickel; NOAEL = no-observed-adverse-effect level; NS = not specified; Resp = respiratory; wk = week(s) 
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Figure 3-1 Levels of Significant Exposure to Nickel - Inhalation 
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Figure 3-1 Levels of Significant Exposure to Nickel - Inhalation (Continued)
 
Acute (≤14 days)
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Figure 3-1 Levels of Significant Exposure to Nickel - Inhalation (Continued) 
Intermediate (15-364 days) 
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Figure 3-1 Levels of Significant Exposure to Nickel - Inhalation (Continued) 
Intermediate (15-364 days) 

N
IC

K
E

L

         3.  H
E

A
LTH

 E
FFE

C
TS

62

Systemic 

mg/m3 
10 

1 59h56m 48r57m40r 40r 68r 
60h 61h 

53m 54m 55m45m 38r 45m 38r 45m 38r 57m 58m 67m 64r39r 39r 

58m 49r 50r 51r39r 39r 52r 
54m 55m 49r 50r0.1 51r 

52r 

0.01 

0.001 

0.0001 

47r43m 36r 43m 36r 43m 36r 65m 62r 

41m 62r 

56m 48r31r44m 37r 44m 37r 44m 37r 66m 63r 68r 

c-Cat 
d-Dog
r-Rat 
p-Pig
q-Cow

 -Humans 
k-Monkey
m-Mouse 
h-Rabbit 
a-Sheep 

f-Ferret 
j-Pigeon
e-Gerbil 
s-Hamster 
g-Guinea Pig 

n-Mink 
o-Other

  Cancer Effect Level-Animals
 LOAEL, More Serious-Animals
LOAEL, Less Serious-Animals  NOAEL - Animals

  Cancer Effect Level-Humans
 LOAEL, More Serious-Humans
LOAEL, Less Serious-Humans  NOAEL - Humans

 LD50/LC50
Minimal Risk Level   for effects
 other than
 Cancer 



Death 
Respiratory 

Cardiovascu
lar 

Gastro
intestin

al 

Hematologica
l 

Muscu
loske

letal 

Hepatic 

Renal 

Figure 3-1 Levels of Significant Exposure to Nickel - Inhalation (Continued) 
Chronic (≥365 days) 

Systemic 

N
IC

K
E

L

         3.  H
E

A
LTH

 E
FFE

C
TS

63

mg/m3
 

100
 

73g 72m 69r 
10 

81m 
81m 81m 81m 81m 81m 
75r 75r 75r 75r 75r 75r 

1 81m 80r 80r82m 82m 82m 82m7476r 76r 76r 76r 76r70r 78r 78r 78r 78r 78r
75r 

80r 
82m 

83m 83m 83m 83m 83m 
83m 76r 77r 77r 77r 77r 77r 77r0.1 

71r 83m 77r 79r 
77r 

0.01 

0.001 

0.0001 

1E-5 

1E-6 

1E-7 

c-Cat -Humans f-Ferret n-Mink   Cancer Effect Level-Animals   Cancer Effect Level-Humans  LD50/LC50d-Dog k-Monkey j-Pigeon o-Other  LOAEL, More Serious-Animals  LOAEL, More Serious-Humans  Minimal Risk Levelr-Rat m-Mouse e-Gerbil LOAEL, Less Serious-Animals  LOAEL, Less Serious-Humans    for effects
p-Pig h-Rabbit s-Hamster   NOAEL - Animals   NOAEL - Humans  other thanq-Cow a-Sheep g-Guinea Pig 

Cancer 



100 

Endocrin
e 

Derm
al 

Body W
eight 

Immuno/Lym
phor 

Reproductiv
e 

Cancer * 

Figure 3-1 Levels of Significant Exposure to Nickel - Inhalation (Continued) 
Chronic (≥365 days) 

Systemic 

mg/m3 

10 96 

81m 81m 81m 93m 
75r 75r 75r 90r 

1 75r 87m 97 98r80r82m 82m 82m 94m76r 91r 99r78r 78r 100r
84r88m 

83m 83m 83m 89m 95m 
76r 77r 77r 76r 77r 89m 85r 86r 92r0.1 

79r 86r 

0.01 

Refinery dust 
0.001 Nickel subsulfide 

-410 
-4Estimated 10 

Estimated0.0001 Upper-Bound 
Upper-Bound-5 Human Cancer10 

-5 Human CancerRisk Levels 10 
Risk Levels1E-5 

-610 
-610 

1E-6 
*Doses represent the lowest dose tested per study that produced a tumorigenic -710response and do not imply the existence of a threshold for the cancer endpoint. -710 

1E-7 

N
IC

K
E

L

         3.  H
E

A
LTH

 E
FFE

C
TS

64c-Cat -Humans f-Ferret n-Mink   Cancer Effect Level-Animals   Cancer Effect Level-Humans  LD50/LC50d-Dog k-Monkey j-Pigeon o-Other  LOAEL, More Serious-Animals  LOAEL, More Serious-Humans  Minimal Risk Levelr-Rat m-Mouse e-Gerbil LOAEL, Less Serious-Animals  LOAEL, Less Serious-Humans    for effects
p-Pig h-Rabbit s-Hamster   NOAEL - Animals   NOAEL - Humans  other thanq-Cow a-Sheep g-Guinea Pig 

Cancer 



  
 

 
 

  

  

   

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 
 
 
 

 

NICKEL 65 

3. HEALTH EFFECTS 

risk of nonmalignant respiratory disease deaths (Moulin et al. 2000; Polednak 1981).  A common 

limitation of the cohort mortality studies is that the number of observed deaths from all causes were lower 

(in many cases significantly lower) than the number expected deaths, suggesting a healthy worker effect.  

Additionally, the workers were exposed to other respiratory toxicants; this is particularly true for welders 

exposed to elevated levels of chromium.  A single case of death from adult respiratory distress syndrome 

has been reported following a 90-minute exposure to a very high concentration (382 mg/m3) of metallic 

nickel of small particle size (<1.4 µm) (Rendell et al. 1994).  Histological changes noted in the lungs of 

this case included alveolar wall damage, with fibrotic changes, and edema in the alveolar space.   

A small number of studies have examined potential respiratory tract effects, not associated with lethality. 

Reduced vital capacity and expiratory flows were observed in stainless steel welders exposed to elevated 

levels of nickel and chromium (Kilburn et al. 1990). When the welders were divided into two groups 

based on smoking status, only the forced expiratory volume (FEV75–85) was significantly different from 

the referent population, suggesting that current smoking status may have contributed to the observed 

effects. The study also found that the prevalence of chronic bronchitis was higher in both the current 

smoker and non-smoker groups, as compared to the referent population.  Although this study provides 

suggestive evidence of respiratory effects in welders, establishing a causal relationship between nickel 

and the observed effects is limited by co-exposure to chromium and the lack of a comparison group of 

non-nickel-exposed welders.  Examination of chest radiographs of nickel sinter plant workers exposed to 

nickel at concentrations as high as 100 mg/m3 did not reveal an increase in small irregular opacities, 

which would be indicative of inflammatory or fibrogenic response in the lungs (Muir et al. 1993).  

Another study found an increased risk of moderate pulmonary fibrosis, after controlling for age and 

smoking, among nickel refinery workers with cumulative exposure to soluble nickel or sulfidic nickel 

(Berge and Skyberg 2003).  A dose-response trend was also found for soluble nickel among cases in the 

three highest cumulative exposure categories (0.04–≤0.15, 0.15–≤0.6, and >0.6 mg/m3 x years), after 

adjusting for age, smoking, and exposure to asbestos.  Asthma induced by occupational exposure to 

nickel has been documented in a small number of individuals (Dolovich et al. 1984; Novey et al. 1983; 

Shirakawa et al. 1990).  The asthma can result from either primary irritation or an allergic response.  

Interpretation of these data is limited by the small number of cases, as well as by possible exposure to 

other sensitizing metals.  

Studies in rats and mice demonstrate that chronic active inflammation in the lungs is the most prominent 

effect following inhalation exposure to nickel sulfate, nickel subsulfide, or nickel oxide.  In acutely-

exposed rats, chronic lung inflammation was observed at the lowest nickel sulfate (0.7 mg Ni/m3) and 
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nickel subsulfide (0.44 mg Ni/m3) concentrations tested in 12-day exposure studies (6 hours/day, 12 days 

in a 16-day period) (NTP 1996b, 1996c).  At higher concentrations of nickel sulfate and nickel subsulfide 

(1.4 and 3.65 mg Ni/m3, respectively), the inflammation was accompanied by labored breathing.  The 

chronic active lung inflammation was characterized by focal accumulation of alveolar macrophages and 

interstitial (nickel subsulfide) or inflammatory cell (nickel sulfate) infiltrates.  At the higher 

concentrations, necrotic cellular debris was also present.  Bronchiolar epithelium degeneration was also 

observed in rats exposed to 0.7 mg Ni/m3 as nickel sulfate (NTP 1996c). Consistent with these findings, 

is the observation of alveolitis in rats exposed to 0.22 mg Ni/m3 as nickel subsulfide 6 hours/day for 

7 days (Benson et al. 1995b).  Additionally, exposure to 0.95 mg Ni/m3 as nickel subsulfide resulted in 

alveolitis and alveolar proteinosis after 4 days of exposure, but not after 1 or 2 days of exposure (Benson 

et al. 1995b).  In contrast, acute lung inflammation, consisting of neutrophilic infiltrates, was first 

observed in rats exposed to nickel oxide at 7.9 mg Ni/m3 (NTP 1996a); chronic lung inflammation was 

not observed at doses as high as 23.6 mg Ni/m3. Mice appear to be less sensitive than rats to the acute 

toxicity of nickel with LOAELs for chronic inflammation of 0.7, 1.83, and >23.6 mg Ni/m3 as nickel 

sulfate, nickel subsulfide, and nickel oxide, respectively (NTP 1996a, 1996b, 1996c).   

As with acute exposure, chronic lung inflammation was typically observed at the lowest adverse effect 

level following intermediate-duration exposure.  Thirteen-week (6 hours/day, 5 days/week) studies of rats 

exposed to nickel sulfate, nickel subsulfide, or nickel oxide (NTP 1996a, 1996b, 1996c) identified 

LOAELs for chronic active lung inflammation of 0.11, 0.22, and 3.9 mg Ni/m3, respectively; NOAEL 

values of 0.06, 0.11, and 2 mg Ni/m3, respectively, were also identified for chronic inflammation.  

Alveolitis was reported in rats exposed to 0.11 mg Ni/m3 as nickel sulfate and 1.96 mg Ni/m3 as nickel 

oxide for 6 months (6 hours/day, 5 days/week) (Benson et al. 1995a) and interstitial pneumonia was 

observed at 0.5 mg Ni/m3 as nickel oxide for 1 month (6 hours/day, 5 days/week) (Horie et al. 1985).  A 

number of other lung effects have also been observed in rats exposed to nickel for intermediate durations.  

Minimal alveolar macrophage hyperplasia was observed at the lowest nickel sulfate, nickel subsulfide, 

and nickel oxide concentrations tested (0.03, 0.11, and 0.4 mg Ni/m3, respectively) (NTP 1996a, 1996b, 

1996c). These slight changes in the number of macrophages were not considered adverse because it is 

considered to be part of the normal physiologic response to inhaled particles and it is not believed to 

compromise the lung’s ability to clear foreign matter.  At higher nickel concentrations, mild to moderate 

changes in alveolar macrophage hyperplasia were found.  The effect of nickel on alveolar macrophages is 

also discussed in Section 3.2.1.3, Immunological and Lymphoreticular Effects.  Interstitial infiltrates were 

observed in rats exposed to ≥0.11 or 0.22 mg Ni/m3 as nickel sulfate or nickel subsulfide (NTP 1996b, 

1996c) or 0.109 mg Ni/m3 as nickel chloride (Bingham et al. 1972), granulomatous inflammation was 
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observed in rats exposed to 3.9 mg Ni/m3 as nickel oxide (NTP 1996a), alveolar wall thickening was 

observed in rats exposed to 0.12 mg Ni/m3 as nickel oxide (Bingham et al. 1972), and hyperplasia of the 

bronchial epithelium was observed in rats exposed to 0.109 mg Ni/m3 as nickel chloride (Bingham et al. 

1972). The highest NOAEL values for respiratory effects in rats exposed to nickel sulfate, nickel 

subsulfide, or nickel oxide for intermediate durations were 0.06 mg Ni/m3 (NTP 1996c), 0.11 mg Ni/m3 

(NTP 1996b), and 0.49 mg Ni/m3 (Benson et al. 1995a).  An intermediate-duration inhalation MRL was 

derived from the NOAEL (0.06 mg Ni/m3) and LOAEL (0.11 mg Ni/m3) identified from the NTP (1996c) 

study of nickel sulfate, as described in the footnote to Table 3-1 and Appendix A.   

Similar effects have been observed in mice exposed to nickel for intermediate durations, although the 

LOAELs for the lung effects tend to be higher suggesting a lower sensitivity compared to rats.  Chronic 

active lung inflammation was observed in mice exposed to ≥0.44 and 0.88 mg Ni/m3 as nickel sulfate or 

nickel subsulfide, respectively (NTP 1996b, 1996c).  Lung inflammation was not found in mice exposed 

to nickel oxide at concentrations as high as 7.9 mg Ni/m3 (NTP 1996a); however, perivascular 

lymphocyte infiltrates were observed at 3.9 and 7.9 mg Ni/m3 (NTP 1996a).  Interstitial pneumonia has 

also been observed in mice exposed to 0.22 or 0.98 mg Ni/m3 as nickel sulfate or nickel oxide (Benson et 

al. 1995a). Other lung effects in mice include minimal alveolar macrophage hyperplasia at 0.11, 0.22, or 

0.4 mg Ni/m3 as nickel sulfate, nickel subsulfide, or nickel oxide, respectively (NTP 1996a, 1996b, 

1996c); interstitial infiltrates at ≥0.44 or 0.44 mg Ni/m3 as nickel subsulfide or nickel sulfate, respectively 

(NTP 1996b, 1996c), and fibrosis at 0.44 and 0.88 mg Ni/m3 as nickel sulfate or nickel subsulfide, 

respectively (NTP 1996b, 1996c).  As with the rats, minimal alveolar macrophage hyperplasia was not 

considered adverse. The highest NOAEL values for respiratory effects in mice exposed to nickel sulfate, 

nickel subsulfide, and nickel oxide for intermediate durations were 0.22, 0.22, and 2.0 mg Ni/m3, 

respectively (NTP 1996a, 1996b, 1996c). 

Chronic exposure to nickel (6 hours/day, 5 days/week for 2 years) resulted in chronic active lung 

inflammation (or pneumonia) in rats and mice at 0.06 mg Ni/m3 as nickel sulfate, in rats at 0.11 mg Ni/m3 

and higher as nickel subsulfide (NTP 1996b; Ottolenghi et al. 1990), in mice at 0.44 mg Ni/m3 and higher 

as nickel subsulfide (NTP 1996b), in rats at 0.2 mg Ni/m3 and higher as nickel oxide (NTP 1996a; Tanaka 

et al. 1988), and in mice at 1 mg Ni/m3 as nickel oxide (NTP 1996a).  Additional lung effects that were 

found at the same dose levels as inflammation included alveolar epithelium hyperplasia (or 

bronchialization), fibrosis in rats and mice exposed to nickel subsulfide (NTP 1996b), and 

bronchialization and/or alveolar proteinosis in mice exposed to nickel oxide (NTP 1996a; Takenaka et al. 

1985).  With the exception of the NTP (1996c) study of nickel sulfate in rats, NOAEL values for 
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respiratory effects following chronic duration exposure were not identified.  The NOAEL of 0.03 mg 

Ni/m3 and LOAEL of 0.06 mg Ni/m3 identified in rats exposed to nickel sulfate (NTP 1996c) were used to 

derive a chronic-duration inhalation MRL for nickel, as described in the footnote to Table 3-1 and 

Appendix A. 

The NTP (1996a, 1996b, 1996c) studies allow for the comparison of the toxicity of nickel sulfate, nickel 

subsulfide, and nickel oxide in rats and mice.  Following acute- or intermediate-duration exposure, the 

toxicity of the different nickel compounds is related to its solubility, with soluble nickel sulfate being the 

most toxic and insoluble nickel oxide being the least toxic.  The difference in the toxicity across 

compounds is probably due to the ability of water-soluble nickel compounds to cross the cell membrane 

and interact with cytoplasmic proteins.  In contrast, the severity of inflammatory and proliferative lesions 

following chronic exposure was greater in rats exposed to nickel subsulfide or nickel oxide, as compared 

to nickel sulfate.  Additionally, parenchymal damage secondary to inflammation was evident in the rats 

exposed to nickel subsulfide and nickel oxide, but not nickel sulfate.  For all durations and nickel 

compounds tested, rats appear to be more sensitive to the lung effects than mice; significant increases in 

the incidence of chronic lung inflammation were observed at lower concentrations in the rats than mice.  

Intermediate-duration studies (Benson et al. 1995a; Horie et al. 1985) that monitored animals for months 

after exposure termination suggest that nickel-induced lung damage is not readily reversible after 

exposure termination. In the Benson et al. (1995a) studies, alveolitis was observed in rats exposed to 

0.11 mg Ni/m3 as nickel sulfate and 1.96 mg Ni/m3 as nickel oxide at the end of the 6-month exposure 

period and 4 months after exposure termination.  Horie et al. (1985) reported interstitial pneumonia in rats 

exposed 6 hours/day, 5 days/week to 0.5 mg Ni/m3 as nickel oxide for 1 month.  Twelve and 20 months 

after termination of exposure to 6.3 mg Ni/m3, squamous metaplasia of the bronchial epithelium, 

hyperplasia of the bronchial gland, and chronic bronchitis were observed. 

In addition to the lung effects, several studies have demonstrated that exposure to nickel sulfate or nickel 

subsulfide can induce atrophy of the nasal olfactory epithelium (Evans et al. 1995; NTP 1996b, 1996c).  

The nasal lesions are typically observed at higher concentrations than the lung effects.  In a study 

designed specifically to examine the effects of nickel on the olfactory system, rats were exposed to nickel 

sulfate at 0 or 0.635 mg Ni/m3 6 hours/day for 16 days (Evans et al. 1995).  Histological changes in the 

olfactory epithelium of exposed rats included a slight reduction in the number of bipolar sensory receptor 

cells, a decrease in the thickness of the olfactory epithelium resulting from a loss of sustentacular cells, a 

thinning of apical cytoplasm, and a reduction in the number of sensory cilia on the surface of the cells.  
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After a recovery period of 22 days, fewer sensory cilia was the only change that remained, indicating that 

the effects of an intermediate-duration exposure to nickel were reversible. 

Cardiovascular Effects.    No increases in the number of deaths from cardiovascular diseases were 

reported in workers exposed to nickel (Cornell and Landis 1984; Cox et al. 1981; Cragle et al. 1984). 

Microscopic examinations of the hearts of rats and mice exposed to nickel sulfate, nickel subsulfide, or 

nickel oxide for 12 6-hour exposures over 16 days did not reveal any changes at concentrations as high as 

12.2, 7.33, or 23.6 mg Ni/m3, respectively, in rats and 1.4, 7.33, or 23.6 mg Ni/m3, respectively, in mice 

(NTP 1996a, 1996b, 1996c).  No cardiovascular effects were observed in rats or mice exposed to 0.44, 

1.83, or 7.9 mg Ni/m3 as nickel sulfate, nickel subsulfide, or nickel oxide, respectively, 6 hours/day, 

5 days/week for 13 weeks (NTP 1996a, 1996b, 1996c).  Similarly, chronic exposure (6 hours/day, 

5 days/week) of rats to nickel sulfate, nickel subsulfide, or nickel oxide at concentrations up to 0.11, 0.73, 

or 2 mg Ni/m3, respectively, or exposure of mice to, 0.22, 0.88, or 3.9 mg Ni/m3, respectively, did not 

result in microscopic changes in the heart (NTP 1996a, 1996b, 1996c).  Intermittent exposure 

(6 hours/day, 5 days/week) of rats to 0.7 mg Ni/m3 as nickel subsulfide for 78 weeks also did not affect 

the microscopic appearance of the heart (Ottolenghi et al. 1974). 

Gastrointestinal Effects.    No studies were located regarding gastrointestinal effects in humans after 

inhalation exposure to nickel. 

Microscopic examinations of the gastrointestinal tract of mice and rats exposed to nickel sulfate, nickel 

subsulfide, or nickel oxide for 12 6-hour exposures did not reveal any changes at concentrations as high 

as 12.2, 7.33, or 23.6 mg Ni/m3, respectively, in rats and 1.4, 7.33, or 23.6 mg Ni/m3, respectively, in 

mice (NTP 1996a, 1996b, 1996c).  Likewise, no histological alterations were observed in the 

gastrointestinal tracts of rats and mice exposed to 0.44, 1.83, or 7.9 mg Ni/m3 as nickel sulfate, nickel 

subsulfide, or nickel oxide, respectively, 6 hours/day, 5 days/week for 13 weeks (NTP 1996a, 1996b, 

1996c). Chronic exposure of rats to nickel sulfate, nickel subsulfide, or nickel oxide at concentrations up 

to 0.11, 0.73, or 2 mg Ni/m3, respectively, or exposure of mice to 0.22, 0.88, or 3.9 mg Ni/m3 as nickel 

sulfate, nickel subsulfide, or nickel oxide, respectively, did not result in microscopic changes in the 

gastrointestinal tract (NTP 1996a, 1996b, 1996c).  Intermittent exposure (6 hours/day, 5 days/week) of 

rats to 0.7 mg Ni/m3 as nickel subsulfide for 78 weeks also did not affect the microscopic appearance of 

the intestines (Ottolenghi et al. 1974). 
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Hematological Effects.    No studies were located regarding hematological effects in humans after 

inhalation exposure to nickel. 

A number of hematological alterations were observed in studies by Weischer et al. (1980) and NTP 

(1996a, 1996b, 1996c).  A decrease in hematocrit level was observed in male rats continuously exposed to 

0.178 or 0.385 mg Ni/m3 as nickel oxide for 28 days (Weischer et al. 1980); no significant alterations 

were observed at 0.785 mg Ni/m3. The biological significance of a decrease in hematocrit level in the 

absence of hemoglobin or erythrocyte alterations is not known.  In non-pregnant females continuously 

exposed to nickel oxide for 21 days, increases in hematocrit and hemoglobin levels were observed at 

0.8 mg Ni/m3 and higher; an increase in mean cell volume and a decrease in erythrocyte levels were 

observed at 1.6 mg Ni/m3 and higher (Weischer et al. 1980).  Similarly, increases in hematocrit, 

hemoglobin, and erythrocyte levels were observed in rats exposed to nickel subsulfide at 0.73 mg Ni/m3 

6 hours/day, 5 days/week for 2 years (NTP 1996b).  As noted by NTP (1996b), increases in hematocrit, 

hemoglobin, and erythrocytes are consistent with erythropoietin production in response to tissue hypoxia, 

possibly as a result of the nickel-induced lung damage.  Chronic exposure of rats to nickel oxide or nickel 

sulfate at concentrations up to 2 or 0.11 mg Ni/m3, respectively, and chronic exposure of mice to nickel 

oxide, nickel subsulfide, or nickel sulfate at concentrations up to 3.9, 0.88, or 0.22 mg Ni/m3, 

respectively, did not result in significant hematological effects (NTP 1996a, 1996b, 1996c). 

Musculoskeletal Effects.    No studies were located regarding musculoskeletal effects in humans after 

inhalation exposure to nickel. 

No histological alterations were observed in bone of rats and mice exposed to nickel sulfate 6 hours/day 

for 12 days/16 days (highest NOAEL is 12.2 mg Ni/m3), 5 days/week for 13 weeks (0.44 mg Ni/m3), or 

5 days/week for 2 years (0.11 and 0.22 mg Ni/m3 for rats and mice) (NTP 1996c); the muscles were not 

examined histologically in these studies.  No alterations were observed in bone or muscle of rats and mice 

exposed to nickel oxide (6 hours/day, 5 days/week) at 23.6 mg Ni/m3 for 16 days (12 days/16 days), 

7.9 mg Ni/m3 for 13 weeks, or 2 (rats) or 3.9 mg Ni/m3 (mice) for 2 years (NTP 1996a).  Similarly, 

exposure to nickel subsulfide 6 hours/day, 5 days/week did not result in alterations in bone or muscle in 

rats at 7.33 mg Ni/m3 for 13 weeks or 0.73 mg Ni/m3 for 2 years or mice at 7.33 mg Ni/m3 for 16 days, 

1.83 mg Ni/m3 for 13 weeks, or 0.88 mg Ni/m3 (mice) for 2 years (NTP 1996b).   

Hepatic Effects.    No studies were located regarding hepatic effects in humans after inhalation 

exposure to nickel. 
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No histological alterations were observed in the livers of rats or mice exposed to nickel subsulfide, nickel 

sulfate, or nickel oxide at concentrations of 7.33, 12.2, or 23.6 mg Ni/m3, respectively, in rats and 1.4, 

12.2, or 23.6 mg Ni/m3, respectively, in mice exposed 6 hours/day, 12 days in a 16-day period (NTP 

1996a, 1996b, 1996c) or 1.83, 0.44, or 7.9 mg Ni/m3 6 hours/day, 5 days/week, for 13 weeks (NTP 1996a, 

1996b, 1996c).  Following chronic exposure, no histological changes were observed in the livers of rats 

exposed to nickel subsulfide at 0.7 mg Ni/m3 (Ottolenghi et al. 1974) or 0.73 mg Ni/m3 (NTP 1996b), to 

nickel oxide at 0.9 mg Ni/m3 (Tanaka et al. 1988) or 2 mg Ni/m3 (NTP 1996a), or to nickel sulfate at 

0.11 mg Ni/m3 (NTP 1996c).  Chronic exposure of mice to nickel oxide, nickel subsulfide, or nickel 

sulfate at concentrations up to 3.9, 0.88, or 0.22 mg Ni/m3, respectively, did not result in microscopic 

changes in the liver (NTP 1996a, 1996b, 1996c). 

Renal Effects.    Marked tubular necrosis was observed in the kidneys of a man who died of adult 

respiratory distress syndrome 13 days after a 90-minute exposure to a very high concentration 

(382 mg/m3) of metallic nickel of small particle size (<1.4 µm) (Rendall et al. 1994).  Several days after 

the exposure, urinary concentrations of nickel were 700 µg/L, in comparison to levels of <0.1–13.3 µg/L 

in persons not occupationally exposed to nickel (Sunderman 1993). 

In nickel refinery workers, a significant association was found between increased levels of nickel in urine 

and increased urinary β2-microglobulin levels (Sunderman and Horak 1981).  A significant increase in 

urinary β2-microglobulin levels was observed in a group of workers with urinary nickel levels exceeding 

100 µg/L; urinary β2-microglobulin levels were not significantly altered in workers with urine nickel 

levels of less than 100 µg/L.  Urinary levels of total proteins, β2-microglobulin, retinol binding protein, 

and N-acetyl-β-D-glucosaminidase (NAG) were increased in 12 women, and urinary lysozyme and NAG 

were increased in 14 men occupationally exposed to soluble nickel (sulfate, chloride) compounds at an 

average concentration of 0.75 mg Ni/m3 (Vyskocil et al. 1994a).  Although the average exposure 

concentration was the same for women and men, women were more highly exposed as indicated by urine 

concentrations of 10.3 µg Ni/g creatinine in women compared to 5 µg Ni/g creatinine in men.  The 

markers that were changed reflected tubular dysfunction.  No effects on markers of glomerular function, 

urinary albumin levels, or transferrin levels were noted.  Sanford and Nieboer (1992) did not find 

significant alterations in urinary β2-microglobulin levels in nickel refinery workers with urine nickel 

levels of less than 60 µg/L.  Sanford and Nieboer (1992) noted that elevated urinary β2-microglobulin 

levels were found in spot urine samples of three workers; however, when the levels were averaged over 
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three or more voids, the average levels were within the normal range.  A study of 17 electroforming 

workers did not find evidence of proteinuria (Wall and Calnan 1980). 

No histological alterations were observed in the kidneys of rats or mice exposed to nickel sulfate, nickel 

subsulfide, or nickel oxide 6 hours/day, 5 days/week, at concentrations of ≤12.2, 7.33, or 23.6 mg Ni/m3, 

respectively, for 16 days (12 days in a 16-day period) (NTP 1996a, 1996b, 1996c), or ≤0.44, 1.83, or 

7.9 mg Ni/m3, respectively, for 13 weeks (NTP 1996a, 1996b, 1996c), or 0.9 mg Ni/m3 as nickel oxide for 

12 months (Tanaka et al. 1988).  Chronic exposure of rats to nickel oxide (NTP 1996a; Tanaka et al. 

1988), nickel subsulfide (NTP 1996b), or nickel sulfate (NTP 1996c) at concentrations up to 2, 0.73, or 

0.11 mg Ni/m3, respectively, did not result in histological alterations in the kidneys.  Additionally, no 

alterations were observed in mice exposed to nickel oxide, nickel subsulfide, or nickel sulfate at 

concentrations up to 3.9, 0.88, or 0.22 mg Ni/m3, respectively (NTP 1996a, 1996b, 1996c). 

Endocrine Effects.    No studies were located regarding endocrine effects in humans following 

inhalation exposure to nickel. 

Histological examinations did not reveal any changes in the adrenal glands, pancreas, parathyroid, 

pituitary, or thyroid glands in rats or mice exposed to nickel as nickel sulfate, nickel oxide, or nickel 

subsulfide for 12 6-hour exposures over 16 days or for 6 hours/day, 5 days/week for 13 weeks (NTP 

1996a, 1996b, 1996c).  The NOAEL values for endocrine effects were 12.2, 23.6, and 7.33 mg Ni/m3 in 

rats and mice exposed to nickel sulfate, nickel oxide, and nickel subsulfide, respectively, for the shorter 

duration study and 0.44, 7.9, and 1.83 mg Ni/m3, respectively, for the 13-week study.  In rats exposed 

intermittently to nickel subsulfide at 0.7 mg Ni/m3 for 78 weeks, no histological changes were observed in 

the thyroid or adrenal glands (Ottolenghi et al. 1974).  Adrenal medulla hyperplasia and increased 

incidences of benign pheochromocytoma were observed in female rats exposed to 2 mg Ni/m3 as nickel 

oxide (NTP 1996a) and male and female rats exposed to 0.73 mg Ni/m3 as nickel subsulfide for 2 years 

(NTP 1996b); an increased incidence of benign pheochromocytoma was also observed in male rats 

exposed to 0.11 mg Ni/m3 as nickel subsulfide. These effects were not observed in rats exposed 

chronically to nickel sulfate at concentrations up to 0.11 mg Ni/m3, or in mice exposed to nickel oxide, 

nickel subsulfide, or nickel sulfate at concentrations of 3.9, 0.88, or 0.22 mg Ni/m3, respectively (NTP 

1996a, 1996b, 1996c). 

Dermal Effects.    No studies were located regarding dermal effects in humans following inhalation 

exposure. However, contact dermatitis in persons exposed to nickel compounds is one of the most 
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common effects of nickel exposure (see Section 3.2.3.2).  In addition, immunological studies indicate that 

the dermatitis is an allergic response to nickel, and significant effects on the immune system have been 

noted in workers exposed to nickel (see Section 3.2.1.3). 

Microscopic changes in the skin were not observed in rats or mice exposed to nickel as nickel sulfate, 

nickel subsulfide, or nickel oxide at concentrations up to 12.2, 7.33, or 23.6 mg Ni/m3, respectively, for 

6 hours/day for 12 days in a 16-day period (NTP 1996a, 1996b, 1996c) or 0.44, 1.83, or 7.9 mg Ni/m3 

6 hours/day, 5 days/week for 13 weeks (NTP 1996a, 1996b, 1996c).  Chronic exposure of rats to nickel 

sulfate, nickel subsulfide, or nickel oxide at concentrations up to 0.11, 0.73, or 2 mg Ni/m3, respectively, 

or exposure of mice at concentrations up to 0.22, 0.88, or 3.9 mg Ni/m3, respectively, did not result in 

microscopic changes in the skin (NTP 1996a, 1996b, 1996c). 

Body Weight Effects.    No studies were located regarding body weight effects in humans after 

inhalation exposure to nickel.  Significant decreases in body weight gain have been observed in rats and 

mice exposed to nickel sulfate, nickel subsulfide, and nickel oxide for acute, intermediate, and chronic 

exposure durations.  In many of the studies, the decreases in body weight gain were associated with lung 

inflammation, impaired lung function (as evidenced by labored breathing), and lethality.  Exposure to 

nickel sulfate resulted in serious decreases in body weight gain (terminal body weights >25% lower than 

controls) in rats exposed to 0.7 mg Ni/m3 and higher and in mice exposed to 1.4 mg Ni/m3 6 hours/day for 

12 days in a 16-day period (NTP 1996c); no significant alterations in body weight gain were observed in 

mice exposed to 0.7 mg Ni/m3. No significant alterations in body weight gain were observed in rats or 

mice exposed to 0.44 mg Ni/m3 for 13 weeks (NTP 1996c), rats exposed to 0.11 mg Ni/m3 for 2 years 

(NTP 1996c), or mice exposed to 0.22 mg Ni/m3 for 2 years (NTP 1996c). 

For nickel subsulfide, serious decreases in body weight gain (22–28%) and emaciation were observed in 

rats and mice, respectively, exposed to 3.65 mg Ni/m3 for 6 hours/day for 12 days in a 16-day period 

(NTP 1996b); a NOAEL of 1.85 mg Ni/m3 was also identified.  No alterations in body weight were 

observed at 1.83 mg Ni/m3 6 hours/day, 5 days/week for 13 weeks.  Exposure to approximately 0.7 mg 

Ni/m3 for 6 hours/day, 5 days/week for a chronic-duration resulted in 11–30% decreases in body weight 

gains in rats (NTP 1996b; Ottolenghi et al. 1974).  No alterations were observed in mice exposed to 

0.88 mg Ni/m3 for 6 hours/day, 5 days/week for 2 years (NTP 1996b). 

Most studies did not find significant alterations in rats and mice exposed to nickel oxide.  A NOAEL of 

23.6 mg Ni/m3 was identified in rats and mice exposed to 23.6 mg Ni/m3 6 hours/day for 12 days in a 
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16-day period (NTP 1996a).  For intermediate exposure, NOAELs of 1.9–7.9 mg Ni/m3 were identified in 

rats and mice (Benson et al. 1995a; NTP 1996a).  However, Weischer et al. (1980) reported 30–36% 

decreases in body weight gain in male and female rats exposed to 0.385 or 0.8 mg Ni/m3, respectively, 

continuously for 21–28 days.  In pregnant rats, an 11% decrease in body weight gain was observed at 

0.8 mg Ni/m3 compared to the 36% decrease observed in similarly exposed non-pregnant rats.  NTP 

(1996a) did not find significant alterations in body weight gain in rats and mice exposed to 2 or 3.9 mg 

Ni/m3, respectively, 6 hours/day, 5 days/week for 2 years; a NOAEL of 0.9 mg Ni/m3 was also identified 

in rats exposed 7 hours/day, 5 days/week for 12 months (Tanaka et al. 1988).  In contrast, Takenaka et al. 

(1985) reported weight loss in rats continuously exposed to 0.06 mg Ni/m3 for 31 months; the weight loss 

began after 13 months of exposure.  These data suggest that continuous exposure is more toxic than 

intermittent exposure (duration adjusted NOAEL from the rat NTP study is 0.36 mg Ni/m3). Continuous 

exposure would result in higher lung burdens than intermittent exposure, which would lead to increased 

lung damage.   

Metabolic Effects.    No studies were located regarding metabolic effects in humans after inhalation 

exposure to nickel. 

Significant increases in serum glucose levels were observed in male rats continuously exposed to 0.385 or 

0.784 mg Ni/m3 as nickel oxide for 28 days (Weischer et al. 1980). In females rats continuously exposed 

to nickel oxide, decreases in serum glucose levels were observed at 0.8 and 1.6 mg Ni/m3; at 3.2 mg 

Ni/m3, serum glucose levels did not significantly differ from controls (Weischer et al. 1980).  These data 

suggest that there may be a gender difference.  Although no adverse pancreatic effects have been noted in 

inhalation studies, a single-dose intravenous injection study has reported increases in serum glucose levels 

and effects on pancreatic cells in rabbits at doses of 4.5–9 mg Ni/kg as nickel chloride (Kadota and Kurita 

1955); Weischer et al. (1980) also found increases in serum glucose levels in male rats exposed to nickel 

chloride in water for 28 days.  It is possible that changes in serum glucose levels reflect an effect on the 

pancreas or may be secondary to the marked decrease in body weight gain also observed in the Weischer 

et al. (1980) study. 

3.2.1.3 Immunological and Lymphoreticular Effects  

A number of immunological and lymphoreticular effects have been reported in humans and animals 

exposed to nickel.  In 38 production workers exposed to nickel (compound not specified), significant 

increases in levels of immunoglobulin G (IgG), IgA, and IgM and a significant decrease in IgE levels 
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were observed (Bencko et al. 1983, 1986). Significant increases in other serum proteins, which may be 

involved in cell-mediated immunity (including α1-antitrypsin, α2-macroglobulin, ceruloplasmin), were 

also observed. The increase in immunoglobulins and serum proteins suggests that the immune system 

was stimulated by nickel exposure.  Similar but less-pronounced effects were observed in workers 

exposed to cobalt.  A relationship between nickel and cobalt sensitization is further supported by the 

finding that nickel-reactive IgE antibodies were observed in eight patients with hard-metal asthma 

induced by cobalt exposure (Shirakawa et al. 1990). Exposure levels were not reported. 

Alterations in innate (or non-specific) and acquired immunity have been observed in animals. Several 

studies examined alveolar macrophage functions.  A significant reduction in macrophage phagocytic 

activity was observed in rats exposed to an unspecified concentration of nickel chloride for 2 hours 

(Adkins et al. 1979) or in mice exposed to 0.47 mg Ni/m3 as nickel oxide or 0.45 mg Ni/m3 as nickel 

subsulfide 6 hours/day, 5 days/week for 65 days (Haley et al. 1990).  No alteration of macrophage 

phagocytic activity was observed in mice exposed to ≤0.45 mg Ni/m3 as nickel sulfate 6 hours/day, 

5 days/week for 65 days (Haley et al. 1990).  Other alveolar macrophage alterations include decreased 

lysozyme activity in rabbits exposed to 0.6 mg Ni/m3 as nickel chloride 6 hours/day, 5 days/week for 4– 

6 weeks (Bingham et al. 1987; Johansson et al. 1987, 1988a, 1989), alterations in macrophage production 

of tumor necrosis factor (Goutet et al. 2000; Morimoto et al. 1995), and morphological alterations.  

Morimoto et al. (1995) found increased production of tumor necrosis factor in rats exposed to 9.2 mg 

Ni/m3 as nickel oxide 8 hours/day, 5 days/week for 4 weeks.  In contrast, Goutet et al. (2000) found a 

decrease in tumor necrosis factor production in rats following a single intratracheal instillation of nickel 

sulfate. The conflicting results may be due to exposure route, duration, or concentration differences 

between the studies. Alveolar macrophages from rabbits exposed to 1 mg Ni/m3 as metallic nickel 

6 hours/day, 5 days/week for 3–6 months (Johansson et al. 1980) or 0.6 mg Ni/m3 as nickel chloride 

6 hours/days, 5 days/week for 4–6 weeks (Johansson et al. 1987) or 4 months (Johansson et al. 1988a, 

1989) had increases in membrane-bound lamellar bodies.  Exposure to metallic nickel also resulted in 

macrophages with smooth surfaces; the frequency of occurrence was duration-related (Johansson et al. 

1980). 

Several studies have examined the relationship between nickel exposures and acquired immune function. 

An increase in susceptibility to Streptococci infection was observed in mice exposed to 0.499 mg Ni/m3 as 

nickel chloride or 0.455 mg Ni/m3 as nickel sulfate for 2 hours (Adkins et al. 1979); mice exposed to 

0.657 mg Ni/m3 as nickel chloride also developed septicemia from the Streptococci infection and had a 

reduced ability to clear the inhaled bacteria (Adkins et al. 1979).  Other studies have found an impaired 
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response to sheep red blood cells (decrease in the number of antibody production spleen cells) in mice 

exposed to 0.25 mg Ni/m3 as nickel chloride for 2 hours (Graham et al. 1978) or rats continuously 

exposed to 0.2 mg Ni/m3 as nickel oxide for 4 weeks or 0.15 mg Ni/m3 for 4 months (Spiegelberg et al. 

1984). A decreased resistance to a tumor challenge was also observed in mice exposed to 0.45 mg Ni/m3 

as nickel sulfate 6 hours/day, 5 days/week for 65 days (Haley et al. 1990). 

A significant portion of nickel that is removed from the lung enters the lymphatic system, often inducing 

damage to the lymph nodes.  Lymphoid hyperplasia in the bronchial and mediastinal lymph nodes was 

observed in rats exposed to 1.4 mg Ni/m3 as nickel sulfate (NTP 1996c) or mice exposed to 0.88 mg 

Ni/m3 as nickel subsulfide (NTP 1996b) 6 hours/day for 12 days in a 16-day period; no effects were 

observed in rats exposed to 7.33 mg Ni/m3 as nickel subsulfide (NTP 1996b), rats and mice exposed to 

23.5 mg Ni/m3 as nickel oxide (NTP 1996a), and mice exposed to 3.1 mg Ni/m2 as nickel sulfate (NTP 

1996c). In intermediate-duration studies, a 6 hour/day, 5 day/week exposure resulted in lymphoid 

hyperplasia in bronchial lymph nodes of rats exposed to 0.22, 0.22, or 2 mg Ni/m3 as nickel sulfate, nickel 

subsulfide, or nickel oxide, respectively, and in mice exposed to 0.44, 0.88, or 2 mg Ni/m3 as nickel 

sulfate, nickel subsulfide, or nickel oxide, respectively (NTP 1996a, 1996b, 1996c).  Similarly, lymphoid 

hyperplasia was observed in the bronchial lymph nodes of rats exposed to 0.11, 0.11, or 0.5 mg Ni/m3 as 

nickel sulfate, nickel subsulfide, or nickel oxide, respectively, and in mice exposed to 0.22, 0.44, or 1 mg 

Ni/m3 as nickel sulfate, nickel subsulfide, or nickel oxide, respectively (NTP 1996a, 1996b, 1996c). 

The highest NOAEL values and all LOAEL values from each reliable study for immunological and 

lymphoreticular effects for each species, duration category, and nickel compound are recorded in 

Table 3-1 and plotted Figure 3-1. 

3.2.1.4 Neurological Effects 

No studies were located regarding neurological effects in humans after inhalation exposure to nickel. 

Microscopic examinations did not reveal any changes in the whole brains of rats or mice exposed to 

nickel as nickel sulfate, nickel oxide, or nickel subsulfide for 12 6-hour exposures over 16 days (NTP 

1996a, 1996b, 1996c).  The maximum concentrations that did not result in deaths or changes in brain 

histology were 3.1, 23.6, and 7.33 mg Ni/m3 in rats for nickel sulfate, nickel oxide, and nickel subsulfide, 

respectively, and 0.7, 23.6, and 3.65 mg/m3 in mice for nickel sulfate, nickel oxide, and nickel subsulfide, 

respectively. In intermediate-duration studies, no histological alterations were observed in the whole 



  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 
 
 
 

 

NICKEL 77 

3. HEALTH EFFECTS 

brains of rats and mice exposed to 0.44, 7.9, or 1.83 mg Ni/m3 as nickel sulfate, nickel oxide, or nickel 

subsulfide, respectively, 6 hours/day, 5 days/week for 13 weeks (NTP 1996a, 1996b, 1996c).  In rats 

exposed intermittently (6 hours/day, 5 days/week) to nickel subsulfide at 0.7 mg Ni/m3 for 78 weeks, 

histological changes were not observed in the brain (Ottolenghi et al. 1974).  Chronic exposure of rats to 

nickel oxide, nickel subsulfide, or nickel sulfate at concentrations up to 2, 0.73, or 0.11 mg Ni/m3, 

respectively, or exposure of mice to nickel oxide, nickel subsulfide, or nickel sulfate at concentrations up 

to 3.9, 0.88, or 0.22 mg Ni/m3, respectively, did not result in microscopic changes in the whole brain 

(NTP 1996a, 1996b, 1996c). 

As noted in Section 3.2.1.2, atrophy of the olfactory epithelium has been observed in rats exposed to 

nickel sulfate and nickel subsulfide (Evans et al. 1995; NTP 1996a, 1996b, 1996c).  To determine if 

changes in the olfactory epithelium result in any functional changes, Evans et al. (1995) completed 

behavioral studies of olfactory absolute threshold and olfactory discrimination in rats exposed to nickel 

sulfate at 0.635 mg/m3 6 hours/day for 16 days.  Although histological changes were observed in the 

olfactory epithelium, including atrophy and a decrease in the number of bipolar receptor cells, no 

functional changes were noted.  Carnosine, a neurochemical marker, was reduced in the olfactory 

epithelium following 12 days of exposure but was back to control levels by exposure day 16, suggesting 

adaptation to nickel exposure. 

The LOAEL value from the Evans et al. (1995) study is recorded in Table 3-1 and plotted in Figure 3-1; 

the NOAELs for histological alterations in the brain were not recorded in the LSE table because this is not 

a sensitive indicator of functional neurotoxicity. 

3.2.1.5 Reproductive Effects  

An increase in the rate of spontaneous abortions (15.9%) was reported among a group of 356 women who 

worked in a nickel hydrometallurgy refining plant in the Arctic region of Russia as compared to the rate 

(8.5%) in 342 local female construction workers (Chashschin et al. 1994).  Exposure concentrations were 

0.08–0.196 mg Ni/m3, primarily as nickel sulfate, and nickel concentrations in the urine were 3.2– 

22.6 µg/L.  Nickel levels in the urine of persons not occupationally exposed are generally <0.1–13.3 µg/L 

(Sunderman 1993).  The investigators noted that the nickel-exposed women manually lifted heavy nickel 

anodes and that they may have experienced heat stress.  These confounders, plus the lack of information 

on the selection of control group subjects, possible acute exposure to high concentrations of chlorine, and 

the lack of adequate control of possible confounding variables such as smoking habits, use of alcohol, and 
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intercurrent disease, preclude establishing a causative relationship between nickel exposure and 

reproductive toxicity from this study. 

Testicular degeneration was observed in rats and mice exposed to nickel sulfate (≥1.4 mg Ni/m3) and 

nickel subsulfide (≥1.83 mg Ni/m3 for rats and ≥3.65 mg Ni/m3 for mice) 6 hours/day for 12 days over a 

16-day period (NTP 1996a, 1996b, 1996c).  The study authors indicated that testicular lesions were 

probably the result of emaciation rather than a direct effect of nickel.  In intermediate-duration studies, 

sperm concentration was decreased by 21% in rats exposed to nickel oxide at 7.9 mg Ni/m3, with no 

effects at 3.9 mg/m3 (NTP 1996a). No effects on sperm motility, morphology, or concentration were 

observed in rats exposed to nickel subsulfide or nickel sulfate at concentrations up to 1.83 and 0.44 mg 

Ni/m3, respectively, or in mice exposed to nickel oxide, nickel subsulfide, or nickel sulfate at 

concentrations up to 7.9, 1.83, or 0.44 mg Ni/m3, respectively (NTP 1996a, 1996b, 1996c).  Histological 

changes in the testes were not observed.  No effect on the length of the estrous cycle was noted in mice or 

rats exposed to nickel sulfate at ≤0.44 mg Ni/m3, nickel oxide at ≤7.9 mg Ni/m3, or nickel subsulfide at 

≤1.83 mg Ni/m3 6 hours/day, 5 days/week, for 13 weeks (NTP 1996a, 1996b, 1996c).  Chronic exposure 

of rats to nickel oxide, nickel subsulfide, or nickel sulfate at concentrations up to 2, 0.73, or 0.11 mg 

Ni/m3, respectively, and exposure of mice to nickel oxide, nickel subsulfide, or nickel sulfate at 

concentrations up to 3.9, 0.88, or 0.22 mg Ni/m3, respectively, did not result in microscopic changes in 

the reproductive organs (NTP 1996a, 1996b, 1996c).  

The highest NOAEL values from each reliable study for reproductive effects in each species, duration 

category, and nickel compound and the LOAEL for decreased sperm concentration in rats exposed to 

nickel oxide are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.6 Developmental Effects 

In addition to the reproductive effects, Chashschin et al. (1994) also reported an increase in the incidence 

of structural malformations (16.9%) in the offspring of female nickel hydrometallurgy refining plant 

workers as compared to the incidence (5.8%) in the female construction workers.  Although the specific 

structural malformations found were not stated, the investigators note that relative risks were 2.9 for all 

kinds of defects, 6.1 for cardiovascular system defects, and 1.9 for musculoskeletal defects.  Exposure 

concentrations were 0.08–0.196 mg Ni/m3, primarily as nickel sulfate, and nickel concentrations in the 

urine were 3.2–22.6 µg/L.  Nickel levels in the urine of persons not occupationally exposed are generally 

<0.1–13.3 µg/L (Sunderman 1993).  As discussed under Reproductive Effects, a number of possible 
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confounders including heavy lifting, possible heat stress, lack of information on the selection of control 

group subjects, possible acute exposure to high concentrations of chlorine, and the lack of adequate 

control of possible confounding variables such as smoking habits, use of alcohol, and intercurrent disease, 

preclude establishing a causative relationship between nickel exposure and developmental toxicity from 

this study. 

A decrease in fetal body weight was observed in the offspring of rats exposed to 1.6 mg Ni/m3 as nickel 

oxide 23.6 hours/day on gestation days 1–21 (Weischer et al. 1980).  No effect on fetal body weight was 

observed at 0.8 mg Ni/m3, although decreased maternal body weight gain was observed at this 

concentration. No effects on the number of fetuses or on the weight of placenta were observed. 

The NOAEL value and the LOAEL value from the Weischer et al. (1980) study are recorded in Table 3-1 

and plotted Figure 3-1. 

3.2.1.7 Cancer 

A large number of epidemiology studies have assessed the carcinogenic potential of nickel; it has been 

estimated that over 100,000 nickel workers have been examined in epidemiology studies (Seilkop and 

Oller 2003). These workers have been employed in nickel refinery facilities, nickel mining and smelting 

facilities, nickel alloy production facilities, stainless steel production facilities, nickel-cadmium battery 

production facilities, or as stainless steel welders.  In the mid 1980s, a committee of epidemiologists was 

formed to investigate the human health risks associated with nickel exposure and to determine the specific 

forms of nickel that are associated with an increased risk of respiratory cancer (International Committee 

on Nickel Carcinogenesis in Man 1990).  The investigators updated the existing data from 10 previously 

examined cohorts and estimated levels of exposure to various nickel species.  Since no measurements of 

nickel concentrations were available for workers employed prior to 1950, the investigators estimated total 

nickel exposure levels using recent monitoring data and historical data on the industrial processes.  Based 

on information on the chemistry of the industrial process, total nickel exposure levels were divided into 

exposure to four nickel species:  soluble nickel (including nickel sulfate and nickel chloride), sulfidic 

nickel (including nickel subsulfide), oxidic nickel, and metallic nickel.  It is noted that interpretation of 

the results of many of the epidemiology studies of nickel workers is confounded by poor nickel exposure 

characterization, exposure to relatively high concentrations of other metals, including arsenic, and in 

some cases, exposure to irritant gases including hydrogen sulfide, ammonia, chlorine, and sulfur dioxide 

(IARC 1990). 
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Statistically significant increases in the risk of nasal and/or lung cancer were found among nickel refinery 

workers (Andersen et al. 1996; Anttila et al. 1998; Chovil et al. 1981; Doll et al. 1977; Enterline and 

Marsh 1982; Grimsrud et al. 2003; International Committee on Nickel Carcinogenesis in Man 1990; 

Karjalainen et al. 1992; Magnus et al. 1982; Muir et al. 1994; Pedersen et al. 1973; Peto et al. 1984; 

Roberts et al. 1989a). In general, the nickel refinery workers were exposed to high levels of sulfidic and 

oxidic nickel and low levels of soluble and metallic nickel (International Committee on Nickel 

Carcinogenesis in Man 1990). At one nickel refinery facility (New Caledonia), the risk of respiratory 

tract cancers was not significantly elevated in the nickel-exposed workers (Goldberg et al. 1987, 1994; 

International Committee on Nickel Carcinogenesis in Man 1990).  This refinery facility differs from other 

refineries in that the workers were primarily exposed to silicate oxide ore and oxidic nickel with very 

little exposure to sulfidic or soluble nickel.  Sunderman and associates (Sunderman et al. 1989a) 

examined the histopathological diagnosis of 100 cases of sinonasal cancer and 259 cases of lung cancer 

among workers at three nickel refinery facilities.  The primary sinonasal cancers were squamous cell 

carcinomas (48%), anaplastic and undifferentiated carcinomas (39%), and adenocarcinomas (6%).  In an 

analysis of lung cancer, the cancers were primarily squamous cell carcinomas (67%), anaplastic, small 

cell, and oat cell carcinomas (15%), and adenocarcinomas (8%).  The types of sinonasal and lung cancers 

were similar to those found in the general population, suggesting a lack of nickel-specific tumor types.   

In contrast to the findings of nickel refinery workers, most studies in other groups of nickel workers have 

not found significant increases in the risk of lung cancer among workers employed in nickel mining and 

smelting facilities (International Committee on Nickel Carcinogenesis in Man 1990; Shannon et al. 

1984b, 1991), workers employed at a hydrometallurgical refinery (Egedahl and Rice 1984, Egedahl et al. 

1991, 2001), workers employed at nickel alloy and stainless steel production facilities (Cornell 1984; 

Cornell and Landis 1984; Cox et al. 1981; Enterline and March 1982; International Committee on Nickel 

Carcinogenesis in Man 1990; Jakobsson et al. 1997; Moulin et al. 1993; Sorahan 2004), workers 

employed as stainless steel welders (Danielsen et al. 1996; Gerin et al. 1993; Hansen et al. 1996; 

Simonato et al. 1991), workers involved in nickel-chromium electroplating (Pang et al. 1996), or workers 

employed at a barrier production facility (Cragle et al. 1984; Godbold and Tompkins 1979; International 

Committee on Nickel Carcinogenesis in Man 1990).  Although some studies of these workers did find 

significant increases in respiratory tract cancers (Becker 1999; Moulin et al. 1990), the increased risk was 

attributed to exposure to other carcinogenic agents, such as polycyclic aromatic hydrocarbons or asbestos.  

Redmond (1984) and Arena et al. (1998) reported significant increases in lung cancer risks among high 

nickel alloy production workers as compared to the U.S. population.  However, when the local population 
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was used as the comparison group, the increase in lung cancer risk was no longer statistically significant 

(Arena et al. 1998).  In general, workers employed in these industries were exposed to lower levels of 

sulfidic or oxidic nickel than the nickel refinery workers who were primarily exposed to metallic nickel 

(Cragle et al. 1984; Godbold and Tompkins 1979) or soluble nickel (Pang et al. 1996). 

Because nickel workers are exposed to several nickel species, it is difficult to assess the carcinogenic 

potential of a particular nickel species.  The International Committee on Nickel Carcinogenesis in Man 

(1990) investigators used cross-classification analyses to examine the dose-response to a specific nickel 

species independent of variations in other species.  The most comprehensive cross-classification analyses 

were performed for cohorts of workers in different departments at the Mond/INCO (Clydach) nickel 

refinery and at the Falconbridge (Kristiansand) nickel refinery (only analyzed for metallic nickel).  

Summaries of some of these cross-characterizations showing the different risks for low and high exposure 

to a particular nickel species stratified by the degree of exposure to other nickel species are presented in 

Tables 3-2 through 3-5.  The strongest evidence of carcinogenicity of a particular nickel species is for 

sulfidic nickel. The highest cancer risk levels were found in cohorts with the highest sulfidic nickel 

exposure levels, although high oxidic and soluble nickel levels were also found at these same facilities.  

The increased cancer risks in workers with high sulfidic nickel exposure and low oxidic and soluble 

nickel exposure (Table 3-2) suggests that sulfidic nickel is the causative agent.  The evidence for oxidic 

nickel is weaker. As presented in Table 3-3, no differences in cancer risks were seen among groups of 

workers with low sulfidic and soluble nickel exposures when the levels of oxidic nickel were varied.  

However, when high soluble nickel levels are present, oxidic nickel appears to be carcinogenic.  The 

available weight of evidence does not suggest that exposure to soluble nickel, in the absence of 

carcinogenic compounds, will increase the risk of cancer.  At low sulfidic and oxidic nickel levels, 

increasing soluble nickel levels do not increase the cancer risk in the Clydach cohort (Table 3-4).  

However, at high oxidic nickel levels, increasing the soluble nickel levels resulted in at least a 2-fold 

increase in the cancer risk.  There is no evidence that metallic nickel is associated with increased lung or 

nasal cancer risks in nickel workers based on the results of the cross-classification analyses for two 

cohorts of nickel refinery workers (Table 3-5) and the lack of increased cancer risk in the workers 

exposed to metallic nickel alone at the barrier production facility (Cragle et al. 1984; Godbold and 

Tompkins 1979).  The International Committee on Nickel Carcinogenesis in Man (1990) concluded that 

lung and nasal cancers were related primarily to exposure to less soluble nickel compounds at 

concentrations of ≥10 mg Ni/m3 (primarily oxidic and sulfidic compounds).  Exposure to soluble nickel 

compounds at concentrations of >1 mg Ni/m3 appeared to enhance the carcinogenicity of insoluble nickel 
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Table 3-2. Comparison of Risk of Dying of Lung Cancer at Different Levels of 
Cumulative Exposure to Sulfidic Nickel by Different Levels of Combined 

Cumulative Exposure to Oxidic and Soluble Nickel in the Mond/INCO 
(Clydach) Nickel Refinerya 

Degree of exposure to 
oxidic and soluble nickel, 
respectivelyb O 

Low exposure to 
sulfidic nickelc 

E SMR O 

High exposure to 
sulfidic nickeld 

E SMR 
Difference in SMR 
value (p-value) 

Low, low 51 26.01 196 8 1.25 638 0.004 
Low, high 7 4.16 168 1 0.15 657 0.388 
High, low 18 5.14 350 32 6.34 505 0.455 
High, high 30 3.87 776 28 2.36 1,187 0.265 

aModified from International Committee on Nickel Carcinogenesis in Man (1990). 

bLow oxidic nickel exposure = <50 (mg Ni/m3)·years and high oxidic nickel exposure = ≥50 (mg Ni/m3)·years; low
 
soluble nickel exposure = <10 (mg Ni/m3)·years and high soluble nickel exposure = ≥10 (mg Ni/m3)·years. 

cLow sulfidic nickel exposure = <15 (mg Ni/m3)·years.

dHigh sulfidic nickel exposure = ≥15 (mg Ni/m3)·years. 


O = observed; E = expected; SMR = standardized mortality ratio 
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Table 3-3. Comparison of Risk of Dying of Lung Cancer at Different Levels of 
Cumulative Exposure to Oxidic Nickel by Different Levels of Combined 
Cumulative Exposure to Sulfidic and Soluble Nickel in the Mond/INCO 

(Clydach) Nickel Refinerya 

Degree of exposure to sulfidic 
and soluble nickel, respectivelyb 

Low exposure to 
oxidic nickelc 

O E SMR O 

High exposure to 
oxidic nickeld 

E SMR 

Difference in 
SMR value 
(p-value) 

Low, low 51 26.01 196 18 5.14 350 0.100 
Low, high 7 4.16 168 30 3.87 776 <0.001 
High, low 8 1.25 638 32 6.34 505 0.839 
High, high 1 0.15 658 28 2.36 1,187 0.841 

aModified from International Committee on Nickel Carcinogenesis in Man (1990). 

bLow sulfidic nickel exposure = <15 (mg Ni/m3)·years and high sulfidic nickel exposure = ≥15 (mg Ni/m3)·years; low
 
soluble nickel exposure = <10 (mg Ni/m3)·years and high soluble nickel exposure = ≥10 (mg Ni/m3)·years. 

cLow oxidic nickel exposure = <50 (mg Ni/m3)·years. 

dHigh oxidic nickel exposure = ≥50 (mg Ni/m3)·years. 


O = observed; E = expected; SMR = standardized mortality ratio 
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Table 3-4. Comparison of Risk of Dying of Lung Cancer at Different Levels of 
Cumulative Exposure to Soluble Nickel by Different Levels of Combined 

Cumulative Exposure to Sulfidic and Oxidic Nickel in the Mond/INCO 
(Clydach) Nickel Refinerya 

Degree of exposure to sulfidic 
and oxidic nickel, respectivelyb O 

Low exposure to 
soluble nickelc 

E SMR O 

High exposure to 
soluble nickeld 

E SMR 

Difference in 
SMR value 
(p-value) 

Low, low 51 26.01 196 7 4.16 168 0.931 
Low, high 18 5.14 350 30 3.87 776 0.024 
High, low 8 1.25 638 1 0.15 658 0.999 
High, high 32 6.34 505 28 2.36 1,187 0.003 

aModified from International Committee on Nickel Carcinogenesis in Man (1990). 

bLow sulfidic nickel exposure = <15 (mg Ni/m3)·years and high sulfidic nickel exposure = ≥15 (mg Ni/m3)·years; low
 
oxidic nickel exposure = <50 (mg Ni/m3)·years and high oxidic nickel exposure = ≥50 (mg Ni/m3)·years. 

cLow soluble nickel exposure = <10 (mg Ni/m3)·years.

dHigh soluble nickel exposure = ≥10 (mg Ni/m3)·years. 


O= observed; E = expected; SMR = standardized mortality ratio 



  
 

 
 

 

 

 

      

  
 

  
  
  

 

  

 
    

     
    
   

  
 

    
 

   
  
  

 
  
  

 
  

 
 

 
 

 
 
 
 

 

NICKEL 85 

3. HEALTH EFFECTS 

Table 3-5. Comparison of Risk of Dying of Lung Cancer at Different Levels of 

Cumulative Exposure to Metallic Nickel by Different Levels of Combined
 

Cumulative Exposure to Sulfidic, Oxidic, and Soluble Nickel in the 

Mond/INCO (Clydach) and Falconbridge (Kristainsand)  


Nickel Refineriesa
 

Degree of exposure to sulfidic, 
oxidic, and soluble nickel, 
respectivelyb 

Low exposure to metallic 
nickelc 

High exposure to 
metallic nickeld 

O E SMR O E SMR 

Difference in 
SMR value 
(p-value) 

Mond/INCO (Clydach) Nickel Refinery 
None, none, none 19 11.5 166 — — — — 
Low, low, low 44 23.2 190e 7 2.8 249f 0.80 
Low, low, high 5 3.8 133 2 0.4 499 0.23 
Low, high, low 17 4.7 363e 1 0.5 220f 0.87 
Low, high, high 26 3.3 783e 4 0.1 732g 0.99 
High, low, low 2 0.3 589f 5 0.9 656e 0.99 
High, low, high — — — 1 0.2 658 — 
High, high, low 2 0.9 235 30 5.5 547 0.49 
High, high, high 3 0.3 865g 25 2.0 1,140e 0.83 
Falconbridge (Kristiansand) Nickel Refinery 
None, none, none 6 3.28 186 — — — 
Low, low, low 19 7.17 265e — — — 
Low, low, high 10 1.75 570e — 0.18 — 
Low, high, low 11 4.66 236e 1 0.25 396 
Low, high, high 6 0.78 770e 2 0.26 1,112g 

High, low, high 1 0.13 769 — — — 
High, high, low 2 0.58 344 3 0.64 471f 

High, high, high 4 0.76 524g 1 0.58 171 

aModified from International Committee on Nickel Carcinogenesis in Man (1990). 
bClydach:  low sulfidic nickel exposure = <15 (mg Ni/m3)·years and high sulfidic nickel exposure = ≥15 (mg 
Ni/m3)·years; low oxidic nickel exposure = <50 (mg Ni/m3)·years and high oxidic nickel exposure = ≥50 (mg 
Ni/m3)·years; low soluble nickel exposure = <10 (mg Ni/m3)·years and high soluble nickel exposure = ≥10 (mg 
Ni/m3)·years. 
Kristiansand:  low sulfidic nickel exposure = <5 (mg Ni/m3)·years and high sulfidic nickel exposure = ≥5 (mg 
Ni/m3)·years; low oxidic nickel exposure = <15 (mg Ni/m3)·years and high oxidic nickel exposure = ≥15 (mg 
Ni/m3)·years; low soluble nickel exposure = <5 (mg Ni/m3)·years and high soluble nickel exposure = ≥5 (mg 
Ni/m3)·years.
cClydach:  low exposure = <15 (mg Ni/m3)·years; Kristiansand:  low exposure = <5 (mg Ni/m3)·years.
dClydach:  high exposure = ≥15 (mg Ni/m3)·years; Kristiansand:  high exposure = ≥5 (mg Ni/m3)·years. 
ep<0.001 
fp<0.05 
gp<0.01 

O = observed; E = expected; SMR = standardized mortality ratio 
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compounds.  These concentrations are presented as human cancer effect levels for lung and nasal cancers 

in Table 3-1 and Figure 3-1. 

Significant increases in cancer risks at sites other than the respiratory tract have been found in some 

cohorts of nickel workers.  The International Committee on Nickel Carcinogenesis in Man (1990) noted 

that if nickel exposure was associated with nonrespiratory tract cancer, increased risks would be seen 

among the workers with the highest nickel exposures (cohorts that also had increased levels of respiratory 

tract cancer). Among the three cohorts with the highest nickel exposures (Clydach, INCO Ontario sinter 

plants, and Kristiansand), no consistent patterns of increased nonrespiratory tract cancer risks were found.  

When the three cohorts were combined, significant increases in pharynx (SMR 201; 95% confidence 

interval 117–322) and bone (SMR 206; 95% confidence interval 111–353) cancers were found.  The 

investigators noted that cancers of the ethmoid and maxillary sinuses are sometimes classified as bone 

cancer and that bone cancer is sometimes listed on death certificates if the primary lung cancers are 

occasionally unrecognized and death is attributed to the site of metastasis.  Among workers with 

low-level nickel exposures without significant increases in respiratory tract cancer, no significant 

increases in cancer risks were found. Thus, the investigators concluded that there was insufficient 

evidence that nickel exposure results in tumors outside of the respiratory tract (International Committee 

on Nickel Carcinogenesis in Man 1990).  Two studies published after this analysis found significant 

increases in the incidence of stomach cancer among nickel refinery workers (Antilla et al. 1998) and 

nickel platers (Pang et al. 1996). These data are insufficient to conclude whether the increases in stomach 

cancer risks are due to exposure to nickel, other agents, or chance.  A meta-analysis of occupational 

exposure studies on pancreatic cancer (Ojajärvi et al. 2000) found a significant association between 

exposure to nickel and pancreatic cancer risk.  However, the Ojajärvi et al. (2000) meta-analysis has been 

criticized (Sielkop 2001) for excluding a study of nickel mining and smelting workers (Shannon et al. 

1991) and a study of nickel alloy production workers (Arena et al. 1998).  The addition of these studies 

lowered the meta-analysis ratio from 1.9 (95% confidence interval 1.2–3.2) to 1.3 (95% confidence 

interval 0.9–1.9); Ojajärvi accepted Sielkop’s comments.  Overall, there does not appear to be sufficient 

evidence that exposure to airborne nickel is associated with increased cancer risks outside of the 

respiratory tract.  

A number of animal studies have examined the carcinogenic potential of nickel subsulfide, nickel oxide, 

and nickel sulfate.  Chronic exposure to nickel subsulfide resulted in significant increases in lung tumors 

in two rat studies. Adenomas, adenocarcinomas, squamous cell carcinomas, and fibrosarcoma were 

observed in rats exposed to 0.7 mg Ni/m3 as nickel subsulfide 6 hours/day, 5 days/week, for 78 weeks 
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(Ottolenghi et al. 1974).  Similarly, significant increases in the combined incidences of alveolar/ 

bronchiolar adenoma or carcinoma were observed in male and female rats exposed to 0.11 or 0.73 mg 

Ni/m3 as nickel subsulfide, 6 hours/day, 5 days/week for 2 years (NTP 1996b); incidence data for this 

study are presented in Table 3-6.  Significant increases in the incidence of benign or malignant 

pheochromocytoma in the adrenal medulla were also observed in males at 0.11 or 0.73 mg Ni/m3 and 

females at 0.73 mg Ni/m3. In contrast to the findings in rats, no significant alterations in tumor incidences 

were observed in mice exposed to 0.44 or 0.88 mg Ni/m3 as nickel subsulfide 6 hours/day, 5 days/week 

for 2 years (NTP 1996b) (see Table 3-7 for incidence data) or in mice following weekly intratracheal 

injections of ≤0.8 mg Ni/m3 as nickel subsulfide for ≤15 weeks, followed by observation for ≤27 months 

(Fisher et al. 1986; McNeill et al. 1990).  Acute (6 hours/day, 5 days/week, for 1 month) inhalation 

exposure to ≤6.3 mg Ni/m3 as nickel oxide resulted in no significant increase in lung cancer in rats 

≤20 months after exposure (Horie et al. 1985).  However, significant increases in the incidence of 

alveolar/bronchiolar adenoma or carcinoma were observed in male and female rats exposed to 1 or 2 mg 

Ni/m3 as nickel oxide 6 hours/day, 5 days/week for 2 years (NTP 1996c) (see Table 3-6 for incidence 

data), but not in rats exposed to 0.5 mg Ni/m3 or in mice exposed to 1, 2, or 3.9 mg Ni/m3. Significant 

increases in the incidence of benign or malignant pheochromocytoma in the adrenal medulla were also 

observed in rats exposed to 3.9 mg Ni/m3 (NTP 1996c).  In contrast to the less soluble nickel compounds, 

chronic (6 hours/day, 5 days/week for 2 years) exposure to nickel sulfate did not result in significant 

increases in neoplasms in rats or mice (NTP 1996a); the highest concentrations tested were 0.11 and 

0.22 mg Ni/m3, respectively; incidence data reported in Tables 3-6 and 3-7.  The nickel concentrations as 

nickel subsulfide and nickel oxide resulting in cancer in rats are presented as Cancer Effect Levels in 

Table 3-1 and Figure 3-1. 

The Department of Health and Human Services (NTP 2002) has determined that metallic nickel may 

reasonably be anticipated to be a human carcinogen and that nickel compounds are known to be human 

carcinogens. Similarly, IARC (1990) classified metallic nickel in group 2B (possibly carcinogenic to 

humans) and nickel compounds in group 1 (carcinogenic to humans).  EPA has classified nickel refinery 

dust and nickel subsulfide in Group A (human carcinogen) (IRIS 2005).  Other nickel compounds have 

not been classified by the EPA.  Based on the occupational data, inhalation unit risk levels of 

2.4x104 (µg/m3)-1 and 4.8x10-4 (µg/m3)-1 were derived for nickel refinery dust and nickel subsulfide, 

respectively (IRIS 2003). The risk levels for these compounds are presented in Figure 3-1.  The risk 

levels range from 4x10-1 to 4x10-4 µg/m3 for a risk ranging from 1x10-4 to 1x10-7, respectively, for nickel 

refinery dust (IRIS 2005) and from 2x10-1 to 2x10-4 µg/m3 for a risk ranging from 1x10-4 to 1x10-7, 

respectively, for nickel subsulfide (IRIS 2005).  These risk levels are presented in Figure 3-1. 
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Table 3-6. Alv eolar/Bronchiolar Neoplasms and Adrenal Medulla Proliferative 

Lesions in Ratsa
 

Number of rats with neoplasms or proliferative lesions/number of rats examined 
Exposure to nickel sulfate Exposure to nickel Exposure to nicke l 

Effect hexahydrate (mg nickel/m3) sub sulfide (mg nickel/m3) oxide (mg n ickel/m3) 
0 0.03 0.06 0.11 0 0.11 0.73 0 0.5 1 2
 

Male 
Alveolar/ 2/54 0/53 1/53 3/53 0/53 6/53b 11/53c 1/54 1/53 6/53b 4/52 b 

brochiolar 
adenoma/ 
carcinoma  
Adrenal medulla 16/54 19/53 13/53 12/53 14/53 30/52c 42/53c 27/54 24/53 27/53 35/54c 

benign, 
malignant, or 
complex 
pheochromo
cytoma 
Female 
Alveolar/ 0/52 0/53 0/53 1/54 2/53 6/53d 9/53b 1/53 0/53 6/53d 5/54d 

brochiolar 
adenoma/ 
carcinoma  
Adrenal medulla 2/51 4/53 3/53 3/54 3/53 7/53 36/53c 4/53 7/53 6/53 18/54c 

benign, 
malignant, or 
complex 
pheochromo
cytoma 

aAdapted from NTP 1996a, 1996b, 1996c 
bp≤0.05 
cp≤0.01 
dp≤0.05 versus historical data (1.4%, 3/210 males; 1.4%, 4/208 females) (Dunnick et al. 1995) 
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Table 3-7. Alveolar/Bronchiolar Neoplasms in Micea 

Number of mice with tumors/number of mice examined 
Exposure to nickel sulfate Exposure to nickel Exposure to nickel oxide 
hexahydrate (mg nickel/m3) subsulfide (mg nickel/m3) (mg nickel/m3) 
0 0.06 0.11 0.22 0 0.44 0.88 0 1 2 3.9 

Male 13/61 18/61 7/62 8/61 13/61 5/59 6/58 9/57 14/67 15/66 14/69 
Female 7/61 6/60 10/60 2/60 9/58 2/59 3/60 6/64 15/66b 12/63 8/64 

aAdapted from NTP 1996a, 1996b, 1996c 
bp#0.05 
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3.2.2 Oral Exposure  

3.2.2.1 Death 

One human death following oral exposure to nickel was reported (Daldrup et al. 1983).  Nickel sulfate 

crystals (rough estimate of 570 mg Ni/kg) were accidentally ingested by a 2-year-old child.  Four hours 

after ingestion, cardiac arrest occurred, and the child died 8 hours after exposure. 

Single-dose oral lethality studies indicate that soluble nickel compounds are more toxic than less-soluble 

nickel compounds.  Oral LD50 values of 46 or 39 mg Ni/kg as nickel sulfate in male and female rats 

(Mastromatteo 1986) and 116 and 136 mg Ni/kg as nickel acetate in female rats and male mice, 

respectively (Haro et al. 1968) have been reported for soluble nickel compounds.  In contrast, the oral 

LD50 values in rats for less-soluble nickel oxide and subsulfide were >3,930 and >3,665 mg Ni/kg, 

respectively (Mastromatteo 1986). 

Increases in mortality (6/52, 60/60) were observed in rats administered via gavage 8.6 or 25 mg Ni/kg/day 

as nickel chloride hexahydrate for 91 days (American Biogenics Corporation 1988).  Clinical signs 

observed included lethargy, ataxia, irregular breathing, hypothermia, salivation, squinting, and loose 

stools. As part of a longer-term study, rats were provided with drinking water containing 1,000 ppm 

nickel as nickel chloride (approximately 140 mg/kg/day) (RTI 1988a).  Within 2 weeks, 7/62 died and the 

dose was eliminated from the study.  In other studies, no deaths were observed in rats given doses up to 

92 mg Ni/kg as nickel chloride in drinking water for 15 days (RTI 1985), 28.8 mg Ni/kg/day as nickel 

sulfate in drinking water for 13 weeks (Obone et al. 1999), or 22 mg Ni/kg/day (males) or 33 mg 

Ni/kg/day (females) as nickel sulfide administered via gavage for 90 days (Springborn Laboratories 

2002); no deaths were observed in mice provided with nickel sulfate in the drinking water at doses up to 

150 mg Ni/kg/day for 180 days (Dieter et al. 1988). 

In a multigeneration study (RTI 1988a, 1988b) in which rats were treated with nickel chloride in the 

drinking water, the death of female rats from pregnancy complications at the time of delivery suggests 

that females are more susceptible to nickel toxicity during parturition.  Although the number of deaths 

was not significantly above controls and not clearly dose related (P0: 0/31 in controls, 1/31 at 

7 mg/kg/day, 3/30 at 30 mg/kg/day, and 3/31 at 55 mg/kg/day; F1: 0/30 at 0 and 7 mg/kg/day, 3/30 at 

30 mg/kg/day, and 1/30 at 55 mg/kg/day), death in dams during delivery is a relatively rare event.  The 

results of this study (RTI 1988a, 1988b) are confounded by a decrease in food and water intake observed 
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in the exposed anim als. Deaths in offspring before weaning have also been reported in multigeneration, 

multilitter studies (RTI 1988a, 1988b; Schroeder and Mitchener 1971; Smith et al. 1993).  Because cross-

fostering studies have not been completed, it is not possible to know if the pre-weaning deaths are a result 

of an inherent defect in the pups, nickel exposure through the milk, or a change in the quality or quantity 

of the milk produced by the dam (Smith et al. 1993). 

An increase in mortality was not observed in chronic studies in rats or dogs fed nickel sulfate in the diet at 

doses up to 188 mg/kg/day for rats and 62.5 mg/kg/day for dogs (Ambrose et al. 1976).  In mice provided 

with 0.95 mg/Ni/kg as nickel acetate in drinking water until death (last death at 991 days for males and 

904 days for females), an increase in life expectancy was observed (Schroeder and Mitchener 1975). 

Oral LD50 values and all LOAEL values from each reliable study for death in each species and duration 

category are recorded in Table 3-8 and plotted in Figure 3-2. 

3.2.2.2 Systemic Effects  

The highest NOAEL values and all LOAEL values from each reliable study for systemic effects for each 

species, duration category, and nickel compound are recorded in Table 3-8 and plotted in Figure 3-2. 

Respiratory Effects. No studies were located regarding respiratory effects in humans after oral 

exposure to nickel. 

Pneumonitis was observed in 6/19 male rats and 9/17 female rats treated for 91 days by gavage with 

8.6 mg Ni/kg/day as nickel chloride (American Biogenics Corporation 1988).  Significant increases in 

absolute and relative lung weights were observed in rats exposed to 28.8 mg Ni/kg/day as nickel sulfate in 

drinking water for 13 weeks (Obone et al. 1999).  This study also found alterations in enzyme activity in 

bronchoalveolar lavage (BAL) fluid and lung tissues, including increases in protein levels in BAL fluid at 

14.4 mg Ni/kg/day and higher, decreases in alkaline phosphatase activity in BAL fluid at 5.75 mg 

Ni/kg/day and higher, and decrease in alkaline phosphatase activity in lung tissue at 28.8 mg Ni/kg/day. 

No histological alterations were observed in the lungs.  The study authors suggested that the decrease in 

alkaline phosphatase activity was indicative of decreased activity of type II alveolar cells and the 

increased total protein was indicative of increased air-blood barrier permeability.  In a multigeneration 

study (RTI 1988a, 1988b), increased lung weights were observed in rats provided with nickel chloride in  
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Table 3-8 Levels of Significant Exposure to Nickel - Oral 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Fischer- 344) 
once 
(G) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

120 M (LD50) 

116 F (LD50) 

Reference 
Chemical Form 

Haro et al. 1968 
acetate 

2 Rat 
(Sprague-
Dawley) 

once 
(G) 

46 M (LD50) 

39 F (LD50) 

Mastromatteo 1986 
sulfate 

3 Rat 
(CD) 

14d 
(W) 

140 (7/64 died) RTI 1988a, 1988b 
chloride 

4 Mouse 
(Swiss-
Webster) 

Systemic 
5 Human 

once 
(G) 

2 d 
2x/d 
(C) 

Dermal 0.03 

136 M (LD50) 

139 F (LD50) 

Haro et al. 1968 
acetate 

Burrows et al. 1981 
sulfate 

6 Human once 
or 1 dose for 2 
d 
(C) 

Dermal 0.043 F 0.097 F (allergic dermatitis in 
sensitized individuals) 

Gawkrodger et al. 1986 
sulfate 

7 Human once 
(C) 

Dermal 0.014 F 0.057 F (dermatitis in nickel 
sensitive subjects) 

Hindsen et al. 2001 
sulfate 
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745

0.014

0.057

221
7.1

738

25 62.5

220
7.1

321
23

258

45.3

255

90.6

246

8.6

Table 3-8 Levels of Significant Exposure to Nickel - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) System 

Exposure/ 
Duration/ 

Frequency 
(Route) 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

8 DermalHuman once 
(C) 

0.014 F 0.057 F (dermatitis in inickel 
sensitive subjects) 

Jensen et al. 2003 
sulfate 

9 GastroHuman 1 d 
(W) 

7.1 M (vomiting, cramps, 
diarrhea) 

Sunderman et al. 1988 
sulfide/chloride 

10 GastroDog 
(Beagle) 

3 days 
(F) 

Neurological 
11 Human 1 d 

(W) 

25 62.5 (vomiting) 

7.1 M (giddiness, headache, 
weariness) 

Ambrose et al. 1976 
sulfate 

Sunderman et al. 1988 
sulfate/chloride 

Reproductive 
12 Mouse 

(lacca) 
once 
(GW) 

23 M (3.7-fold increase in 
sperm head 
abnormalities) 

Sobti and Gill 1989 
nitrate 

Developmental 
13 Mouse 

(CD-1) 
Gd 8-12 
1x/day 
(G) 

45.3 Gray et al. 1986 
chloride 

14 Mouse Gd 8-12 
(GW) 

INTERMEDIATE EXPOSURE 
Death 
15 Rat 

(Sprague-
Dawley) 

91 d 
daily 
(GW) 

90.6 

8.6 (6/52 died) 

Seidenberg et al. 1986 
chloride 

American Biogenics Corp 1988 
chloride 
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429

0.02

248

8.6

8.6

8.6

25

1.2 8.6

8.6

8.6

8.6

8.6

1.2

8.6

1.2

8.6

Table 3-8 Levels of Significant Exposure to Nickel - Oral (continued) 

Exposure/ LOAEL
 
Duration/
 

a

Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (mg/kg/day) (mg/kg/day) (mg/kg/day) Chemical Form 

Systemic 
16 Human 91-178 d 

(W) 
Dermal 0.02 F 

17 Rat 
(Sprague-
Dawley) 

91 d 
daily 
(GW) 

Resp 

Cardio 

Gastro 

8.6 

8.6 

8.6 

Hemato 

Hepatic 

Renal 

Dermal 

Ocular 

Bd Wt 

1.2 F 

8.6 

8.6 

8.6 

8.6 

1.2 F 

8.6 F 

8.6 F 

Metab 1.2 F 8.6 F 

(pneumonitis) 

Santucci et al. 1994 
sulfate 

American Biogenics Corp 1988 
chloride 

(increased platelet count) 

25 (ulcerative gastritis and 
enteritis) 

(12% decrease in body 
weight gain) 

(decreased blood 
glucose level) 

N
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722
5.75

28.8

28.8

28.8

5.75

14.4

28.8

736

4

20

051

6.8

31.6

31.6

Table 3-8 Levels of Significant Exposure to Nickel - Oral	 (continued) 

a
Key to 
Figure 

18 

19 

20 

Exposure/
 
Duration/
 

Frequency
Species (Route)(Strain) 

Rat	 daily 
13 weeks(Sprague-

Dawley) (W) 

Rat	 F: 27-30 wk 
M:21-24 wk(CD) 
(W) 

Rat	 11 wk 
breeding-(Long- Evans) 
lactation 
2 litters 
(W) 

System 

Resp 

Cardio 

Gastro 

Hepatic 

Renal 

Bd Wt 

Resp 

Endocr 

Bd Wt 

NOAEL 
(mg/kg/day) 

28.8 M 

28.8 M 

28.8 M 

5.75 M 

28.8 M 

4 M 

6.8 F 

31.6 F 

LOAEL 

Less Serious	 Serious 
(mg/kg/day)	 (mg/kg/day) 

5.75 M (decreased alkaline 
phosphatase activity in 
bronchioalveolar lavage 
fluid) 

14.4 M (increased realtive kidney 
weight, decreased urine 
volume and urine 
glucose) 

20 M (histiocytic cellular
 
infiltration in lungs in F1
 
generation)
 

31.6 F (21% decreased 
prolactin) 

Reference 
Chemical Form 

Obone et al. 1999 
sulfate 

RTI 1988a, 1988b 
chloride 

Smith et al. 1993 
chloride 
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744

2.2

2.2

2.2

2.2

2.2

748

22

22

22

22

22

22

11

17

381
7.6

7.6

Table 3-8 Levels of Significant Exposure to Nickel - Oral	 (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to	 Species (Route)Figure (Strain) 

21 Rat	 daily 
18 weeks(Sprague-


Dawley) (GW)
 

22 Rat	 Daily 
90 days(Fischer- 344) 
(GW) 

23	 Rat 3 or 6 mo 
(Wistar) (W) 

System 

Cardio 

Gastro 

Hepatic 

Renal 

Bd Wt 

Resp 

Cardio 

Gastro 

Hepatic 

Renal 

Endocr 

Bd Wt 

Renal 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

2.2 Springborn Laboratories 2000a 
sulfate 

2.2 

2.2 

2.2 

2.2 

22 M Springborn Laboratories 2002 
sulfate 

22 M 

22 M 

22 M 

22 M 

22 M 

11 M 17 M (12.2% decrease in final 
body weight) 

7.6 F (increased urinary 
albumin) 

Vyskocil et al. 1994b 
sulfate 

7.6 F 
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240

5

25

5

25

245

150

44

108

44

108 150

724

5.75

14.4

244
44

Table 3-8 Levels of Significant Exposure to Nickel - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

24 Rat 
(OSU brown) 

6 wk 
(F) 

Hemato 5 M 25 M (10% decreased 
hemoglobin) 

Whanger 1973 
acetate 

Bd Wt 5 M 25 M (88% decrease in body 
weight gain) 

25 Mouse 
(B6C3F1) 

180 d 
daily 
(W) 

Hepatic 150 F Dieter et al. 1988 
sulfate 

Renal 44 F 108 F (hyaline casts, loss of 
tubular epithelial cells) 

Bd Wt 44 F 108 F (body weight 10% lower 
than controls) 

150 F (body weight 26% lower 
than controls) 

Immuno/ Lymphoret 
26 Rat 

(Sprague-
Dawley) 

daily 
13 weeks 
(W) 

5.75 M 14.4 M (alterations in spleen and 
thymus lymphocyte T-cell 
and B-cell 
subpopulations) 

Obone et al. 1999 
sulfate 

27 Mouse 
(B6C3F1) 

180 d 
daily 
(W) 

44 F (mild thymic atrophy, 
impaired B-cell immune 
function, decreased 
granulocyte macrophage 
progenitor cell levels) 

Dieter et al. 1988 
sulfate 
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481
20.3

460

1.2

8.6

263

90

603

13

604

3.6

605

3.6

723

28.8

Table 3-8 Levels of Significant Exposure to Nickel - Oral	 (continued) 

a
Key to Species 
Figure (Strain) 

28	 Mouse 
(BALB/c) 

Neurological 
29 Rat 

(Sprague-
Dawley) 

Reproductive 
30 Rat 

(Wistar) 

31	 Rat 
(Wistar) 

32	 Rat 
(Wistar) 

33	 Rat 
(Wistar) 

34	 Rat 
(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

10-11wk 
(W) 

20.3 F (enhanced inflammatory 
response in the hearts of 
mice challenged with 
coxsackie virus B3) 

Ilback et al. 1994 
chloride 

91 d 
daily 
(GW) 

1.2 8.6 (ataxia, prostation, 
hypothermia) 

American Biogenics Corp 1988 
chloride 

about 24 wk 
(F) 

90 Ambrose et al. 1976 
sulfate 

daily 
62 days 
(W) 

13 F Kakela et al. 1999 
chloride 

daily 
28 or 42 days 
(W) 

3.6 M (decreased fertility) Kakela et al. 1999 
chloride 

daily 
28--76 days 
(W) 

3.6 (decreased fertility) Kakela et al. 1999 
chloride 

daily 
13 weeks 
(W) 

28.8 M Obone et al. 1999 
sulfate 
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7

30

030

31.6

742

2.2

740

16.7

606

1.1

2.2

607

1.2

2.5

Table 3-8 Levels of Significant Exposure to Nickel - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

35 Rat 
(CD) 

F: 27-30 wk 
M:21-24 wk 
(W) 

7 F 30 F (increased gestation 
length in first P0 
pregnancy) 

RTI 1988a, 1988b 
chloride 

36 Rat 
(Long- Evans) 

11 wk 
breeding-
lactation 
2 litters 
(W) 

31.6 Smith et al. 1993 
chloride 

37 Rat 
(Sprague-
Dawley) 

daily 
18 weeks 
(GW) 

2.2 Springborn Laboratories 2000a 
sulfate 

38 Rat 
(Sprague-
Dawley) 

daily 
35-56 days 
(GW) 

16.7 Springborn Laboratories 2000b 
sulfate 

39 Mouse 
(NS) 

5 days/week 
35 days 
(GW) 

1.1 M 2.2 M (decreased sperm 
motility; increased sperm 
abnormalities) 

Pandey and Srivastava 2000 
sulfate 

40 Mouse 
(NS) 

5 days/week 
35 days 
(GW) 

1.2 M 2.5 M (decreased sperm 
motility and count; 
increased sperm 
abnormalities) 

Pandey and Srivastava 2000 
chloride 
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608
1.1

730

2.2

265
22.5

609

4

13

610
3.6

611
3.6

Table 3-8 Levels of Significant Exposure to Nickel - Oral	 (continued) 

a
Key to Species 
Figure (Strain) 

41	 Mouse 
(Swiss) 

42	 Mouse 
(Swiss) 

Developmental 
43 Rat 

(Wistar) 

44	 Rat 
(Wistar) 

45	 Rat 
(Wistar) 

46	 Rat 
(Wistar) 

Exposure/ LOAEL 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/kg) 

Less Serious 
(mg/kg) 

Serious 
(mg/kg) 

5 days/week 
35 days 
(GW) 

1.1 M (increased total number 
of sperm abnormalities) 

5 days/week 
35 days 
(GW) 

about 24 wk 
(F) 

2.2 M (decreased fertility) 

22.5 (increased number of 
stillborns) 

daily 
62 days 
(W) 

4 F 13 F (decreased litter size and 
pup survival) 

daily 
28 or 42 days 
(W) 

3.6 M (decreased pup viability 
and survival) 

daily 
28--76 days 
(W) 

3.6 (increased fetal mortality 
and decreased pup 
survival) 

Reference 
Chemical Form 

Pandey et al. 1999 
sulfate 

Pandey et al. 1999 
sulfate 

Ambrose et al. 1976 
sulfate 

Kakela et al. 1999 
chloride 

Kakela et al. 1999 
chloride 

Kakela et al. 1999 
chloride 
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734

7

30

613

1.3

743

2.2

741

4.5

6.7

296

80

160

Table 3-8 Levels of Significant Exposure to Nickel - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

47 Rat 
(CD) 

F: 27-30 wk 
M:21-24 wk 
(W) 

7 M RTI 1988a, 1988b 
chloride 

30 M (increased mortality in 
F1b rats on pnd 22-42; 
decreased pup body 
weight in F1b rats) 

48 Rat 
(Long- Evans) 

11 wk 
breeding-
lactation 
2 litters 
(W) 

Smith et al. 1993 
chloride 

1.3 (decreased pup survival) 

49 Rat 
(Sprague-
Dawley) 

daily 
18 weeks 
(GW) 

2.2 Springborn Laboratories 2000a 
sulfate 

50 Rat 
(Sprague-
Dawley) 

daily 
49-70 days 
(GW) 

4.5 F Springborn Laboratories 2000b 
sulfate 

6.7 F (increased 
post-implantation loss) 

51 Mouse 
(CD-1) 

Gd 2-17 
(W) 

80 Berman and Rehnberg 1983 
chloride 

160 (increased spontaneous 
abortions) 
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262

187.5

187.5

187.5

187.5

187.5

187.5

187.5

187.5

187.5

7.5

75 187.5

Table 3-8 Levels of Significant Exposure to Nickel - Oral	 (continued) 

Exposure/ 
Duration/ 

a FrequencyKey to	 Species (Route)Figure	 (Strain) 

CHRONIC EXPOSURE 
Systemic 
52 Rat 2 yrs 

(Wistar) (F) 

System 
NOAEL 

(mg/kg/day) 

Resp 187.5 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

187.5 

187.5 

187.5 

187.5 

187.5 

187.5 

187.5 

187.5 

7.5 

Less Serious 
(mg/kg/day) 

75	 (10-18% decreases in 
body weight gain) 

LOAEL 

Reference 

(mg/kg/day) Chemical Form 
Serious 

Ambrose et al. 1976 
sulfate 

187.5	 (27-29% decreased body 
weight gain) 
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242

25

62.5

62.5

62.5

25

62.5

62.5

62.5

25

62.5

62.5

62.5

25

62.5

401

187.5

404

62.5

402

187.5

Table 3-8 Levels of Significant Exposure to Nickel - Oral	 (continued) 

System 

Resp 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

NOAEL 
(mg/kg/day) 

25 

62.5 

62.5
 

25
 

62.5 

62.5
 

25
 

62.5 

62.5
 

25
 

187.5 

62.5 

187.5 

LOAEL 

Less Serious	 Serious 
(mg/kg/day)	 (mg/kg/day) 

62.5	 (cholesterol granulomas, 
emphysema, 
bronchiolectasis) 

62.5	 (decreased hematocrit 
and hemoglobin levels) 

62.5	 (polyuria in 2/6 dogs, 
increased kidney weight) 

62.5	 (10% decrease in body 
weight gain) 

Reference 
Chemical Form 

Ambrose et al. 1976 
sulfate 

Ambrose et al. 1976 
sulfate 

Ambrose et al. 1976 
sulfate 

Ambrose et al. 1976 
sulfate 
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Key to Species 
Figure (Strain) 

53 Dog 
(Beagle) 

Immuno/ Lymphoret 
54 Rat 2 yrs 

(Wistar) (F) 

55	 Dog 2 yrs 
(Beagle) (F) 

Neurological 
56 Rat 2 yrs 

(Wistar) (F) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

2 yrs 
(F) 



405

62.5

Table 3-8 Levels of Significant Exposure to Nickel - Oral (continued) 

a
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form 

57 Dog 
(Beagle) 

2 yrs 
(F) 

62.5 Ambrose et al. 1976 
sulfate 

a The number corresponds to entries in Figure 3-2.
 

Bd Wt = body weight; (C) = capsule; Cardio = cardiovascular; d = day(s); Endocr = endocrine; (F) = feed; F = Female; (G) = gavage; Gastro = gastrointestinal; gd = gestational day;
 
(GW) = gavage in water; hemato = hematological; Immuno = immunological; LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male; mo = month(s);
 
Musc/skel = musculoskeletal; Ni = nickel; NOAEL = no-observed-adverse-effect level; Resp = respiratory;
 
x = time(s); (W) = drinking water; wk = week(s); yr = year(s)
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Systemic 

mg/kg/day 
1000 

25m 
25m100 

25m 
20r18r 18r 18r17r 24r22r 22r 22r 22r 22r 22r19r 

18r
 
10
 15r 17r 17r 17r 17r 17r 17r 17r23r 20r18r 18r24r 

19r 

21r 21r 21r 21r 

17r
1 

0.1 

16 

0.01 

N
IC

K
E

L

         3.  H
E

A
LTH

 E
FFE

C
TS

106c-Cat -Humans f-Ferret n-Mink   Cancer Effect Level-Animals   Cancer Effect Level-Humans  LD50/LC50d-Dog k-Monkey j-Pigeon o-Other  LOAEL, More Serious-Animals  LOAEL, More Serious-Humans  Minimal Risk Levelr-Rat m-Mouse e-Gerbil LOAEL, Less Serious-Animals  LOAEL, Less Serious-Humans    for effects
p-Pig h-Rabbit s-Hamster   NOAEL - Animals   NOAEL - Humans  other thanq-Cow a-Sheep g-Guinea Pig 

Cancer 



1000 

Reproductiv
e 

Developmental 

Ocular 
Body W

eight 

Metabolic 

Immuno/Lym
phor 

Neurologica
l 

Figure 3-2 Levels of Significant Exposure to Nickel - Oral
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3. HEALTH EFFECTS 

the drinking water at 55 mg Ni/kg/day, and an increase in cellular infiltration of the lungs was observed at 

20 mg Ni/kg/day.  This study is confounded by decreased food and water intake observed in exposed 

animals.  Emphysema, bronchiolectasis, and cholesterol granulomas were also observed in dogs exposed 

to 62.5 mg Ni/kg/day as nickel sulfate in the diet for 2 years, but not in rats exposed at up to 

187.5 mg/kg/day for 2 years (Ambrose et al. 1976). 

Cardiovascular Effects.    Nickel sulfate crystals (rough estimate of 570 mg Ni/kg) were accidentally 

ingested by a 2-year-old child (Daldrup et al. 1983). Four hours after ingestion, cardiac arrest occurred, 

and the child died 8 hours after exposure. 

Rats exposed to 8.6 mg Ni/kg/day as nickel chloride for 91 days had decreased heart weight (American 

Biogenics Corporation 1988), whereas rats exposed to 75 mg Ni/kg/day as nickel sulfate for 2 years had 

increased heart weight (Ambrose et al. 1976).  Because the changes in heart weight were not accompanied 

by histological changes and decreases in body weight gain were also observed, the significance of these 

changes is not known.  Histological changes in the heart were not observed in rats treated with nickel 

chloride in the drinking water at 40 mg/kg/day for up to 30 weeks (RTI 1988a), rats exposed to 28.8 mg 

Ni/kg/day as nickel sulfate in drinking water (Obone et al. 1999), rats exposed to 187.5 mg Ni/kg/day as 

nickel sulfate in the diet for 2 years (Ambrose et al. 1976), rats administered via gavage 22 mg Ni/kg/day 

(males) or 33 mg Ni/kg/day (females) as nickel sulfate for 90 days (Springborn Laboratories 2002), or 

dogs provided with nickel sulfate in the diet at a dose of 62.5 mg Ni/kg/day for 2 years (Ambrose et al. 

1976). 

Gastrointestinal Effects.    Symptoms of gastrointestinal distress were reported by workers who drank 

water during one work shift from a water fountain contaminated with nickel sulfate, nickel chloride, and 

boric acid (Sunderman et al. 1988).  Thirty-five workers were exposed, 20 reported symptoms, and 

10 were hospitalized. The workers who reported symptoms were exposed to an estimated dose of 7.1– 

35.7 mg Ni/kg.  The symptoms included nausea (15 workers), abdominal cramps (14 workers), diarrhea 

(4 workers), and vomiting (3 workers).  Although the actual contribution of boric acid to these effects is 

not known, the investigators (Sunderman et al. 1988) indicate that the intake of 20–200 mg boric acid 

probably did not contribute to the observed effects because the effects of boric acid are generally 

observed only following ingestion of ≥4 g by adults. 

Gastrointestinal effects were observed in rats that died following treatment by gavage with 25 mg 

Ni/kg/day as nickel chloride hexahydrate for up to 91 days (American Biogenics Corporation 1988).  The 



  
 

 
 

 

 

 

 

 

 

 

 

 
 
 
 

 

NICKEL 110 

3. HEALTH EFFECTS 

effects included discolored gastrointestinal contents, ulcerative gastritis, and enteritis.  Discolored (green) 

gastrointestinal contents were also observed at 1.2 and 8.6 mg/kg/day.  The discoloration may have been 

due to the presence of nickel chloride in the gastrointestinal tract and is not considered an adverse effect.  

Adverse gastrointestinal effects were not observed in rats exposed to 28.8 mg Ni/kg/day as nickel sulfate 

in drinking water for 13 weeks (Obone et al. 1999), rats treated with nickel sulfate in the diet at 187.5 mg 

Ni/kg/day for 2 years (Ambrose et al. 1976), or rats receiving gavage doses of 22 (males) or 33 (females) 

mg Ni/kg/day as nickel sulfate (Springborn Laboratories 2002).  During the first 3 days of a 2-year study, 

dogs vomited following treatment with nickel sulfate in the diet at 62.5 mg Ni/kg/day (Ambrose et al. 

1976).  The dose was lowered to 37.5 mg Ni/kg/day for 2 weeks, and then incrementally raised at 2-week 

intervals back to 62.5 mg/kg/day, at which time, no further gastrointestinal distress was noted. These 

studies indicate that high doses of nickel can be irritating to the gastrointestinal tract, although 

acclimation to high levels of dietary nickel can occur.  The toxicological significance of the results of the 

American Biogenics Corporation (1988) is not known, particularly since studies in rats (Ambrose et al. 

1976; Obone et al. 1999; Springborn Laboratories 2002) have not reported gastrointestinal effects.   

Hematological Effects.    A transient increase in blood reticulocytes was observed in workers who 

were hospitalized after drinking water during one work shift from a water fountain contaminated with 

nickel sulfate, nickel chloride, and boric acid (Sunderman et al. 1988).  Thirty-five workers were exposed, 

20 reported symptoms, and 10 were hospitalized.  The workers who reported symptoms were exposed to 

an estimated dose of 7.1–35.7 mg Ni/kg.  The contribution of boric acid to these effects is not known. 

Rat studies have indicated that intermediate-duration exposure to ≥0.7 mg Ni/kg/day as various nickel 

salts produce hematological effects.  Effects included a decrease in hemoglobin level in rats exposed to 

25 mg Ni/kg/day as nickel acetate in the diet for 6 weeks (Whanger 1973), an increase in leukocyte levels 

in rats exposed to 0.49 mg Ni/kg/day as nickel chloride in drinking water for 28 days, but not at 0.97 mg 

Ni/kg/day (Weischer et al. 1980), and an increase in platelet counts in rats administered via gavage 

8.6 mg Ni/kg/day as nickel chloride for 91 days (American Biogenics Corporation 1988). No 

hematological effects were observed in rats treated with nickel sulfate in the diet at a dose of 187.5 mg 

Ni/kg/day for 2 years (Ambrose et al. 1976).  Low hematocrit levels were observed in dogs after chronic 

dietary exposure to 62.5 mg Ni/kg/day as nickel sulfate (Ambrose et al. 1976). 

Musculoskeletal Effects.    Muscular pain was reported by one worker who drank water contaminated 

with nickel sulfate, nickel chloride, and boric acid during one work shift (Sunderman et al. 1988).  Thirty-

five workers were exposed, 20 reported symptoms, and 10 were hospitalized.  The workers who reported 
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3. HEALTH EFFECTS 

symptoms were exposed to an estimated dose of 7.1–35.7 mg Ni/kg.  The contribution of boric acid to 

these effects is not known. 

Microscopic changes in skeletal muscle were not observed in rats or dogs fed nickel sulfate in the diet at 

doses up to 187.5 mg Ni/kg/day for rats (Ambrose et al. 1976; Springborn Laboratories 2002) and 

62.5 mg Ni/kg/day for dogs (Ambrose et al. 1976). 

Hepatic Effects. A transient increase in serum bilirubin levels was observed in 3 of 10 workers who 

were hospitalized after drinking water during one work shift from a water fountain contaminated with 

nickel sulfate, nickel chloride, and boric acid (Sunderman et al. 1988).  The workers who reported 

symptoms (20 of 35) or were hospitalized (10 of 35) were exposed to an estimated dose of 7.1–35.7 mg 

Ni/kg. The contribution of boric acid to these effects is not known. 

Decreased liver weight was observed in rats exposed to 0.97−75 mg Ni/kg/day as nickel chloride or 

nickel sulfate for 28 days to 2 years (Ambrose et al. 1976; American Biogenics Corporation 1988; Obone 

et al. 1999; Weischer et al. 1980) and mice exposed to 150 mg Ni/kg/day as nickel sulfate in drinking 

water for 180 days (Dieter et al. 1988). No alterations in absolute liver weights were observed in male 

and female rats administered via gavage 22 or 33 mg Ni/kg/day as nickel sulfate, respectively, for 90 days 

(Springborn Laboratories 2002); no histological alterations were reported in this study.  A significant 

increase in relative liver weight, however, was observed in dogs exposed to 62.5 mg Ni/kg/day as nickel 

sulfate for 2 years (Ambrose et al. 1976).  Because histological changes in the liver were not observed in 

these studies and decreases in body weight gain were often observed at the same dose levels, the 

significance of the liver weight changes is unclear. 

Renal Effects.    A transient increase in urine albumin levels was observed in 3 of 10 workers who were 

hospitalized after drinking water during one work shift from a water fountain contaminated with nickel 

sulfate, nickel chloride, and boric acid (Sunderman et al. 1988).  Thirty-five workers were exposed, 

20 reported symptoms, and 10 were hospitalized.  The workers who reported symptoms were exposed to 

an estimated dose of 7.1–35.7 mg Ni/kg.  The contribution of boric acid to these effects is not known. 

Renal tubular damage at the corticomedullary junction described as minor was observed in mice exposed 

to ≥108 mg Ni/kg/day as nickel sulfate in the drinking water for 180 days (Dieter et al. 1988).  The renal 

effects included the loss of renal tubular epithelial cells and the presence of hyaline casts in the tubule 

(suggesting protein loss). No changes in markers of renal tubular function (urinary lactate dehydrogenase 
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3. HEALTH EFFECTS 

and NAG levels and β2-microglobulin levels) were observed in rats exposed to nickel sulfate in the 

drinking water for 6 months at a concentration that supplied doses of 6.9 mg/kg/day for males and 

7.6 mg/kg/day for females (Vyskocil et al. 1994b).  Urinary albumin levels, a marker of glomerular 

barrier dysfunction, was significantly increased in nickel-exposed female rats.  Albumin excretion also 

tended to be higher in male rats, but did not reach statistical significance because of two control rats with 

very high values.  The investigators noted that male rats develop a spontaneous nephrosis as they age and 

that this may have obscured the effect of nickel.  Significant decreases in urine volume and urine glucose 

levels and increases in relative kidney weight at 14.4 or 28.8 mg Ni/kg/day and increases in blood urea 

nitrogen (BUN) at 28.8 mg Ni/kg/day were observed in rats exposed to nickel sulfate in drinking water 

for 13 weeks (Obone et al. 1999); no changes in γ-glutamyl transpeptidase activity, NAG activities, or 

histological alterations were observed. 

In dogs, polyuria and increased kidney weight were observed after exposure to 62.5 mg Ni/kg/day as 

nickel sulfate for 2 years; however, renal effects were not observed in similarly treated rats (Ambrose et 

al. 1976).  Several studies in rats have reported significant changes in kidney weights following exposure 

to 0.97–55 mg Ni/kg/day as nickel salts for 28 days to 9 months (American Biogenics Corporation 1988; 

RTI 1988b; Weischer et al. 1980).  However, there was no consistency in direction of the change; some 

studies reported increases in kidney weights while others reported decreases.  The toxicological 

significance of these data is not known. Additionally, no histological alterations were observed in the 

kidneys of male and female rats exposed to 22 or 33 mg Ni/kg/day, respectively, as nickel sulfate 

administered via gavage for 90 days (Springborn Laboratories 2002). 

Endocrine Effects.    No studies were located regarding endocrine effects in humans after oral 

exposure to nickel. 

Although histological changes were not observed, increases in pituitary weights were observed in male 

rats, but not female rats, treated with nickel chloride at doses ≥20 mg Ni/kg/day for up to 30 weeks (RTI 

1986, 1988a, 1988b).  The multigeneration study (RTI 1988a, 1988b) is confounded by a decrease in both 

food and water intake.  Decreased prolactin levels were observed in female rats treated with 31 mg 

Ni/kg/day as nickel chloride in the drinking water throughout the breeding and lactation of two litters 

(11 weeks before breeding, 2-week rest period after weaning of the first litter, followed by a second 

breeding), but not at a 6.8-mg/kg/day dose (Smith et al. 1993).  Histological examinations did not reveal 

any adverse effects in the pituitary, thyroid, and adrenal glands or in the pancreas of rats and dogs treated 
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with nickel sulfate in the diet for 2 years at 187.5 mg Ni/kg/day for rats and 62.5 mg Ni/kg/day for dogs 

(Ambrose et al. 1976). 

Dermal Effects.    Contact dermatitis, which results from dermal exposure to nickel, is the most 

prevalent effect of nickel in the general population (see Section 3.2.3.2).  Several studies indicate that a 

single oral dose of nickel given as nickel sulfate can result in a flare-up in the dermatitis in nickel-

sensitive individuals (Burrows et al. 1981; Christensen and Moller 1975; Cronin et al. 1980; Gawkrodger 

et al. 1986; Hindsén et al. 2001; Jensen et al. 2003; Kaaber et al. 1978; Veien et al. 1987).  Observed 

effects included erythema on the body, worsening of hand eczema, and a flare-up at the patch test site.  

Although some of the older studies reported fairly low LOAEL values (e.g., 0.009 mg Ni/kg), these 

studies have several design limitations including small sample size, the observation of placebo effects, 

and non-double-blind study designs (possibly introducing investigator bias).  Two more recent studies 

have addressed a number of these concerns by using a large number of test subjects and a double-blind 

study design.  One month after patch testing, an oral challenge dose of 1.0 mg nickel as nickel sulfate 

(0.014 mg/kg) resulted in dermatitis in two of nine nickel-sensitive subjects (not significantly different 

than placebo incidence of 0/9); exposure to 4.0 mg nickel (0.057 mg/kg) resulted in dermatitis in nine of 

nine subjects (Hindsén et al. 2001).  Similarly, an oral challenge of 0, 0.3, 1.0, or 4.0 mg nickel as nickel 

sulfate (0, 0.0043, 0.014, or 0.057 mg/kg) administered 1 month after patch testing resulted in dermatitis 

in 1/10, 4/10, 4/10, and 7/10 nickel-sensitized individuals, respectively; no cutaneous reactions were 

observed in healthy controls receiving an oral challenge dose of 0 or 4.0 mg nickel (Jensen et al. 2003).  

Although some sensitive individuals may react to very low oral doses of nickel, the threshold for 

dermatitis in nickel-sensitized individuals appears to be around 0.01 mg Ni/kg; a dose of approximately 

0.06 mg Ni/kg will result in a response in the most sensitized individuals.   

Nielsen et al. (1990) fed 12 women with hand eczema and known allergy to nickel a diet (oatmeal, soy 

beans, cocoa) with 5 times the normal level of nickel (about 0.007 mg/kg/day) for 4 days.  An aggravation 

of hand eczema was found in 6/12 by day 4 after the start of the challenge, and although excess nickel 

was excreted by 2 days after the last treatment, further exacerbation of hand eczema was observed in 

10/12 by day 11.  It is not clear how well the diets were controlled after the challenge period, and the 

subjects may have eaten foods that contained vasoactive substances that could exacerbate an allergic 

reaction. This study also suggests that withdrawal of nickel rather than the peak nickel levels may 

contribute to the dermatitis observed in some sensitive individuals. 
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Intermediate-duration studies suggest that longer-term oral exposure can be tolerated by some nickel-

sensitive individuals and may even serve to desensitize some individuals.  Jordan and King (1979) fou nd 

flaring of dermatitis in only 1/10 nickel-sensitive women given nickel sulfate at 0.007 mg/kg/day for 

2 weeks. Patch test responses to nickel were reduced in nickel-sensitive women given one w eekly dose of 

0.05 or 0.07 (but not 0.007) mg Ni/kg as nickel sulfa te for 6 weeks (Sjovall et al. 1987).  Santucci et al. 

(1 994) gave increasing daily doses of nickel (0.01–0.03 mg/kg/day) as nickel sulfate to eight nickel-

sensitive women for up to 178 days.  A significant clinical improvement in hand eczema was observed in 

all subjects after 1 month of treatment, and continued treatment resulted in healing of all dermal lesions 

except for those on the hands. Measureme nt of urine and serum nickel suggested a decrease in the 

absorption of nickel and an increase in the excretion of nickel with longer exposure.  The Santucci et al. 

(1994) study indicates that a daily dose of 0.01–0.03 mg Ni/kg can be tolerated by some nickel-sensitive 

people and may also serve to reduce their sensitivity.  Among 44 sensitive subjects treated with a regimen 

of 1–2 ng nickel sulfate every other day, or daily for up to 2–3 years, 7 stopped the treatment for 

unspecified reasons, 7 had reactivation of symptoms, and complete (29) or partial (1) disappearance of 

symptoms for 2–4 years was observed in 30 subjects.  In guinea pigs sensitized before oral treatment w ith 

nickel, only a transient desensitization was observed (van Hoogstraten et al. 1991). 

Oral exposure before the sensitizing exposure may also help prevent nickel sensitization in some 

individuals.  A study of 2,159 subjects examining the relationship between ear piercing and orthodontic 

treatment found that nickel sensitivity was reduced significantly when orthodontic treatment preceded ea r 

piercing (23.3 versus 38.1%) (van Hoogstraten et al. 1991).  The investigators hypothesized that the oral 

nickel exposure that occurred during orthodontic treatment helped prevent the sensitization that occurred 

following ear piercing with earrings containing nickel.  Orthodontic treatment after ear piercing did not 

affect the risk of nickel sensitization.  Further evidence that oral exposure to nickel before a sensitizing 

exposure can prevent hypersensitivity is provided by the observation that nickel sensitivity in mice c ould 

be consistently produced only when metal frames to cover the cages and metal water nipples that releas ed 

nickel were replaced with glass covers and nipples free of nickel (van Hoogstraten et al. 1991).  Oral 

treatment of guinea pigs with nickel sulfate (30 mg/week for 6 weeks) has also been shown to prevent 

dermal sensitization (van Hoogstraten et al. 1991).  Skin exposure of guinea pigs to nickel (non

sensitizing contacts) before oral exposure was also shown to interfere with oral tolerance induction . 

Histological changes in the skin have not been observed in rats treated by gavage with nickel chloride at a 

dose of 8.6 mg Ni/kg/day for 91 days (American Biogenics Corporation 1988), or in rats and dogs 

exposed to nickel sulfate in the diet for 2 years at doses of 187.5 and 62.5 mg Ni/kg/day, respectively 

http:0.01�0.03
http:0.01�0.03
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(Ambrose et al. 1976).  These studies suggest that the skin is not affected by orally administered nickel in 

animals that have not been previously sensitized to nickel. 

Ocular Effects.    In a pharmacokinetic study in humans, transient left homonymous hemianopsia (loss 

of sight in the corresponding lateral half of the eyes) occurred in one male subject following ingestion of 

0.05 mg Ni/kg as nickel sulfate in the drinking water (Sunderman et al. 1989b).  No adverse effects were 

found in other subjects (n=9) when lower doses of 0.018 and 0.012 mg Ni/kg were used.   

No treatment-related ophthalmological changes were observed in rats treated by gavage with 8.6 mg 

Ni/kg/day as nickel chloride for 91 days (American Biogenics Corporation 1988). 

Body Weight Effects.    No studies were located regarding body weight effects in humans after oral 

exposure to nickel.   

Decreased body weight gain of 10% or more, associated with reduced food and/or water intake, has been 

observed in rats treated by gavage with nickel chloride at 8.6 mg Ni/kg/day for 91 days (American 

Biogenics Corporation 1988) or 55 mg Ni/kg/day for 30 weeks (RTI 1988a), in rats exposed to 0.23

0.97 mg Ni/kg/day as nickel chloride in the drinking water for 28 days (Weischer et al. 1980), and in rats 

treated with nickel sulfate in the diet at 75 mg Ni/kg/day for 2 years (Ambrose et al. 1976).  The 

concomitant decreases in food and/or water consumption limit the interpretation of these results.  

Decreases in body weight gain were also observed in male and female rats administered via gavage 17 or 

28 mg Ni/kg/day, respectively, as nickel sulfate (Springborn Laboratories 2002); however, the 10–13% 

decreases in body weight gain were not associated with consistent alterations in food intake (water 

consumption data were not reported).  Decreased body weight gain has also been reported in mice treated 

with nickel sulfate in drinking water at a dose of 108 mg Ni/kg/day for 180 days (Dieter et al. 1988), and 

in dogs treated with nickel sulfate in the diet at a dose of 62.4 mg/kg/day for 2 years (Ambrose et al. 

1976). Decreases in body weight gain of 10% or more were not observed in rats treated with n ickel 

chloride in the drinking water at 31.6 mg Ni/kg/day for 11 weeks (Smith et al. 1993), with nickel sulfate 

in drinking water at 28.8 mg Ni/kg/day for 13 weeks (Obone et al. 1999), or with nickel chloride at a dose 

of 7.6 mg Ni/kg/day for 3 or 6 months (Vyskocil et al. 1994b). 

Metabolic Effects.    No studies were located regarding metabolic effects in humans after oral exposure 

to nickel. 
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Two studies reported significant alterations in serum glucose levels in rats exposed to nickel chloride. A 

significant decrease in blood glucose levels was observed in rats administered 8.6 mg Ni/kg/day via 

gavage for 91 days (American Biogenics Corporation 1988).  In contrast, Weischer et al. (1980) reported 

a significant increase in blood glucose levels in rats administered 0.23 mg Ni/kg/day via drinking water 

for 28 days.  In both studies, significant decreases in body weight gain (20% and higher) were also 

observed at the same dose effect levels.  Thus, it is difficult to asse ss whether this is a direct effect of 

nickel or secondary to the effect on body weight. 

3.2.2.3 Immunological and Lymphoreticular Effects  

Dermatitis resulting from nickel allergy is well reported in the literature (see Section 3.2.2.2 for further 

discussion of allergic dermatitis following oral exposure). 

Effects on the immunological system following exposure to 44 mg Ni/kg/day and higher as nickel su lfate 

in the drinking water for 180 days were assessed in mice (Dieter et al. 1988).  Mild thymic atrophy was 

observed at 44 mg Ni/kg/day and higher and mild splenic atrophy was observed at 108 mg Ni/kg/day a nd 

higher. Although several tests of immune function were performed, only two alterations were found— 

decreased spleen cellularity at 150 mg Ni/kg/day and impaired lymphoproliferative response to the B-cell 

mitogen, Escherichia coli lipopolysaccharide (LPS), at 44 mg Ni/kg/day and higher; a marginal respon se 

to sheep red blood cells was also observed at 150 mg Ni/kg/day.  No response to concanavalin A (con A), 

natural killer cell activity, or resistance to Listeria monocytogenes challenge were observed. In addition 

to the immune function responses, exposure to nickel sulfate resulted in alterations in bone marrow : 

decreases in bone marrow cellularity at 108 mg Ni/k g/day and higher, decreases in granulocyte-

macrophage progenitor cells (CFU-GM) at 44 mg Ni/kg/day and higher, and multipotential stem cells 

(CFU-S) at 108 mg Ni/kg/day and higher.  The stem cell alterations were associated with alterations in 

glucose-6-phosphate dehydrogenase activity—increased at 44 mg Ni/kg/day and decreased at 108 and 

150 mg Ni/kg/day.  Obone et al. (1999) reported alterations in T-cell and B-cell subpopulations in th e 

thymus and splenic lymphocytes in rats exposed to nickel sulfate in drinking water for 13 weeks.  In the 

spleen, the changes consisted of an increase in the total number of cells at 14.4 mg Ni/kg/day and a 

decrease at 28.8 mg Ni/kg/day; an increase in CD4+ T cells at 14.4 mg Ni/kg/day and a decrease at 

28.8 mg Ni/kg/day; increases in CD8+ T cells at 14.4 and 28.8 mg Ni/kg/day; an increase in the number of 

B cells at 14.4 mg Ni/kg/day; and a decrease in the ratio of B cells to total cells at 14.4 mg Ni/kg/day.  In 

the thymus, the changes consisted of an increase in the total number of cells at 14.4 mg Ni/kg/day and a 

decrease at 28.8 mg Ni/kg/day; an increase in CD4+ T cells at 14.4 mg Ni/kg/day and a decrease at 
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28.8 mg Ni/kg/day; a decrease in the ratio of CD4+ T cells to total cells at 28.8 mg Ni/kg/day; increas es in 

CD8+ T cells at 5.75 and 14.4 mg Ni/kg/day and a decrease at 28.8 mg Ni/kg/day; increases in the ra tio of 

CD8+ T cells to total cells at 5.75 mg Ni/kg/day and higher; and an increase in the number of B cells at 

14.4 mg Ni/kg/day and a decrease at 28.8 mg Ni/kg/day. When challenged with Coxsackie virus B3, an 

enhanced inflammatory response was observed in the hearts of mice treated with nickel chloride in 

drinking water at 20.3 mg Ni/kg/day for 10–11 weeks (Ilback et al. 1994).  Nickel treatment had no 

adverse effect on virus-induced lethality, spleen or thymus weights, or the number of cells in the spleen or 

thymus.  Gross and microscopic examinations of the spleen did not reveal any adverse effects in rats or 

dogs fed nickel sulfate in the diet for 2 years at doses of 187.5 mg/kg/day for rats and 62.5 mg/kg/day fo r 

dogs (Ambrose et al. 1976). 

The highest NOAEL values and all LOAEL values from each reliable study for immunological effects in 

each species, duration category, and nickel compound are recorded in Table 3-8 and plotted in Figure 3-2. 

3.2.2.4 Neurological Effects 

Neurological effects were observed in workers who drank water during one work shift from a water 

fountain contaminated with nickel sulfate, nickel chloride, and boric acid (Sunderman et al. 1988).  

Thirty-five workers were exposed, 20 reported symptoms, and 10 were hospitalized.  The dose to which 

the workers with symptoms were exposed was estimated to be 7.1–35.7 mg Ni/kg.  The neurological 

effects included giddiness (seven workers), weariness (six workers), and head ache (five workers). The 

contribution of boric acid to these effects is not known. 

In a study designed to determine the absorption and elimination of nickel in humans, one male who 

ingested a single dose of 0.05 mg Ni/kg as nickel sulfate in drinking water developed left homonymous 

hemianopsia (loss of sight in the corresponding lateral half of the eyes) 7 hours later; the condition lasted 

for 2 hours (Sunderman et al. 1989b).  The loss of sight occurred soon after the peak serum concentration 

of nickel was reached, leading the investigators to suspect a causal relationship between nickel exposure 

and the loss of sight. The doses given to other subjects were lowered to 0.018 and 0.012 mg Ni/kg with 

no adverse effects. 

In a 90-day study, lethargy, ataxia, prostration, irregular breathing, and cool body temperature were 

observed in rats treated by gavage with nickel chloride (American Biogenics Corporation 1988).  These 

effects were observed frequently at 25 mg Ni/kg/day, a dose at which all rats died, and at lower 
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incidences at 8.6 mg Ni/kg/day, a dose at which 6/52 rats died.  At the lower dose, it is not clear if the 

adverse neurological effects were observed only in the animals that died.  No signs of neurological 

dysfunction were observed at 1.2 mg/kg/day.  Microscopic examinations of whole brains did not reveal 

any changes in the brains of rats or dogs treated with nickel salts at doses of 8.6 mg Ni/kg/day for u p to 

2 years (Ambrose et al. 1976; American Biogenics Corporation 1988). 

The highest NOAEL values and all LOAEL values from each reliable study for neurological effects in 

each species, duration category, and nickel compound are recorded in Table 3-8 and plotted in Figure 3-2. 

3.2.2.5 Reproductive Effects  

No studies were located regarding reproductive effects in humans after oral exposure to nickel. 

A number of studies have examined the reproductive toxicity of nickel following oral exposure to rats, 

mice, or dogs. The studies have found conflicting results, with some studies identifying LOAELs for 

serious health effects and others identifying NOAELs at very similar dose levels.  Pandey et al. (1999) 

reported an accumulation of nickel (in descending order of concentration) in the epididymis, testes, 

seminal vesicles, and prostate gland in mice orally exposed to nickel sulfate for 35 days.  The 

accumulation of nickel in male reproductive tissues resulted in histological damage in the epididymis and 

seminal vesicles and sperm damage.  Regressed epithelium and vacuolated cells were observed in the 

epididymis of mice administered 1.1 mg Ni/kg as nickel sulfate via gavage 5 days/week for 35 day s 

(Pandey et al. 1999).  In the seminiferous tubules, the damage consisted of atrophy of centrally located 

tubules and disturbed spermatogenesis in mice administered 1.1 mg Ni/kg as nic kel sulfate (5 days/week) 

(Pandey et al. 1999). The significance of these findings is not known because the incidence data and 

statistical analysis were not reported.  Käkelä et al. (1999) reported a statistically significant decrease in 

seminiferous tubule diameter in rats exposed to 3.6 mg Ni/kg/day as nickel chloride in drinking water for 

28 or 42 days.  A significant decrease in basal spermatogonia was also observed in the rats exposed for 

28 days, but not in the rats exposed for 42 days.  Although it was not discussed in the report, the final 

body weights of males exposed for 28 days appear to be lower than control body weights; this may have 

contributed to the histological findings.  Other studies have not found histological alterations in male or 

female reproductive tissues in rats administered up to 25 mg Ni/kg/day as nickel chloride for 91 da ys 

(American Biogenic Corp 1988), rats exposed to 28.8 mg Ni/kg/day as nickel sulfate in drinki ng water for 

90 days (Obone et al. 1999), rats exposed to 2.2 mg Ni/kg/day as nickel sulfate administered via gavage 

for 18 weeks (Springborn Laboratories 2000a), rats exposed to 187.5 mg Ni/kg/day as nickel sulfate in the 
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diet for 2 years (Ambrose et al. 1976), or dogs exposed to 62.5 mg Ni/kg/day as nickel sulfate in the d iet 

for 2 years (Ambrose et al. 1976). 

Significant decreases in sperm count and sperm motility and sperm abnormalities (banana and detached 

head; acrosome up, down, or missing; curved neck and curved, bent, round, loop, and folded tail) were 

observed in mice administered ≥2.2 mg Ni/kg as nickel sulfate (decreased sperm count significant at 

4.5 mg Ni/kg) or 2.5 mg Ni/kg as nickel chloride 5 days/week for 35 days (Pandey and Srivastava 2000); 

no sperm effects were observed at 1.1 or 1.2 mg Ni/kg as nickel sulfate or nickel chloride, respectively. 

Although the route of administration was not reported, it is assumed that the nickel chloride and nic kel 

sulfate were administered via gavage.  The investigators reported a dose-related decrease in body weight 

gain and decreases in absolute and relative testes, epididymis, seminal vesicle, and prostate gland weights 

at the two highest dose levels (2.2 and 4.5 mg Ni/kg as nickel sulfate and 2.5 and 4.9 mg Ni/kg as nickel 

chloride). Similarly, Pandey et al. (1999) reported decreases in sperm count and motility in mice 

administered 2.2 mg Ni/kg as nickel sulfate, 5 days/week for 35 days; an increase in sperm abnormalitie s 

was also observed at 1.1 mg Ni/kg.  Although Pandey et al. (1999) did not report alterations in body 

weight gain, significant decreases in testes, epididymis, seminal vesicle, and prostate gland weights were 

observed. In both studies by Pandey and associates, there were no significant alterations in the 

occurrence of a particular sperm abnormality; the total number of abnormalities was increased. So bti and 

Gill (1989) reported increases in sperm head abnormalities in mice receiving a single gavage dose of 23, 

28, or 43 mg/kg as nickel nitrate, nickel sulfate, or nickel chloride, respectively; it should be noted that 

this study was poorly reported and no information on number of animals tested was given. No alterations 

in sperm count, concentration, motility, or morphology were observed in the F0 or F1 rats administered 

2.2 mg Ni/kg/day as nickel sulfate via gavage for 18 weeks (Springborn Laboratories 2000a). 

In addition to the histological alterations and sperm alterations, alterations in fertility were observed in 

some studies, but not in all studies.  Male-only exposure or male and female exposure to 3.6 mg 

Ni/kg/day as nickel chloride in drinking water resulted in decreased fertility in rats exposed for 28 day s 

prior to mating (Käkelä et al. 1999).  However, male rats exposed to 3.6 mg Ni/kg/day for 42 days prio r to 

mating with unexposed females resulted in a small decrease in fertility (83 versus 100%) (Käkelä et al. 

1999); suggesting regeneration of damaged tissues.  Female-only exposure to concentrations as high as 

13 mg/kg/day as nickel chloride in drinking water did not adversely affect fertility in rats (Käkelä et al. 

1999).  Interpretation of this study is limited by the small number of animals tested (six gender/group) 

and the limited reporting of the results.  No adverse effects on fertility were observed in a multigene ration 

study in which male and female rats exposed to doses as high as 55 mg Ni/kg/day as nickel chloride in 
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drinking water for 11 weeks prior to mating (RTI 1988a, 1988b), in a single generation study in which 

rats were administered 16.7 mg Ni/kg/day as nickel sulfate via gavage for 2-weeks prior to mating, during 

mating, and during gestation (Springborn Laboratories 2000b), in a two-generation study involving 

gavage administration of up to 2.2 mg Ni/kg/day for 10 weeks prior to mating, during mating, gestation, 

and lactation (Springborn Laboratories 2000a), or in a multilitter study in which female rats were exposed 

to doses as high as 31.6 mg Ni/kg/day (Smith et al. 1993). 

The highest NOAEL value and all LOAEL values from each reliable study for reproductive effects in 

each species, duration category, and nickel compound are recorded in Table 3-8 and plotted in Figure 3-2. 

3.2.2.6 Developmental Effects 

No studies were located regarding developmental effects in humans after oral exposure to nickel. 

The available animal data on developmental toxicity provide suggestive evidence that the developing 

fetus and neonates are sensitive targets of nickel toxicity.  The most commonly reported end point is fetal 

loss and decreased survival observed in the rat and mouse offspring in studies involving male-only 

exposure, female-only exposure, and combined male and female exposure in single generation, multilitter, 

and multigeneration studies.  The developmental effects were often reported at maternally toxic doses.  

Other developmental end points that have been examined include body weights, gross necropsy for 

abnormalities, and neurodevelopmental toxicity. 

Male-only exposure to 3.6 mg Ni/kg/day as nickel chloride in drinking water for 28 days resulted in 

decreases in the number of pups born alive (2.7/dam versus 10.2/dam in controls), the number of pups 

surviving until postnatal day 4 (56% versus 100% in controls), and litter size at postnatal day 21 (1.3 pups 

versus 9.2 pups in controls) (Käkelä et al. 1999).  However, when the male rats were exposed to 3.6 m g

Ni/kg/day for 42 days, no significant alterations in pup viability or survival were observed (Käkelä et al. 

1999). A NOAEL was not identified in this study. 

Several studies examined female-only exposure to nickel (Berman  and Rehnberg 1983; Käkelä et al. 

1999;  Smith et al. 1993).  An increase in spontaneous abortions was observed in female mice exposed to 

160 mg Ni/kg/day as nickel chloride in drinking water on gestational days 2–17 (Berman and Rehnberg 

1983); no eff ects were observed at 80 mg Ni/kg/day. In contrast, no effects on the average number of 

neonates per litter were observed when mouse dams were treated by gavage on gestation days 8–12 with 
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90.6 mg Ni/kg/day as nickel chloride (a dose that resulted in a significant decrease in maternal body 

weight) (Seidenberg et al. 1986).  Exposure of rats to 13 mg Ni/kg/day as nickel chloride in drinking 

water for 14 days prior to mating, during mating, gestation, and lactation resulted in a decreased pup 

survival from birth to postnatal day 4 (87 versus 100% in controls) and from postnatal day 4 to 21 

(52 versus 90% in controls) (Käkelä et al. 1999); no significant alterations were observed at 4.0 mg 

Ni/kg/day.  Pup mortality was also observed in a multilitter study in which rats were exposed to 0, 1.3 , 

6.8, or 31.6 mg Ni/kg/day as nickel chloride in dri nking water for 11 weeks prior to breeding and during 

tw o successive gestation and lactation periods (Smith et al. 1993).  In the first litter, the percentages of 

dead pups per litter at postnatal day 1 were 1.7, 3.1, 0, and 13.2% (statistically significant at the high dose 

only); no significant alterations were observed in the number of dead pups at postnatal day 21. In the 

second litter, the number of litters with dead pups at birth (2, 7, 6, and 10%; statistically significant at 

high dose only), the percentages of dead pups per litter at postnatal day  1 (1.0, 4.3, 4.6, and 8.8%; 

statistically  significant at all three dose levels), and the percentage of dead pups at postnatal day 21 (12.5, 

13.4, 19.4, and 29.2%; significant at high dose only) were increased.   

Offspring mortality was also observed in four studies involving combined male and female exposure 

(Ambrose et al. 1976; Käkelä et al. 1999; RTI 1988a, 1988b; Springborn Laboratories 2000b).  Exposure 

of rats to 3.6–4.0 mg Ni/kg/day as nickel chloride in drinking water for 28 days prior to mating, during 

mating, gestation, and lactation adversely affected the litter size at postnatal day 21 (2.7/dam versus 

9.2/dam in controls) and pup survival from postnatal day 4 to 21 (44 versus 90% in controls) (Käkelä et 

al. 1999); a NOAEL was not identified.  Significant increases in post-implantation losses were observed 

in the offspring of rats administered 6.7 mg Ni/kg/day as nickel sulfate via gavage for 14 days prior to 

mating, during mating, and gestation (Springborn Laboratories 2000b); at 16.7 mg Ni/kg/day, an 

increased number of dead pups at lactation day 0 and a decreased mean litter size were observed.  This 

study identified a NOAEL of 4.5 mg Ni/kg/day.  In a multigeneration study (Ambrose et al. 1976) 

involving exposure of rats to 0, 22.5, 45, or 90 mg Ni/kg/day as nickel chloride in the diet for 11 weeks 

prior to mating, during mating, gestation, and lactation, a dose-related increase in the number of stillborn 

pups was observed. An independent statistical analysis of the data using the Fisher Exact Test found 

significant increases in the total number pups born dead at 22.5 mg Ni/kg/day and higher for the F1a 

generation, 45 and 90 mg Ni/kg/day for the F1b generation, 90 mg Ni/kg/day for the F2a generation, 

22.5 mg Ni/kg/day for the F2b generation, and 45 and 90 mg Ni/kg/day for the F3b generation.  The study 

authors noted that the number of offspring (dead and alive) was progressively less with increasing nickel 

levels above 45 mg/kg/day (10.3, 10.6, 9.8, and 9.0 for 0, 22.5, 45, and 90 mg/kg/day, respectively); the 

number of offspring weaned per litter was also decreased with increasing nickel levels (8.1, 7.2, 6.8, and 
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6.4 for 0, 22.5, 45, and 90 mg/kg/day, respectively).  The third study (RTI 1988a, 1998b) is a two-

generation study in which the P0 generation was exposed to nickel chloride in drinking water for 

11 weeks before mating and during gestation and lactation, and the F1b generation animals were mated to 

produce the F2 generations.  A reduction in live litter size was observed in the F1a, F1b, and F2a 

offspring of rats exposed to 55 mg Ni/kg/day.  Increases in mortality were also observed in the F1b rats 

on postnatal days 22 through 42; these increases were statistically significant in males at 30 and 55 m g 

Ni/kg/day and in females at 55 mg Ni/kg/day.  No adverse developmental effects were observed in the 

cesarean delivered F2b rats, suggesting that the nickel-induced decrease in live litter size occurred 

postnatally.  No alterations in offspring mortality or survival were observed in a two-generation study in 

which rats were administered up to 2.2 mg Ni/kg/day as nickel sulfate via gavage for approximately 

18 weeks (Springborn Laboratories 2000a). 

Decreases in pup body weights were reported in the offspring of rats exposed to 90 mg Ni/kg/day 

(A mbrose et al. 1976), 30, and 55 mg Ni/kg/day (RTI 1988a, 1988b).  Neither the Ambrose et al. (1976) 

nor the RTI (1988a, 1988b) multigeneration studies found significant, nickel-related gross abnormalities 

in the surviving offspring of rats exp osed to nickel. Käkelä et al. (1999) noted that the pups that died 

during lactation were runts: the heads were disproportionately large and the posteriors of the bodies were 

underdeveloped.  No effects on figure eight maze reactive locomotor activity levels were observed in the 

offspring of mice treated by gavage at 45.3 mg Ni/kg/day as nickel chloride on gestation days 8–12 (Gray 

et al. 1986). 

In summary, these data provide suggestive evidence that exposure to nickel prior to mating and during 

gestation and lactation results in decreased survival (Ambrose et al. 1976; Käkelä et al. 1999; RTI 1988a, 

1988b; Smith et al. 1993).  Decreased survival was also observed in the offspring of male rats exposed 

prior to mating to unexposed females (Käkelä et al. 1999) and increased spontaneous abortions were 

observed following gestation-only exposure of mice (Berman and Rehnberg 1983).  Interpretation of 

these data is complicated by the maternal toxicity, in particular, a decrease in maternal body weight gain, 

which was also observed at these dose levels (Ambrose et al. 1976; Käkelä et al. 1999; RTI 1988a, 1988b; 

Smith et al. 1993).  Decreases in food and water intake have also been observed (RTI 1988a, 1988b; 

Smith et al. 1993). 

The highest NOAEL values and all LOAEL values from each reliable study for developmental effect s in 

each species, duration category, and nickel compound are recorded in Table 3-8 and plotted in Figure 3-2. 
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3.2.2.7 Cancer 

No studies were located regarding cancer in humans after oral exposure to nickel. 

In lifetime drinking water studies in rats and mice, nickel acetate (0.6 mg Ni/kg/day for rats; 0.95 mg 

Ni/kg/day for mice) was found to be noncarcinogenic (Schroeder et al. 1964, 1974).  The incidence of 

tumors was comparable to that observed in controls. 

3.2.3 Dermal Exposure  

3.2.3.1 Death 

No studies were located regarding death in humans or animals after dermal exposure to nickel. 

3.2.3.2 Systemic Effects  

No studies were located regarding adverse cardiovascular, gastrointestinal, musculoskeletal, or ocular 

effects in humans or animals after dermal exposure to nickel. 

The highest NOAEL values and all LOAEL values from each reliable study for systemic effects for each 

species, duration category, and nickel compound are recorded in Table 3-9. 

Respiratory Effects.    Scratch tests and intradermal tests were performed on a patient diagnosed with 

nickel-related asthma (McConnell et al. 1973).  Nonasthmatic controls were also tested.  Testing resulted 

in respiratory distress in the patient but not in the controls, with a more severe response resulting from the 

scratch test. 

No studies were located regarding adverse respiratory effects in animals after dermal exposure to nickel. 

Hematological Effects.    No studies were located regarding adverse hematological effects in humans 

after dermal exposure to nickel. 



217
Percent (%) Percent (%)

217

216
Percent (%)

216

426
Percent (%) Percent (%)

426

467
mg/cm2/week

467

483
Percent (%)

483

215
mg/kg/day mg/kg/day

215

mg/kg/day

mg/kg/day mg/kg/day

Table 3-9 Levels of Significant Exposure to Nickel - Dermal 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Systemic 
Human once 

System 

Dermal 

NOAEL 

0.01 
Percent (%) 

Less Serious 

0.0316 (contact dermatitis in 
Percent (%) sensitive individuals) 

LOAEL 

Serious 
Reference 
Chemical Form 

Emmett et al. 1988 
sulfate 

Human once Dermal 0.04 (allergic dermatitis in 
Percent (%) sensitive individuals) 

Eun and Marks 1990 
sulfate 

Human once Dermal 0.01 
Percent (%) 

0.1 (skin reaction in nickel 
Percent (%) sensitive individuals) 

Menne and Calvin 1993 
chloride 

Human once Dermal 1 (contact dermatitis) 
mg/cm2/week 

Menne et al. 1987 
nickel alloys 

Immuno/ Lymphoret 

(C3H:Hej) 
Mouse once 

occluded for 7d 1 F (develpoment of dermal 
Percent (%) sensitization) 

Siller and Seymour 1994 
sulfate 

INTERMEDIATE EXPOSURE 
Systemic 

(NS) 
Rat 15 or 30d 

daily Hepatic 40 M 
mg/kg/day 

60 M 
mg/kg/day 

(focal necrosis) 
Mathur et al. 1977 
sulfate 

Renal 100 M 
mg/kg/day 

Dermal 40 M 
mg/kg/day 

(slight hyperkeratosis) 60 M 
mg/kg/day 

(degeneration of basal 
layer) 
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Table 3-9 Levels of Significant Exposure to Nickel - Dermal (continued) 

Exposure/ LOAEL 
Duration/ 

Species Frequency Reference 
(Strain) (Route) System NOAEL Less Serious Serious Chemical Form 

(NS) 
Gn Pig 15 or 30d Hemato 100 

mg/kg/day 

Hepatic 100 
mg/kg/day 

Renal 100 
mg/kg/day 

Endocr 100 
mg/kg/day 

Reproductive 

(NS) 
Rat 30 d 

daily 40 M 
mg/kg/day 

(increased Mg2+ 
ATPase, acid 
phosphatase, and 
glucose-6-phosphatase 
activities) 

(increased Mg2+ ATPas 
activity) 

(increased blood 
glucose) 

60 M 
mg/kg/day 

Mathur and Gupta 1994 
sulfate 

Mathur et al. 1977
(degeneration and 
edema of seminiferous sulfate 
tubules) 

d = day(s); LOAEL = lowest-observed-adverse-effect level; NOAEL = no-observed-adverse-effect level; NS = not specified; ppm = parts per million 
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Hematocrit and hemoglobin levels were not affected in guinea pigs treated with 100 mg Ni/kg/day as 

nickel sulfate placed on skin of the back for 15 or 30 days (Mathur and Gupta 1994).  Only one dose l evel 

was used in this study. 

Hepatic Effects.    No studies were located regarding adverse hepatic effects in humans after derm al 

exposure to nickel. 

Effects on the liver were observed in rats treated dermally (lateral abdominal area) with daily doses of 

60 mg Ni/kg/day as nickel sulfate for 15 or 30 days (Mathur et al. 1977).  The effects included swollen 

hepatocytes and feathery degeneration after 15 days and focal necrosis and vacuolization after 30 days . 

In this study, there was no indication that the rats were prevented from licking the nickel from the s kin; 

therefore, these effects could have resulted from oral exposure.  Increased Mg2+ ATPase activity was 

observed in the livers of guinea pigs treated with 100 mg Ni/kg/day as n ickel sulfate placed on skin of the 

back for 15 or 30 days (Mathur and Gupta 1994). Acid phosphatase and glucose-6-phosphatase activities 

were increased only after 30 days of treatment. 

Renal Effects.    Proteinuria was not observed in electroforming industry workers exposed to nickel.  

No information was provided on exposure level or nickel compound (Wall and Calnan 1980). 

No gross or microscopic lesions were observed in the kidneys of rats treated dermally with ≤100 mg 

Ni/kg/day as nickel sulfate for 15 or 30 days (Mathur et al. 1977).  In this study, there was no indication 

that the rats were prevented from licking the nickel from the skin; therefore, the animals could hav e been 

orally exposed. Increased Mg2+ ATPase activity was observed in the kidneys of guinea pigs treated with 

100 mg Ni/kg/day as nickel sulfate placed on skin of the back for 30 days (Mathur and Gupta 1994) .  No 

adverse effect was noted at 15 days, and dermal nickel exposure had no effect on kidney acid phosphatas e 

or glucose-6-phosphatase activities. 

Endocrine Effects.    No studies were located regarding adverse endocrine effects in humans after 

dermal exposure to nickel. 

Blood glucose levels were significantly increased in guinea pigs treated with 100 mg Ni/kg/day as nickel 

sulfate placed on skin of the back for 15 or 30 days (Mathur and Gupta 1994). 
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Dermal Effects.    Allergic contact dermatitis is a commonly reported effect in humans exposed t o 

nickel. Contact dermatitis was found in 15.5% of approximately 75,000 individuals undergoing p atch 

tests with nickel sulfate (5% in petrolatum) (Uter et al. 2003).  Smaller scale studies reported a similar 

frequency: 19.1% of 542 subjects (Akasya-Hillenbrand and Özkaya-Bayazit 2002), 21.2% of 

1,729 subjects (Wantke et al. 1996), and 20.13% of 3,040 subjects (Simonetti et al. 1998).  In the genera l 

population (a random sample of 567 people aged 15–69 years responding to a mailed screening 

questionnaire on respiratory allergy symptoms), 11% of the subjects had a positive reaction to nickel 

patch tests (Nielsen et al. 2002). Contact dermatitis in response to nickel exposure is more frequent ly 

observed in females, particularly younger females, than in males or older individuals (Uter et al. 2003; 

Wantke et al. 1996).  This increased prevalence appears to be related to previous nickel exposure rath er 

than increased susceptibility. Prolonged exp osure to nickel in consumer products, especially jewelry, 

ra ther than occupational exposure, is often the sensitizing source.  An association has been observed 

between ear piercing and nickel sensitivity (Akasya-Hillenbrand and Özkaya-Bayazit 2002; Dotter ud and 

Falk 1994; Larsson-Stymne and Widstrom 1985; Meijer et al. 1995; Uter et al. 2003).  The prevalence of 

nickel allergy was 9% among girls (age 8, 11, and 15; n=960) with pierced ears compared to 1% among 

girls without pierced ears.  Girls with more than one hole in each ear were also more likely to be sensit ive 

to nickel than girls with only one hole in each ear (19 versus 11%) (Larsson-Stymne and Widstrom 1985). 

In a study in schoolchildren age 7–12, the frequency of nickel allergy was 30.8% among girls with 

pierced ears and 16.3% among girls who did not have pierced ears (Dotterud and Falk 1994).  Similarly, 

14% of femal es with pierced ears developed nickel allergy compared to 4% in females without pierced 

ears (Nielsen et al. 2002). Among a group of Swedish men (age 18–24) completing military service, 

4.6% with pierced ears reacted to nickel, while 0.8% who did not have pierced ears had a positive 

reaction to nickel (Meijer et al. 1995).  Keczkes et al. (1982) have shown that sensitivity to nickel remains 

for many years.  Fourteen people who tested positively for nickel sensitivity using nickel sulfate also 

tested positive 10 years later.  However, the time interval between exposures can influence the degree of 

reactivity (Hindsén et al. 1997).  A stronger reaction was found in nickel sensitized women when there 

was a 1-month period between nickel sulfate exposures compared to a 4-month period.  This study also 

found a stronger reaction when nickel sulfate was applied to an area with previous allergic contact 

dermatitis. 

Patch test studies in sensitive individuals using nickel sulfate have shown a dose-response relationship 

between the amount of nickel and the severity of the test response (Emmett et al. 1988; Eun and Marks 

1990).  In a study of 12 individuals, a nickel concentration of 0.0316% (316 ppm) in petrolatum resulted 
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in dermatitis, while a concentration of 0.01% (100 ppm) did not produce adverse effects (Eun and Marks 

1990).  In aqueous solution, the nickel concentration of 0.0316% (316 ppm) did not result in dermatitis. 

Although most patch testing is done with nickel sulfate because it is less irritating than nickel chloride, 

nickel alloys on the skin interact with human sweat, resulting in the release of nickel chloride.  Therefo re, 

nickel chloride is the more relevant form of nickel for examining threshold concentrations (Menne 1994).  

Menne and Calvin (1993) examined skin reactions to various conc entrations of nickel chloride in 

51 sensitive and 16 nonsensitive individuals. Although inflammatory reactions in the sweat ducts and 

hair follicles were observed at 0.01% and lower, positive reactions to nickel were not observed.  To be 

scored as a positive reaction, the test area had to have both redness and infiltration, while the appearance 

of vesicles and/or a bullous reaction were scored as a more severe reaction.  At 0.1%, 4/51 and 1/51 tested 

positive with and without 4% sodium lauryl sulfate.  Menne et al. (1987) examined the reactivity to 

different nickel alloys in 173 nickel-sensitive individuals.  With one exception (Inconel 600), alloy s that 

released nickel into synthetic sweat at a rate of <0.5 µg/cm2/week showed weak reactivity, while alloys 

that released nickel at a rate of > 1 µg/cm2/week produced strong reactions. 

Nickel sensitivity has been induced in guinea pigs following skin painting or intradermal injection with 

nickel sulfate (Turk and Parker 1977; Wahlberg 1976; Zissu et al. 1987). As discussed in Section 3.2.2.2, 

nickel sensitivity can also be induced in mice if oral exposure to nickel is reduced (Moller 1984; van 

Hoogstraten et al. 1991). 

Adverse effects on the skin were observed in rats treated dermally with ≥40 mg Ni/kg/day as nickel 

sulfate for 15 or 30 days (Mathur et al. 1977).  The effects included distortion of the epidermis and dermis 

after 15 days and hyperkeratinization, vacuolization, hydropic degeneration of the basal layer, and 

atrophy of the epidermis at 30 days.  Biochemical changes in the skin (enzymatic changes, increased lipid 

peroxidation, and an increase in the content of sulfhydryl groups and amino nitrogen) were observed in 

guinea pigs dermally exposed to nickel sulfate for up to 14 days (Mathur et al. 1988, 1992). Additive 

effects were observed when nickel sulfate was given in combination with sodium lauryl sulfate. 

3.2.3.3 Immunological and Lymphoreticular Effects  

Contact dermatitis resulting from nickel allergy is well reported in the literature (see Section 3.2.3.2 for 

further discussion of allergic reactions to nickel following dermal exposure).  A relationship between 

human lymphocyte antigens (HLA) and nickel sensitivity was observed in individuals who had contact 
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allergic reactions and positive results in the patch test (Mozzanica et al. 1990).  The individuals had not 

been occupationally exposed to nickel.  The HLA typing found a significantly greater prevalence of HLA

DRw6 antigen in the nickel-sensitive group compared to normal controls.  The relative risk for 

individuals with DRw6 to develop a sensitivity to nickel was approximately 3.3.  In individuals with 

allergic contact dermatitis to nickel, nickel directly bound and activated T-cells (Kapsenberg et al. 1988). 

The dose-response relationship for the development of nickel sensitivity has been examined in a mouse 

model (Siller and Seymour 1994).  The sensitization exposure involved placing a 6-mm pad containing 

45 µL of a 0, 1, 5, 10, 15, or 20% nickel sulfate solution on the shaved abdominal skin of mice.  This pad 

was left on the skin under occlusion for 7 days.  Seven days after the sensitization procedure, the mice 

were challenged with 10 µL of a 0.4% aqueous nickel sulfate solution injected into the footpad.  Saline 

was injected into the opposite footpad as a control.  Contact hypersensitivity, indicated by footpad 

swelling, was elicited at all doses, although the degree of swelling was minimal at the 1% concentration.  

Footpad swelling increased as the sensitizing dose increased and generally peaked between 24 and 

48 hours after the challenge. In a comparison of the responses between male and female mice, males 

showed a weaker and more variable response than females, and the response peaked at 72 hours in males 

compared to 48 hours in females.  The LOAEL for sensitization in mice is recorded in Table 3-9. 

3.2.3.4 Neurological Effects 

No studies were located regarding adverse neurological effects in humans or animals after dermal 

exposure to nickel. 

3.2.3.5 Reproductive Effects  

No studies were located regarding adverse reproductive effects in humans after dermal exposure to nickel. 

Tubular degeneration of the testes was observed in rats treated dermally with nickel sulfate at 60 mg 

Ni/kg/day for 30 days (Mathur et al. 1977).  No effects were found at 40 mg Ni/kg/day after 30 days or at 

doses of ≤100 mg Ni/kg/day after 15 days of treatment.  In this study, there was no indication that the rats 

were prevented from licking the nickel sulfate from the skin; therefore, these effects could have resulted 

from oral exposure.  Consequently, these values do not appear in Table 3-9. 
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3.2.3.6 Developmental Effects 

No studies were located regarding adverse developmental effects in humans or animals after dermal 

exposure to nickel. 

3.2.3.7 Cancer 

No studies were located regarding cancer in humans or animals after dermal exposure to nickel. 

3.3 GENOTOXICITY  

A number of studies have examined the genotoxicity of a variety of nickel compounds; the results of 

these in vivo and in vitro tests are presented in Tables 3-10 and 3-11, respectively.  The available weight 

of evidence suggests that nickel does not alter the frequency of gene mutations in nonmammalian 

organisms (Arlauskas et al. 1985; Biggart and Costa 1986; Green et al. 1976; Marzin and Phi 1985; 

Rasmuson 1985; Wong 1988), although some studies have found gene mutations (Ogawa et al. 1994; 

Pikalek and Necasek 1983; Rodriguez-Arnaiz and Ramos 1986).  Mixed results for gene mutations have 

been found in mammalian test systems.  Increases in the frequency of gene mutations have been found at 

the HGPRT locus in Chinese hamster V79 cells (Hartwig and Beyersmann 1989; Miyaki et al. 1979) but 

not in Chinese hamster ovary cells (Hsie et al. 1979).  An increase in gene mutation frequency has also 

been found in Chinese hamster ovary AS52 cells (grp locus) (Fletcher et al. 1994), mouse lymphoma 

cells (Amacher and Paillet 1980; McGregor et al. 1988), and virus-infected mouse sarcoma cells (Biggart 

and Murphy 1988; Biggart et al. 1987).  Gene mutation frequency was not affected in transgenic mouse 

and rat respiratory tissue following inhalation exposure to nickel subsulfide (Mayer et al. 1998).   

There is some evidence to suggest that nickel is clastogenic and can damage DNA.  Chromosome gaps or 

chromosome aberrations have been reported in lymphocytes from nickel refinery workers (Waksvik and 

Boysen 1982), mouse bone marrow cells following intraperitoneal injection (Dhir et al. 1991), and in in 

vitro assays using hamster cells (Conway and Costa 1989; Larramendy et al. 1981; Sen and Costa 1986b; 

Sen et al. 1987), human lymphocytes (Larramendy et al. 1981; Lechner et al. 1984), and human bronchial 

epithelial cells (Lechner et al. 1984).  No alterations in the occurrence of sister chromatid exchange were 

observed in lymphocytes from nickel refinery workers (Waksvik and Boysen 1982), but increases were 

found in in vitro assays of human lymphocytes (Andersen 1983; Arrouijal et al. 1992; Larramendy et al.  
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Table 3-10. Genotoxicity of Nickel In Vivo 

Species (test system) End point Results Reference Compound 
Drosophilia Gene mutation – Rasmuson 1985 Nickel nitrate or chloride 
melanogaster 
D. melanogaster	 Recessive lethal + Rodriguez-Arnaiz Nickel sulfate
 

and Ramos 1986 

D. melanogaster Gene mutation ± 	 Ogawa et al. 1994 Nickel chloride 

(wing spot test) 
Mammalian cells: 
 Human lymphocytes 	 Chromosome + Waksvik and Boysen Nickel oxide, nickel 


gaps 1982 subsulfide
 

Human lymphocytes	 Sister chromatid – Waksvik and Boysen Nickel oxide, nickel 

exchange 1982 subsulfide
 

Rat bone marrow and Chromosome – Mathur et al. 1978 Nickel sulfate
 
spermatogonial cells aberrations 

Mouse bone marrow Chromosome + Dhir et al. 1991 Nickel chloride
 
cells aberrations (ip) 

Mouse bone marrow Micronucleus – Morita et al. 1997 Nickel chloride, nickel 
cells test (ip) sulfate, nickel oxide 
Rat bone marrow cells Micronucleus – Covance Nickel sulfate
 

test (oral) Laboratories, Inc. 

2003 


Mouse bone marrow Micronucleus – Deknudt and Nickel chloride

cells test (ip) Leonard 1982
 

Mouse lung, mouse Gene mutation – Mayer et al. 1998 Nickel subsulfide 

nasal mucosa, rat lung, (inhalation) 

rat nasal mucosa 

Mouse 	 Dominant lethal – Deknudt and Nickel acetate 


(ip) Leonard 1982
 

– = negative result; + = positive result; ± = weakly positive; (ip) = intraperitoneal 
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Table 3-11. Genotoxicity of Nickel In Vitro 

Species (test system) End point Results Reference Compound 
Prokaryotic organisms: 
Salmonella typhimurium	 Gene mutation – Arlauskas et al. 1985; Nickel chloride, 

frequency 	 Biggart and Costa 1986; nickel nitra te, 
Marzin and Phi 1985; nickel sulfate 
Wong 1988 

Escherichia coli WP2 	 Gene mutation – Green et al. 1976 Nickel chloride
 
frequency 


Cornebacterium sp. 	 Gene mutation + Pikalek and Necasek Nickel chloride
 
frequency 1983 


E. coli 	 DNA replication rate + Chin et al. 1994 Nickel chloride 
Bacillus subtilis 	 DNA damage – Kanematsu et al. 1980 Nickel oxide an d 

(rec assay) trioxide 
Eukaryotic organisms 
Fungi 

Saccharomyces 	 Reverse mutation – Singh 1984 Nickel sulfate
cerevesiae 

 Mammalian cells: 
CHO cells 	 Gene mutation at – Hsie et al. 1979 Nickel chloride
 

HGPRT locus
 

Virus-infected mouse 	 Induction of revertant + Biggart and Murphy Nickel chloride 
sarcoma cells 	 foci 1988; Biggart et al. 1987 
Mouse lymphoma cells Forward mutation + 	 Amacher and Paillet Nickel chloride, 

1980; McGregor et al. nickel sulfate 
1988 

Chinese hamster V79 	 Gene mutation at + Harwig and Beyersmann Nickel chlorid e 
cells 	 HGPRT locus 1989; Miyaki et al. 1979 
Chinese hamster ovary 	Gene mutation at grp + Fletcher et al. 1994 Nickel oxide (bla ck 
AS52 cells locus 	 and green); 

amorphous nickel 
sulfide; nickel 
subsulfide nickel 
chloride; nickel 
sulfate; nickel 
acetate 

CD2F1 m ouse lung DNA fragmentation + Mayer et al. 1998 Nickel subsulfide 
and nasa l mucosa 
cells 
Chinese hamster ovary DNA protein + Hamilton-Koch et al. Crystalline NiS, 
cells crosslinks/single 1986; Patierno and nickel chloride 

strand breaks Costa 1985 
Human diploid 	 DNA single strand – Hamiltion-Koch et al. Nickel chloride 
fibroblasts 	 breaks 1986 
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Table 3-11. Genotoxicity of Nickel In Vitro 

Species (test system) End point Results Reference Compound 
Human gastric DNA damage –a Pool-Zobel et al. 1994 Nickel sulfate 
mucosal cells (comet analysis) 
Human HeLa cells DNA replication + Chin et al. 1994 Nickel chloride 
Hamster cells Sister chromatid + Andersen 1983; Nickel sulfate, 

exchange Larramendy et al. 1981; nickel chloride; 
Ohno et al. 1982; crystalline N iS 
Saxholm et al. 1981 

Human lymphocytes Sister chromatid + Andersen 1983; Nickel sulfate, 
exchange Larramendy et al. 1981; nickel sulfide 

Saxholm et al. 1981; 
Wulf 1980 

Hamster cells Chromosome + Conway and Costa 1989; Nickel sulfate, 
aberration Larramendy et al. 1981; nickel chloride , 

Sen and Costa 1986b; nickel mono-sulfide 
Sen et al. 1987 

Human lymphocytes Chromosome + Larramendy et al. 1981 Nickel sulfate 
aberration 

Human lymphocytes Sister chromatid + Arrouijal et al. 19 92 Nickel subsulfide 
exchange 
Metaphase analysis + 
Micronucleus + 
formation 

Human bronchial Chromosome + Lechner et al. 1984 Nickel sulfate 
epithelial cells aberration 
Hamster cell and Cell transformation + Conway and Costa 1989; Nickel monosulfide, 
C3H/10T1/2 cells Costa and Heck 1982; nickel subsulfide, 

Costa and Mollenhauer ,nickel chloride 
1980; Costa et al. 1982; xide nickel, nickel o 
DiPaolo and Casto 1979; or trioxide 
Hansen and Stern 1984; 
Saxholm et al. 1981 

Mouse embryo Cell transformation – Miura et al. 1989 Nickel sulfate, 
fibroblasts nickel chloride 
Mouse embryo Cell transformation + Miura et al. 1989 Nickel subsulfide, 
fibroblasts e, nickel monosulfid 

nickel oxide 
Human foreskin cells Cell transformation + Biedermann and sulfide, Nickel sub 

Landolph 1987 nickel oxide, nickel 
sulfate, nickel 
acetate 

aNickel was genotoxic and cytotoxic at the same concentration (9.5 µmol/mL), so it was not a selective genotoxicant. 

– = negative result; + = positive result; DNA = dexoyribonucleic acid; NiS = nickel sulfide 
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1981; Ohno et al. 1982; Saxholm et al. 1981; Wulf 1980) and hamster cells (Andersen 1983; Larramendy 

et al. 1981; Saxholm et al. 1981).  Micronucleus formation was not affected in rat or mouse bone marrow 

cells following oral or intraperitoneal exposure (Covance Laboratories 2003; Deknudt and Leon ard 1982; 

Morita et al. 1997). DNA damage consisted of fragmentation in mouse lung and nasal mucosal cells 

(Mayer et al. 1998) and DNA protein crosslink and/or single strand breaks in Chinese hamster ovary cells 

(H amilton-Koch et al. 1986; Patierno and Costa 1985).  However, DNA single strand breaks and damage 

(as assessed using comet analysis) were not found in human diploid fibroblasts (Hamilton-Koch et al. 

1986) or human gastric mucosal cells (Pool-Zobel et al. 1994), respectively. 

3.4 TOXICOKINETICS 

Following inhalation exposure, about 20–35% of nickel deposited in the lungs of humans is absorbed int o

the bloodstream.  Absorption from the respiratory tract is dependent on the solubility of the nickel 

compound, with higher urinary nickel levels observed in workers exposed to soluble nickel compounds 

(nickel chloride, nickel sulfate) than in those exposed to less-soluble nickel compounds (nickel oxide, 

nickel subsulfide).  Following oral exposure, about 27% of the nickel given to humans in drinking water 

was absorbed, while only about 1% was absorbed when nickel was given with food.  Nickel applied 

directly  to the skin can be absorbed into the skin where it may remain rather than entering the 

bloodstream. 

Autopsy data from nonoccupationally exposed individuals indicate that the highest concentrations of 

nickel are found in the skin, adrenal glands, and intestines.  Following inhalation exposure, nickel also 

te nds to accumulate in the lungs.  The pituitary may accumulate nickel if exposure occurs during 

pregnancy. Nickel has been shown to cross the placenta, and nickel can accumulate in milk, resulting in 

exposure of the offspring.  In human serum, the exchangeable pool of nickel is bound to albumin, 

L-histidine, and α2-macroglobulin.  There is also a nonexchangeable pool of nickel in the serum, which is 

tightly bound to nickeloplasmin.  Regardless of the route of exposure, absorbed nickel is excreted in the 

urine. Nickel that is not absorbed from the gastrointestinal tract is excreted in the feces. 
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3.4.1 Absorption 

3.4.1.1 Inhalation Exposure 

Inhaled nickel particles are deposited in the upper and lower respiratory tract and are subsequently 

absorbed by several mechanisms.  The deposition pattern in the respiratory tract is related to particle size, 

which determines th e degree to which particles are affected by inertial impaction, sedimentation, and 

diffusion.  Large particles (5–30 µm) deposit in the nasopharyngeal area where higher airstream velocities 

and airway geometry promote inertial impaction (Gordon and Amdur 1991).  Smaller particles (1 –5 µm) 

enter the trachea and bronchiolar region where they deposit principally by sedimentation.  The smallest 

particles (<1 µm) enter the alveolar region of the lungs where diffusion and electrostatic precipitation of 

the particles occurs. Fractio nal deposition can be expected to vary considerably with age and breathing 

patterns. 

In humans, about 20–35% of the inhaled nickel that is retained in the lungs is absorbed into the blood 

(Bennett 1984; Grandjean 1984; Sunderman and Oskarsson 1991).  The remainder is either swallow ed, 

expectorated, or remains in the respiratory tract. Nickel is detected in the urine of workers exposed t o 

nickel (Angerer and Lehnert 1990; Elias et al. 1989; Ghezzi et al. 1989; Hassler et al. 1983; Torjussen and 

Andersen 1979).  Higher concentrations of urinary nickel were found in workers exposed to soluble 

nickel compounds (nickel chloride, nickel sulfate) than in those exposed to less-soluble nickel compounds 

(nickel oxide, nickel subsulfide), indicating that the soluble compounds were more readily absorbed from 

the respiratory tract (Torjussen and Andersen 1979). A man who died of adult respiratory distress 

syndrome 13 days after being exposed to a very high concentration of metallic nickel fume 

(approximately 380 mg/m3) had very high concentrations of nickel in his urine (700 µg/L) (Rendall et al. 

1994). This case report indicates that metallic nickel can be absorbed from the lungs if levels are high 

enough to result in lung damage. 

The half-life of nickel in the lungs of rats exposed by inhalation has been reported to be 32 hours for 

nickel sulfate (mass median aerodynamic diameter [MMAD] 0.6 µm) (Hirano et al. 1994b), 4.6 days for 

nickel subsulfide (63Ni3S2 activity median aerodynamic diameter [AMAD] 1.3 µm), and 120 days for 

green nickel oxide (63NiO, AMAD 1.3 µm) (Benson et al. 1994). Elimination half-times from the lung of 

rats of 7.7, 11.5, and 21 months were calculated for green nickel oxide with MMADs of 0.6, 1.2, and 

4.0 µm, respectively (Tanaka et al. 1985, 1988). 
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Following exposure to green nickel oxide, nickel was only excreted in the feces indicating that the 

dominant mechanism for removing nickel oxide from the lungs is macrophage-mediated rat her than 

dissolution-absorption (Benson et al. 1994).  Following exposure to nickel subsulfide, nickel was excreted 

in both the urine and the feces, with greater amounts in the urine on days 6–14 post-exposure. These 

results indicate that dissolution-absorption plays an important role in the removal of nickel subsulfid e in 

the lungs, and the stu dy aut hors concluded that in the lungs, nickel subsulfide acts more like a solubl e 

compound (Benson et al. 1994). 

3.4.1.2 Oral Exposure  

A human study using a stable nickel isotope estimated that 29–40% of the ingested label was absorb ed 

(based on fecal excretion data) (Patriarca et al. 1997).  Other human absorptio n s tudies show that 40 times 

more nickel was absorbed from the gastrointestinal tract when nickel sulfate was given in the drinkin g 

water (27±17%) than when it was given in food (0.7±0.4%) (Sunderman et al. 1989b).  The 

bioavailability of nick el, a s measured by serum nickel levels, was elevated in fasted subjects given nickel 

sulfate in drinking water (peak level of 80 µg/L after 3 hours), but not when nickel was given with food 

(Solomons et al. 1982).  The bioavailability of nickel increased when nickel was administered in a soft 

drink, but decreased when nickel was given with whole milk, coffee, tea, or orange juice.  In another 

study (Nielsen et al. 1999) examining the relationship between nickel absorption and food intake, the 

highest nickel absorption (11.07–37.42% of dose), as evidenced by the amount excreted in urine, was 

found when the subjects were administered 12 µg Ni/kg 4 hours after ingestion of a scrambled egg meal.  

The lowest absorption level (2.83–5.27%) was found when nickel was administered at the same time as 

the meal. Ethylenediamine tetraacetic acid (EDTA) added to the diet decreased nickel bioavailability to 

below fasting levels (Solomons et al. 1982).  These data indicate that the presence of food profoundly 

reduced the absorption of nickel.  The observation of a decreased serum-nickel to urine-nickel ratio with 

increasing nickel doses in nickel-sensitive individuals suggests that at least some sensitive people adapt to 

increasing oral doses of nickel by reducing absorption by the gastrointestinal tract (Santucci et al. 1994).  

Urinary excretion of nickel following a single oral dose given to women after an overnight fast was found 

to decrease with increasing age, suggesting that nickel absorption may decrease with age (Hindsen et al. 

1994). 

Studies in rats and dogs indicate that 1–10% of nickel, given as nickel, nickel sulfate, or nickel chloride in 

the diet or by gavage, is rapidly absorbed by the gastrointestinal tract (Ambrose et al. 1976; Ho and Furst 

1973; Tedeschi and Sunderman 1957).  In a study in which rats were treated with a single gavage dose of 

http:2.83�5.27
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a nickel compound (10 mg nickel) in a 5% starch saline solution, the absorpti on was found to be dire ctly 

correlated with the solubility of the compound (Ishimatsu et al. 1995).  The percentages of the dose 

absorbed were 0.01% for green nickel oxide, 0.09% for metallic nickel, 0.04% for black nickel oxid e, 

0.47% for nickel subsulfide, 11.12% for nickel sulfate, 9.8% for nickel chloride, and 33.8% for nickel 

nitrate. Absorption was higher for the more-soluble nickel compounds. Unab so rbed nickel is excreted in 

the feces. 

3.4.1.3 Dermal Exposure  

Human studies show that nickel can penetrate the skin (Fullerton et al. 1986; Norgaard 1955).  In a study 

in which radioactive nickel sulfate was applied to occluded skin, 55–77% was absorbed within 24 hours, 

with most being absorbed in the first few hours (Norgaard 1955).  It could no t be determined whether the 

nickel had been absorbed into the deep layers of the skin or into the bloodstream.  Compared to normal 

subjects, nickel absorption did not differ in nickel-sensitive individuals.  In a study using excised human 

skin, only 0.23% of an applied dose of nickel chloride permeated skin after 144 hours when the skin was 

not occluded, while 3.5% permeated occluded skin (Fullerton et al. 1986).  Nickel(II) ions from a chloride 

solution passed through the skin ≈50 times faster than nickel(II) ions from a sulfate solution (Fullerton et 

al. 1986).  Application of nickel chloride in a sodium lauryl sulfate solution (0.25, 2, or 10%) to excised 

human skin resulted in a dose-related increase in the penetration of nickel during a 48-hour period 

(Frankild et al. 1995). 

Studies in animals also indicate that nickel can penetrate the skin (Lloyd 1980; Norgaard 1957). 

Radioactive nickel sulfate was absorbed through the depilated skin of rabbits and guinea pigs after 

24 hours and appeared primarily in the urine (Norgaard 1957).  A small percentage of radioactive nickel 

chloride was absorbed through the skin of guinea pigs 4–24 hours after application, as indicated by 

radioactivity in the blood and urine (0.005–0.51%) (Lloyd 1980).  Most of the nickel remained in the 

skin, primarily in the highly keratinized areas.  Increased levels of nickel in the liver and kidneys in 

guinea pigs treated dermally with nickel sulfate for 15 or 30 days also indicate that nickel can be absorbed 

through the skin (Mathur and Gupta 1994). 

http:0.005�0.51
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3.4.2 Distribution 

An autopsy study of in div iduals not occupationally exposed to nickel has shown the highest 

concentrations of nickel (µg/kg dry weight) in the lungs (174±94), followed b y t he thyroid (141±83), 

adrenals (132±84), kidneys (62±43), heart (54±40), liver (50±31), whole brain (44±16), spleen (37±31), 

and pancreas (34±25) (Rezuke et al. 1987).  In an autopsy study, median level s o f 0.046, 0.084, and 

0.33 µg Ni/g wet weight were found in the adrenal glands, colon, and skin, respectively (Tipton and Cook 

1963).  The total amount of nickel found in the human body has been estimated as 6 mg or 86 µg/kg for a 

70-kg person (Sumino et al. 1975). 

3.4.2.1 Inhalation Exposure 

Workers occupationally exposed to nickel have higher lung burdens of nickel than the general population. 

Dry weight nickel content of the lungs at autopsy was 330±380 µg/g in roasting and smelting workers 

exposed to less-soluble compounds, 34±48 µg/g in electrolysis workers exposed to soluble nickel 

compounds, and 0.76±0.39 µg/g in unexposed controls (Andersen and Svenes 1989).  In an update of this 

study, Svenes and Andersen (1998) examined 10 lung samples takes from different regions of the lungs of 

15 deceased nickel refinery workers; the mean nickel concentration was 50 µg/g dry weight. Nickel 

levels in the lungs of cancer victims did not differ from those of other nickel workers (Kollmeier et al. 

1987; Raithel et al. 1989).  Nickel levels in the nasal mucosa are higher in workers exposed to less-

soluble nickel compounds relative to soluble nickel compounds (Torjussen and Andersen 1979).  These 

results indicate that, following inhalation exposure, less-soluble nickel compounds remain deposited in 

the nasal mucosa. 

Higher serum nickel levels have been found in occupationally exposed individuals compared to 

nonexposed controls (Angerer and Lehnert 1990; Elias et al. 1989; Torjussen and Andersen 1979).  

Serum nickel levels were found to be higher in workers exposed to soluble nickel compounds compared 

to workers exposed to less-soluble nickel compounds (Torjussen and Andersen 1979).  Concentrations of 

nickel in the plasma, urine, and hair were similar in nickel-sensitive individuals compared to nonsensitive 

individuals (Spruit and Bongaarts 1977). 

Following a single 70-minute inhalation exposure of rats to green nickel oxide (63NiO; 9.9 mg Ni/m3; 

AMAD 1.3 µm), the fraction of the inhaled material deposited in the total respiratory tract was 0.13, with 

0.08 deposited in the upper respiratory tract and 0.05 deposited in the lower respiratory tract (Benson et 

http:0.76�0.39
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al. 1994).  During the 180 days postexposure, nickel was not detected in extra resp iratory tract tissues . 

Following a single 120 -mi nute inhalation exposure of rats to nickel subsulfide (63Ni3S2; 5.7 mg Ni/m 3; 

AMAD 1.3 µm), the fraction of inhaled material deposited in the upper respiratory tract was similar to 

that observed for nickel oxide (0.14 in the total respiratory tract, 0.09 in the upper respiratory tract, and 

0.05 in the lower respiratory tract).  In contrast to nickel from nickel oxide, nickel from nickel subsu lfide 

was detected in the blood, kidneys, and carcass between 4 and 24 hours after the exposure. 

Data in rats and mice indicate that a higher percentage of less-soluble nickel compounds was retained in 

the lungs for a longer time than soluble nickel compounds (Benson et al. 1987 , 1 988; Dunnick et al. 1989; 

Tanaka et al. 1985) and that the lung burden of nickel decreased with increasing particle size (≤4 µm) 

(Kodama et al. 1985a, 1985b).  Nickel retention was ≈6 times (mice) to 10 times  (rats) greater in animals 

exposed to less-soluble nickel subsulfide compared to soluble nickel sulfate (Benson et al. 1987, 1988).  

The lung burdens of nickel generally increased with increasing exposure duration and increasing levels of 

the various nickel compounds (Dunnick et al. 1988, 1989).  From weeks 9 to 13  of exposure, lung levels 

of nickel sulfate and nickel subsulfide remained constant while levels of nickel oxide continued to 

increase (Dunnick et al. 1989). 

Slow clearance of nickel oxide from the lungs was also observed in hamsters (W ehner and Craig 197 2). 

Approximately 20% of the inhaled concentration of nickel oxide was retained in the lungs at the end of 

exposure for 2 days, 3 weeks, or 3 months.  The retention was not dependent on the duration of exposure 

or exposure concentration.  By 45 days after the last exposure to nickel oxide (2-day exposure), 45% of 

the initial lung burden was still present in the lungs (Wehner and Craig 1972). The nickel oxide used in 

this study was not further identified. 

The clearance of nickel compounds from the lungs was studied following intr atracheal injection 

(Carvalho and Ziemer 1982; Valentine and Fisher 1984).  Nickel subsulfide (less soluble) was cleared 

from the lungs of mice in two phases:  38% of the dose was cleared with a half-time of 1.2 days, and 42% 

was cleared with a half-time of 12.4 days.  After 35 days, 10% of the dose rem ained in t he lungs 

(Valentine and Fischer 1984).  Soluble nickel chloride was cleared from the lungs much faster:  71% of 

the dose was cleared from the lungs in 24 hours, and only 0.1% remained in the lungs by day 21 

(Carvalho and Ziemer 1982). 

In a study that examined the effect of green nickel oxide and nickel sulfate on the clearance of nickel 

from the lungs, rats and mice were exposed 6 hours/day, 5 days/week, for up to 6 months and then given a 
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single nose-only exposure to a 63Ni-labeled compound (Benson et al. 1995a). Ni ckel sulfate at 

concentrations up to 0 .11 mg Ni/m3 had no effect on lung clearance of nickel sulfate.  Nickel oxide 

exposure did reduce the lung clearance of nickel oxide.  When measured 184 days after the single 

exposure, a 6-month exposure of rats to nickel oxide at 0, 0.49, and 1.96 mg Ni/m3 was found to result in 

the retention of 18, 33 , an d 96% of the dose, respectively.  In mice exposed to nickel oxide at 0, 0.98, or 

3.93 mg/m3 for 6 months, 4, 20, and 62%, respectively, of the dose was retained  214 days after the single 

exposure to radiolabelled compound. 

3.4.2.2 Oral Exposure 

Serum nickel levels peaked 1.5 and 3 hours after ingestion of nickel (Christensen and Lagesson 1981; 

Patriarca et al. 1997; Sunderman et al. 1989b).  In workers who accidentally ingested water contaminated 

with nickel sulfate and nickel chloride, the mean serum half-time of nickel was 60 hours (Sunderman et 

al. 1988).  This half-time decreased substantially (27 hours) when the workers were treated intravenously 

with fluids. 

In animals, nickel was found primarily in the kidneys following both short- and long-term oral exposure 

to various soluble nickel compounds (Ambrose et al. 1976; Borg and Tjalve 1 98 9; Dieter et al. 1988; 

Ishimatsu et al. 1995; Jasim and Tjalve 1986a, 1986b; Oskarsson and Tjalve 1979; Whanger 1973).  

Substantial levels of nickel were also found in the liver, heart, lung, and fat (Ambrose et al. 1976; Dieter 

et al. 1988; Jasim and Tjalve 1986b; Schroeder et al. 1964; Whanger 1973) as well as in the peripheral 

nerve tissues and in the brain (Borg and Tjalve 1989; Jasim and Tjalve 1986a).  Following a 2-year study 

in rats in which nickel levels were measured in bone, liver, kidneys, and fat, Ambrose et al. (1976) 

concluded that there were no important storage sites for nickel.  In control rats, bone nickel was 0.53 ppm 

in female rats and <0.096 ppm in male rats.  An explanation for the difference in bone nickel between 

male and female rats was not provided.  Nickel was found to cross the placenta, as indicated by increases 

in the levels of nickel in the fetuses of mice given nickel during gestation (Jasim and Tjalve 1986a; 

Schroeder et al. 1964). 

When administered as part of a mixture of nickel, cadmium, arsenic, chromium, and vanadium in 

drinking water or food, elevated levels of nickel were found in the small intestines, kidneys, pancreas, and 

femur (only tissues examined) (Radike et al. 2002).  The highest levels were found in the small intestine 

and kidney.  When administered in water, significant elevations in nickel levels were found in the small 
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intestine after 8 weeks of exposure; maximum levels were reached after 20 weeks.  In the kidneys, th e 

nickel levels were only sig nificantly higher than controls at week 20.   

In pregnant rats not ex posed to nickel, maternal and fetal blood concentrations of nickel were 3.8 an d 

10.6 µg/L, respectively (Szakmary et al. 1995).  Twenty-four hours after a sin gle gavage dose of 5.4 , 

11.3, or 22.6 mg Ni/kg as nickel chlorid e was given to pregnant rats (gestation day 19), nickel levels in 

µg/L were 18.5, 90, and 91.5, respectively, in maternal blood, 14.5, 65.5, and 70 .5, respectively, in f etal 

blood, and 16.5, 20, and 17, respectively, in amniotic fluid.  This study showed that at higher doses, 

nickel reached a plateau in maternal and fetal blood, and that nickel concentrations in amniotic fluid were 

relatively well controlled in that they were similar at all three doses. 

3.4.2.3 Dermal Exposure  

No data were located regarding the distribution of nickel in humans after dermal exposure. 

One hour after application of nickel chloride to the shaved skin of guinea pigs , n ickel had accumulat ed in 

keratinaceous areas and in hair sacs (Lloyd 1980). After 4 hours, nickel was found in the stratum 

corneum and stratum spinosum.  Twenty-four hours after treatment of depilated skin in rabbits and guinea 

pigs with nickel-57, ra dioa ctivity was detected in the blood, kidneys, and liver with the greatest amounts 

found in the blood and kidneys (Norgaard 1957).  Quantitative data were not provided.  Concentrations of 

nickel in the liver were 2.4±0.1 µg/g following 15 daily dermal treatments of guinea pigs with nickel 

sulfate at 100 mg Ni/kg/day and 4.4±0.5 µg/g following 30 days of treatment with the same dose, 

compared to 0.2±0.01 µg/g before treatment (Mathur and Gupta 1994).  In the kidneys, nickel levels were 

0.4±0.2 µg/g before treatment, 1.5±0.12 µg/g at 15 days, and 3.52±0.42 µg/g at 30 days. 

3.4.2.4 Other Routes of Exposure 

Several researchers have examined the distribution of nickel in pregnant and lactating rats following its 

injection (Dostal et al. 1989; Mas et al. 1986; Sunderman et al. 1978). Half-li ve s of nickel in whole blood 

following intraperitoneal treatment of pregnant and nonpregnant rats were similar (3.6–3.8 hours), while 

the half-life for nickel in fetal blood was 6.3 hours following treatment on gestation days 12 or 19 (Mas et 

al. 1986).  Intramuscular injection of nickel chloride (12 mg Ni/ kg/day) into pregnant and nonpregnant 

rats resulted in a greater accumulation of nickel in the pituitary of pregnant rats (Sunderman et al. 1978).  

http:3.52�0.42
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Wet weight nickel concentrations in the pituitary were 0.13 µg/g in nonpregnant rats and 1.1 and 

0.91 µg/g in pregnant rats treated on gestation days 8 and 18, respectively. Fo llowing subcutaneous 

exposure of lactating rats to nickel chloride, Dostal et al. (1989) found that peak nickel concentrations in 

the milk were reached 12 hours after treatment.  Relative to treatment with a single dose, four daily 

subcutaneous doses of nickel resulted in higher nickel concentrations in milk, while serum nickel levels 

were the same as following a single dose (Dostal et al. 1989).  This study suggests that nickel can 

accumulate in the milk, which would result in exposure of the offspring. 

Using whole-body autoradiography, Ilback et al. (1992, 1994) examined the distribution of an intravenous 

dose of nickel given to mice with and without Coxsackie virus B3 infection.  Virus infection changed 

nickel distribution, resulting in accumulation in the pancreas and the wall of the ventricular myocardium.  

The investigators suggested that the change in distribution may result from repair and immune 

mechanisms activated in response to the virus. 

3.4.3 Metabolism 

The extracellular metabolism of nickel consists of ligand exchange reactions (Sarkar 1984).  In hum an 

serum, nickel binds to albumin, L-histidine, and α2-macroglobulin.  Binding in animals is similar.  The 

principal binding locus of  nickel to serum albumins is the histidine residue at the third position from the 

amino terminus in hum ans , rats, and bovines (Hendel and Sunderman 1972).  Dogs do not have this 

binding locus, and mo st of the nickel (>85%) in dog serum was not bound to protein.  A proposed 

transport model involves the removal of nickel from albumin to histidine via a ternary complex composed 

of albumin, nickel, and L-histidine.  The low molecular weight L-histidine nickel complex can then cross 

biological membranes (Sarkar 1984).  In the serum, there is also a nonexchangeable pool of nickel tightly 

bound to nickeloplasm in, w hich is an α-macroglobulin (Sunderman 1986). 

3.4.4 Elimination and Excretion 

3.4.4.1 Inhalation Exposure 

Absorbed nickel is excreted in the urine, regardless of the route of exposure (Angerer and Lehnert 1990; 

Elias et al. 1989; Ghezzi et al. 1989; Hassler et al. 1983; Torjussen and Andersen 1979).  In nickel 

workers, an increase in urinary excretion was found from the beginning to the end of the shift, indicating 

a fraction that was rapidly eliminated.  An increase in urinary excretion was also found as the workweek 
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progressed, indicating a fraction that was excret ed more slowly (Ghezzi et al. 1989; Tola et al. 1979) . 

Nickel was also excreted in the feces of nickel workers, but this probably resulted from mucociliary 

clearance of nickel from the respiratory system to the gastrointestinal tract (Hassler et al. 1983).  Among 

electrolysis and refinery workers exposed to soluble nickel compounds (nickel sulfate aerosols), nickel 

concentrations in the urine were 5.2–22.6 µg/L for those exposed to concentrations of 0.11–0.31 mg 

Ni/m3, and 3.2–18 µg/L for those exposed to 0.08–0.2 mg Ni/m3 (Chashschin et al. 1994).  Higher nickel 

levels were found in the urine of workers exposed to soluble nickel compounds, indicating that the 

soluble compounds are more readily absorbed than the less-soluble compounds (Bernacki et al. 1978; 

Torjussen and Andersen 1979). Although high levels of nickel were found in the urine of a man who died 

of adult respiratory distress syndrome 13 days after being exposed to a very hi gh concentration of metallic 

nickel (Rendall et al. 1994), it is not clear if metallic nickel would be absorbed from healthy lungs. 

In animals, the route of excretion following intratracheal administration of nickel depends on the 

solubility of the nickel compound.  In rats given soluble nickel chloride or nickel sulfate, ≈70% of the 

given dose was excreted in the urine within 3 days (Carvalho and Zeimer 1982; Clary 1975; English et al. 

1981; Medinsky et al. 1987).  By day 21, 96.5% of the given dose of nickel chloride had been excreted in 

the urine (Carvalho and Zeimer 1982).  Following intratracheal administration of less-soluble compounds 

(nickel oxide, nickel subsulfide), a greater fraction of the dose was excreted in the feces as a result of 

mucociliary clearance.  Following administration of black nickel oxide to rats or nickel subsulfide to 

mice, approximately equal amounts of the initial dose were excreted in the urine and the feces (English et 

al. 1981; Valentine and Fischer 1984).  A total of 90% of the initial dose of nickel subsulfide was 

excreted within 35 days (Valentine and Fischer 1984), and 60% of the initial dose of black nickel oxide 

was excreted within 90 days (English et al. 1981).  This is consistent with nickel oxide being less soluble 

and not as rapidly absorbed as nickel subsulfide (English et al. 1981; Valentine and Fischer 1984). 

3.4.4.2 Oral Exposure  

In humans, most ingested nickel is excreted in the feces; however, this represents unabsorbed nickel 

(Patriarca et al. 1997; Sunderman et al. 1989b). However, the nickel that is absorbed from the 

gastrointestinal tract is excreted in the urine.  Nickel administered in the drinking water was absorbed 

much more readily than when administered in the food (27% absorption in water versus 0.7% absorption 

in food, respectively) (Sunderman et al. 1989b).  By 4 days post-treatment, 26% of the dose given in 

water was excreted in the urine and 76% in the feces, and 2% of the dose given in food was excreted in 

the urine and 102% in the feces (Sunderman et al. 1989b).  The elimination half-time for absorbed nickel 

http:0.11�0.31
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averaged 28±9 hours (Sunderman et al. 1989b).  These data are consistent with a nickel tracer study that 

found that 51–82% of the administe red label was excreted in the urine over the 5 days (Patri arca et al. 

1997). 

In animals, the majo rity of the ingested dose of ni ckel is excreted in the feces. One da y after 

administration of nickel chloride in rats, 94–97% had been excreted in the feces and 3–6% had been 

excreted in the urine (Ho and Furst 1973). In dogs fed nickel sulfate in the diet for 2 years, only 1–3% of 

the ingested nickel was excreted in the urine (Ambrose et al. 1976). Because dogs lack a major binding 

site in serum albumin that is found in humans (Hendel and Sunderman 1972), the relevance of dog data to 

humans is unclear. 

3.4.4.3 Dermal E xpos ure 

No studies were located regarding excretion of nickel in humans or animals after dermal exposure to 

nickel. 

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models  

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points.   

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and 

Krishnan 1994; Andersen et al. 1987). These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 
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PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps:  (1) model 

representation, (2) model parametrization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters.  The 

numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes. Solving these differentia l and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simula tions b ased on these 

solutions. 

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems.  If the uptake and disposition of the chemical substance(s) are 

adequately described, however, this simplification is desirable because data are often unavailable for 

many biological processes.  A simplified schem e reduces the magnitude of cum ulative uncertainty.  The 

adequacy of the model is, therefore, of great im ortance, and model validation i s esse ntial to the use of p 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessm ent s that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Ande rsen a nd Krishnan 1994). 

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species.  

Figure 3-3 shows a conceptualized representation of a PBPK model. 

If PBPK models for nickel exist, the overall results and individual models are discussed in this section in 

terms of their use in risk assessment, tissue dosimetry, and dose, route, and species extrapolations. 
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Figure 3-3. Conceptual Representation of a Physiologically Based
 
Pharmacokinetic (PBPK) Model for a  


Hypothetical Chemical Substance 


Source: adapted from Krishnan et al. 1994 

Note: This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by 
ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 
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Sunderman et al. (1989b) Model 

Description of the Model.    Sunderman et al. (1989b) developed a model to predict nickel absorption, 

serum levels, and excretion following oral exposure to nickel in water and food. The model was 

developed based on two experiments in humans in which serum nickel levels and urinary and fecal 

excretion of nickel were monitored for 2 days before and 4 days after eight subjects were given an oral 

dose of nickel as nickel sulfate (12, 18, or 50 µg Ni/kg) in water (experiment 1) or in food (experiment 2).  

The data were then analyzed using a linear, compartmental, toxicokinetic model (Figure 3-4).  Two inputs 

of nickel, the single oral dose, in which uptake was considered to be a first-order process, and the baseline 

dietary ingestion of nickel, in which uptake was considered to be a pseudo-zero order process, were 

included in the model.  Parameters determined fo r the model from the two experiments are shown in 

Table 3-12. The only par ameter that was signif ic antly different between exposure in water and exposure 

in food was the fraction of nickel absorbed from he gastrointestinal tract.  The absorption rate constantt 

was not different at the different doses, but the investigators indicated that the observations do not 

exclude the possibility that nickel absorption from  the gastrointestinal tract could be saturated at higher 

doses. At doses low enough to be in the deficiency range, the absorption rate and percentage absorbed are 

probably larger.   

Validation of the Model.    The model has been shown to predict serum nickel and cumulative nickel 

levels in subjects receiving a single dose of nickel in drinking water or food.  The study authors 

(Sunderman et al. 1989b) noted that the model was going to be analyzed using data on individuals 

accidentally ingesting nickel from a contaminated drinking fountain (toxicity data described in 

Sunderman et al. 1988); however, it does not appear that this validation of the model has been published. 

Risk Assessment. Currently, there are no oral exposure MRLs for nickel. Because the model 

evaluates the absorption of nickel from different media (food and water), the model can be used in 

conjunction with MRLs during the assessment of potential health hazards associated with nickel in 

different environmental media (e.g., soil, water). 

Target Tissues. This model was designed to predict nickel absorption.  It did not measure nickel in 

target tissues. 
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Figure 3-4. Diagram of the Compartmental Model of Nickel Metabolism* 

Sunderman et al. 1989b 

kf = zero-order rate constant for fractional a bsorptio n of dietary nickel 
k01 = first-order rate constant for intestinal a bs orption of nickel from oral NiSO4 
k12 = first-order rate constant for nickel transfer from serum to tissues 
k21 = first-order rate constant for nickel transfer from tissue to serum 
k10 = first-order rate constant for nickel excr etion i n urine 
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Table 3-12. Kinetic Parameters of Nickel Sulfate Absorption, Distribution,  
and Elimination in Humansa 

Parameters Experiment 1 Experiment 2 
(symbols and units) (nickel sulfate in water) (nickel sulfate in food) 
Mass fraction of nickel dose 
absorbed from the gastrointestinal 
tract (F, percent) 
Rate constant for alimentary 
absorption of nickel from the 
nickel dose (k01, hour-1) 
Rate constant for alimentary 
absorption of dietary nickel intake 
(kf, µg/hour) 
Rate constant for nick el tra nsfer 
from serum to tissues 12 

-1)(k , hour 
Rate constant for nickel transfer 
from tissue to serum (k21, hour-1) 
Rate constant for urinary 
elimination of nickel (k10, hour-1) 
Rate clearance of nickel 
(CNi, mL/minute/1.73 mg/m2) 
Rate clearance of creatinine 
(Ccreatinine, mL/minute/1.73 mg/m2) 
Nickel clearance as percent of 
creatinine clearance (CNi/Ccreatinine, 
x100) 

27±17

0.28±0.11

0.092±0.051 

0.38±0.17

0.08±0.03

0.21±0.05

8.3±2.0 

97±9 

8.5±1.8 

0.7±0.4b 

 0.33±0.24 

0.105±0.036 

0.37±0.34 

—c 

 0.15±0.11 

5.8±4.3 

93±15 

6.3±4.6 

aData (mean ± standard deviation) from Sunderman et al. 1989b 
bp<0.001 relative to exposure in food computed by a nal ysis of variance 
cNo value was determined because of the small mass of nickel absorbed from the gastrointestinal tract and 
transferred from the serum into the tissues. 

http:0.15�0.11
http:0.37�0.34
http:0.33�0.24
http:0.7�0.4b
http:0.21�0.05
http:0.08�0.03
http:0.38�0.17
http:0.28�0.11
http:mL/minute/1.73
http:mL/minute/1.73
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Species Extrapolation. This model was designed for application to humans; the study authors noted 

that studies to use this model for absorption, distribution, and excretion in laboratory animals are being 

initiated. No publications of these data were located.   

Interroute Extrapolation.    This model is designed to simulate oral absorption of nickel and cannot be 

used for other routes of exposure. 

Dosimetric Model for Lung Burden (Hsieh et al. 1999a, 1999b; Yu et al. 2001)  

Description of the Model.    Hsieh et al. (1999a) describe a dosimetric mode l of n ickel deposition and 

clearance from the lung.  This model was derived using lung burden data from the rat NTP studies of 

nickel sulfate (NTP 1996c), nickel subsulfide ( NTP 1996b), and nickel oxide (NTP 1996a) and existing 

models of lung deposition.  The model considers the alveolar region of the lung as a single compartment; 

removal of nickel from the compartment occurs via macrophage phagocytosis and migration (mechanical 

clearance) and/or via dissolution.  For nickel su lfate a nd nickel oxide, dissolution and mechanical 

clearance, respectively, are  assumed to be the primary clearance mechanisms; clearance of nickel 

subsulfide occurs via both mechanisms.  The accumulation of nickel in the lung over time was described 

by the following equations:   

(1) dM 
= r& − λM

dt 

(2) r& = concentration ×η × MV 

(3) 	 ⎡ ⎤⎛ ms ⎞
c 

λ = a exp	⎢− b⎜⎜ ⎟⎟ ⎥
 ⎢ ⎝ ms0 ⎠ ⎥
⎣ ⎦ 

where M is the mass burden, r is the deposition rate, λ is the total alveolar clearance rate coefficient; η is 

the alveolar deposition fraction, MV is the minute ventilation, a, b, c are clearance rate coefficient 

constants, ms=M/S in which M is the lung mass burden and S is the total alveolar surface area 

(ms=5.38x103 cm2 for rats), and ms0=1 mg/cm2 is the dimensional constant introduced to normalize ms. 

The clearance rate coefficients constants in rats for the three nickel compounds examined are presented in 

Table 3-13. 
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Hsieh et al. (1999b) modified the rat model to develop a model of deposition and clearance of nickel in 

humans.  Deposition rates were calculated for six scenarios:  nose-breathing at rest, nose-breathing at 

light work, nose breathing at moderate work, mouth breathing at rest, mouth breathing at light work, and 

mouth breathing at moderate work. The clearance rate coefficient constants for humans were modified 

from the rat values.  For nickel oxide, clearance rate coefficient constant a was estimated to be 1/7.6 times 

the rat value; constants b and c were assumed to be the same as rats.  For nickel subsulfide, clearance is 

due to mechanical transport and dissolution; the clearance rate coefficient constant a was estimated to be 

the sum of the clearance rate coefficient constant a for insoluble nickel (nickel oxide) and the difference 

between the clearance rate coefficient constant a for nickel oxide and for nickel subsul fide for rats.  For 

nickel sulfate, clearance ra te coefficient constants in humans were assumed to be the same as in rats.  The 

human coefficient constants are presented in Table 3-13.   

Yu et al. (2001) further expanded this human m del to incorporate three additional factors:  inhalability, o 

mixed breathing mode, and clearance rate coeff ic ient of a mixture of nickel compounds.   

Validation of the Model.    To validate the Hseih et al. (1999a) model, lung burdens for the nickel 

concentrations used by NTP were compared with measured lung burdens.  In general, there was good 

agreement between the predicted lung burdens and measured burdens.  Some differences were noted, 

particularly for the shorter term studies (16 day s a nd 13 weeks).  Hsieh et al. (1999a) noted that the 

differences may be due to assumptions used in the model (e.g., average body weight, constant respiratory 

parameters), using lung geometry data for Long Evans rats rather than for the Fischer rats used by NTP, 

or shortcomings in the experimental data.   

The Hsieh et al. (1999b) model modification was not verified.   

The Yu et al. (2001) modification of the model was used to predict lung burdens in nickel refinery 

workers; the predicted burdens were compared to measured lung burdens in deceased nickel refinery 

workers (Andersen and Svenes 1989).  Good agreement between predicted and measured body burdens 

was found. 

Risk Assessment. Currently, the intermediate- and chronic-duration inhalation MRLs for nickel are 

based on lung effects in rats.  Further development of this model (Hseih et al. 1999a) and the 

modifications of the model (Hseih et al. 1999b; Yu et al. 2001) would allow for the model to be used to 
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Table 3-13. Clearance Rate Coefficient Constants of Nickel Compounds 

Clearance rate coefficient constant 
Species Nickel compound a b c 
Rata 

Nickel sulfate 10.285 17.16 0.105 
Nickel subsulfide 0.00768 -20.135 0.266 

Humanb
 Nickel oxide 0.0075 300 0.95 

 Nickel sulfate 10.285 17.16 0.105 
 Nickel subsulfide 0.00117 -20.135 0.266 

N el oxide ick 0.00099 300 0.95 

aData from Hsieh et al. 1 999 a 
bData from Hsieh et al. 1 999b 
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extrapolate from rats to humans with greater certainty than using the standard dosimetric approach.  This 

model could also be used for estimating human equivalent concentrations following low-dose 

extrapolation of the animal carcinogenicity data, similar to that conducted by Seilkop and Oller (2003). 

Target Tissues. Based on limited human data and extensive animal data, the lung has been identified 

as the critical target of nickel toxicity.  Further development of this model would allow nickel lung 

burdens to be predicted.   

Species Extrapolation. The modifications of the Hsieh et al. (1999a) model allow for estimation of 

human lung burdens.   

Interroute Extrapolation.    This model is designed to simulate deposition and clearance of nickel 

from the lung and cannot be used for other routes of exposure. 

3.5 MECHANISMS OF ACTION  

3.5.1 Pharmacokinetic Mechanisms 

Nickel is thought to be absorbed from the gastrointestinal tract as a lipophilic, low molecular weight 

compound (Kenney and McCoy 1992).  The absorption of nickel from the gut is dependent on the various 

ligands and ions that are present.  For example, food greatly decreases the absorption of nickel 

(Sunderman et al. 1989b).  The results of an in situ perfusion study in rats (Arnich et al. 2000) suggest 

that at low concentrations (≤10 mg Ni/L), nickel is absorbed via active transport and facilitated diffusion; 

at higher concentrations, the carriers become saturated and nickel is absorbed via passive diffusion.  

These results are consistent with in vitro data showing that nickel is actively absorbed in the jejunum, but 

may cross the ileum by passive diffusion (Tallkvist and Tjalve 1994). 

In the plasma, nickel is transported by binding to albumin and ultrafiltrable ligands, which include small 

polypeptides and amino acids; for example, histidine (Sunderman and Oskarsson 1991).  The nickel 

binding site on albumin consists of the terminal amino group, the first two peptide nitrogen atoms at the 

N-terminus, and the imidazole nitrogen of the histidine at the third position from the N-terminus.  Nickel 

competes with copper for this albumin binding site.  In the plasma, nickel is also found bound to 

nickeloplasmin, an α-macroglobulin, but the nickel associated with nickeloplasmin is not readily 

exchangeable, and this protein is not thought to play a role in the transport of nickel (Sunderman and 
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Oskarsson 1991).  An in vitro study of rat hepatocytes found that the calcium channels are involved in 

nickel uptake by the liver (Funakoshi et al. 1997).  At physiological levels, no tissue significantly 

accumulates orally administered nickel (Nielsen 1990). 

Nickel that is absorbed is excreted primarily in the urine.  In the urine, nickel is primarily associated with 

low molecular weight complexes that have free amino acids as indicated by the ninhydrin reaction 

(Sunderman and Oskarsson 1991).  In humans nickel is also eliminated in hair, skin, milk, and sweat. 

The physiological role of nickel in animals and humans has not yet been identified.  The most likely roles 

are as cofactors in metalloenzymes or metalloproteins, or as a cofactor that facilitates the intestinal 

absorption of iron (Fe3+ ion ) (Nielsen 1982).  Support for a role of nickel in enzymes comes from the 

identification of nickel-containing enzymes in plants and microorganisms.  The types of nickel-containing 

enzymes that have bee n ide ntified are urease, h ydr ogenase, methylcoenzyme M reductase, and carbon 

monoxide dehydrogenase (Nielsen 1990).  Nickel may also have a role in endocrine gland function as 

suggested by its effect on prolactin levels. 

3.5.2 Mechanisms of Toxicity 

The mechanism of adverse respiratory effects following lung exposure of rabbits to metallic nickel or 

nickel chloride has been examined (Johansson and Camner 1986; Johansson et al. 1980, 1981, 1983, 

1987, 1988a, 1989).  In these studies, an accum ula tion of macrophages and granular material (primarily 

phospholipids) in the alveoli and an increase in volume density of alveolar type II cells were observed.  

The type II cells contained large amounts of lam llar bodies.  Similar results were found following e 

exposure to metallic nickel and nickel chloride, indicating that nickel ions apparently had a direct effect 

on type II cells (Johansson and Camner 1986).  At the end of 6 months, all of the rabbits had foci of 

pneumonia, indicating an increased susceptibility to infection (Johansson et al. 1981).  This may have 

been a result of the decreased function of the alveolar macrophages. 

The substitution of nickel for other essential elements may also contribute to the adverse effects of nickel.  

Nickel can replace magnesium in certain steps in the activation of complement (McCoy and Kenney 

1992). For example, the replacement of nickel for magnesium can increase the formation of C3b, Bb 

enzyme by 40 times, which amplifies activation of the complement pathway. Nickel has also been shown 

to activate calcineurin, a phosphatase that binds zinc and iron, and is usually activated by manganese.  
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There is some evidence that nickel may have a role in the release of prolactin from the pituitary.  In vitro 

studies have shown that nickel could directly inhibit the release of prolactin by the pituitary, and it has 

been suggested that nickel may be part of a prolactin inhibiting factor (LaBella et al. 1973).  Intravenous 

exposure to nickel chloride has been shown to reduce serum levels of prolactin in male rats that were 

pretreated with chlorpromazine, which itself produces hyperprolactinemia (LaBella et al. 1973).  The 

effect was not observed in rats that had not been pretreated with chlorpromazine.  Nickel has also been 

shown to accumulate more in the pituitaries of pregnant rats than nonpregnant rats (Sunderman et al. 

1978), suggesting that a toxicological effect through prolactin may only be manifested during maximum 

prolactin production.  A subcutaneous injection study has also shown that nickel can change the quality of 

the milk produced, resulting in increased milk solids (42%) and lipids (110%), and decreased protein 

(29%) and lactose (61% ) ( Dostal et al. 1989).  Because these changes were noted in comparison to pair-

fed rats, they were not considered to be a result of changes in food intake.   

The mechanism of nickel carcinogenicity has not been firmly established; it is likely that the carcinogenic 

effects result from a variety of mechanisms.  The available evidence suggests that, mechanistically, nickel 

carcinogenicity is probably  the result of genetic factors and/or direct (e.g., conformational changes) or 

indirect (e.g., generation of oxygen radicals) epigenetic factors.  Additionally, certain nickel compounds 

promote cell proliferation, which would convert repairable DNA lesions into nonrepairable mutations.  

Nickel is considered to be genotoxic, but has a lo w mutagenic potential (Kasprzak et al. 2003b).  The 

nickel-induced DNA damage has resulted in the formation of chromosomal aberrations (Conway and 

Costa 1989; Dhir et al. 1991; Larramendy et al. 1981; Lechner et al. 1984; Sen and Costa 1986b; Sen et 

al. 1987; Waksvcik and Boysen 1982) that could result in deletion of senescence or tumor suppressor 

genes. Nickel compounds have also been found to  be weak inducers of sister chromatid exchanges 

(Andersen 1983; Arrouijal et al. 1992; Larramendy et al. 1981; Ohno et al. 1982; Saxholm et al. 1981; 

Wulf 1980).  

Although nickel has a relatively weak affinity for DNA, it has a high affinity for chromatin proteins, 

particularly histones and protamines (Costa et al. 1994; Kasprzak et al. 2003b; Oller et al. 1997).  The 

complexing of nickel ions with heterochromatin results in a number of alterations including condensation, 

DNA hypermethylation, gene silencing, and inhibition of histone acetylation.  These alterations have been 

shown to disturb gene expression (Costa et al. 1994; Kasprzak et al. 2003b; Lee et al. 1995; Oller et al. 

1997; Zoroddu et al. 2002).  Methylation of DNA may result in critical genes becoming incorporated into 

heterochromatin where they can no longer be expressed (Costa 1995).  Some of the alterations in gene 

expression may be mediated by activated transcription factors.  Nickel has been shown to alter several 
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transcription factors including hypoxia-inducible transcription factor (HIF-1), activating transcription 

factor (ATF-1) involved in inactivation of thrombospondin-1, which suppresses angiogenesis, and NF-KB 

transcription factor involved in the inducible expression of adhesion molecules (Kasprzak et al. 2003b). 

The strongest epigenetic effects on nickel have been associated with HIF-1. The HIF-1 transcription 

factor is involved in the regulation of hypoxia-inducible genes involved in cell transformation, tumor 

promotion, and progression, angiogenesis, altered metabolism, and apoptosis.  HIF-1α, one of the HIF-1 

subunits, is over-expressed in both primary and metastatic tumors.  It is induced in response to hypoxia 

and exposure to nickel (Li et al. 2004; Salnikow et al. 2000b).  Both soluble and insoluble nickel 

compounds have also been shown to induce Cap43 (also called NDRG2) gene expression, which requires 

HIF-1α activation (Costa et al. 2003; Li et al. 2004; Salnikow et al. 2000b).  There is also evidence that 

nickel ions inhibit DNA repair (Hartwig et al. 1994).  Nickel enhances the genotoxicity of ultraviolet 

light, x-rays, cis- and trans-platinum, and mitomycin C.  In vitro studies in HeLa cells suggest that nickel 

inhibits the incision step in excision repair (Har tw ig et al. 1994), while studies using Chinese hamster 

ovary cells suggest that nickel inhibits the ligation step of excision repair (Lee-Chen et al. 1994).  The 

underlying mechanism of how nickel affects DNA repair is unclear.  Sunderman and Barber (1988), 

Sunderman (1989b), and Hartwig et al. (1994)  suggest that nickel ions may compete with zinc ions for 

binding to zinc-finger DNA binding proteins, resulting in structural changes in DNA that prevent repair 

enzymes from binding.  Nickel may also directly interact with enzymes required for DNA repair (Hartwig 

et al. 1994). 

The binding of nickel to the histone protein within heterochromatin could result in the generation of 

oxygen radicals.  These oxygen radicals could subsequently induce damage bases, DNA strand breaks, 

and DNA protein crosslinks (Costa et al. 1994; Oller et al. 1997).  The available evidence suggests that 

this mechanism would play a minor (if any) role in nickel carcinogenicity because the damage would be 

confined to heterochromatin regions of DNA, which lack active genes (Oller et al. 1997).  However, 

nickel ions can complex with a number of cellular ligands including amino acids, peptides, and proteins 

resulting in the generation of oxygen radicals.  The reactive oxygen species (ROS) generated could 

nonselectively damage DNA, possibly resulting in genetic changes in active genes (Kasprzak et al. 2003b; 

Oller et al. 1997). 

3.5.3 Animal-to-Human Extrapolations 

The available data on the toxicity of inhaled nickel provide strong evidence that the respiratory tract, in 

particular the lung, is the most sensitive target of nickel toxicity in humans and animals.  There are 
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limited exposure-response data for noncarcinogenic effects in humans; several well-designed animal 

studies (Benson et al. 1995a, 1995b; NTP 1996a, 1996b, 1996c) provide good exposure-response data 

that can be used to predict the thresholds of toxicity.  One of these studies (NTP 1996c) was used to 

derive intermediate- and chronic-duration inhalation MRLs for nickel. A PBPK model (Hsieh et al. 

1999a, 1999b) of lung deposition and clearance of inhaled nickel found a higher deposition of nickel in 

the alveolar region of humans compared to rats; however, adjustment for differences in lung weights 

resulted in a lower alveolar deposition of nickel in humans than in rats.  This model, as described in more 

detail in Section 3.4.5, allows for prediction of human lung burdens.  A cancer bioassay in rats and mice 

conducted by NTP (1996c) did not find significant increases in the occurrence of lung tumors.  However, 

several occupational exposure studies have reported increases in the occurrence of nasal and lung tumors 

in workers exposed to soluble nickel compounds (primarily nickel sulfate and nickel chloride) in 

combination with expo sures to other ni ckel com ounds and/or carcinogenic agents (Anttila et al. 1998; p 

Grimsrund et al. 2001, 2002; International Committee on Nickel Carcinogenesis in Man 1990).  It is not 

known if the apparent species differences are due to differences in carcinogenic potential, co-exposure to 

other nickel compounds or other metals, or differences in exposure concentratio ns. 

The available data on the oral toxicity of nickel are insufficient for comparing se nsitive targets of toxicity 

and dose-response relationships between humans and laboratory animals.  With the exception of dogs, the 

toxicokinetic properties of nickel did not differ between species.  In dogs, the serum albumin lacks the 

histidine residue at the third position from the amino terminus (Hendel and Sunderman 1972); thus, dogs 

would not be a good model for the disposition of nickel in humans.  In the absence of data to the contrary, 

it is assumed that most laboratory animals are a good model for humans.   

3.6 TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS  

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Colborn and Clement (1992), was also used in 1996 when Congress mandated the EPA 

to develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”.  To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 

1998, the EDSTAC completed its deliberations an d made recommendations to EPA concerning endocrine 
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disruptors. In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 

(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminolog y of substances capable of affecting the endocrine system rema ins controversial, 

scientists agree that the se che micals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural horm ones in the body responsible for maintaining homeo stasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may  play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 

There is no evidence to suggest that nickel disrupts the normal functioning of the neuroendocrine axis.  

However, nickel-induced endocrine effects have been observed in laboratory animals.  Several studies 

have found decreases in prolactin levels in lactating animals following oral (Smith et al. 1993), 

subcutaneous (Dostal et al. 1989), or intravenous (LaBella et al. 1973) administration.  Additionally, in 

vivo and in vitro studies (Forgács et al. 1998, 2001) reported an inhibitory effect of nickel on stimulated 

testosterone production in mouse Leydig cells. 

3.7 CHILDREN’S SUSCEPTIBILITY  

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when all biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 
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Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is 

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less 

susceptible than adults to health effects, and the relationship may change with developmental age 

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are 

critical periods of structural and functional development during both prenatal and postnatal life and a 

particular structure or function will be most sensitive to disruption during its cri tical p eriod(s). Damage 

may not be evident unt il a later stage of development.  There are often differences in pharmacokinetics 

and metabolism between children and adults.  For example, absorption may be d iffere nt in neonates 

because of the immaturity of their gastrointestinal tract and their larger skin surf ace area in proportion to 

body weight (Morselli et al. 1980; NRC 1993); th e gastrointestinal absorption of lead is greatest in infants 

and young children (Ziegler et al. 1978).  Distribution of xenobiotics may be different; for example, 

infants have a larger proportion of their bodies as extracellular water and their brains and livers are 

proportionately larger (Altman and Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 

1966; Widdowson and Dickerson 1964).  The infant also has an immature blood-brain barrier (Adinolfi 

1985; Johanson 1980) and probably an immature blood-testis barrier (Setchell and Waites 1975).  Many 

xenobiotic metabolizing enzymes have distinctive developmental patterns.  At various stages of growth 

and development, levels of particular enzymes ma y be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996). W ether differences in xenobiotic metabolism make the h 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 
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alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

There are limited data on the toxicity of nickel in children.  Several surveys of nickel-induced dermatitis 

found higher incidences of nickel sensitivity among young girls (Uter et al. 2003; Wantke et al. 1996).  

This apparent age-related increase in nickel-induced dermatitis is likely the result of increased nickel 

exposure in this segment of the population rather than an increase in sensitivity.  For most of the general 

population, the sensitizing exposure is through consumer products, particularly jewelry.  The higher 

prevalence of ear piercing in young women probably results in a higher prevalence of nickel sensitivity 

(Akasya-Hillenbrand a nd Özkay a-Bayazit 2002 ; D otterud and Falk 1994; Larss on-Sty mne and Widstrom 

1985; Meijer et al. 1995; Uter et al. 2003).  With the exception of nickel sensitization, there are limited 

toxicity data on age-related differences in toxicity  in humans or animals.  Zhang et al. (2000) found that 

elderly rats (aged 20 m onth s) were more susceptible to the proinflammatory effects in the lungs of inhaled 

ultrafine nickel as com pared to ju venile rats (aged 2 months). 

A number of inhalation and oral exposure studies in rats and mice provide suggestive evidence that the 

fetus and neonate are targets of nickel toxicity. In creases in spontaneous abortions and stillbirths and 

decreases in neonatal survival have been observed in rats (Ambrose et al. 1976; Käkelä et al. 1999; RTI 

1988a, 1988b; Smith et al. 1993) and mice (Berman and Rehnberg 1983) following oral exposure to 

nickel. Decreases in pup body weight have also been observed in rats following inhalation (Weischer et 

al. 1980) or oral (Ambrose et al. 1976; RTI 1988a, 1988b) exposure.   

No human or animal data on the toxicokinetic properties of nickel in children or immature animals or 

studies examining possible age-related differences in the toxicokinetics of nickel were located.  Studies 

with other metals, notably lead and cadmium (Bhattacharyya 1983), have found higher absorption rates in 

suckling animals, as compared to adults; it is not known if this is also true for nickel.  Parenteral 

administration studies in rats and mice demonstrate that water-soluble nickel compounds are transferred 

across the placenta (Olsen and Jonsen 1979) and via maternal milk (Dostal et al. 1989).  Subsequent 

sections of this chapter (Sections 3.8, 3.10, and 3.11) discuss the available information on biomarkers, 

interactions, and methods for reducing toxic effects.  The available information is from adults and mature 

animals; no child-specific information was identified.  It is likely that this information will also be 

applicable to children. 
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3.8 BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

Due to a nascent understanding of the use and interpretation of biomarkers, implementation of biomarkers 

as tools of exposure in the general population is very limited.  A biomarker of exposure is a xenobiotic 

substance or its metabolite(s) or the product of an interaction between a xenobiotic agent and some target 

molecule(s) or cell(s) that is measured within a compartment of an organism (NAS/NRC 1989).  The 

preferred biomarkers o f ex posure are generally th e substance itself or substance-specific metabolites in 

readily obtainable bod y flu id(s) or excreta. Ho wever, several factors can confound the use and 

interpretation of biomarkers of exposure. The b ody burden of a substance may be th e result of exposures 

from more than one source.  The substance being measured may be a metabolite of an other xenobiotic 

substance (e.g., high urinary levels of phenol can result from exposure to several different aromatic 

compounds).  Depending on the properties of the substance (e.g., biologic half-l ife) and enviro nmental 

conditions (e.g., duration and route of exposure), the substance and all of its metabolites may have left the 

body by the time samples can be taken.  It may be difficult to identify individua ls exposed to hazardous 

substances that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as 

copper, zinc, and selenium).  Biomarkers of exposure to nickel are discussed in Section 3.8.1. 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be re cognized as an established or potential health 

impairment or disease (NAS/NRC 1989).  This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific.  They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by nickel are discussed in Section 3.8.2. 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 
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biologically effective dose, or a target tissue response.  If biomarkers of susceptibility exist, they are 

discussed in Section 3.10 “Populations that are Unusually Susceptible.” 

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Nickel 

Biological monitoring data are available primarily from occupational settings.  Determination of nickel in 

the urine, feces, serum, hair, and nasal mucosa has been used to demonstrate human exposure to nickel 

compounds (Angerer and Lehnert 1990; Bencko et al. 1986; Bernacki et al. 1978; Elias et al. 1989; 

Ghezzi et al. 1989; Hassler et al. 1983; Torjussen and Andersen 1979).  Based on an extensive review of 

biological monitoring data, Sunderman et al. (1993) concluded that serum and urine nickel levels were the 

most useful biomarkers of nickel exposure.  Levels of nickel in urine and serum can p rovide the most 

information about levels of nickel exposure if the route, sources, and duration o f e xposure are known, if 

the chemical identities and physical-chemical properties of the nickel compounds are known, and if 

physiological information (e.g., renal function) of the exposed population is known (Sunderman 1993).  

In the general population, average nickel concentrations in serum and urine are 0.2 and 1–3 µg/L, 

respectively (Templeton et al. 1994). 

Significant correlations have been found between occupational exposure to less-soluble nickel 

compounds (breathing zone samples) and the levels of nickel in the urine and se rum in various groups of 

workers (Morgan and Rouge 1984).  Nickel levels in urine and serum of workers inhaling nickel powder, 

alloys, or slightly soluble compounds reflect th e co mbined influences of long-term accumulation and 

recent exposures (Sunderman et al. 1986).  Correlations between exposure concentration and levels in the 

urine and serum were found only in groups and not in individual workers.  A relationship between 

exposure concentrations of soluble nickel compounds and levels of nickel in the urine and serum has also 

been reported (Bernacki et al. 1980).  Urine and serum levels of nickel in workers inhaling soluble nickel 

compounds reflect the amount of nickel absorbed in the previous 1 or 2 days (Sunderman et al. 1986).  

With respect to monitoring nickel following exposure to soluble compounds, the best correlations 

between exposure concentration and urine levels were found with "end-of-shift" urine sampling (Bernacki 

et al. 1980) or "next morning" urine sampling (Tola et al. 1979).  A correlation was found between 

urinary nickel and plasma nickel in workers, with nickel levels in urine being about 8-fold higher than 

plasma levels (Angerer and Lehnert 1990; Bernacki et al. 1978).  Bavazzano et al. (1994) did not find 

significant correlations between urinary nickel concentrations in nickel electroplating workers and air 

concentrations of soluble nickel compounds.  Among nickel refinery workers, there was a significant 

correlation between urinary nickel levels (unadjusted or adjusted for creatinine levels) and soluble nickel 
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concentrations in air; the correlation coefficients were approximately 0.35 and 0.55 for unadjusted and 

adjusted urine (Werner et al. 1999).  Adding insoluble nickel air concentrations into the regression 

analysis as a predictor value resulted in a negligible change.  Similarly, Oliveira et al. (2000) found 

significant correlations between postshift urinary nickel levels (adjusted for creatinine excretion) and 

nickel concentrations in the air among workers at a galvanizing facility exposed to soluble nickel 

compounds.  A lower correlation coefficient was found for the relationship between preshift adjusted 

urinary levels and airborne nickel concentrations. 

Higher concentrations of nickel in the urine and the plasma and lower concentrations of nickel in the 

nasal mucosa were observed in workers exposed to soluble nickel compounds when compared to workers 

exposed to less-soluble compounds (Bernacki et al. 1978; Torjussen and Andersen 1979).  Less-soluble 

nickel compounds tended to remain in the nasa l m ucosa (half-life of ≈3.5 years); therefore, urinary and 

plasma levels were relatively low (Torjussen and Andersen 1979). 

In workers exposed to nickel at a battery factory, a positive correlation was also found between air 

concentrations of nickel and concentrations of nickel in the feces (Hassler et al. 1983). High 

concentrations of nickel were found in the feces of workers exposed to nickel du sts co ntaining large 

particles (as a result of greater mucociliary clearance from the lungs to the gastr ointes tinal tract) (Hassler 

et al. 1983). 

It has been questioned whether or not levels of nickel in urine or serum are indic ators of specific adverse 

health effects in humans.  After reviewing mon ito ring data in occupationally exposed workers, 

Sunderman (1993) concluded that with the exception of nickel carbonyl, a relationship between nickel 

levels in body fluids and a specific health risk could not be established.   

Exposure to nickel has also been monitored by assessing the content of nickel in the hair (Bencko et al. 

1986).  Analysis of the nickel content of hair provides evidence of past exposure and not changes in 

recent exposure to nickel. Correlations between exposure concentration and the level of nickel in hair 

were not reported. 

Sensitization to nickel produces changes in serum antibodies (an increase in IgG, IgA, and IgM and a 

decrease in IgE) that may be monitored to determine if exposure to nickel has occurred (Bencko et al. 

1983, 1986; Novey et al. 1983).  These changes were found in both sensitized (Novey et al. 1983) and 



  
 

 
 

  

    

 

     
 

 

 

   

 

 

 

 

 

 

 

 

  

 
 
 
 

 

NICKEL 164 

3. HEALTH EFFECTS 

nonsensitized (Bencko et al. 1983, 1986) individuals. Information regarding the exposure concentration 

of nickel needed to p roduc e serum antibody changes was not reported. 

3.8.2 Biomarkers Used to Characterize Effects Caused by Nickel  

Antibodies to hydroxymethyl uracil, an oxidized DNA base, were determined in workers exposed to 

nickel and cadmium, and in welders (Frenkel et al. 1994).  Compared to controls, a significant increase in 

these antibodies was noted in the most highly exposed workers.  Personal monitoring of 12 workers 

exposed to nickel and cadmium showed correlation coefficients between exposure concentrations and the 

antibodies of 0.4699 for cadmium and 0.7225 for nickel.  Antibodies to hydroxymethyl uracil were not 

increased among welders. The levels of antibodies in the control populations fo r the n ickel cadmium 

workers and for the welders were different, indicating the importance of determ ining the distribution of a 

new biomarker in controls for each population that is studied.  This preliminary study suggests that 

antibodies to oxidized DNA products may be useful biomarkers for nickel and other metals that induce 

oxidative stress. 

A preliminary study using imaging cytometry of nasal smears obtained from nickel workers indicates that 

this method may be useful to detect precancerous and cancerous lesions (Reith et al. 1994).  With this 

method in which the cells were obtained by brushing the inside of the nose, the investigators were able to 

distinguish between nickel-exposed workers with non-dysplastic normal and suspicious mucosa smears 

and those with dysplastic lesions. 

Although increases in oxidized DNA products and precancerous and cancerous lesions in the nose have 

been associated with nickel exposure, these effects are not specific to nickel.  There are no specific 

biomarkers for nickel adverse health effects. 

3.9 INTERACTIONS WITH OTHER CHEMICALS  

A number of interactions of nickel with other chemicals are reported in the literature.  The toxicity of 

nickel has been mitigated by treatment with chelating agents (Horak et al. 1976; Misra et al. 1988; 

Sunderman et al. 1976).  Chelation treatment stimulates the excretion of nickel, thereby mitigating its 

toxicity.  Lipophilic chelating agents, such as triethylenetetramine (TETA) and Cyclam (1,4,8,11-tetraaza

cyclotetradecane), were more effective than hydrophilic chelating agents such as EDTA, 
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cyclohexanediamine tetraacetic acid (CDTA), diethylenetriamine pentaacetic acid (DTPA), and 

hydroxyethylenediamine triacetic acid (HEDTA) (Misra et al. 1988).  The higher efficacy of the lipophilic 

agents may be due to their ability to bind to nickel both intracellularly and extracellularly, while the 

hydrophilic agents can only bind extracellularly. 

A cross-reactivity between nickel and cobalt in sensitive individuals has been noted.  For example, 

eight patients with asthma resulting from cobalt exposure also developed asthma when challenged with 

nickel sulfate (Shirakawa et al. 1990). 

Nickel has also been found to interact with othe r m etals such as iron, chromium , mag nesium, manganese, 

zinc, and cadmium.  The toxicity of nickel was mitigated by treatment with zinc (Waalkes et al. 1985) and 

magnesium (Kasprzak et al. 1986).  The data suggest that magnesium, but not zinc, acted by altering the 

pharmacokinetics of nickel. The mechanism of action for zinc could not be determined from the study 

(Waalkes et al. 1985).  Nickel absorption is increased during iron deficiency (Müller-Fassbender et al. 

2003; Talkvist and Tjälve 1997), suggesting that iron deficiency may result in increased nickel toxicity. 

Coadministration of magnesium and nickel resulted in increased urinary excretion of nickel and decreased 

deposition of nickel in the lung, liver, and kidn ey s (Kasprzak et al. 1986).  Manganese dust inhibited 

nickel subsulfide-induced carcinogenesis following simultaneous intramuscular injection of the two 

compounds (Sunderman and McCully 1983). T e inhibition by manganese was a local and not a h 

systemic effect. 

Pretreatment of animals with cadmium 1 week before nickel treatment enhanced the nephrotoxicity and 

hepatotoxicity of nickel (Khandelwal and Tand on 1 984).  The mechanism of interaction could not be 

determined from these studies. Pretreatment of mice with cadmium 24 hours before nickel treatment has 

also been shown to decrease nickel-induced lethality and lipid peroxidation in the liver (Srivastava et al. 

1995).  The investigators suggested that a cadmium-induced production of ceruloplasmin, which 

prevented a nickel-induced reduction of ceruloplasmin, provided the protection against nickel toxicity. 

More severe respiratory effects (increases in lung weight, in the accumulation of alveolar macrophages, 

and in the density of type II cell volumes) were observed in rabbits exposed by inhalation to both nickel 

and trivalent chromium than in rabbits exposed to nickel only (Johansson et al. 1988b). 

In iron-deficient rats, nickel enhanced the absorption of iron (Nielsen 1980; Nielsen et al. 1980, 1984).  

This effect of nickel was only observed when ferric sulfate was given.  No interaction was observed when 
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iron was given as a 60% ferric/40% ferrous sulfate mixture.  It has been proposed that nickel facilitates 

the passive diffusion of ferric ions by stabilizing the transport ligand (Nielsen 1980). 

Veien and Menne (1990) have suggested that vasoactive substances found in food can enhance nickel 

sensitivity reactions.  Foods that they suggested that nickel-sensitive people should avoid include beer, 

wine (especially red wine), herring, mackerel, tuna, tomatoes, onions, carrots, apples, and citrus fruits.  

The vasoactive substances may increase the amount of nickel that is able to reach the skin. 

3.10 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to nickel than will most persons 

exposed to the same level of nickel in the environment.  Reasons may include genetic makeup, age, health 

and nutritional status, and exposure to other toxic substances (e.g., cigarette smoke).  These parameters 

result in reduced detoxification or excretion of ni ckel, or compromised function of organs affected by 

nickel. Populations who are at greater risk due to their unusually high exposure to nickel are discussed in 

Section 6.7, Populations with Potentially High Exposures. 

Individuals sensitized to nickel may be unusual ly susceptible because exposure to nickel by any route 

may trigger an allergic response.  Epidemiolog y st udies indicate that African-Americans have a higher 

nickel sensitivity than Caucasians and that women of both racial groups have higher reaction rates than 

men (Nethercott and Holness 1990; North American Contact Dermatitis Group 1973; Prystowsky et al. 

1979). The incidence of reactions may be higher in women because they generally wear more metal 

jewelry than men.  Further studies are required to determine if there are true gender and racial differences 

in nickel sensitivity, or if it is indeed a difference in exposure. 

A relationship between HLA and nickel sensitivity was observed in individuals who had a contact allergy 

and positive results in a patch test for nickel (Mozzanica et al. 1990).  The nickel-sensitive group had a 

significant elevation in HLA-DRw6 antigen, compared to controls with no history of atopy or contact 

dermatitis.  The relative risk for individuals with DRw6 to develop a sensitivity to nickel was 

approximately 3.3.  The presence of DRw6 may be monitored to determine the potential risk of 

individuals to become sensitized to nickel. 

Nickel that has been absorbed into the blood stream is primarily excreted in the urine.  Therefore, 

individuals with kidney dysfunction are likely to be more sensitive to nickel.  The increased sensitivity of 
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persons with kidney dysfunction is also suggested by increased serum concentrations of nickel in dialysis 

patients (Hopfer et al. 1989). Because diabetics often have kidney damage, and because of the 

hyperglycemic effects of nickel observed in animal studies, the sensitivity of diabetics to nickel is also 

likely to be increased. 

3.11 METHODS FOR REDUCING TOXIC EFFECTS  

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to nickel. However, because some of the treatments discussed may be experimental and 

unproven, this section should not be used as a guide for treatment of exposures to nickel.  When specific 

exposures have occurred, poison control centers and medical toxicologists should be consulted for 

medical advice. The following texts provide specific information about treatment following exposures to 

nickel: 

Bronstein AC, Currance PL. 1988. Emergency care for hazardous material exposure.  Washington, DC: 
The CV Mosby Company, 147-148. 

Gosselin RE, Smith RP, Hodge HC.  1984.  Clinical toxicology of commercial products, 5th ed.  
Baltimore, MD:  Williams & Wilkins, II, 145. 

Stutz DR, Janusz SJ. 1988. Hazardous materials injuries--a handbook for pre-hospital care.  2nd ed. 
Beltsville, MD: Bradford Communications Corporation, 218-219. 

3.11.1 Reducing Peak Absorption Following Exposure  

General recommendations for reducing absorption of nickel following acute inhalation exposure have 

included moving the patient to fresh air and monitoring for respiratory distress (HSDB 2003).  About 20– 

35% of less-soluble nickel deposited in the lungs is absorbed into the blood from the respiratory tract (see 

Section 3.4.1.1). The nickel that is not absorbed into the blood is removed by mucociliary action and is 

expectorated or swallowed.  Since the oral toxicity of metallic nickel is low, treatment with fluid and 

electrolyte replacement has been considered necessary only in cases with severe vomiting and diarrhea 

(HSDB 2003), which can occur as a result of nickel-induced gastrointestinal irritation (Sunderman et al. 

1988). Thus, further induction of emesis is seldom necessary.  EDTA added to the diet of humans 

decreased the bioavailability of orally administered nickel (Solomons et al. 1982).  The presence of food 

in the stomach also reduced the gastrointestinal absorption of nickel (Christensen and Lagesson 1981).  

Oral administration of water or milk helps to dilute caustic nickel compounds in the stomach (Bronstein 
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and Currance 1988; Stutz and Janusz 1988). In cases of dermal or ocular exposure, the skin or eyes 

should be thoroughly washed to prevent absorption by the skin or irritation of the eyes (Bronstein and 

Currance 1988; Stutz and Janusz 1988).  Topical application of chelating agents and barrier creams has 

also been used to reduce dermal absorption in nickel-sensitive subjects (Gawkrodger et al. 1995). The 

most effective topical ligand for nickel yet described is 5-chloro-7-iodoquinolin-8-ol, but its use may be 

limited by its toxicity.  Propylene glycol, petrolatum, and lanolin have been shown to reduce the dermal 

absorption of nickel. 

3.11.2 Reducing Body  Burden  

Once absorbed into the blood, nickel has been found to distribute to the kidneys , liver, heart, fat, 

peripheral nervous tissues, and brain of animals (see Section 3.4.2).  A mean serum half-time of nickel of 

60 hours was measured in humans after oral exposure to nickel sulfate and nickel chloride (Sunderman et 

al. 1988). 

A number of methods to decrease the body burden of nickel have been used or suggested.  As discussed 

in Section 3.9, chelation treatment with a number of agents has been helpful (Horak et al. 1976; Misra et 

al. 1988; Sunderman et al. 1976).  Lipophilic chelating agents such as TETA and Cyclam were more 

effective than hydrophilic chelating agents such as EDTA, CDTA, DTPA, and HEDTA (Misra et al. 

1988).  This may reflect differences in the distribution of hydrophilic and lipophilic agents between the 

intracellular and extracellular compartments.  The use of diethyldithiocarbamate (DDC) as a chelating 

agent has been suggested as the preferred agent (Goldfrank et al. 1990; HSDB 2003).  Disulfiram, which 

is metabolized to two molecules of DDC, might also be effective if DDC is not available.  Penicillamine 

has also been used as a chelating agent for nickel.  Intravenous infusion of fluids reduced the half-time for 

serum clearance of nickel from 60 to 27 hours in humans accidentally exposed to nickel sulfate and nickel 

chloride in water (Sunderman et al. 1988).  The use of chelating agents over the long term to reduce 

nickel body burden in nickel-sensitive individuals is not recommended because it would also result in the 

reduction of other essential metals (Veien and Menne 1990).  A nickel-restricted diet is useful in some 

sensitive adults for reducing nickel dermatitis, but this diet must be used with caution in nickel-sensitive 

children because it may not provide sufficient levels of nutrients for growth (Veien and Menne 1990). 
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3.11.3 Interfering with the Mechanism of Action for Toxic Effects  

Many toxic effects of both soluble nickel and some relatively less-soluble (in water) nickel compounds, 

which slowly dissolve in serum and cytosol, are due to nickel ions (Sunderman and Oskarsson 1991).  In 

addition to reducing body burden of nickel, chelating agents may effectively mitigate toxicity by binding 

to nickel ions before toxic effects can be produced. For example, contact dermatitis is a prevalent allergic 

response to nickel, and disulfiram has been shown to be effective in clearing up cases of nickel dermatitis 

(Goldfrank et al. 1990; HSDB 2003). 

Inhalation exposure to nick el or nickel compounds (along with other metals) in the workplace has resulted 

in such adverse respiratory effects as chronic bronchitis, emphysema, reduced vital capacity, and asthma 

(see Section 3.2.1.2). Stud ies in animals have i dicated that the effects of nicke l com n pounds on the 

respiratory system (chronic inflammation, fibrosis, macrophage hyperplasia) de pend on the solubility of 

the compounds rather than on lung burden.  Nickel oxide (low solubility) was less toxic than the soluble 

nickel sulfate but resulted in a higher lung burden.  Nickel compounds have been shown to have effects 

on lung macrophages of animals, including acc um ulation of macrophages and g ranul ar material in the 

alveoli and an increase in volume density of alveolar type II cells.  A decrease in alveo lar macrophage 

activity was observed in animals after exposure to nickel compounds, and the more-soluble compounds 

had the greatest effect (Haley et al. 1990).  The re lationship between the effects on al veolar macrophages 

and respiratory toxicity is unknown, but since soluble nickel compounds appear to ha ve greater effects, 

the involvement of the nickel ion is implicated. 

The mechanisms of nickel carcinogenicity have not been established.  There is a strong evidence that the 

mechanism involves the binding of nickel to biological macromolecules, including chromatin and 

proteins (Costa et al. 1994; Kasprzak et al. 2003b; Lee et al. 1995; Oller et al. 1997; Zoroddu et al. 2002). 

The complexing of nickel ions and chromatin can result in hypermethylation of DNA condensation, 

which alters gene expression.  Additionally, the binding of nickel ions to proteins and peptides can result 

in the generation of oxygen radicals, which could indirectly damage DNA. Mec hanis ms that interfere 

with the binding of nickel ions to macromolecules may interfere with the carcinogenicity of nickel. 

In conclusion, it appears that the toxicity of nickel and nickel compounds involv es the binding of nickel 

ions to biological macromolecules.  Chelation therapy appears to be effective both in reducing the body 

burden of nickel and interfering with the mechanism by which nickel exerts toxic effects by competing 

with the binding sites on biological molecules. 
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3.12 ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of nickel is available.  Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of nickel. 

The following categories of possible data needs have been identified by a joint t eam of scientists from 

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

3.12.1 Existing Information on Health Effects of Nickel 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

nickel are summarized in Figure 3-5.  The purpose of this figure is to illustrate the existing information 

concerning the health effects of nickel.  Each dot in the figure indicates that one or more studies provide 

information associated with that particular effect.  The dot does not necessarily imply anything about the 

quality of the study or studies, nor should missing information in this figure be interpreted as a “data 

need”. A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data 

Needs Related to Toxicological Profiles (Agency for Toxic Substances and Disease Registry 1989), is 

substance-specific information necessary to conduct comprehensive public health assessments.  

Generally, ATSDR defines a data gap more broadly as any substance-specific information missing from 

the scientific literature. 

Humans have been exposed to nickel in nickel mines and processing plants, and numerous epidemiology 

studies have been performed to assess the cause of death in these workers.  Accidental ingestion of nickel 

also has been documented in a small child and in electroplating workers.  Nickel dermatitis is the most 

prevalent effect of nickel in humans. 
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Figure 3-5. Existing Information on Health Effects of Nickel 
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Several chronic inhalation and oral studies and acute dermal studies in animals are reported in the 

literature. These studies exposed several species of animals to both soluble and less-soluble nickel 

compounds.  The target organs were found to be the respiratory system for inhalation exposure and the 

respiratory system, gastrointestinal tract, hematological system, and kidneys for oral exposure at high 

levels. Reproductive and developmental effects were observed in animals after inhalation exposure and 

after oral exposure to nickel. Nickel sensitivity and dermatitis were also observed. 

3.12.2 Identification of Data Needs 

Acute-Duration Exposure.    Data on the acute toxicity of nickel come from case reports of 

individuals exposed to nic kel via inhalation, ingestion, or dermal contact, studies of patch testing in 

humans, and animal inhalation, oral, and dermal exposure studies.  Human inhalation data are limited to a 

study of a worker dyin g d ue to respiratory tract injury following a 90-minute exposure to a very high 

concentration of metallic nickel with a small particle size (Rendall et al. 1994). Adverse gastrointestinal 

and neurological effects were observed in workers who ingested drinking water contaminated with nickel 

and boric acid (Sunderman et al. 1988).  The contribution of boric acid to these effects is not known.  

Patch testing and oral nickel challenge testing have been done on individuals with contact dermatitis to 

determine if an allergy to nickel exists (Christensen and Moller 1975; Cronin et al. 1980; Eun and Marks 

1990; Gawkrodger et al. 1986; Jordan and King 1979; Kaaber et al. 1978; Nielsen et al. 1990; Sjovall et 

al. 1987; Veien et al. 1987).  With the exception of nickel sensitivity following dermal contact, the 

available human data are not sufficient for identifying the most sensitive targets of nickel toxicity. 

Acute inhalation studies in animals of nickel sulfate, nickel subsulfide, and nickel oxide indicate that 

nickel sulfate as the most toxic of the three compounds tested (NTP 1996a, 1996b, 1996c).  The most 

sensitive target of nickel toxicity in animals appears to be the respiratory tract.  Alveolitis, chronic lung 

inflammation, alveolar macrophage hyperplasia, and atrophy of the nasal olfactory epithelium have been 

observed in rats exposed to nickel sulfate (Evans et al. 1995; NTP 1996c) or nickel subsulfide (Benson et 

al. 1995b; NTP 1996b), and active lung inflammation has been observed in rats exposed to nickel oxide 

(NTP 1996a).  Chronic lung inflammation was also observed in mice acutely exposed to nickel sulfate 

(NTP 1996c) or nickel subsulfide (NTP 1996b).  In addition to the respiratory effects, adverse 

immunological effects have been observed in mice exposed to nickel chloride (Adkins et al. 1979; 

Graham et al. 1978) or nickel sulfate (Adkins et al. 1979).  Although the available acute-duration 

inhalation data are sufficient for identifying the critical target of nickel toxicity, the data were not 
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considered adequate for derivation of an inhalation MRL because a serious LOAEL was identified at the 

lowest concentration tested in a study examining the respiratory tract (NTP 1996c).  Although a NOAEL 

was identified for immunological effects; this study (Graham et al. 1978) was not suitable for MRL 

derivation due to the uncertainty of whether the NOAEL concentration would also be a no effect level for 

respiratory effects.  A study involving exposure to low concentrations of a soluble nickel compound in 

which the respiratory tract was examined is might provide data to derive an acute-duration inhalation 

MRL. 

Acute oral studies in animals are limited to LD50 studies (Haro et al. 1968; Mastromatteo 1986), a mouse 

study reporting increases in the occurrence of sperm head abnormalities (Sobti and Gill 1989), and a 

developmental toxic ity screening study in mice that did not find adverse developmental effects 

(Seidenberg et al. 1986). Because of the limited number of end points examined, these studies do not 

provide sufficient in formation for identifying the most sensitive target of nickel toxicity following acu te 

oral exposure, and are thus inadequate for MRL derivation.  Acute oral exposure studies that examine a 

number of end points, including reproductive and development toxicity, would help to identify the most 

sensitive target of toxicity.  Studies utilizing a number of doses would be useful for establishing the dose-

response relationships for ingested nickel.    

The development of nickel sensitivity in mice has been shown to be related to both the concentration of 

the nickel solution applied to the skin and the duration of exposure (Siller and Seymour 1994).  Male 

mice showed a weaker response than females, and further studies regarding the gender difference in the 

development of nickel sensitivity would be useful.  Additionally, dermal exposure studies examining a 

number of potential end points would be useful for identifying the most sensitive target of nickel toxicity 

following dermal exposure. 

Intermediate-Duration Exposure.    Intermediate-duration inhalation studies in humans were not 

located. Several studies examining the relationship between nickel ingestion and contact dermatitis were 

identified (Jordan and King 1979; Santucci et al. 1994; Sjovall et al. 1987).  These studies are not useful 

for identifying the critical target of nickel toxicity or the threshold of toxicity in nonsensitized individuals.  

No human studies examining the toxicity of nickel following dermal contact for an intermediate duration 

were located. 

A number of adverse health effects have been observed in laboratory animals exposed to airborne nickel; 

the effects occurred in the respiratory tract (Benson et al. 1995a; Bingham et al. 1972; Horie et al. 1985; 
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Johansson and Camner 1986; NTP 1996a, 1996b, 1996c; Tanaka et al. 1988), blood glucose levels 

(Weischer et al. 1980), immune and lymphoreticular system (Haley et al. 1990; Johansson et al. 1980, 

1987, 1988a, 1989; Morimoto et al. 1995; NTP 1996a, 1996b, 1996c; Spiegelberg et al. 1984), 

reproductive system (NTP 1996a), and the developing organism (Weischer et al. 1980).  The available 

inhalation data provide strong evidence that the respiratory tract is the most sensitive target of nickel 

toxicity following intermediate-duration exposure. Chronic active lung inflammation was the most 

sensitive respiratory effect and a NOAEL for this effect (NTP 1996c) was used to derive an intermedia te

duration inhalation MRL.  

A number of animal studies have assessed the toxicity of nickel following intermediate-duration oral 

exposure. Observed effects in clude decreases in body weight (American Biogenics Corporation 1988; 

Dieter et al. 1988; RTI 1988a, 1988b; Springborn Laboratories 2002; Weischer et al. 1980; Whanger 

1973), kidney damage (Dieter et al. 1988), adverse lung effects (American Biogenics Corporation 1 988; 

RTI 1988b), adverse reproductive effects (Käkelä et al. 1999; Pandey and Srivastava 2000; Pandey et al. 

1999) and decreases in fetal/neonatal survival (Ambrose et al. 1976; Käkelä et al. 1999; RTI 1988a, 

1988b; Smith et al. 1993; Springborn Laboratories 2000b).  These data provide suggestive evidence that 

the developing organism may be a sensitive target of nickel toxicity following intermediate-duration 

exposure. As discussed in the sections on data needs for Reproductive Effects and Developmental 

Effects, additional studies are needed to confirm the identification of these effects as sensitive targets of 

nickel toxicity.  Additional intermediate-duration studies would be useful for identifying sensitive targets 

of systemic toxicity and establishing dose-response relationships. 

Dose-response data for dermal exposure of humans or animals to nickel were not identified.  Derm al 

exposure studies would be useful for identifying sensitive targets of toxicity and establishing exposure-

response relationships. 

Chronic-Duration Exposure and Cancer.    A number of epidemiology studies examining the 

inhaled toxicity of nickel in workers at nickel mines or nickel processing plants have been identified 

(Bencko et al. 1983, 1986; Berge and Skyberg 2003; Cornell 1984; Cornell and Landis 1984; Enterline 

and Marsh 1982; Godbold and Tompkins 1979; Kilburn et al. 1990; Muir et al. 1993; Pedersen et al. 

1973; Polednak 1981; Redmond et al. 1994; Shannon et al. 1991; Sunderman and Horak 1981).  In 

general, these studies were mortality studies and did not provide nickel monitoring data.  Additionally, 

Chashschin et al. (1994) examined the potential of nickel to induce reproductive and developmental 

effects in female nickel workers.  Chronic oral toxicity data in humans are limited to a study on nickel 



  
 

 
 

       

   

 

 

   

 

 

 

 

 

     

 

 

 

 

     

  

 

 

  

 

     

  

 

 

 

   

    

 

    

  

 

  

 
 
 
 

 

NICKEL 175 

3. HEALTH EFFECTS 

sensitized individuals (Panzani et al. 1995), which examined the occurrence of contact dermatitis.  Three 

studies examined the occurrence of contact dermatitis in individuals chronically exposed to nickel via 

dermal contact (Lee and Lee 1990; Meijer et al. 1995; Wall and Calnan 1980).   

The toxicity of nickel sulfate (NTP 1996c), nickel subsulfide (NTP 1996b; Ottolenghi et al. 1974), and 

nickel oxide (NTP 1996a; Takenaka et al. 1985, 1988) following chronic inhalation exposure has been 

investigated in a number of studies in laboratory animals.  The results of these studies provide strong 

evidence that the lung is the most sensitive target of toxicity; inflammatory changes were observed in the 

lung at the lowest adverse effect levels.  Other effects that have been observed include damage to the 

nasal olfactory epithelium (NTP 1996b, 1996c), decreases in body weight gain (Ottolenghi et al. 1974; 

Takanaka et al. 1985), and hyperplasia of the bronchial lymph nodes (NTP 1996a, 1996b, 1996c).  A 

chronic-d uration inhalation MRL was derived from the NTP (1996c) rat study of nickel sulfate.  Data on 

th e chronic toxicity of ingested nickel in laboratory animals are limited to a 2-year study in rats and dogs 

(Ambrose et al. 1976).  The observed effects included decreases in body weight gain, lung damage, and 

adverse kidney effects. A chronic-duration oral MRL was not derived from this study because 

intermediate-duration studies provide suggestive evidence that the developing organism and possibly th e 

reproductive system are sensitive targets of toxicity; these end points were not examined in chronic-

duration studies.  Additional oral exposure studies would be useful for identifying the critical targets of 

toxicity for ingested nickel; studies which examined the systemic toxicity of nickel would be useful in 

assessing whether the developing organism and/or the reproductive system are most sensitive targets.  No 

chronic-duration dermal studies in laboratory animals were located.  Studies by the dermal route of 

exposure would be useful for identifying the most sensitive targets of toxicity and establishi ng exposure-

response relationships. 

A number of occupational exposu re studies have examined the carcinogenic potential of nickel.  In 

general, these studies have found increased risks of lung and/or nasal cancer in workers exposed to less-

soluble nickel compounds (Chovil et al. 1981; Doll et al. 1977; Enterline and Marsh 1982; Internation al 

Committee on Nickel Carcinogenesis in Man 1990; Magnus et al. 1982; Pedersen et al. 1973; Sunderman 

et al. 1989a) or soluble nickel compounds (Anttila et al. 1998; Grimsrund et al. 2002, 2003; Internatio nal 

Committee on Nickel Carcinogenesis in Man 1990).  No studies have examined the carcinogenicity of 

nickel in humans following oral or dermal exposure.  A series of bioassays conducted by NTP (1996a, 

1996b, 1996c) and Ottolenghi et al. (1974) examined the carcinogenic risk of inha led nickel. Significant 

in creases in the occurrence of lung tumors following exposure to nickel oxide (NTP 1996a) and nickel 

subsulfide (NTP 1996b; Ottolenghi et al. 1974), but not after nickel sulfate (NTP 1996c), were found.  No 
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additional inhalation studies in laboratory animals are needed at this time.  Data on the carcinogenic ity of 

ingested nickel are limited to a rat and mouse study conducted by Schroeder and associates (Schroede r 

and Mitchener 1975; Schroeder et al. 1974); no increases in the occurrence of malignant tumors were 

observed. These studies are inadequate for assessing carcinogenic potential because very low doses, 

below the MTD, were administered.  Additional oral exposure carcinogenicity studies are needed to 

assess whether increased exposure to nickel could lead to an increased risk of developing cancer.  

Carcinogenicity studies using ani mals dermally exposed to nickel were not located.  Cancer has been 

observed, however, after parental administration of less-soluble nickel compounds (e.g., nickel oxide, 

nickel subsulfide), but not soluble nickel compounds (Gilman 1962; Kasprzak et al. 1983; Lumb and 

Sunderman 1988; Smialowic z et al. 1985; Sunderman and Maenza 1976; Sunderman and McCully 1983). 

Genotoxicity.    Investigators conducting epidemiology studies have reported a higher incidence of 

chromosomal aberrations in nickel workers compared to controls (Elias et al. 1989; Waksvik and Boysen 

1982).  Both in vitro and in vivo studies in mammals indicate that nickel is genotoxic (Andersen 1983 ; 

Biedermann and Landolph 1987; Conway and Costa 1989; Costa et al. 1982; DiPaolo and Casto 1979; 

Hansen and Stern 1984; Larramendy et al. 1981; Miura et al. 1989; Ohno et al. 1982; Saxholm et al. 

1981; Sobti and Gill 1989; Wulf 1980), and the mechanism of action of nickel on cellular DNA has been 

studied (Ciccarelli and Wetterhahn 1982; Patierno and Costa 1985, 1987; Robinson and Costa 1982).  

Additional studies regarding the genotoxicity of nickel compounds are not needed at this time. 

Reproductive Toxicity.    Data on the reproductive toxicity of nickel in humans is limited to a study of 

women working at a nickel hydrometallurgy refining plant (Chashschin et al. 1994).  However, 

interpretation of these study results is limited by the lack of information on the control of potential 

confounding variables, heavy lifting, and possible heat stress.  Several oral exposure studies in animals 

suggest that nickel can result in testicular and epididymal damage (Käkelä et al. 1999; Pandey et al. 1999) 

and decreases in sperm motility, count, and sperm abnormalities (Pandy and Srivastava 2000; Pandey et 

al. 1999; Sobti and Gill 1999), or alterations in fertility (Käkelä et al. 1999; Pandey et al. 1999).  Other 

oral studies have not found histological alterations in male or female reproductive tissues or impaired 

fertility following intermediate- or chronic- duration exposure (Ambrose et al. 1976; American Biogenics 

Corporation 1988; Obone et al. 1999; RTI 1988a, 1988b; Springborn Laboratories 2000a).  Although 

testicular effects were also observed following inhalation exposure, the investigators (NTP 1996b, 1996c) 

considered the testicular effects to be secondary to emaciation.  Additionally, fertility was not adversely 

affected in a single generation study (Springborn Laboratories 2000b) or two multigeneration studies 

(RTI 1988a, 1988b; Springborn Laboratories 2000a).  The poor reporting of the study results, particularly 
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incidence data and statistical analysis, limits the interpretation of the Käkelä et al. (1999), Pandey et al. 

(1999), and Pandey and Srivastava (2000) studies.  An expert evaluation of the unpublished results o f 

these studies, along with the other available reproductive toxicity studies (RTI 1988a, 1988b; Springbo rn 

Laboratories 2000a, 2000b), may provide insight on the apparent differences between the studies. Nick el 

treatment of rats during lactation has also been shown to change the quality of the milk (Dostal et al. 

1989). Fur ther studies concerning the role of physiological levels, as well as toxic levels, of nickel in the 

re lease of prolactin from the pituitary could provide useful information on potential reproductive and 

developmental effects of nickel. 

Developmental Toxicity.    There are limited data on the potential developmental toxicity of nickel in 

humans.  An increase in structural malformations was observed in infants of women who worked in a 

nickel hydrometallurgy refining plant (Chashschin et al. 1994); however, the lack of information on 

control of potential confounding variables such as smoking and alcohol use and heavy lifting, and 

possible heat stress limits the interpretation of these results.  Decreased fetal body weight was observed in 

offspring of rats exposed to high levels of nickel via inhalation during gestation (Weischer et al. 1980).  

Developmental effects such as increased pup mortality, decreased pup survival, and decreased pup body 

weight were observed in oral exposure single-generation studies involving male-only, female-only, or 

male and female exposure to nickel (Käkelä et al. 1999), multigeneration studies in rats (Ambrose et al. 

1976; RTI 1988a, 1988b; Springborn Laboratories 2000b), and multilitter studies in rats (Smith et al. 

1993). Although the available studies have consiste ntly found decreases in pup survival, decreases in 

maternal body weight, food consumption, and water consumption often occur at the same dose levels.  

Thus, it is not known if the effects are due to nickel-induced damage to the offspring or are secondar y to 

the maternal toxicity.  Studies that controlled for maternal food intake and water consumption would be 

useful in understanding the mechanism of nickel toxicity.  Developmental toxicity studies utilizing a 

number of dose levels would provide useful information in establishing the dose-response relationships 

for nickel. Studies assessing the developmental effects following dermal exposure were not located.  

Developmental effects have also been observed in animals following parental administration of nickel 

(Chernoff and Kavlock 1982; Lu et al. 1979; Sunderman et al. 1978). 

Immunotoxicity.    Human exposure to a large dose of nickel can result in sensitization manifested as 

contact dermatitis. Although there are limited data for the inhalation route, there are extensive data for 

the oral and dermal routes.  Three studies examined immunological end points following inhalation 

exposure; two of these studies (Bencko et al. 1983, 1986) measured immunoglobulin levels in nickel 

workers and found significant alterations.  The third study (Shirakawa et al. 1990) found positive results 
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in patch tests of workers with hard metal lung disease.  In nickel-sensitized individuals, oral exposure to 

fa irly low doses of nickel can result in contact dermatitis; this has been tested in several acute-duration 

studies (Christensen and Moller 1975; Cronin et al. 1980; Gawkrodger et al. 1986; Veien et a l. 1987) and 

two intermediate-duration studies (Jordan and King 1979; Sjovall et al. 1987).  There is extensive 

information on the immunotoxicity of nickel in humans following dermal exposure.  In general, the 

dermal exposure studies fall into two main categories:  patch testing in individuals with contact derm atitis 

(Akasya-Hillenbrand and Özkaya-Bayazit 2002; Cavelier et al. 1988; Emmett et al. 1988; Eun and Marks 

1990; Keczkes et al. 1982; Meijer et al. 1995; Menne et al. 1987; Simonetti et al. 1998; Uter et al. 2003; 

Wantke et al. 1996) and studies desi gned to assess the occurrence of nickel sensitivity in the general 

population (Dotterud and Falk 1994; Larsson-Stymme and Widstrom 1985; Menne and Holm 1983; 

Nielsen et al. 2002). 

Animal studies demonstrate that nickel can induce immunological effects in nonsensitized individual.  

Alterations in nonspecific immunity (e.g., macrophage activity) (Adkins et al. 1979; Haley et al. 1990; 

Johansson et al. 1980) and humoral and cell mediated immunity (e.g., resistance to bacterial infect ion, 

response to foreign substances) (Adkins et al. 1979; Graham et al. 1978; Morimoto et al. 1995; 

Spiegelberg et al. 1984) has been observed in animals following inhalation exposure.  Similarly, oral 

exposure to nickel has resulted in alterations in natural killer cells (Ilback et al. 1994) and humoral an d 

cell mediated immunity (e.g., resistance to bacterial infection, response to foreign substances) (Dieter e t 

al. 1988; Ilback et al. 1994).  One dermal exposure study in mice examined the exposure-response 

relationship for nickel sensitization in mice (Siller and Seymour 1994).  Studies designed to assess the 

dose-response relationship for contact dermatitis and oral dose are needed; the results of these studies 

should be consider ed during the derivation of oral MRLs for nickel.  Additionally, studies that examined 

whether tolerance to nickel can develop and that assess cross sensitization of nickel with other metals 

would also be useful.   

Neurotoxicity.    No studies on the neurotoxicity of nickel in humans following inhalation or dermal 

exposure were located. Neurological effects (giddiness, weariness) were reported in individuals 

accidentally exposed to nickel and boric acid in drinking water (Sunderman et al. 1988).  Temporary 

blindness in half of each eye occurred sho rtly after one person took a 0.05-mg/kg dose of nickel as nickel 

sulfate in drinking water (Sunderman et al. 1989b).  There is limited information on the neurotoxicity of 

nickel in laboratory animals.  No histological alterations were observed in the central nervous system 

following inhalation (NTP 1996a, 1996b, 1996c) or oral exposure (Ambrose et al. 1976; Obone et al. 

1999). Although histological damage to the nasal olfactory epithelium was observed in animals followin g 
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inhalation exposure to nickel sulfate or nickel subsulfide (Evans et al. 1995; NTP 1996b, 1996c), 

functional changes were not noted (Evans et al. 1995).  Neurological signs (lethargy, ataxia, prostration ) 

were observed in dying rats treated with nickel for 3 months; however, these effects were probably 

associated with overall toxicity (American Biogenics Corporation 1988).  No animal dermal exposure 

studies examined neurological end points.  The human data provide suggestive evidence that exposure to 

nickel may result in neurological effects; additional animal studies examining neurobehavio ral 

performance would provide valuable information on the neurotoxic potential of nickel. 

Epidemiological and Human Dosimetry Studies.    A number of epidemiology studies regarding 

nickel toxicity are available in the literature.  Most of these studies have focused on the carcinogenicity of 

inhaled nickel (Anttila et al. 1998; Chovil et al. 1981; Doll et al. 1977; Enterline and Marsh 1982; 

Grimsrund et al. 2002, 2003; International Committee on Nickel Carcinogenesis in Man 1990; Magnus et 

al. 1982; Pedersen et al. 1973; Sunderman et al. 1989a) or nickel sensitivity following oral (Christensen 

and Moller 1975; Cronin et al. 1980; Gawkrodger et al. 1986; Jordan and King 1979; Sjovall et al. 1987; 

Veien et al. 1987) or dermal (Akasya-Hillenbrand and Özkaya-Bayazit 2002; Cavelier et al. 1988; 

Dotterud and Falk 1994; Emmet t et al. 1988; Eun and Marks 1990; Keczkes et al. 1982; Larsson-Stymme 

and Widstrom 1985; Meijer et al. 1995; Menne and Holm 1983; Menne et al. 1987; Nielsen et al. 2002; 

Simonetti et al. 1998; Uter et al. 2003; Wantke et al. 1996) exposure.  As nickel exposure levels in the 

occupational environments have been reduced, continued health monitoring of populations occupational ly 

exposed to nickel would be useful to determine if more subtle adverse health effects occur in humans at 

lower concentrations. Continued monitoring of nickel sensitization in the general population is needed t o 

assess whether the increased popularity of body piercing will result in increased occurrences of nickel 

sensitivity. Additional studies on the dose-response relationship of ingested nickel dose and contact 

dermatitis would be useful.  Animal data provide some suggestive evidence that nickel may be a 

reproductive toxicant and maternal exposure may result in increases in neonatal mortality. Inclus ion of 

these end points in occupational exposure studies may provide valuable information on whether these 

would also be end points of concern for humans. 

Biomarkers of Exposure and Effect.     

Exposure. Nickel is a naturall y occurring component of the diet and can be detected in hair, blood, urine, 

and feces (Angerer and Lehnert 1990; Bencko et al. 1986; Bernacki et al. 1978; Elias et al. 1989; Ghezzi 

et al. 1989; Hassler et al. 1983; Torjussen and Andersen 1979).  In persons exposed to nickel above 

background levels, positive qualitative correlations have been found between air concentrations of nickel 
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and nickel levels in the feces (Hassler et al. 1983) and urine (Angerer and Lehnert 1990; Bavazz ano et al. 

1994; Bernacki et al. 1978, 1980; Morgan and Rouge 1984; Oliveira et al. 2000; Sunderman et al. 19 86; 

Tola et al. 1979; Torjussen and Andersen 1979; Werner et al. 1999).  Additional studies examining the 

relationship between levels of nickel in the urine and body burden levels and studies associating urinary 

nickel levels and the manifestation of adverse health effects would be useful in establishing biological 

exposure indices for nickel. 

Effect.  A relationship between human lymphocyte antigens and nickel sensitivity exists and predicts that 

individuals with this antigen have a relative risk of approximately 3.3 for developing nickel sensitivity 

(Mozzanica et al. 1990).  An tibodies to hydroxymethyl uracil, an oxidized DNA base, have also been 

shown to be increased in some nickel-exposed workers (Frenkel et al. 1994).  A preliminary study using 

imaging cytometry of nasal smears obtained from nickel workers indicates that this method may be useful 

to detect precancerous and cancerous lesions (Reith et al. 1994).  Additional studies that examine markers 

of early biological effects, such as changes in gene expression measured by microarrays, could be piloted 

with in vitro cell lines to determine nickel-specific markers, followed by in vivo screening of people 

living near sites that contain elevated levels of nickel or who have occupational exposures to nickel.  

Studies that identify nickel-specific biomarkers may be helpful in alerting health professionals to nickel 

exposure before serious toxicological effects occur. 

Absorption, Distribution, Metabolism, and Excretion.    Pharmacokinetic studies in humans 

indicate that nickel is absorbed through the lungs (Bennett 1984; Grandjean 1984; Sunderman and 

Oskarsson 1991), gastrointestinal tract (Nielsen et al. 1999; Patriarca et al. 1997; Sunderman et al. 

1989b), and skin (Fullerton et al. 1986; Norgaard 1955).  Food greatly decreases the absorption of nickel 

from the gastrointestinal tract (Sunderman et al. 1989b).  Following absorption from the lungs and the 

gastrointestinal tract, nickel is excreted in the urine (Angerer and Lehnert 1990; Bernacki et al. 1978; 

Elias et al. 1989; Ghezzi et al. 1989; Hassler et al. 1983; Sunderman et al. 1989b; Torjussen and Andersen 

1979). Increased levels of nickel were found in the lungs, nasal septum, liver, and kidneys of workers 

inhaling nickel (Andersen and Svenes 1989; Kollmeier et al. 1987; Raithel et al. 1988; Rezuke et al. 1987; 

Sumino et al. 1975; Svenes and Andersen 1998; Torjussen and Andersen 1979).  Animal data indicate 

that after inhalation, nickel particles can remain in the lungs (nickel oxide) or be absorbed and then 

excreted in the urine (nickel sulfate). High levels of nickel have been found in the liver, kidneys, and 

spleen of animals after inhaling high levels of nickel (Benson et al. 1987, 1988, 1994, 1995a; NTP 1996a, 

1996b, 1996c; Tanaka et al. 1985).  Nickel that has been absorbed after oral exposure is primarily 

distributed to the kidneys before being excreted in the urine.  High levels of nickel were also found in the 
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liver, heart, lungs, fat, peripheral nervous tissue, and brain (Ambrose et al. 1976; Borg and Tjalve 1989; 

Dieter et al. 1988; Jasim and Tjalve 1986a, 1986b; Oskarsson and Tjalve 1979; Whanger 1973).  Studies 

examining the bioavailability of nickel from soil following oral exposure would be useful for determining 

the absorbed dose from nickel-contaminated soil at a hazardous waste site.  Further verification of the 

toxicokinetic models developed by Hsieh et al. (1999a, 1999b) and Sunderman et al. (1989b) would 

improve the ability to predict the absorbed dose following inhalation or oral exposure. 

Comparative Toxicokinetics.    Studies that examine the toxicokinetics of nickel in humans after 

occupational exposure, ingestion of nickel from food and water, and dermal exposure are available 

(Bennett 1984; Fullerton et al. 1986; Grandjean 1984; Norgaard 1955 ; Sunderman and Oskarsson 1991; 

Sunderman et al. 1989b).  The toxicokinetics of both inhaled and ingested nickel have been examined in 

several species of animals (rats, mice, dogs, hamsters) (Ambrose et al. 1976; Benson et al. 1987, 1988; 

Borg and Tjalve 1989; Dieter et al. 1988; Jasim and Tjalve 1986a, 1986b; NTP 1996a, 1996b, 1996c; 

Oskarsson and Tjalve 1979; Tanaka et al. 1985; Whanger 1973).  Dermal studies have been performed in 

guinea pigs and rabbits (Lloyd 1980; Norgaard 1957).  The limited human data correlate well with the 

toxicokinetics observed in animals.  Studies that compare the toxicokinetics of humans and animals using 

the same experimental protocol would be helpful in determining which species of animal is the best 

model for assessing the effects of nickel in humans. 

Methods for Reducing Toxic Effects.    Approximately 20–35% of inhaled less-soluble nickel is 

absorbed through the lungs (Bennett 1984; Grandjean 1984; Sunderman and Oskarsson 1991).  Methods 

that would enhance the clearance of nickel from the lung, thus preventing or reducing the severity of lu ng 

damage (inflammation or fibrosis), would be useful. The administration of EDTA in food (Solomons et 

al. 1982) and the presence of food in the stomach (Christensen and Lagesson 1981) decrease th e amount 

of nickel that is absorbed through the gastrointestinal tract.  Several chelating agents (e.g., TETA, 

Cyclam, EDTA) have been shown to be effective in reducing the body's nickel burden (Horak et al. 1976; 

Misra et al. 1988; Sunderman et al. 1976). It is not known if other methods, such as dialysis, would be 

more effective in reducing the body burden.  The mechanism of nickel toxicity involves the binding of 

nickel ions to macromolecules; chelating agents have been shown to bind to the nickel ions, thus 

mitigating the toxicity.  Studies designed to determine if other methods would be more effective in 

binding nickel ions would be useful. 
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Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and 

developmental effects expressed either prenatally or during childhood, are discussed in detail in the 

Developmental Toxicity subsection above. 

There are limited data on the toxicity of nickel in children.  Several patch testing studies have included 

children (Akasya-Hillenbrand and Özkaya-Bayazit 2002; Dotterud and Falk 1994; Larsson-Stymne and 

Widstrom 1985; Meijer et al. 1995; Uter et al. 2003; Wantke et al. 1996), the results of which suggest that 

children may be more susceptible than adults.  However, the increased susceptibility observed in children 

may be due to increased prolong exposure to nickel-containing products such as earrings, rather than 

increased sensitivity; additional studies are needed to verify this assumption.  Studies in laboratory 

animals provide evidence that the fetus and neonates are sensitive targets of nickel toxicity following 

inhalation or oral exposure (Ambrose et al. 1976; Berman and Rehnberg 1993; Käkelä et al. 199 9; RTI 

1988a, 1988b; Smith et al. 1993; Weischer et al . 1980).  As noted in the Developmental Toxicity section, 

additional studies are needed to verify this apparent sensitivity.  No human or animal data on the 

toxicokinetic properties of nickel in children or immature animals or studies examining possible age-

related differences in the toxicokinetics of nickel were located.  Studies with other metals, notably lead 

and cadmium (Bhattacharyya 1983), have found higher absorption rates in suckling animals, as compared 

to adults; it is not known if this is also true for nickel.  Additional studies examining potential age-related 

differences in nickel would provide valuable information on the susceptibility of children to nickel 

toxicity. 

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs:  

Exposures of Children. 

3.12.3 Ongoing Studies 

Ongoing studies pertaining to nickel have been identified and are shown in Table 3-14. 
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Table 3-14. Ongoing Studies on Nickel Health Effects 

Investigator Affiliation Research area 
Costa, M New York University, Examination of the epigenetic 

School of Medicine mechanisms of nickel carcinogenesis 
Rokita, SE  University of Maryland Mechanisms of nickel carcinogenicity 
Kasprzak, KS National Cancer Institute Mechanisms of nickel carcinogenicity 
Leikauf, GD University of Cincinnati Genetic determinants on nickel-indu ced 

lung toxicity 
Warshaw, EM Department of Veterans Affairs, Treatment of nickel contact dermatitis  

Medical Center, Minneapolis 

Source: FEDRIP 2004 
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4. CHEMICAL AND PHYSICAL INFORMATION 


4.1 CHEMICAL IDENTITY  

Nickel is a transition metal in group VIII of the periodic table following iron and cobalt (Cotton and 

Wilkinson 1980).  Its outer shell of electrons has a 4s23d8 configuration.  While nickel can exist in 

oxidation states -1, 0, +2, +3, and +4, its only important oxidation state is nickel(+2) under normal 

environmental conditions. 

Nickel forms useful alloys with many metals.  It is added to metals to increase their hardness, strength, 

and corrosion resistance. The most familiar are nickeliferous alloys used in stainless steel and copper-

nickel alloys used in coinage metal. 

Nickel oxide also comes in a black crystalline form that has a slightly higher oxygen content than its 

formula, NiO (Antonsen 1981).  The nickel content of black nickel oxide is 76–77% compared with 

78.5% for the more stable green nickel oxide.  Nickel ammonium sulfate, nickel sulfate, nickel chloride, 

and nickel nitrate usually exist as hexahydrates, while nickel acetate, nickel cyanide, and nickel sulfamate 

are in the form of a tetrahydrate. 

Information regarding the chemical identity of nickel is located in Table 4-1. 

4.2 PHYSICAL AND CHEMICAL PROPERTIES  

Metallic nickel is a hard, lustrous, silvery white metal, which, in its bulk form, is resistant to attack by air 

and water at ordinary temperatures.  However, powdered nickel is reactive in air and may spontaneously 

ignite. 

Nickel has typical metallic properties; it can be readily rolled, drawn into wire, forged, and polished.  It is 

also ferromagnetic and a good conductor of both heat and electricity.  Nickel is positioned after hydrogen 

in the electrochemical series and slowly displaces hydrogen ions from dilute hydrochloric and sulfuric 

acids. It reacts more rapidly with nitric acid.  Nickel is highly resistant to attack by strong alkalis 

(Hawley 1981).  Black nickel oxide readily yields nickel salts in the presence of acids (WHO 1991). 
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Table 4-1. Chemical Identity of Nickel and Compoundsa 

Characteristic Nickel Nickel acetate Nickel ammonium sulfate 
Acetic acid, nickel(2+) salt; 
nickel diacetate; nickelous 
acetate; nickel(II) acetate  

No data 

Ni(CH3CO2)2

O
2+

Ni H3C C O 
2 

373-02-4 15699-18-0 
 QR6125000 WS6050000d

No data No data 

No data No data 
No data No data 

1029 1241 
No data No data 

Ammonium nickel sulfate; 
sulfuric acid, ammonium 
nickel(2+) salt; ammonium 
disulfatonickelate(II) 
No data 

 Ni(NH4)2(SO4)2 

+ 

2 

O 2-
2+ O S O 

O 
NH4Ni

Synonyms 

Registered 
trade name(s) 

Chemical 
formula 
Chemical 
structure 

Identification numbers: 

Cl 77775; Nickel 200; 
Nickel 201; Nickel 205; Nickel 
270; Alnicob; NP 2b 

Monelb; Iconelb; Icoloyb; Raney 
nickelc; Nimonicd; Hastelloyd; 
Udimetd; Mar Md; René 41d; 
Waspaloyd 

Ni 

Ni 

 CAS registry 
NIOSH 
RTECS 
EPA 
hazardous 
waste 
OHM/TADS 

 DOT/UN/NA/ 
IMCO shipping 
HSDB 
NCI 

7440-02-0 
QR5950000d

No data 

No data 
No data 

1096 
No data 

2 
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Table 4-1. Chemical Identity of Nickel and Compoundsa 

Characteristic Nickel carbonate Nickel chloride Nickel cyanide 
Synonyms CI 77779; Carbonic acid, Nickel(II) chloride; nickel Nickel(II) cyanide; nickel 

nickel(2+) salt; nickel (II) dichloride; nickelous dicyanide; dicyanonickel 
carbonate; nickelous chloride 
carbonate; nickel 
monocarbonate 

Registered No data No data No data 
trade name(s) 
Chemical NiCO3 NiCl2 Ni(CN)2 
formula 
Chemical Cl – Ni – Cl NC – Ni – CN 
structure O 2

CNi
2+ 

O O 

Identification numbers: 
 CAS registry 3333-67-3 7718-54-9 557-19-7 
NIOSH QR6200000d QR6475000d QR6495000d

RTECS 
EPA No data No data No data 
hazardous 
waste 
OHM/TADS No data No data No data

 DOT/UN/NA/ No data No data UN1653
IMCO shipping 
HSDB 1662 860 1185 
NCI No data No data No data 
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4. CHEMICAL AND PHYSICAL INFORMATION 

Table 4-1. Chemical Identity of Nickel and Compoundsa 

Characteristic Nickel oxide	 Nickel nitrate  Nickel subsulfide 
Synonyms 	 Bunsenite; CI 77777; green Nitric acid, nickel(2+) salt, Trinickel disulfideb; nickel 

nickel oxide; mononickel nickelous nitrate; nickel sulfide; Heazlewoodite; 
oxide; nickel(II) oxide; dinitrate; nickel(II) nitrate nickel sesquisulfideb; 
nickelous oxide; nickel khislevuditeb; nickel 
monoxideb; nickel oxide sinter tritadisulfide 
75b; nickel protoxide; 
mononickel  

Registered 	 Nickel oxide No data No data 
trade name(s) 
Chemical NO Ni(NO3)2 Ni3S2 
formula 
Chemical 	 Ni – O No data _Ostructure 2+

Ni N 
O O 

2 

Identification numbers: 
 CAS registry 1313-99-1 13138-45-9 12035-72-2
 NIOSH QR8400000d QR7200000d QR9800000d 

RTECS 
EPA No data No data No data
hazardous 
waste 

 OHM/TADS No data No data No data
 DOT/UN/NA/ No data UN 27525; IMO 5.1 No data 
IMCO shipping 
HSDB 1664 1829 2965 
NCI No data No data No data 
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4. CHEMICAL AND PHYSICAL INFORMATION 

Table 4-1. Chemical Identity of Nickel and Compoundsa 

Characteristic Nickel sulfamate  Nickel sulfate 
Synonyms 	 Sulfamic acid, nickel(2+) saltd; Nickel monosulfate; 

Nickel amidosulfatee; Nickel nickelous sulfate; nickel(II) 
(II) sulfamatee; Aeronikl 250d; sulfate; sulfuric acid nickel 
Aeronikl 400d; Aeronikl 575d saltb 

Registered No data No data 
trade name(s) 
Chemical Ni(NH2SO3)2 NiSO4 
formula 
Chemical _O O 2structure 

2+ 2+H2N S O O S ONi Ni
O O2 

Identification numbers: 
 CAS registry 
NIOSH 
RTECS 

13770-89-3d 

QR9275000d 
7786-81-4 
QR9350000d

 EPA No data No data 
hazardous 
waste 
OHM/TADS No data 

 DOT/UN/NA/ 
IMCO shipping 

No data 

HSDB No data 

No data 
ID8027 

1114 
NCI No data NCI-C60344d 

aAll information obtained from HSDB 2004 except where noted. 
bCzerczak and Gromiec 2001 
cTien and Howson 1981; Windholz 1983.  Names refer to alloys of nickel.  Generally, there is a series of alloys with 
the same trade name (e.g., Monel alloy K-400, Monel alloy K-500). 
dRTECS 2004 
eLaschelles and Nicholls 1991 

CAS = Chemical Abstracts Service; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North 
America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; HSDB = 
Hazardous Substances Data Bank; NCI = National Cancer Institute; Ni = nickel; NIOSH = National Institute for 
Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; 
RTECS = Registry of Toxic Effects of Chemical Substances 
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4. CHEMICAL AND PHYSICAL INFORMATION 

Information regarding the physical and chemical properties of nickel and compounds is located in 

Table 4-2. 
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Table 4-2. Physical and Chemical Properties of Nickel and Compoundsa 

Nickel 
ammonium 

Property 
Molecular weight 
Color 
Physical state 
Melting point 
Boiling point 

Density  
Odor 

Nickel 
58.69 
Silvery 
Solid 
1,455 EC 
2,730 EC 

8.91 g/cm3

Odorless 

Nickel acetate 
176.80 
Green 
Solid 
Decomposes 
16.6 EC; 
decomposesb 

 1.798 g/cm3

Acetic odor 

sulfate 
286.90 
Blue-green 
Solid 
No data 
No data 

 1.923 g/cm3

Odorless 

Nickel carbonate 
118.70 
Green 
Solid 
Decomposes 
No data 

 4.39 g/cm3 

No data 
Odor threshold: 

Water  No data No data No data No data
 Air No data No data No data No data 
Solubility: 
 Water 1.13 mg/L at 37 ECc 17 weight% at 

68 EC 
104 g/L at 20 °C 93 mg/L at 25 °C 

 Organic 
solvents 

No data Insoluble in 
alcohol 

Insoluble in alcohol No data 

Partition coefficients: 
Kow No data No data No data No data
 Koc No data No data No data No data 

Vapor pressure   1 mmHg at 
1,810 EC 

No data No data No data 

Henry’s law 
constant 

No data No data No data No data 

Autoignition 
temperature 
Flashpoint 
Flammability limits 
Conversion factor  

No data 

No data 
No data 
No data 

No data 

No data 
No data 
No data 

Nonflammable 

Nonflammable 
Nonflammable 
No data 

Nonflammable 

Nonflammable 
Nonflammable 
No data 

Explosive limits No data No data No data No data 
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Table 4-2. Physical and Chemical Properties of Nickel and Compoundsa 

Property Nickel chloride Nickel cyanide Nickel oxide Nickel nitrate 
Molecular weight 129.60 110.73 74.69 182.72 
Color Golden yellow  Yellow brown Green or black Green 
Physical state Solid Solid Solid Solid 
Melting point 1,001 EC >200 °C 1,955 EC 56.7 ECc 

Boiling point Sublimes at 973 EC Decomposes No data 136.7 ECc 

Density  3.55 g/cm3 2.393 g/cm3 6.72 g/cm3 2.05 g/cm3d 

Odor None Weak almond No data No data 
odor 

Odor threshold: 
 Water No data No data No data No data
 Air No data No data No data No data 
Solubility: 

Water 642 g/L at 20 °C Insoluble 1.1 mg/L at 20 °C 2,385 g/L at 0 ECd; 
48.5 weight% at 20 °Cd

 Organic Soluble in ethanol; No data No data Insoluble in alcoholc; 
solvents 180 g/L at 20 EC in soluble in alcohold 

ethylene glycol 
Partition coefficients: 

Kow No data No data No data No data
 Koc No data No data No data No data 

Vapor pressure   1 mmHg at 671 EC No data No data No data 
Henry’s law No data No data No data No data 
constant 
Autoignition Nonflammable Nonflammable No data No data 
temperature 
Flashpoint Nonflammable Nonflammable No data No data 
Flammability limits Nonflammable Nonflammable No data No data 
Conversion factor  No data No data No data No data 
Explosive limits No data No data No data No data 
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Table 4-2. Physical and Chemical Properties of Nickel and Compoundsa 

Nickel 
Property Nickel subsulfide sulfamate Nickel sulfate 
Molecular weight 240.212 322.94f,g 154.75 
Color Pale yellowishe No data Greenish-yellow 
Physical state Solid Solid Solid 
Melting point 787 EC No data 840 EC 
Boiling point No data No data Decomposes at 840 EC 
Density  5.87 g/cm3 No data 4.01 g/cm3 

Odor No data No data Odorless 
Odor threshold: 
 Water No data No data No data


 Air No data No data No data
 

Solubility: 
 Water 517 mg/L at 37 ECc No data 293 g/L at 0 °C
 Organic No data No data Insoluble in ether and acetone; 0.2 g/L at 

Solvents 35 °C in ethanol; 0.9 g/L at 35 °C in 
methanol 

Partition coefficients: 
Kow No data No data No data
 Koc No data No data No data 

Vapor pressure   No data No data No data 
Henry’s law No data No data No data 
constant 
Autoignition No data No data Nonflammable 
temperature 
Flashpoint No data No data Nonflammable 
Flammability limits No data No data Nonflammable 
Conversion factor  No data No data No data 
Explosive limits No data No data No data 

aAll information obtained from HSDB 2004 except where noted. 

bDecomposes before melting.
 
cIshimatsu et al. 1995 

dData are for the hexahydrate. 

eIARC 1990 

fData are for the tetrahydrate. 

gLaschelles and Nicholls 1991
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 


5.1 PRODUCTION 


Nickel ranks 24th in order of abundance in the earth's crust, with an average concentration of 0.0086%.  

Its crustal concentration varies from >0.0001 to >0.3%.  Economically exploitable ore deposits typically 

contain 1–4% nickel. The concentration of nickel increases towards the center of the earth, and nickel is 

estimated to comprise 0.22% of the earth's mantle and 5.8% of its core (Duke 1980a).  Therefore, the 

nickel concentration is estimated to be 2% by weight when averaged over all of the Earth, making it the 

fifth most abundant element after iron, oxygen, magnesium, and silicon.  Nickel is found combined with 

iron in meteorites; the nickel content ranges from 5 to 50% (Duke 1980a; Mastromatteo 1986).  It is also 

found in sea floor nodules (Mastromatteo 1986). 

Nickel ores are of two general types:  magmatic sulfide ores, which are mined underground, and lateritic 

hydrous nickel silicates or garnierites, which are surface mined (Duke 1980a; Warner 1984). 

The most important nickel sulfide-arsenide deposits are in hydrothermal veins associated with mafic (i.e., 

rich in magnesium and iron) and ultramafic igneous rock.  These ores typically contain 1–3% nickel.  

Pentlandite (Ni,Fe)9S8 is the principle ore. Pentlandite often occurs along with the iron mineral pyrrhotite 

and the copper mineral chalcopyrite, and part of the smelting and refining process separates the copper 

and iron from the nickel. The ore is concentrated by physical means (i.e., flotation and magnetic 

separation) after crushing.  One of the largest sulfidic nickel deposits is in Sudbury, Ontario, Canada.  

Nickeliferous sulfide deposits are also found in Thompson, Manitoba, and Voisey’s Bay, Labrador, 

Canada; South Africa; Russia (primarily Siberia); Finland; western Australia; and Minnesota (Ademec 

and Kihlgren 1967; Duke 1980a; Kuck 2002). 

The lateritic hydrous nickel silicate ores are formed by the weathering of rocks rich in iron and 

magnesium in humid tropical areas.  The repeated processes of dissolution and precipitation lead to a 

uniform dispersal of the nickel that is not amenable to concentration by physical means; therefore, these 

ores are concentrated by chemical means such as leaching. Lateritic ores are less well defined than 

sulfide ores. The nickel content of lateritic ores is similar to that of sulfide ore and typically ranges from 

1 to 3% nickel.  Important lateritic deposits of nickel are located in Cuba, New Caledonia, Indonesia, 

Guatemala, the Dominican Republic, the Philippines, Brazil, and Spain.  Fossil nickeliferous laterite 
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deposits are found in Oregon, Greece, and the former Soviet Union, where humid, tropical climates 

prevailed in the past.  Lateritic deposits constitute the largest nickel reserves (Ademec and Kihlgren 1967; 

Antonsen and Springer 1967; Duke 1980a). Thirty-five percent of known nickel reserves are in the 

United States, followed by Russia at 11% (USGS 2003). 

Sulfide ores are processed by a number of pyrometallurgical processes:  roasting, smelting, and 

converting. During these processes, sulfur and iron are removed to yield a sulfur-deficient copper-nickel 

matte. Especially after roasting and converting, the nickel in the matte may consist primarily of nickel 

subsulfide. After physical separation of the copper and nickel sulfides, the nickel is refined 

electrochemically or by the carbonyl process.  The treatment of the matte depends on the end use of the 

nickel. Alternatively, the sulfide can be roasted to form a nickel oxide sinter that is used directly in steel 

production. 

Lateritic ore is processed by pyrometallurgical or hydrometallurgical processes.  In the pyrometallurgical 

process, sulfur is generally added to the oxide ore during smelting, usually as gypsum or elemental sulfur, 

and an iron-nickel matte is produced.  The smelting process that does not include adding sulfur produces a 

ferronickel alloy, containing ≤50% nickel, which can be used directly in steel production.  Hydro-

metallurgical techniques involve leaching with ammonia or sulfuric acid, after which the nickel is 

selectively precipitated (Duke 1980b; IARC 1990; Tien and Howson 1981; Warner 1984).  Alloys, such 

as stainless steels, are produced by melting primary metals and scrap in large arc furnaces and adjusting 

the carbon content and concentration of alloying metals to the desired levels.  More information on the 

mining, smelting, and refining of nickel can be found in Duke (1980b), Tien and Howson (1981), and 

Warner (1984). 

Domestic primary nickel production in the United States ceased in 1986 (Chamberlain 1985; Kirk 1988a) 

with the closing of the Hanna mine and smelter in Riddle, Oregon, and the AMAX refinery in 

Braithwaite, Louisiana.  However, Glenbrook Nickel Company purchased the Riddle, Oregon, facility in 

1989 and had reactivated the mining and smelting operation, but then decommissioned both the mining 

and smelting operations in 2000.  World mine production of nickel in 2002 was estimated at 

1,340,000 metric tons, which matched the production level reported for 2001 (Kuck 2002).  Secondary 

nickel production from scrap is a major source of nickel for industrial applications.  In 1988, an estimated 

59,609 and 3,700 short tons (51,355 and 3,357 metric tons, respectively) of nickel were produced from 

ferrous and nonferrous scrap, respectively.  Nickel recovery from scrap is estimated by using the gross 

weight of the scrap and a weighted average nickel content (e.g., 7.5% for stainless steel).  The secondary 
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recovery from ferrous scrap was considerably higher and the recovery from nonferrous scrap was 

considerably lower than for the previous 7 years in which the annual recovery of nickel from ferrous and 

nonferrous scrap ranged from 30,034 to 389,265 short tons (27,246–353,139 metric tons) and from 

8,392 to 19,776 short tons (7,613–17,940 metric tons), respectively.  The production of refined nickel in 

1993 has been estimated as 220,700, 346,800, 176,200, 52,100, and 96,300 short tons (200,200, 314,600, 

159,800, 47,300, and 87,400 metric tons, respectively) for North America, Europe, Asia, Africa, and 

Australia, respectively (ABMS 1994). In 2002, 1,210,000 metric tons of refined nickel were produced.  

Of this total production, there were 259,000 metric tons in the form of ferronickel, 678,000 metric tons as 

the metal, 97,000 metric tons as the oxide sinter, 17,800 metric tons as chemicals, and 154,000 metric 

tons as unspecified production (Kuck 2002).  The distribution of world plant production of refined nickel 

was 20.3%, Russia (Commonwealth of Independent States); 16.4%, Europe; 12.9%, Japan; 11.9%, 

Canada; 15.8%, Australia/New Caledonia; 4.5%, China; 4.0%, Africa; 3.7%, Colombia; 3.3%, Cuba, and 

7.2%, Brazil, Dominican Republic, Indonesia, and Venezuela (Kuck 2002).  The reported world 

consumption of refined nickel was 1,150,800 metric tons in 2001, up from 997,800 metric tons in 1997 

(ABMS 2002).  In 2002, demand for primary nickel in the Western World was 1,032,000 metric tons, up 

from 968,700 metric tons in 2001 (Kuck 2002). 

Tables 5-1 and 5-2 list the facilities that produced, imported, processed, or used nickel and its compounds, 

respectively, in 2001 according to reports made to the EPA under the requirements of Section 313 of the 

Emergency Planning and Community Right-to-Know Act of 1986, which were subsequently published in 

the Toxic Chemical Release Inventory (TRI) (TRI02 2004).  Companies were required to report if they 

produced, imported, or processed ≥25,000 pounds of nickel and its compounds or used >10,000 pounds.  

Also included in Tables 5-1 and 5-2 are the maximum amount of nickel and its compounds, respectively, 

that these facilities had on site and whether nickel was produced, processed, or used by the facility. 

5.2 IMPORT/EXPORT 

In 2002, the United States imported 130,000 metric tons of nickel, including 121,000 metric tons of 

unwrought metal (97,200 metric tons of cathodes, pellets, briquets and shot; 12,300 metric tons of 

ferronickel; 6,970 metric tons of powder and flakes, 1,230 metric tons of metallurgical-grade oxide; 

1,280 metric tons of catalysts; and 1,590 metric tons of salts), 6,080 metric tons of stainless steel scrap, 

and 3,030 metric tons of nickel waste and scrap (Kuck 2002).  In 2002, Canada supplied the largest share 

of primary nickel, 59,400 metric tons (46%).  Russia was the second largest exporter of primary nickel to 

the United States with 24,200 metric tons (19%) followed by Australia and Norway with 10,400 and 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1. Facilities that Produce, Process, or Use Nickel Metal 

Number Minimum Maximum 
of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AL 73 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
AR 47 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
AZ 41 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
CA 146 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
CO 39 100 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 
CT 78 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
DC 2 10,000 999,999 8 
DE 15 100 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
FL 30 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
GA 57 0 999,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
HI 1 10,000 99,999 10 
IA 71 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
ID 12 0 999,999 1, 3, 5, 7, 8, 10, 12 
IL 145 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
IN 158 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
KS 41 0 49,999,999 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14 
KY 85 0 999,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
LA 42 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MA 71 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
MD 44 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
ME 13 1,000 99,999,999 1, 3, 7, 8, 12 
MI 154 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MN 69 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MO 59 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MS 17 0 9,999,999 1, 2, 3, 6, 7, 8, 10, 12 
MT 8 100 99,999 1, 2, 3, 5, 6, 8, 10, 11 
NC 66 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
ND 9 1,000 999,999 2, 3, 5, 7, 8, 9, 12 
NE 39 0 9,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 
NH 19 0 49,999,999 3, 7, 8, 9, 11, 12 
NJ 86 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
NM 13 100 999,999 2, 3, 6, 7, 8, 10, 11 
NV 27 100 9,999,999 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
NY 93 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
OH 204 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OK 74 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OR 45 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
PA 237 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
PR 6 0 99,999 2, 3, 7, 8, 10, 11, 12 
RI 36 0 999,999 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1. Facilities that Produce, Process, or Use Nickel Metal 

Number Minimum Maximum 
of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

SC 77 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
SD 9 1,000 999,999 1, 5, 7, 8, 9, 11 
TN 113 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
TX 137 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
UT 40 100 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 
VA 49 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
VT 15 1,000 999,999 2, 4, 8, 11, 12 
WA 31 0 999,999 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 
WI 114 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14 
WV 35 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
WY 9 100 99,999 1, 4, 8, 9, 10, 12, 13 

Source: TRI02 2004 (Data are from 2002) 

aPost office state abbreviations used 
bAmounts on site reported by facilities in each state 
cActivities/Uses: 
1. Produce 
2. Import 
3. Onsite use/processing 
4. Sale/Distribution 
5. Byproduct 

6. Impurity 
7. Reactant 
8. Formulation Component 
9. Article Component 
10. Repackaging 

11. Chemical Processing Aid 
12. Manufacturing Aid  
13. Ancillary/Other Uses 
14. Process Impurity 



  
 

 
 

 

 

 

 

 
 
 
 
 

NICKEL 200 

5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-2. Facilities that Produce, Process, or Use Nickel Compounds 

Number of Minimum amount Maximum amount 
Statea facilities on site in poundsb on site in poundsb Activities and usesc 

AK 7 10,000 9,999,999 1, 2, 3, 5, 7, 10, 11, 12, 13 
AL 83 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
AR 46 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
AZ 54 100 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
CA 163 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
CO 16 100 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 
CT 81 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
DC 4 10,000 99,999 1, 3, 5, 6, 8, 10, 11 
DE 19 0 9,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14 
FL 52 0 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
GA 79 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
HI 5 0 999,999 1, 5, 10, 12 
IA 42 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
ID 20 1,000 49,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
IL 184 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
IN 143 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
KS 35 0 9,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
KY 82 100 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
LA 73 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MA 50 100 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
MD 37 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13 
ME 12 0 999,999 1, 5, 8, 9, 11, 12, 13 
MI 149 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MN 66 100 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MO 63 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MS 37 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
MT 16 0 9,999,999 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14 
NC 73 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
ND 4 1,000 9,999 1, 5, 12, 13, 14 
NE 19 100 999,999 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
NH 12 0 99,999 1, 5, 7, 8, 9 
NJ 91 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
NM 19 100 499,999,999 1, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14 
NV 33 100 10,000,000,000 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14 
NY 110 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OH 218 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OK 42 100 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
OR 38 100 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 
PA 229 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-2. Facilities that Produce, Process, or Use Nickel Compounds 

Number of Minimum amount Maximum amount 
Statea facilities on site in poundsb on site in poundsb Activities and usesc 

PR 19 100 999,999 1, 2, 5, 6, 7, 8, 10, 11, 12, 13 
RI 39 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
SC 61 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
SD 1 10,000 99,999 1, 5, 9, 13 
TN 100 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
TX 194 0 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
UT 26 100 49,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
VA 44 0 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
VI 4 10,000 999,999 2, 10, 11 
WA 28 0 999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,  
WI 75 0 9,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
WV 45 0 99,999,999 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
WY 9 100 99,999 1, 2, 3, 4, 5, 9, 10, 12, 13 

Source: TRI02 2004 (Data are from 2002) 

aPost office state abbreviations used 
bAmounts on site reported by facilities in each state 
cActivities/Uses: 
1. Produce 6. Impurity 11. Chemical Processing Aid 
2. Import 7. Reactant 12. Manufacturing Aid  
3. Onsite use/processing 8. Formulation Component 13. Ancillary/Other Uses 
4. Sale/Distribution 9. Article Component 14. Process Impurity 
5. Byproduct 10. Repackaging 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

8,550 metric tons, respectively.  The 130,000 metric tons of nickel imported in 2002 was down from the 

167,000 and 144,000 metric tons imported in 2000 and 2001, respectively (Kuck 2001, 2002).  From 

1999 to 2001, nickel imports as a percentage of consumption decreased from 63 to 46%, with a slight 

increase to 48% in 2002 (USGS 2003). 

The amount of exported nickel dropped sharply in 1986 to 15,217 short tons (13,805 metric tons) from 

35,245 short tons (31,974 metric tons) the previous year (Kirk 1988a), which coincided with the cessation 

of primary nickel production in the United States.  The nickel content of exported primary and secondary 

nickel in 2002 was 45,900 metric tons, most of which (39,400 metric tons) was in the form of stainless 

steel scrap and waste scrap (Kuck 2002). 

5.3 USE 

Nickel is primarily used in alloys because it imparts to a product such desirable properties as corrosion 

resistance, heat resistance, hardness, and strength.  Nickel alloys are often divided into categories 

depending on the primary metal with which they are alloyed and their nickel content.  Copper-nickel 

alloys (e.g., Monel alloys) are used for industrial plumbing, marine equipment, petrochemical equipment, 

heat exchangers, pumps, and electrodes for welding.  Coinage metal contains 75% copper and 25% 

nickel. Nickel-chromium alloys (e.g., Nichrome) are used for heating elements.  Nickel-iron-chromium 

alloys (e.g., Inconel) provide strength and corrosion resistance over a wide temperature range.  Hastelloy 

alloys, which contain nickel, chromium, iron, and molybdenum, provide oxidation and corrosion 

resistance for use with acids and salts.  Nickel-based superalloys have the required high-temperature 

strength and creep and stress resistance for use in gas-turbine engines.  Nickel silvers, and nickel alloys 

with zinc and copper, have an attractive white color and are used for coatings on tableware and as 

electrical contacts.  Raney nickel, 50% aluminum and 50% nickel, is used as a catalyst in hydrogenation 

reactions. Large amounts of nickel are alloyed with iron to produce alloy steels, stainless steels, and cast 

irons. Stainless steel may contain as much as 25–30% nickel, although 8–10% nickel is more typical.  

Alloy steels generally contain 0.3–5% nickel.  In addition to imparting characteristics such as strength, 

toughness, corrosion resistance, and machinability, some applications make use of nickel's magnetic 

characteristics. Most permanent magnets are made of alloys of iron and nickel (Tien and Howson 1981). 

Nickel salts are used in electroplating, ceramics, pigments, and as catalysts.  Sinter nickel oxide is used as 

charge material in the manufacture of alloy steel and stainless steel.  Nickel is also used in nickel-

cadmium (NiCd) and nickel-metal hydride (NiMH) batteries. 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

The distribution of nickel consumption by use in 2002 was as follows:  stainless and heat-resistant steel, 

61%; nickel-copper and copper-nickel alloys, 4%; other nickel alloys, 13%; electroplating, 6%; 

superalloys, 9%; and other, 7%.  Other uses include cast iron; chemicals and chemical use; electric, 

magnet, expansion alloys; steel alloys, other than stainless steel; batteries; and ceramics.  Forty-six 

percent of primary nickel consumption in 2002 was for the production of stainless steel and low-nickel 

steels, and 33% was used for the production of superalloys and related nickel-based alloys (Kuck 2002). 

5.4 DISPOSAL 

Little information concerning the disposal of nickel and its compounds is found in the literature.  Much of 

the nickel used in metal products (e.g., stainless steel, nickel plate, various alloys) is recycled, which is 

evident from the fact that 53% of nickel consumption in 2002 was derived from secondary scrap (Kuck 

2002).  According to the 2002 TRI, 86% of the 29,698,967 pounds (13,483,331 kg) of nickel and nickel 

compounds released on-site is released to land (see Section 6.1) (TRI02 2004).  In addition, >14 million 

pounds of nickel were transferred to off-site locations that year with about 90% being recycled.  Steel and 

other nickel-containing items discarded by households and commercial establishments are generally 

recycled, landfilled, or incinerated along with normal commercial and municipal trash. 

Nickel is removed from electroplating wastes by treatment with hydroxide, lime, and/or sulfide to 

precipitate the metal (HSDB 2004).  Adsorption with activated carbon, activated alumina, and iron filings 

is also used for treating nickel-containing waste water.  Ion exchange is also used for nickel removal and 

recovery. 

Nickel and its compounds have been designated as toxic pollutants by EPA pursuant to Section 307(a)(1) 

of the Federal Water Pollution Control Act (40 CFR 401.15).  As such, permits are issued by the states 

under the National Pollutant Discharge Elimination System (NPDES) for discharges of nickel that meet 

the applicable requirements (40 CFR 401.12). 
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6. POTENTIAL FOR HUMAN EXPOSURE 


6.1 OVERVIEW
 

Nickel has been identified in at least 872 of the 1,662 hazardous waste sites that have been proposed for 

inclusion on the EPA National Priorities List (NPL) (HazDat 2005).  However, the number of sites 

evaluated for nickel is not known.  The frequency of these sites can be seen in Figure 6-1. Of these sites, 

862 are located within the United States, 6 are located in the Commonwealth of Puerto Rico, and 4 are 

located in the Territory of Guam (the Commonwealth of Puerto Rico and the Territory of Guam are not 

shown). 

Nickel and its compounds are naturally present in the Earth's crust, and releases to the atmosphere occur 

from natural discharges such as windblown dust and volcanic eruptions, as well as from anthropogenic 

activities. It is estimated that 8.5 million kg of nickel are emitted into the atmosphere from natural 

sources such as windblown dust, volcanoes, and vegetation each year (Bennett 1984; Schmidt and Andren 

1980). Five times that quantity is estimated to come from anthropogenic sources (Nriagu and Pacyna 

1988).  The burning of residual and fuel oil is responsible for 62% of anthropogenic emissions, followed 

by nickel metal refining, municipal incineration, steel production, other nickel alloy production, and coal 

combustion (Bennett 1984; Schmidt and Andren 1980).  Table 6-1 lists releases from facilities in the 

United States that produced, processed, or used nickel metal in 2002, according to TRI (TRI02 2004).  

These releases, which totaled 6,792,299 pounds (3,081 metric tons), were distributed as follows:  82.2% 

to land, 6.0% to air, 2.2% to water, and 0.8% to underground injection.  Table 6-2 lists releases from 

facilities in the United States that produced, processed, or used nickel compounds in 2002, according to 

TRI (TRI02 2004). These releases, which totaled 37,558,704 pounds (17,037 metric tons), were 

distributed as follows: 87.1% to land, 2.5% to air, 1.4% to water, and 1.7% to underground injection.  

The TRI data should be used with caution because only certain types of facilities are required to report.  

This is not an exhaustive list. 

The general population is exposed to low levels of nickel in ambient air, water, and food.  Exposure also 

occurs from smoking.  The general population takes in most nickel through food.  The average daily 

dietary nickel intake for U.S. diets is 69–162 µg (NAS 2002; O’Rourke et al. 1999; Pennington and Jones 

1987; Thomas et al. 1999).  These values agree with those from European studies.  Typical average daily 

intakes of nickel from drinking water and inhalation of air are approximately 8 and 0.04 µg, respectively. 
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Figure 6-1.  Frequency of NPL Sites with Nickel Contamination 
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6. POTENTIAL FOR HUMAN EXPOSURE 

Table 6-1. Releases to the Environment from Facilities that Produce, Process, or 

Use Nickela
 

Reported amounts released in pounds per yearb 

Total release 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek 
On- and off-
site 

AL 58 2,610 1,302 0 81,145 256 3,786 81,526 85,312 
AR 38 15,621 665 0 11,572 13,210 16,176 24,893 41,069 
AZ 19 1,421 6 0 674,841 5 670,775 5,498 676,273 
CA 94 1,886 3,377 24,776 223,027 17,568 216,055 54,578 270,634 
CO 15 97 58 0 1,232 19,277 357 20,308 20,665 
CT 47 2,514 4,355 0 58,026 18,330 3,124 80,102 83,225 
DE 2 5 0 0 750 250 5 1,000 1,005 
FL 26 2,188 340 3,833 8,429 29,663 9,480 34,973 44,453 
GA 36 2,617 1,072 0 3,459 11,575 3,222 15,502 18,724 
IA 62 4,459 1,623 0 38,465 12,020 5,880 50,687 56,568 
ID 5 70 5 0 238,979 0 239,049 5 239,054 
IL 129 8,057 19,525 255 111,752 16,157 13,473 142,273 155,746 
IN 154 37,078 3,914 500 2,026,732 43,905 42,673 2,069,457 2,112,130 
KS 24 2,422 94 0 10,671 594 11,730 2,051 13,781 
KY 54 2,220 2,555 0 58,811 15,529 2,701 76,414 79,115 
LA 33 917 899 0 64,942 2,940 57,072 12,626 69,698 
MA 41 1,866 983 0 33,468 27,945 2,459 61,803 64,262 
MD 13 72 40 0 728 1,418 91 2,167 2,258 
ME 8 242 69 0 4,585 4,122 263 8,755 9,018 
MI 115 17,489 6,921 0 110,495 32,153 20,683 146,374 167,057 
MN 44 658 312 0 1,441 255 910 1,756 2,666 
MO 51 7,304 2,103 0 7,801 1,001 10,464 7,745 18,209 
MS 25 5,243 127 0 2,326 0 5,655 2,041 7,697 
MT 1 40 0 0 16,000 0 16,040 0 16,040 
NC 68 965 2,477 0 52,612 26,814 21,099 61,769 82,868 
ND 5 34 5 0 2,554 250 37 2,806 2,843 
NE 24 2,390 586 0 15,052 192 2,465 15,755 18,220 
NH 16 1,000 8,364 0 330 38,540 1,009 47,225 48,234 
NJ 22 4,408 2,287 0 8,664 52,540 4,414 63,485 67,899 
NM 4 482 7 0 275 7 734 37 771 
NV 10 1,040 5 0 64,280 0 40,214 25,111 65,325 
NY 67 10,149 3,763 0 37,047 21,878 16,151 56,685 72,836 
OH 212 20,209 13,783 5,478 708,223 11,067 196,744 562,016 758,759 
OK 66 16,142 190 0 50,733 0 45,194 21,871 67,065 
OR 14 2,511 919 0 58,520 5 2,623 59,332 61,955 
PA 209 203,216 6,538 0 68,001 55,213 206,110 126,858 332,967 
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6. POTENTIAL FOR HUMAN EXPOSURE 

Table 6-1. Releases to the Environment from Facilities that Produce, Process, or 

Use Nickela
 

Reported amounts released in pounds per yearb 

Total release 
On- and off-

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek site 
PR 4 0 0 0 0 0 0 0 0 
RI 7 266 505 0 0 500 271 1,000 1,271 
SC 52 3,633 1,226 0 192,091 643 12,882 184,710 197,593 
SD 6 324 5 0 47 0 324 52 376 
TN 52 1,467 11,413 0 54,393 1,932 9,685 59,520 69,205 
TX 121 6,327 28,697 20,343 211,220 82,910 42,933 306,562 349,495 
UT 13 297 267 0 760 0 797 528 1,325 
VA 25 1,082 2,490 0 13,393 2,702 5,899 13,768 19,667 
VT 5 10 10 0 0 16,186 10 16,196 16,206 
WA 20 794 716 0 23,067 2,809 1,482 25,904 27,386 
WI 147 10,440 16,873 0 185,992 15,681 21,180 207,806 228,986 
WV 13 77 252 0 18,704 1,535 18,629 1,939 20,568 
WY 3 53 1 0 25,759 7 25,812 8 25,820 
Total 2,279 404,413 151,725 55,185 5,581,392 599,585 2,028,824 4,763,475 6,792,299 

Source: TRI02 2004 (Data are from 2002) 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 

exhaustive list.  Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used. 

dNumber of reporting facilities.

eThe sum of fugitive and point source releases are included in releases to air by a given facility. 

fSurface water discharges, wastewater treatment-(metals only), and publicly owned treatment works (POTWs)
 
(metal and metal compounds).
 
gClass I wells, Class II-V wells, and underground injection. 

hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other on-site landfills, land treatment, surface 

impoundments, other land disposal, other landfills. 

iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 

disposal, unknown 

jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 

kTotal amount of chemical transferred off-site, including to POTWs. 


RF = reporting facilities; UI = underground injection 
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Table 6-2. Releases to the Environment from Facilities that Produce, Process, or 

Use Nickel Compoundsa
 

Reported amounts released in pounds per yearb 

Total release 
Stat 
ec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek 

On- and off-
site 

AK 3 56 221 0 543,911 0 544,124 64 544,188 
AL 31 10,093 5,431 501 864,693 71,756 867,989 84,485 952,474 
AR 15 11,912 624 0 810,593 30,419 761,710 91,838 853,548 
AZ 12 2,647 5 100,000 5,922,548 505 6,011,495 14,210 6,025,705 
CA 73 6,129 8,742 4,981 1,102,665 42,528 1,038,435 126,611 1,165,045 
CO 7 499 92 0 52,244 47 33,972 18,910 52,882 
CT 18 1,586 2,837 0 114,292 49,426 2,503 165,638 168,141 
DC 1 0 0 0 18 0 0 18 18 
DE 7 19,291 23,985 0 126,040 23,795 119,068 74,043 193,111 
FL 23 144,268 4,246 0 2,534,663 4,052 2,629,871 57,358 2,687,229 
GA 24 7,599 15,428 0 606,137 132 610,622 18,673 629,295 
HI 2 64,800 10 0 4,022 0 64,810 4,022 68,832 
IA 18 6,529 28,253 0 156,841 49,686 145,002 96,307 241,309 
ID 4 1,490 56 0 33,000 0 34,495 51 34,546 
IL 89 18,190 13,206 0 752,162 127,262 481,610 429,210 910,820 
IN 76 31,891 19,303 490 1,937,458 187,004 1,524,230 651,917 2,176,146 
KS 13 2,608 280 0 64,708 292 66,981 907 67,889 
KY 40 23,463 12,224 0 1,784,073 80,688 1,255,775 644,673 1,900,448 
LA 35 58,235 7,085 9,841 364,170 474,747 311,507 602,571 914,078 
MA 16 15,582 1,270 0 96,020 8,135 39,054 81,953 121,007 
MD 11 28,308 2,733 319 10,225 148,413 40,717 149,281 189,998 
ME 2 50 3,336 0 6 80 50 3,422 3,472 
MI 70 18,024 42,115 0 580,122 90,302 282,080 448,483 730,563 
MN 22 14,786 5,678 0 228,322 67,133 98,965 216,954 315,919 
MO 32 8,476 2,669 0 661,528 21,698 597,580 96,791 694,371 
MS 11 3,859 1,235 72,000 87,969 907 99,004 66,966 165,970 
MT 7 2,468 0 101,419 770,075 3,775 431,813 445,924 877,737 
NC 30 9,046 4,179 0 551,706 8,848 562,930 10,850 573,780 
ND 4 4,159 10 0 128,699 1,800 75,869 58,799 134,668 
NE 8 209 1,554 0 127,490 41,645 127,720 43,178 170,898 
NH 5 376 126 0 11,192 45 1,781 9,958 11,739 
NJ 15 2,415 5,661 0 62,541 9,865 33,721 46,760 80,481 
NM 3 339 1 0 112,800 0 73,140 40,000 113,140 
NV 10 8,403 930 0 2,568,163 0 2,577,480 16 2,577,496 
NY 33 10,228 49,939 0 233,794 136,288 270,034 160,216 430,250 
OH 95 21,520 122,772 271,001 2,122,342 243,006 1,221,840 1,558,801 2,780,641 
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Table 6-2. Releases to the Environment from Facilities that Produce, Process, or 

Use Nickel Compoundsa
 

Reported amounts released in pounds per yearb 

Total release 
Stat 
ec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek 

On- and off-
site 

OK 17 9,129 1,800 0 264,634 14,331 238,243 51,651 289,894 
OR 9 1,618 264 0 39,697 0 34,682 6,897 41,578 
PA 113 90,020 40,145 0 2,021,526 298,951 553,237 1,897,405 2,450,642 
PR 6 85,852 2,704 0 8,914 3,300 88,556 12,214 100,770 
RI 7 254 3,147 0 447 5,099 814 8,133 8,947 
SC 27 5,666 12,734 0 208,779 86,978 178,444 135,713 314,158 
SD 1 208 0 0 19,000 0 19,208 0 19,208 
TN 38 14,291 14,597 0 721,360 11,733 544,837 217,144 761,981 
TX 98 27,305 10,954 71,192 1,050,243 217,862 777,048 600,507 1,377,555 
UT 10 2,374 3,450 0 891,742 80 897,517 129 897,646 
VA 20 55,129 8,637 0 314,676 37,945 371,633 44,753 416,387 
VI 1 227 0 0 3,047 0 1,703 1,571 3,274 
WA 7 650 1,047 7 143,228 234 137,877 7,289 145,166 
WI 46 5,615 9,474 0 41,811 108,006 8,384 156,521 164,906 
WV 18 80,986 21,617 2,681 745,233 20,087 647,928 222,676 870,604 
WY 3 3,260 0 0 128,797 6,100 132,057 6,100 138,157 
Total 1,286 942,117 516,804 634,432 32,730,365 2,734,986 27,670,143 9,888,561 37,558,704 

Source: TRI02 2004 (Data are from 2002) 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 

exhaustive list.  Data are rounded to nearest whole number.
 
bData in TRI are maximum amounts released by each facility.
 
cPost office state abbreviations are used. 

dNumber of reporting facilities.
 
eThe sum of fugitive and point source releases are included in releases to air by a given facility. 

fSurface water discharges, wastewater treatment-(metals only), and publicly owned treatment works (POTWs)
 
(metal and metal compounds).

gClass I wells, Class II-V wells, and underground injection. 

hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other on-site landfills, land treatment, surface 

impoundments, other land disposal, other landfills. 

iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 

disposal, unknown 

jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 

kTotal amount of chemical transferred off-site, including to POTWs. 


RF = reporting facilities; UI = underground injection 
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The highest general population exposures to nickel are typically observed in communities surrounding 

nickel refineries. This is reflected, for example, in the intakes of nickel from water and air reported in 

Sudbury, Ontario, Canada, of 140 and 15 µg/day, respectively.  However, this source of exposure to 

nickel is not a concern for U.S. populations, due to the absence of refinery operations in the United States.  

Other potential sources of nickel exposure are from contaminated intravenous fluids, dialysis, and 

leaching and corrosion of nickel from prostheses. 

Occupational exposure to nickel may occur by dermal contact or by inhalation of aerosols, dusts, fumes, 

or mists containing nickel.  Dermal contact may also occur with nickel solutions, such as those used in 

electroplating, nickel salts, and nickel metal or alloys.  Nickel-containing dust may be ingested where 

poor work practices exist or where poor personal hygiene is practiced.  A National Occupational 

Exposure Survey (NOES) conducted by NIOSH from 1981 to 1983 estimates that 727,240 workers are 

potentially exposed to some form of nickel metal, alloys, salts, or inorganic nickel compounds in the 

United States (NIOSH 1990). The forms of nickel that these workers were probably exposed to and the 

levels of exposure for different industries and operations were reviewed by Warner (1984) and IARC 

(1990). 

Information on nickel exposure from hazardous waste sites is lacking.  The most probable route of 

exposure from hazardous waste sites would be from consumption of contaminated drinking water, 

inhalation of dust, dermal contact with bath/shower water, soil, or dust, and ingestion of nickel-

contaminated soil.  Groundwater contamination may occur where the soil has a coarse texture and where 

acid waste, such as waste from plating industries, is discarded.  However, there is no information linking 

this source of nickel contamination in groundwater to levels of nickel in drinking water that would be of 

concern (>50 µg/L). 

Nickel releases to the atmosphere are mainly in the form of aerosols that cover a broad spectrum of sizes.  

Particulates from power plants tend to be smaller than those from smelters (Cahill 1989; Schroeder et al. 

1987).  Atmospheric aerosols are removed by gravitational settling and dry and wet deposition.  

Submicron particles may have atmospheric half-lives as long as 30 days (Schroeder et al. 1987).  

Monitoring data confirm that nickel can be transported far from its source (Pacyna and Ottar 1985). 

Average ambient air nickel concentrations in the United States measured during 1977–1982 ranged 

between 7 and 12 ng/m3 (EPA 1986a). A recent estimate of ambient nickel concentrations in the United 

States based on data collected in 1996 is 2.22 ng/m3 (EPA 2003u).  Nickel concentrations in air 

particulate matter in remote, rural, and U.S. urban areas have been found in the ranges of 0.01–60, 0.6– 
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78, and 1–328 ng/m3, respectively (Schroeder et al. 1987).  Nickel concentrations in indoor air are 

typically <10 ng/m3 (Graney et al. 2004; Kinney et al. 2002; Koutrakis et al. 1992; Van Winkle and 

Scheff 2001). 

The form of nickel emitted to the atmosphere varies according to the type of source.  Nickel species 

associated with combustion, incineration, and metals smelting and refining are often complex nickel 

oxides, nickel sulfate, and metallic nickel, and in more specialized industries, the species commonly 

found are nickel silicate, nickel subsulfide, and nickel chloride (EPA 1985a). 

Uncontaminated freshwater and seawater generally contain about 0.300 µg/L of nickel (Barceloux 1999).  

Concentrations of nickel in drinking water commonly range from 0.55 to 25 µg/L and average between 

2 and 4.3 µg/L.  The concentration of nickel in rain has been reported as ≤1.5 µg/L. Concentrations of 

nickel in snow in Montreal, Canada, ranged from 2 to 300 ppb (2,300 µg/L) (Landsberger et al. 1983). 

Nickel is a natural constituent of soil; levels vary widely depending on local geology and anthropogenic 

input.  The typical concentrations of nickel reported in soil range from 4 to 80 ppm.  Nickel may be 

transported into streams and waterways from the natural weathering of soil as well as from anthropogenic 

discharges and runoff.  This nickel accumulates in sediment.  Nickel levels in surface water are low.  In 

some studies, nickel could not be detected in a large fraction of analyzed samples.  Median nickel 

concentrations in rivers and lakes range from ≈0.5 to 6 µg/L.  Levels in groundwater appear to be similar 

to those in surface water.  Levels in seawater are typically 0.1–0.5 µg/L. 

The speciation and physicochemical state of nickel is important in considering its behavior in the 

environment and availability to biota.  For example, the nickel incorporated in some mineral lattices may 

be inert and have no ecological significance.  Most analytical methods for nickel do not distinguish the 

form of nickel; the total amount of nickel is reported, but the nature of the nickel compounds and whether 

they are adsorbed to other material is not known. This information, which is critical in determining 

nickel's liability and availability, is site specific.  Therefore, it is impossible to predict nickel's 

environmental behavior on a general basis. 

Little is known concerning the chemistry of nickel in the atmosphere.  The probable species present in the 

atmosphere include soil minerals, nickel oxide, and nickel sulfate (Schmidt and Andren 1980).  In aerobic 

waters at environmental pHs, the predominant form of nickel is the hexahydrate Ni(H2O)6
2+ ion (Richter 

and Theis 1980).  Complexes with naturally occurring anions, such as OH–, SO4
2-, and Cl–, are formed to 
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a small degree.  Complexes with hydroxyl radicals are more stable than those with sulfate, which in turn 

are more stable than those with chloride.  Ni(OH)2
0 becomes the dominant species above pH 9.5.  In 

anaerobic systems, nickel sulfide forms if sulfur is present, and this limits the solubility of nickel.  In soil, 

the most important sinks for nickel, other than soil minerals, are amorphous oxides of iron and 

manganese. The mobility of nickel in soil is site specific depending mainly on soil type and pH.  The 

mobility of nickel in soil is increased at low pH.  At one well-studied site, the sulfate concentration and 

the surface area of soil iron oxides were also key factors affecting nickel adsorption (Richter and Theis 

1980). 

6.2 RELEASES TO THE ENVIRONMENT 

The TRI data should be used with caution because only certain types of facilities are required to report 

(EPA 1997). This is not an exhaustive list.  Manufacturing and processing facilities are required to report 

information to the Toxics Release Inventory only if they employ 10 or more full-time employees; if their 

facility is classified under Standard Industrial Classification (SIC) codes 20–39; and if their facility 

produces, imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds 

of a TRI chemical in a calendar year (EPA 1997). 

Most analytical methods for nickel in environmental samples do not distinguish between compounds of 

nickel or the nature of its binding to soil and particulate matter.  It is generally impossible to say with 

certainty what forms of nickel are released from natural and anthropogenic sources, what forms are 

deposited or occur in environmental samples, and to what forms of nickel people are exposed.  The form 

of nickel has important consequences as far as its transport, transformations, and bioavailability are 

concerned. 

6.2.1 Air 

Estimated releases of 404,413 pounds (~183 metric tons) of nickel and 942,117 pounds (~427 metric 

tons) of nickel compounds to the atmosphere from 2,279 and 1,286 domestic manufacturing and 

processing facilities in 2002, respectively, accounted for about 6.0 and 2.5% of the estimated total 

environmental releases, respectively, from facilities required to report to the TRI (TRI02 2004).  These 

releases are summarized in Tables 6-1 and 6-2. 
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Nickel and its compounds are naturally present in the Earth's crust, and releases to the atmosphere occur 

from natural processes such as windblown dust and volcanic eruption, as well as from anthropogenic 

activities. These latter releases are mainly in the form of aerosols.  It is important to consider the 

background levels that are due to natural sources and distinguish them from levels that may result from 

anthropogenic activities.  It is estimated that 8.5 million kg of nickel are emitted into the atmosphere from 

natural sources each year (Bennett 1984; Schmidt and Andren 1980).  Based on this value, sources of 

nickel have been estimated as follows:  windblown dust, 56%; volcanoes, 29%; vegetation, 9%; forest 

fires, 2%; and meteoric dust, 2%. A more recent and higher estimate of 30 million kg/year has been given 

for emission of nickel into the atmosphere from natural sources (Duce et al. 1991; Giusti et al. 1993).  

Anthropogenic sources of atmospheric nickel include nickel mining, smelting, refining, production of 

steel and other nickel-containing alloys, fossil fuel combustion, and waste incineration. 

Emissions factors (i.e., kg of nickel emissions per unit consumption or production) have been estimated 

for various source categories, and these have been used to estimate worldwide emissions (Nriagu and 

Pacyna 1988).  According to Schmidt and Andren (1980), annual anthropogenic emissions are estimated 

to contain 43 million kg of nickel (median value), 1.4 times the natural emission rate of 30 million 

kg/year.  Nriagu and Pacyna (1988) estimate annual anthropogenic emissions as 55.6 million kg.  The 

nickel emission factor for burning residual and fuel oil is estimated to be 0.03 kg/ton, yielding nickel 

emissions of 26.7 million kg/year or 62% of the total anthropogenic emissions (Schmidt and Andren 

1980).  The estimated contributions of other anthropogenic sources of nickel are nickel metal and 

refining, 17%; municipal incineration, 12%; steel production, 3%; other nickel-containing alloy 

production, 2%; and coal combustion, 2% (Bennett 1984; Schmidt and Andren 1980).  Wood combustion 

is also an important source of nickel emissions (Nriagu and Pacyna 1988). 

Based on data contained in EPA’s 1996 National Toxics Inventory (NTI), which is compilation of 

emissions data obtained from TRI, state and local databases, and other studies required by the Clean Air 

Act (CAA), it is estimated that emissions of nickel compounds into air totaled 1,170 tons per year in the 

United States (EPA 2000).  Of this total, 1,196 tons of nickel compounds per year were derived from 

urban sources, with the major contributors coming from stationary sources that release 10 or more tons of 

nickel compounds per year.  On-road mobile sources, such as cars, motorcycles, trucks, and buses, 

accounted for only 10 tons per year of nickel released to air, whereas nonroad mobile sources, such as 

airplanes, boats, and lawn mowers, accounted for a release of 66 tons of nickel compounds per year.  
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Deposition of metals around large smelter complexes is a significant local problem.  For example, at the 

Copper Cliff smelter in Sudbury, Ontario, it is estimated that 42% of nickel particulates emitted from the 

381-m stack are deposited within a 60-km radius of the smelter (Taylor and Crowder 1983).  The Copper 

Cliff smelter, one of three large nickel sources in the Sudbury area, emits 592 pounds (269 kg) of nickel 

per day. 

A typical, modern, coal-fired power plant emits ≈25 µg nickel per Megajoule (MJ) of power produced, 

compared with 420 µg/MJ for an oil-fired plant (Hasanen et al. 1986).  The nickel concentration in stack 

emissions from a modern coal-fired power plant with an electrostatic precipitator was 1.3 µg/m3 (Lee et 

al. 1975).  In a case study of the emissions of metals from an average sized coal-burning electric power 

plant (650 MW at a capacity factor of 67%) equipped with an electrostatic precipitator (ESP), 100 kg/year 

of nickel is emitted into air (Rubin 1999). These nickel emissions are reduced to 16 kg/year for plants 

that are fitted with a wet lime/limestone flue gas desulfurization system downstream from the ESP.  High-

sulfur eastern coal has a higher nickel content than low-sulfur western coal, so power plants using eastern 

coal emit more nickel than those using western coal (QueHee et al. 1982). 

It is estimated that in 1999, 570,000 tons of nickel were released from the combustion of fossil fuels 

worldwide (Rydh and Svärd 2003).  Of this, 326 tons were released from electric utilities (Leikauf 2002).  

From a public health point of view, the concentration of nickel associated with small particles that can be 

inhaled into the lungs is of greatest concern.  The nickel content of aerosols from power plant emissions is 

not strongly correlated with particle size (Hansen and Fisher 1980).  In one coal plant, 53 and 32% of 

nickel in emissions were associated with particles <3 and <1.5 µm in diameter, respectively (Sabbioni et 

al. 1984).  Other studies found that only 17–22% of nickel emissions from coal-fired power plants were 

associated with particles of >2 µm, and that the mass medium diameter (MMD) of nickel-containing 

particles from a plant with pollution control devices was 5.4 µm (Gladney et al. 1978; Lee et al. 1975).  In 

one study, 40% of the nickel in coal fly ash was adsorbed on the surface of the particles rather than being 

embedded in the aluminosilicate matrix (Hansen and Fisher 1980).  Surface-adsorbed nickel would be 

more available than embedded nickel. 

Nickel emissions from municipal incinerators depend on the nickel content of the refuse and the design 

and operation of the incinerator.  By comparing the nickel content of particles emitted from two 

municipal incinerators in Washington, DC, with that of atmospheric particulate matter, Greenberg et al. 

(1978) concluded that refuse incineration is not a major source of nickel in the Washington area.  The 
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average nickel concentrations in suspended particles from these incinerators ranged from 170 to 200 ppm.  

Nickel is not primarily associated with very fine or coarse particles.  In tests performed under the 

Canadian National Incinerator Testing and Evaluation Program, 1.0 g nickel/ton refuse was emitted under 

normal operating conditions; when the combustion chamber operated at low and high combustion 

temperatures, nickel emissions increased ≤2.2 g nickel/ton (Hay et al. 1986).  These emissions can be 

compared with a factor of 0.33 g nickel/ton refuse obtained in a European study (Pacyna 1984).  The 

European study also obtained an emission factor of 1.0 g nickel/ton for sewage sludge incineration. 

An increase in nickel emissions over presettlement levels was assessed by dating and analyzing peat cores 

from a fen located in northern Indiana, which is downwind from the city of Chicago and the industrial 

complexes of Gary and East Chicago, areas that contain a large steel mill and a coal-fired power plant.  

The peak accumulation rate was 7.73 mg nickel/m2/year for 1970–1973, a factor of 21 greater than the 

accumulation rate in presettlement times (A.D. 1339–1656) (Cole et al. 1990). 

Some work has been performed to determine the species of nickel present in air emissions from different 

source categories (EPA 1985a).  This has been determined from analyses of dust by x-ray diffraction, 

scanning electron microscopy, and energy dispersive x-ray analysis or by an assessment of the reactions 

and transformations possible for the material present and the process conditions. Nickel resulting from oil 

combustion is primarily nickel sulfate with lesser amounts of complex metal oxides and nickel oxide.  

Approximately 90% of nickel in fly ash from coal combustion consists of complex (primarily iron) 

oxides. Nickel silicate and iron-nickel oxides would be expected from the mining and smelting of 

lateritic nickel ore, whereas nickel matte refining would produce nickel subsulfide and metallic nickel.  

The primary nickel species from secondary nickel smelting and steel and nickel alloys production is iron-

nickel oxide. 

Nickel and nickel compounds have been identified in air samples collected from 20 of the 872 NPL 

hazardous waste sites where nickel or nickel compounds have been detected in environmental media 

(HazDat 2005). Nickel or nickel compounds have been detected in air offsite of NPL sites at 

concentrations ranging from 0.4912 to 4,000 ng/m3. 

6.2.2 Water 

Estimated releases of 151,725 pounds (~69 metric tons) of nickel and 516,804 pounds of nickel 

compounds (~234 metric tons) to surface water from 2,279 and 1,286 domestic manufacturing and 
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processing facilities in 2002, respectively, accounted for about 2.2 and 1.4% of the estimated total 

environmental releases, respectively, from facilities required to report to the TRI (TRI02 2004).  These 

releases are summarized in Tables 6-1 and 6-2. 

Nickel is a natural constituent of soil and is transported into streams and waterways in runoff either from 

natural weathering or from disturbed soil.  Much of this nickel is associated with particulate matter.  

Nickel also enters bodies of water through atmospheric deposition. 

Emission factors have been estimated for the release of trace metals to water from various source 

categories and these have been used to estimate inputs of these metals into the aquatic ecosystem.  The 

global anthropogenic input of nickel into the aquatic ecosystem for 1983 is estimated to be between 

33 and 194 million kg/year with a median value of 113 million kg/year (Nriagu and Pacyna 1988). 

A survey of raw and treated waste water from 20 industrial categories indicated that nickel is commonly 

found in some waste waters.  Those industries with mean effluent levels of >1,000 µg/L in raw waste 

water were inorganic chemicals manufacturing (20,000 µg/L), iron and steel manufacturing (1,700 µg/L), 

battery manufacturing (6,700 µg/L), coil coating (1,400 µg/L), metal finishing (26,000 µg/L), porcelain 

enameling (19,000 µg/L), nonferrous metal manufacturing (<91,000 µg/L), and steam electric power 

plants (95,000 µg/L) (EPA 1981).  Those industries with mean effluent levels >1,000 µg/L in treated 

waste water were porcelain enameling (14,000 µg/L) and nonferrous metal manufacturing (14,000 µg/L) 

(EPA 1981). The maximum levels in treated discharges from these industries were 67,000 and 

310,000 µg/L, respectively.  In addition, four other industrial categories had maximum concentrations in 

treated discharges >1,000 µg/L.  These were inorganic chemicals manufacturing (1,400 µg/L), iron and 

steel manufacturing (7,800 µg/L), aluminum forming (20,000 µg/L), and paint and ink formulation 

(80,000 µg/L). 

Domestic waste water is the major anthropogenic source of nickel in waterways (Nriagu and Pacyna 

1988).  Concentrations of nickel in influents to 203 municipal waste water treatment plants 

(9,461 observations) ranged from 2 to 111,400 µg/L; the median value was ≈300 µg/L (Minear et al. 

1981).  From a study of influent streams of a waste water treatment plant in Stockholm, Sweden, it was 

determined that the waste streams from households (e.g., drinking water) and businesses (e.g., drinking 

water, car washes, chemical uses) account for 29% of nickel in influent streams (Sörme and Lagerkvist 

2002), which is likely to be comparable to what occurs in the United States.  Another 31% of the nickel in 

influent streams is added at the waste water treatment plant through the addition of water treatment 
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chemicals.  Storm water accounts for between 1 and 5% of the nickel in influent streams.  Concentrations 

in treated effluents were not reported. However, nickel may be removed by chemical precipitation or 

coagulation treatment in publicly owned treatment works, which reduces nickel releases (EPA 1981).  For 

example, improvements in sewage treatment facilities have attributed to a reduction in the flux of nickel 

in waste water effluents into the Hudson River estuary, decreasing from 518 kg/day in 1974 to 43 kg/day 

in 1997 (Saňudo-Wilhelmy and Gill 1999). 

Effluent water generated from mining and smelting operations comes from seepage, runoff from tailing 

piles, or from utility water used for mine operations.  These discharges consist mostly of less-soluble 

silicates and sulfides and readily settle out. Tailing effluents from sulfidic ores are acidic due to the 

bacterial generation of sulfuric acid from the sulfidic minerals in the tailings, and very high 

concentrations of soluble nickel sulfate may be released.  Tailing waters from the Onaping and Sudbury 

areas of Ontario, Canada, have an average nickel content of 42,500 µg/L, a factor of 8,300 greater than 

that found in river water (Mann et al. 1989).  Since there is presently no nickel mining of sulfidic ore in 

the United States, nickel-containing waste water is not generated by this activity.  However, past nickel 

mining may have contributed to nickel entering our waterways and accumulating in sediment.  Old tailing 

piles may contribute to runoff for decades. 

In the EPA-sponsored National Urban Runoff Program, in which 86 samples of runoff from 15 cities 

throughout the United States were analyzed, nickel was found in 48% of runoff samples, at concentrations 

of 1–182 µg/L (Cole et al. 1984).  The geometric mean nickel concentration in runoff water from the 

cities studied was between 5.8 and 19.1 µg/L.  In a more recent study of nickel concentrations in storm 

runoff water samples taken from different urban source areas, the arithmetic means of the concentrations 

for dissolved nickel ranged from <1 to 87 µg/L, and from 17 to 55 µg/L for nickel that also included the 

metal associated with particulates (Pitt et al. 1995). 

One of the potentially dangerous sources of chemical release at waste sites is landfill leachate.  In a study 

that looked at leachate from three municipal landfills in New Brunswick, Canada, the results were 

conflicting. Average nickel concentrations in the three leachates (control) were 28 (45) µg/L, 33 (not 

detectable) µg/L, and 41 (23) µg/L (Cyr et al. 1987).  Sediment at three sites below the leachate outfalls 

contained 11.9, 37.4, and 71.2 ppm of nickel (dry weight). 

Nickel and/or nickel compounds have been identified in surface water samples collected from 292 of the 

872 NPL hazardous waste sites where nickel or nickel compounds have been detected in environmental 
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media (HazDat 2005). Nickel or nickel compounds have been detected in surface water offsite of NPL 

sites at concentrations ranging from 2 to 20,000 ppb. Nickel and/or nickel compounds have also been 

identified in groundwater samples collected from 593 of the 872 NPL hazardous waste sites (HazDat 

2005).  Nickel or nickel compounds have been detected in groundwater offsite of NPL sites at 

concentrations ranging from 4.2 to 11,400 ppb.  

6.2.3 Soil 

Estimated releases of 5.58 million pounds (~5,530 metric tons) of nickel and 32.7 million pounds 

(~14,800 metric tons) of nickel compounds to soils from 2,279 and 1,286 domestic manufacturing and 

processing facilities in 2002, respectively, accounted for about 82 and 87% of the estimated total 

environmental releases, respectively, from facilities required to report to the TRI (TRI02 2004).  An 

additional 55,185 pounds (~25 metric tons) of nickel and 634,432 pounds (~288 metric tons) of nickel 

compounds, constituting about 0.8% and 1.7% of the total environmental emissions, respectively, were 

released via underground injection (TRI02 2004).  These releases are summarized in Tables 6-1 and 6-2. 

Most of the nickel released to the environment is released to land.  Emission factors for nickel released to 

soil have been estimated for various industries (Nriagu and Pacyna 1988).  These factors can be used to 

estimate industrial nickel releases to land.  Excluding mining and smelting releases to land, 66% of 

estimated anthropogenic environmental releases or 325 million kg/year (median) are to soil (Nriagu and 

Pacyna 1988).  Some important sources of nickel released to soil are coal fly ash and bottom ash, waste 

from metal manufacturing, commercial waste, atmospheric fallout, urban refuse, and sewage sludge.   

Based on 1999 production data, the equivalent of 0.6–3.3% of the nickel that was mined that year was 

used in the manufacture of portable batteries (Rydh and Svärd 2003).  This amounts to approximately 17– 

31 ktons of nickel.  Although current battery recycling programs in Europe claim success rates of 

upwards of 55%, the global recycling rates are typically lower, ranging between 5 and 50%.  Therefore, 

on a global level, more than half of the nickel used in battery production will be disposed of in landfills 

and other waste sites. 

Nickel and/or nickel compounds have been identified in soil samples collected from 443 of the 872 NPL 

hazardous waste sites where nickel or nickel compounds have been detected in environmental media 

(HazDat 2005). Nickel or nickel compounds have been detected in soils offsite of NPL sites at 

concentrations ranging from 2 to 10,522 ppb.  Nickel and/or nickel compounds have also been identified 
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in sediment samples collected from 302 of the 872 NPL hazardous waste sites (HazDat 2005).  Nickel or 

nickel compounds have been detected in sediments offsite of NPL sites at concentrations ranging from 

0.009 to 33,100 ppm. 

6.3 ENVIRONMENTAL FATE 

It is not always possible to separate the environmental fate processes relating to transport and partitioning 

from those relating to transformation for a metal and its various compounds and complexes.  Because of 

analytical limitations, investigators rarely identify the form of a metal present in the environment.  A 

change in the transport or partitioning of a metal may result from a transformation.  For example, 

complexation may result in enhanced mobility, while the formation of a less-soluble sulfide would 

decrease its mobility in water.  Adsorption may be the result of strong bonds being formed 

(transformation) as well as weak ones.  Separating data relating to strong and weak adsorption in different 

sections is awkward and may not always be possible.  Section 6.3.1 covers deposition and general 

adsorption of nickel, and Section 6.3.2 examines areas of environmental fate in which speciation occurs. 

6.3.1 Transport and Partitioning 

Nickel is released to the atmosphere in the form of particulate matter or adsorbed to particulate matter.  It 

is dispersed by wind and removed by gravitational settling (sedimentation), dry deposition (inertial 

impaction characterized by a deposition velocity), washout by rain (attachment to droplets within clouds), 

and rainout (scrubbing action below clouds) (Schroeder et al. 1987).  The removal rate and distance 

traveled from the source depends on source characteristics (e.g., stack height), particle size and density, 

and meteorological conditions. 

Gravitational settling governs the removal of large particles (>5 µm), whereas smaller particles are 

removed by other forms of dry and wet deposition.  The partitioning between dry and wet deposition 

depends on the intensity and duration of precipitation, the element in question and its form in the 

particulate matter, and particle size.  The importance of wet deposition relative to dry deposition generally 

increases with decreasing particle size.  Removal of coarse particles may occur in a matter of hours.  

Small particles within the size range of 0.3–0.5 µm may have an atmospheric half-life as long as 30 days 

and, therefore, have the potential to be transported over long distances (Schroeder et al. 1987).  Evidence 

for the long-range transport of nickel is provided by the fact that emission sources in North America, 
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Greenland, and Europe are responsible for elevated atmospheric nickel concentrations in the Norwegian 

Arctic during both the summer and winter (Pacyna and Ottar 1985). 

Available studies indicate that nickel is broadly distributed among aerosol size groups.  It has been 

concluded, based on the chemical and physical properties of atmospheric particles, that the concentrations 

of nickel in large particles (>1 µm diameter) that are commonly associated with particulates derived from 

natural sources are less than concentrations in smaller particles (<1 µm diameter) that are typically 

derived from anthropogenic sources (Giusti et al. 1993; Scudlark et al. 1994; Stoessel and Michaelis 

1986). However, experiments in Ontario showed that nickel is associated with relatively large particles, 

5.6±2.4 µm (Chan et al. 1986).  A 1970 National Air Surveillance Network study of the average nickel 

size distribution in six American cities indicated that the mass median diameter (MMD) is ≈1.0 µm in all 

six cities (Lee et al. 1972).  Although the sampling procedure used in this study may have underestimated 

large particles (Davidson 1980), it represents one of the few studies involving the size distribution of 

nickel aerosols in U.S. cities. 

Nickel concentration and speciation were investigated in particulate matter collected from an urban 

environment.  The sampling sites in Davie, Florida, are within a high population area (3,837 persons per 

square mile) that is influenced by a number of stationary and mobile point source emitters of particulate 

matter, including residual oil- and natural gas-burning power plants, municipal waste incinerators, 

automobiles, aircraft, and marine vessel traffic (Galbreath et al. 2003).  Nickel concentrations of 86 and 

140 ppm were measured in total suspended particulates (TSP) and in particulates with a MMD of 10 µm 

(PM10), respectively.  The concentration of 140 ppm in the PM10 fraction converts to an airborne nickel 

concentration of 1.5 ng/m3. Three nickel species were characterized and measured in the particulate 

fractions, NiSO4• xH2O, NiFe2O4, and NiS. The proportions of these species in the TSP fraction were 40, 

50, and 10%, respectively; the proportions in the PM10 fraction were 78, 22, and <5%, respectively.  

Metal deposition is characterized by large temporal and spatial variability.  Deposition can be associated 

with precipitation (wet deposition) or result from processes such as gravitational settling of dust (dry 

deposition). Estimated nickel deposition rates range from 0.01 to 0.5 kg/hectare/year (1–50 mg/m2/year) 

and from 0.1 to 5.95 kg/hectare/year (10–595 mg/m2/year) in rural and urban areas, respectively 

(Schroeder et al. 1987).  In the Florida Atmospheric Mercury Study (FAMS) conducted during 1993– 

1994, bulk deposition rates for nickel varied between 1.700 and 4.130 mg/m2/year, depending on 

local/regional anthropogenic activity (Landing et al. 1995).  Nickel deposition from 1980 to 1981 in an 

industrial area of England where a number of ferrous and nonferrous metal smelting and manufacturing 
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works were concentrated had a mean value of 8,800 ng/cm2/year (88 mg/m2/year), a factor of 8–25 above 

nonurban deposition rates (Pattenden et al. 1982).  Wet deposition accounted for half of the deposition.  

Eighty-one percent of the nickel in rain was dissolved.  Schroeder et al. (1987) reported the same percent 

of dry to wet deposition for nickel, whereas Chan et al. (1986) found that 2.2 times as much wet 

deposition as dry deposition occurred in Ontario in 1982 with little variability in the ratio across the 

province. The mean dry deposition rates for southern, central, and northern Ontario in 1982 were 0.25, 

0.28, and 0.18 mg/m2/year, respectively.  In southern Ontario, Canada, where the average concentration 

of nickel in rain was 0.557 ppb during 1982, 0.5 mg of nickel was deposited annually per square meter as 

a result of wet deposition (Chan et al. 1986).  For central and northern Ontario, the mean concentrations 

of nickel in rain were 0.613 and 0.606 ppb, respectively, and the annual wet depositions averaged 0.5 and 

0.4 mg/m2. Wet and dry deposition of particulates emitted from the Claremont Incinerator in Claremont, 

New Hampshire, were measured within an area between 2 and 15 km from the incinerator.  Wet 

deposition rates varied between 0.50 and 8.87 µg/m2/day (0.0005–0.00887 mg/m2/day) with a mean value 

of 3.0 µg/m2/day (0.003 mg/m2/day) and depended on distance from the incinerator and wind weight.  The 

mean wet deposition rate of 3.0 µg/m2/day (0.003 mg/m2/day) was a factor of approximately 19 greater 

than the mean dry deposition rate of 0.16 µg/m2/day (0.00016 mg/m2/day), which had been calculated 

from values ranging from 0.067 to 0.29 µg/m2/day (0.000067–0.00029 mg/m2/day) (Feng et al. 2000). 

Atmospheric deposition of nickel in coastal waters has been reported.  Bulk and wet deposition of nickel 

into Massachusetts Bay was determined to be 7,200 and 3,000 µg/m2/year (Golomb et al. 1997), 

respectively, whereas a lower wet deposition rate of 257 µg/m2/year was measured for nickel in 

Chesapeake Bay (Scudlark et al. 1994).  Atmospheric input of nickel into the Great Lakes has been 

estimated to average 160–590 ng/m2/year (Nriagu et al. 1996). 

Wet and dry deposition of nickel into the world’s oceans is estimated to be 8–11 and 14–17 gigagrams 

(109 grams) per year, respectively (Duce et al. 1991). However, atmospheric deposition is only a minor 

contributor to the flow of nickel into the oceans and coastal waterways as compared to riverine and fluvial 

input of nickel.  The nickel that is carried into oceans in both dissolved and particulate forms through 

riverine input is rated at 1,411 gigagrams per year, which is a factor of approximately 50 greater than the 

sum of the wet and dry deposition of nickel of 22–28 gigagrams per year (Duce et al. 1991).  In an 

example of nickel input into Chesapeake Bay, the fluvial input of nickel of 98,700 kg/year 

(0.0987 gigagrams/year) is 25 times greater than bulk deposition of nickel from the atmosphere (Scudlark 

et al. 1994). However, for the Great Lakes the atmospheric input of nickel accounts for 60–80% of the 
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total anthropogenic input of nickel into Lake Superior, and 20–70% of the total inputs into Lakes Erie and 

Ontario (Nriagu et al. 1996). 

The fate of heavy metals in aquatic systems depends on partitioning between soluble and particulate solid 

phases. Adsorption, precipitation, coprecipitation, and complexation are processes that affect 

partitioning. These same processes, which are influenced by pH, redox potential, the ionic strength of the 

water, the concentration of complexing ions, and the species and concentration of the metal, affect the 

adsorption of heavy metals to soil (Richter and Theis 1980). 

Adsorption of nickel onto suspended particles in water is one of the main removal mechanisms of nickel 

from the water column.  The adsorption of nickel on water-borne particulate matter is in competition with 

adsorption onto dissolved organic matter, which limits the amount of nickel that can be removed from the 

water column through the settling of suspended particles (Martino et al. 2003). Much of the nickel 

released into waterways as runoff is associated with particulate matter; it is transported and settles out in 

areas of active sedimentation such as the mouth of a river.  Additionally, when a river feeds into an 

estuary, the salinity changes may affect absorptivity due to complexation and competition for binding 

sites (Bowman et al. 1981).  During a 4-month study of Lake Onondaga in Syracuse, New York, 36% of 

the nickel in the lake was lost to sediment (Young et al. 1982).  Seventy-five percent of the nickel load 

into the lake was soluble and remained in the lake.  The soluble nickel is not likely to be as the Ni(II) ion, 

but is expected to exist as a complex.  For example, in an analysis of the speciation of nickel in waste 

water effluents and runoff discharging into San Francisco Bay, it was found that approximately 20% of 

soluble nickel was complexed to moderately strong complexing agents, such as humic acid and 

biopolymers from activated sludges (Sedlak et al. 1997).  However, a larger proportion of the nickel, 75% 

in waste water effluent and 25% in runoff, is found strongly complexed with stability constants that are 

similar to those found for synthetic chelating agents such as EDTA, DTPA, and phosphonates.  Nickel is 

strongly adsorbed at mineral surfaces such as oxides and hydrous oxides of iron, manganese, and 

aluminum (Evans 1989; Rai and Zachara 1984).  Such adsorption plays an important role in controlling 

the concentration of nickel in natural waters.   

Nickel is strongly adsorbed by soil, although to a lesser degree than lead, copper, and zinc (Rai and 

Zachara 1984). There are many adsorbing species in soil, and many factors affect the extent to which 

nickel is adsorbed, so the adsorption of nickel by soil is site specific.  Soil properties such as texture, bulk 

density, pH, organic matter, the type and amount of clay minerals, and certain hydroxides, as well as the 

extent of groundwater flow, influence the retention and release of metals by soil (Richter and Theis 1980). 
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Amorphous oxides of iron and manganese, and to a lesser extent clay minerals, are the most important 

adsorbents in soil.  In alkaline soils, adsorption may be irreversible (Rai and Zachara 1984), which limits 

nickel's availability and mobility in these soils.  For example, in recent studies of nickel speciation in 

ferromanganese nodules from loess soils of the Mississippi Basin, nickel is found to have a higher 

partition in the soil nodules than in soil clay matrices (Manceau et al. 2003).  This is due to the selective 

sequesterization of nickel by finely divided iron and manganese oxides in goethite and lithiophorite 

minerals present in the soils.  Cations such as Ca2+ and Mg2+ have been reported to reduce adsorption due 

to competition for binding sites, whereas anions like sulfate reduce adsorption as a result of complexation.  

Nickel adsorption depends strongly on metal concentration and pH (Giusti et al. 1993).  For each mole of 

nickel adsorbed by iron and manganese oxide, ≈1–1.5 moles of hydrogen ions are released (Rai and 

Zachara 1984). For aluminum oxide, as many as 2.3 moles H+ are released. Mustafa and Haq (1988) 

found that the adsorption of nickel onto iron oxide at pH 7.0 was rapid and increased with increasing 

temperature.  They also found that two hydrogen ions are released into a solution when nickel is 

adsorbed. These studies indicate that while Ni2+ is the predominant species in solution, NiOH+ is 

preferentially adsorbed, and that both mono- and bidentate complexes may be formed with the 

iron/manganese/aluminum oxides. 

Batch equilibrium studies were performed using seven soils and sediments spiked with varying 

concentrations of nickel to assess the potential mobility of nickel in contaminated subsoil (LaBauve et al. 

1988).  The range of Freundlich parameters K(1/n), an adsorption constant, ranged from 739 (0.92) to 

6,112 (0.87).  One-, two-, and three-parameter models were used to evaluate the relation of soil properties 

and nickel retention. In the one-parameter model, pH was the best predictor.  Cation exchange capacity 

(CEC) and iron oxide were the best predictors in the two-parameter models, and CEC, iron oxide, and 

percent clay were the best predictors in the three-parameter models.  Nickel was more mobile in the soils 

than lead, cadmium, and zinc.  The retention of nickel to two of the test subsoils diminished in the 

presence of synthetic landfill leachate, possibly because of complex formation.  In another study in which 

batch adsorption experiments were conducted with a mixture of cadmium, cobalt, nickel, and zinc, and 

38 different agricultural soils, taken from three depths at 13 sites, the adsorption constants ranged from 

10 to 1,000 L/kg (Anderson and Christensen 1988).  Soil pH, and to a lesser extent clay content and the 

amount of hydrous iron and manganese oxides, most influenced nickel sorption. 

In 12 New Mexican soils from agricultural areas and potential chemical waste disposal sites, Freundlich 

parameters K (1/n) ranged from 8.23 to 650 (0.87–1.18); the median K was 388 (Bowman et al. 1981).  

The soil with the K of 8.23 was essentially unweathered rock that was not expected to have good 

http:0.87�1.18
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adsorbing properties. The study concluded that most soils have an extremely high affinity for nickel and 

that once sorbed, nickel is difficult to desorb, which may indicate covalent bond formation.  Sadiq and 

Enfield (1984b) observed nickel ferrite formation following adsorption.  Bowman et al. (1981) found that 

when nickel levels were >10 ppm, adsorption decreased.  High concentrations of chloride decreased 

adsorption, but not as much as calcium ions, which indicates that calcium competition for sorbing sites is 

more important than chloride complexation for reducing adsorption.  The presence of complexing agents, 

such as EDTA, dramatically lowers nickel adsorption, which has important implications at waste disposal 

sites if liquid nickel waste containing chelating agents is released to soil.  Chelating agents that are added 

to soil containing adsorbed nickel appear to have a lesser effect. 

The capacity of soil to remove nickel and the nature of the bound nickel were evaluated for 10 mineral 

and 3 organic soils from the southeastern United States (King 1988).  Some soil samples were taken from 

the subsoil as well as the surface. The amount of adsorbed nickel ranged from 13 to 95%; the low value 

was found in subsoil, and the high value was found in soil high in organic matter.  When extracted with 

potassium chloride, 5–87% of the nickel was nonexchangeable.  Soil pH was the most important factor 

affecting sorbed and nonexchangeable nickel in all soil horizons.  Both King (1988) and Tyler and 

McBride (1982) found much stronger nickel adsorptivity in organic soil than in mineral soils.  Adsorption 

was improved by the quality and quantity of humus in the soil (Hargitai 1989).  Nickel was enriched in 

humic and fulvic acids from Lake Ontario sediment (Nriagu and Coker 1980).  It was estimated that 5– 

10% of the nickel in this sediment was bound to organic matter. 

The leachability of nickel from some soils does not necessarily correlate with the total concentration of 

nickel in the soil.  In an extraction study of soils sampled from the mining and smelting regions of 

Sudbury, Ontario, the percentage of nickel that is most easily extractable (in acetic acid) varied between 

12 and 31% of the total nickel content (220–455 mg/kg) among the different sampling sites (Adamo et al. 

1996). The remaining nickel was found in less extractable forms:  6–11% was found to be associated 

with manganese oxides and easily reducible iron oxides, 6–20% either bound to readily oxidizable 

organics or sulfides, and the remainder (55–73%) was associated with sulfides as separate grains or 

inclusions, iron oxide phases, carbon particles, and silicate spheroids.  Similarly, in soils that are naturally 

enriched in heavy metals sampled from the Port MacQuaire region in Australia, the amount of nickel that 

can be easily extracted from soil samples is only a small fraction of the total nickel content (Lottermoser 

2002). Extraction of these soils with EDTA or acetic acid yielded leachable nickel which amounted to 

between <0.1–4.1 and <0.01%, respectively, of the total nickel concentrations in the soil samples.  Use of 

stronger extraction methods, for example hydrochloric acid, yielded only leachable nickel in percentages 
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(0.1–2.4%) equivalent to those found for EDTA.  The low amount of acetic acid extractable nickel 

indicates negligible leaching of this metal from these soils into groundwater and surface waters 

(Lottermoser 2002). 

Amendment of soils with exogenous humic acid reduces mobility of dissolved nickel in soil and also 

increases the bioavailability of this nickel to plants. Halim et al. (2003) showed that humic acid in soils 

from nickel-humic acid complexes results in the removal of dissolved and exchangeable nickel from soil 

water. The extractability of nickel increased with the aging time of the organic material.  The increased 

bioavailability of nickel bound to humic acid is temporary and is thought to occur mainly as the result of 

preventing nickel from undergoing a transformation into insoluble species in soil.  

Nickel (II) is poorly removed from waste water in the activated sludge process because of its high 

solubility (Stephenson et al. 1987).  Only 30–40% of nickel was removed in a pilot activated sludge plant. 

Nickel removal in activated sludge plants is best correlated with effluent suspended solids (Kempton et al. 

1987).  Nickel is predominantly soluble in the effluent and is found complexed to humic acid, 

biopolymers, and other chelating agents (Sedlak et al. 1997). 

In order to evaluate the potential of elements to leach from land-spread sewage sludge, Gerritse et al. 

(1982) studied the adsorption of elements to sandy and sandy loam top soils from water, salt solutions, 

and sludge solutions. They used metal levels that occurred in the solution phase of sewage sludge, 100– 

1,000 ppb in the case of nickel.  The results indicated that nickel is fairly mobile in these soils; the 

adsorption constants were ≈10–100 in the sandy soil and a factor of ≈10 higher in the sandy loam soil.  

The presence of sludge increases the mobility of nickel, particularly in sandy and sandy loam soils, which 

may be because of complexation with dissolved organic compounds (Kaschl et al. 2002) or increased 

ionic strength (Gerritse et al. 1982).  However, land application of nickel-contaminated sludge did not 

give rise to increased levels of nickel in groundwater (Demirjian et al. 1984).  Higher doses and repeated 

application of nickel-containing sewage sludge did not result in a proportional increase in nickel mobility 

(Hargitai 1989). 

As part of EPA's National Runoff Program in Fresno, California, the soil water and groundwater at depths 

≤26 m beneath five urban runoff retention/recharge basins were monitored during a 2-year study 

(Nightingale 1987).  The results indicated that there were no significant downward movements of nickel 

with the recharge water. 
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Saline sediments from estuaries often contain pyrite and other readily oxidizable sulfur compounds.  

When these sediments are oxidized, such as when dredged sediment is exposed to oxygen, sulfuric acid 

may be produced, which may overwhelm the buffering capacity of the sediment, lower the pH (to pH 

3.1 in a laboratory experiment), and dissolve the ferric oxides and hydroxides that entrap heavy metals 

(DeLaune and Smith 1985).  As a result, significant amounts of nickel may be released from the dredged 

sediments.  An analogous pH decrease following exposure to oxygen was not observed in freshwater 

sediment. 

The presence of iron-(di)sulfides in wetland sediments has been associated with increased mobilization of 

nickel into groundwater during periods of drought in Holland (Lucassen et al. 2002).  Dessication of 

sediments leads to oxidation of iron-(di)sulfides and subsequent acidification of the sediments.  When the 

S/(Ca + Mg) ratios in these sediments rise above 2/3, mobilization of heavy metals like nickel occurs, 

leading to groundwater concentrations of nickel that exceeded the Dutch signal level of 50 ppb for nickel 

in 50% of the monitoring locations.   

It has been reported that nickel is not accumulated in significant amounts by aquatic organisms (Birge and 

Black 1980; Zaroogian and Johnson 1984).  The concentration of nickel in a major carnivorous fish in 

New York State, the lake trout, was the lowest, and the concentration did not increase appreciably with 

the age of the fish (Birge and Black 1980). The mean bioconcentration factor (BCF) for three carnivorous 

fish was 36. The concentration of nickel in mussels and oysters treated with 5 µg nickel/kg of seawater 

for 12 weeks averaged 9.62 and 12.96 µg nickel/g, respectively, on a dry weight basis (Zaroogian and 

Johnson 1984).  When these data are adjusted for controls and the nickel concentration in tissue is 

expressed on a wet weight basis, the BCF for the mussels and oysters is ≈100. After 2 weeks in flowing 

seawater, 58 and 38% of the tissue nickel was lost from the mussel and oyster, respectively. No 

significant loss of nickel occurred during the remainder of the 28-week depuration period.  The content of 

acid volatile sulfide (AVS) in sediment helps determine the bioavailability of metals (Ankley et al. 1991).  

In studies of nickel and cadmium, the metals were toxic to an amphipod (Hyallela azteca) and an 

oligocheate (Lumbriculus variegatus) when the extracted metals/AVS ratio was >1. 

In the work of McGeer et al. (2003), BCFs for nickel in various aquatic organisms (e.g., algae, 

arthropods, mollusks, and fish) was assessed based on whole-body metal concentrations and exposure 

concentrations that were obtained from the literature.  For exposure concentrations within the range of 5– 

50 µg/L nickel in water, mean BCF values of 106±53 (1 standard deviation [SD]) were obtained.  When 

the authors also included data for exposure concentrations outside the range of 5–50 µg/L, a BCF value of 
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157±135 was obtained.  The authors noted that the BCF values were inversely correlated with the 

exposure concentrations, where the highest BCF values were obtained at the lowest exposure 

concentrations. There was no evidence that nickel biomagnifies in aquatic food webs and, in fact, there is 

evidence to indicate that the nickel concentrations in organisms decrease with increasing trophic level 

(McGeer et al. 2003; Suedel et al. 1994). 

As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, there 

was no statistically significant correlation between nickel concentrations in bed-sediments collected from 

streams and rivers in both the Northern Rockies Intermontane Basin study area and the New Jersey study 

area, and nickel concentrations measured in liver and fillet samples taken from fish collected in the same 

study areas (USGS 2000a, 2000b).  Also, nickel concentrations in fish liver and fillet samples were at or 

below the detection limits (<0.1–0.3 µg/g, dry weight) for nickel in these studies and are much lower than 

the concentrations of nickel measured in bed-sediments, which ranged from 12 to 43 µg/g (wet weight). 

Uptake and accumulation of nickel into various plant species is known to occur.  For example, Peralta-

Videa et al. (2002) report the accumulation of nickel in alfalfa grown from soils contaminated with a 

mixture of four metals (e.g., Cd(II), Cu(II), Ni(II), and Zn(II)) at a loading of 50 mg/kg for each metal.  

Concentration ratios of nickel in plant versus soil (based on dry weights) ranged between 22 and 26 over a 

pH range of 4.5–7.1. As with most plant species that hyperaccumulate metals, the alfalfa actively 

removes and translocates heavy metals, like nickel, from the roots to the shoots.  The uptake of nickel into 

plants is modulated by the acidity (pH) of the soil.  Smith (1994) showed that nickel concentrations in rye 

grass were reduced by a factor of three as the soil pH was raised from 4 to 7.  This is thought to be due to 

a decrease in bioavailability of nickel with increasing pH.  The bioavailability of nickel to plants is also 

affected by soil type.  Weng et al. (2004) found that the bioavailability of nickel to oat plants grown in 

soil rich in organic matter is half that of sandy or clay soils in the pH range of 4.4–7.0.  These differences 

in bioavailability are attributed to a stronger binding of nickel to organic matter than to the silicates and 

iron hydroxides/oxides in clay and sand under the acidic conditions of the experiment.  

Two studies concerning levels in voles and rabbits living on sludge-amended land did not indicate any 

accumulation of nickel in these herbivores or in the plants they fed upon (Alberici et al. 1989; Dressler et 

al. 1986).  The lack of significant bioaccumulation of nickel in aquatic organisms, voles, and rabbits 

indicates that nickel is not biomagnified in the food chain. 
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6.3.2 Transformation and Degradation  

Analytical methods do not generally allow identification of the precise form of nickel present in 

environmental samples or an assessment of the transformations that may occur.  Sequential extraction 

techniques are sometimes employed to determine how tightly nickel is bound to particles or in 

environmental matrices.  Using different and progressively stronger extracting agents, the fractions of a 

sample that are exchangeable, adsorbed, easily reducible, moderately reducible, or organically bound 

carbonates, sulfides, and residual can be determined (Rudd et al. 1988; Rybicka 1989). 

6.3.2.1 Air 

Little is known about the chemical forms and physical and chemical transformations of trace elements in 

the atmosphere primarily because analytical methods provide information concerning the metal content 

rather than the specific compounds or species.  In the absence of specific information, it is generally 

assumed that elements of anthropogenic origin, especially those emanating from combustion sources are 

present as the oxide, and nickel oxide has been identified in industrial emissions (Schroeder et al. 1987).  

Windblown dust particles may contain nickel in mineral species, which often contain nickel as the sulfide.  

Increases in the concentration of nickel in Sequoia National Park in California during rain coming from 

the south correlated with a sharp (7–13 times greater concentration) increase in sulfate (Cahill 1989).  

Nickel sulfate is a probable atmospheric species resulting from the oxidation of nickel in the presence of 

sulfur dioxide (Schmidt and Andren 1980). 

The form of nickel in particles from different industries varies.  The mineralogical composition, chemical 

content, and form of dusts from nine industries in Krakow, Poland, were examined (Rybicka 1989).  The 

chemical form of a particle-associated heavy metal that was assessed by a five-step extraction scheme 

classified the metal as exchangeable, easily reducible (manganese oxides, partly amorphous iron 

oxyhydrates and carbonates), moderately reducible (amorphous and poorly crystallized iron oxyhydrates), 

organically bound or sulfidic, and residual.  Dusts from power plants had a silicate characteristic with 

quartz and mullite predominant. Approximately 90% of the nickel from these facilities was in the 

residual fraction. Only 40–60% of the nickel from metallurgical, chemical, and cement plants was in the 

residual fraction.  Essentially none of the nickel from any of the industries was in an organic/sulfidic 

fraction. Dusts from metallurgical, chemical, and cement plants contained between 0 and 10% (typically 

5%) of the nickel in the relatively mobile, cation-exchangeable fraction.  Thirty percent of the nickel in 

dust from a slag processing facility was in this form. 
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6.3.2.2 Water 

In natural waters, nickel primarily exists as the hexahydrate.  While nickel forms strong, soluble 

complexes with OH–, SO4
2–, and HCO3

–, these species are minor compared with hydrated Ni2+ in surface 

water and groundwater with pH <9 (Rai and Zachara 1984).  Under anaerobic conditions, such as may 

exist in deep groundwater, nickel sulfide would reduce free aqueous nickel concentrations to low levels. 

Precipitation can remove soluble nickel from water.  In aerobic waters, nickel ferrite is the most 

stable compound (Rai and Zachara 1984).  Nickel may also be removed by coprecipitation with hydrous 

iron and manganese oxides.  Nickel removed by precipitation and coprecipitation settles into the 

sediment. 

Nickel in sediment may be strongly bound or present in a removable form.  A metal's form in soil or 

sediment and its availability are determined by measuring the extractability of the metal with different 

solvents. Sediment samples from western Lake Ontario were analyzed in regard to the compositional 

associations of nickel by a series of sequential extractions (Poulton et al. 1988).  The mean nickel 

percentages in the various fractions were as follows:  exchangeable, 0.7±1.4; carbonate, 0.0; iron or 

manganese oxide-bound, 0.0; organic-bound, 7.4±4.1; and residual, 91.9±4.5.  The nickel concentration 

in 450 uncontaminated estuarine and coastal marine sites in the southeastern United States covaried 

significantly with the aluminum concentration, suggesting that natural aluminosilicates are the dominant 

natural metal-bearing phase in some aquatic systems (Windom et al. 1989).  In 13 random samples of 

bottom sediment from the highly industrialized Meuse River in The Netherlands, between 0 and 88% 

(median 33%) of the nickel was removable at low pH, showing the great variability of nickel to adsorb to 

sediments (Mouvet and Bourg 1983). 

Nickel removed by coprecipitation can be remobilized by microbial action under anaerobic conditions 

(Francis and Dodge 1990).  Remobilization results from enzymatic reductive dissolution of iron with 

subsequent release of coprecipitated metals.  A lowering of pH as a result of enzymatic reactions may 

indirectly enhance the dissolution of nickel.  Experiments using mixed precipitates with goethite 

(α-FeOOH) indicated that a Clostridium species released 55% of the coprecipitated nickel after 40 hours.  

Similarly, precipitated nickel sulfides in sediment can be mobilized through sulfur oxidation by 

Thiobacilli (Wood 1987).  In this case, the oxidized sulfur may produce H2SO4 and decrease the pH. 
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6.3.2.3 Sediment and Soil 

An analysis of the thermodynamic stability models of various nickel minerals and solution species 

indicates that nickel ferrite is the solid species that will most likely precipitate in soils (Sadiq and Enfield 

1984a). Experiments on 21 mineral soils supported its formation in soil suspensions following nickel 

adsorption (Sadiq and Enfield 1984b).  The formation of nickel aluminate, phosphate, or silicate was not 

significant. Ni2+ and Ni(OH)+ are major components of the soil solution in alkaline soils.  In acid soils, 

the predominant solution species will probably be Ni2+, NiSO4, and NiHPO4 (Sadiq and Enfield 1984a). 

A large percentage of nickel in sewage sludges exists in a form that is easily released from the solid 

matrix (Rudd et al. 1988).  Although the availability of nickel to plants grown in sludge-amended soil is 

correlated with soil-solution nickel, it is only significantly correlated with DTPA-extractable nickel 

(Adams and Kissel 1989). 

6.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT  

Reliable evaluation of the potential for human exposure to nickel depends in part on the reliability of 

supporting analytical data from environmental samples and biological specimens.  Concentrations of 

nickel in unpolluted atmospheres and in pristine surface waters are often so low as to be near the limits of 

current analytical methods.  In reviewing data on nickel levels monitored or estimated in the environment, 

it should also be noted that the amount of chemical identified analytically is not necessarily equivalent to 

the amount that is bioavailable.  The analytical methods available for monitoring nickel in a variety of 

environmental media are detailed in Chapter 7. 

6.4.1 Air 

Mean ambient air concentrations of nickel typically range between 6 and 20 ng/m3 and can be high as 

150 ng/m3 near anthropogenic sources of airborne nickel (Barceloux 1999).  Schroeder et al. (1987) 

reported nickel concentrations in particulate matter in the U.S. atmosphere of 0.01–60, 0.6–78, and 1– 

328 ng/m3 in remote, rural, and urban areas, respectively.  Nickel concentrations in particulate matter 

(PM2.5-8), collected in Spokane, Washington, from January 1995 to March 1999, averaged 

1.2±0.9 (1 SD) ng/m3 (Claiborn et al. 2002).  Based on emission data contained in the EPA 1996 NTI 

database, an average concentration of nickel in ambient air in the contiguous United States was estimated 
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to be 2.22 ng/m3 (median concentration=0.948 ng/m3) (EPA 2003u).  The five states with the highest 

average concentrations of nickel in ambient air were (ng/m3): West Virginia (6.60), Utah (4.42), 

Delaware (4.10), New York (3.80), and Pennsylvania (3.69); the five states with the lowest concentrations 

were: Wyoming (0.127), South Dakota (0.157), North Dakota (0.211), Montana (0.311), and Vermont 

(0.311).  Annual mean nickel concentrations in 11 Canadian cities measured during 1987–1990 ranged 

from 1 to 20 ng/m3, while at a rural location the mean nickel concentration was 1 ng/m3 (CEPA 1994). In 

another Canadian study, mean exposure concentrations for nickel in air for residents living near copper 

smelters and refineries and zinc plants ranged between 0.005 and 0.151 µg/m3 (5–151 ng/m3) in 

comparison to background levels of 0.00069 µg/m3 (0.69 ng/m3) (Newhook et al. 2003).  Annual average 

nickel concentrations at three remote sites in the arctic region of Canada ranged from 0.14 to 

0.45 ng/m3 (Barrie and Hoff 1985).  Levels of nickel and other anthropogenic species peaked during 

January and February, possibly indicating the significance of combustion sources.  Nickel levels in the air 

at three native villages in northern Alberta, Canada, were 0.779±0.774, 1.1±0.57, and 4.97±9.2 ng/m3, 

indicating that air concentrations of nickel can be highly variable (Moon et al. 1988).   

According to the EPA's National Air Surveillance Network (NASN) report for 1977, 1978, and 1979, 

median nickel concentrations were below the detection limit for urban and nonurban samples except for 

1978; during 1978, the urban median was 6 ng/m3 (Evans et al. 1984).  The detection limit for 

inductively-coupled-plasma atomic emission spectroscopy (ICP-AES), the method used in the EPA study, 

was 1 ng/m3 (EPA 1986a; Evans et al. 1984).  In the EPA study, 10,769 urban samples and 

1,402 nonurban 24-hour air samples were analyzed.  Five percent of the urban samples were >33, 32, and 

30 ng nickel/m3 for 1977, 1978, and 1979, respectively; 5% of the nonurban samples were >10, 10, and 

6 ng/m3, respectively, for these 3 years.  Ninety-nine percent of the urban and nonurban samples for these 

3 years did not exceed 68 and 52 ng/m3, respectively (Evans et al. 1984).  Combined urban and nonurban 

measurements for the 99th percentile from the NASN (1977–1979) and its successor, the National Air 

Monitoring Filter Sites (NAMFS) (1980–1982), showed a sharp decline from 62 and 67 ng/m3 in 1977and 

1978 to 23 and 30 ng/m3 in 1981 and 1982.  Mean levels for the combined urban and nonurban sites over 

the 6-year period ranged from 7 to 12 ng/m3 (EPA 1986a).  According to the NASN data for 1965–1968, 

the average atmospheric nickel concentration in the air of 28 cities ranged from 3 to 90 ng/m3, with an 

overall average of 26 ng/m3 (NAS 1975).  These data suggest that atmospheric nickel concentrations in 

the United States have been declining. No reason for this downward trend was suggested (EPA 1986a). 

The most intensive study of the nickel concentration in the United States was the result of analyzing air 

samples collected during 1968–1971 for use in a lead survey (Saltzman et al. 1985).  This study is 

http:1.1�0.57
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significant because numerous sites in four cities were analyzed continuously over 1 year and analyzed by 

a single, highly experienced laboratory.  Samples from 33 sites in Chicago, Houston, New York, and 

Washington, DC, were analyzed for nickel resulting in respective geometric mean nickel concentrations 

of 15, 18, 23, and 42 ng/m3. The results for Washington, DC, are in basic agreement with the results 

obtained from Kowalczyk et al. (1982).  In this study, 24-hour samples collected at 10 locations yielded 

average nickel concentrations ranging from 5.7 to 35 ng/m3, with a mean concentration of 17 ng/m3. The 

two major contributing sources are believed to be oil and coal combustion.  The enrichment factor for 

nickel over crustal levels in 29 cities is 11 (Gladney et al. 1984).  An enrichment factor considerably 

>1 indicates that the source of an element is anthropogenic.  In Houston, the average concentration of 

nickel in both the fine (0.1–2.5 µm) aerosols and those >2.5 µm was 4±1 ng/m3 (Johnson et al. 1984). 

As part of the Airborne Toxic Element and Organic Substances project for determining patterns of toxic 

elements in different settings, three urban areas (Camden, Elizabeth, and Newark) and one rural site 

(Ringwood) in New Jersey were studied during two summers and winters between 1981 and 1983 (Lioy 

et al. 1987). Each site was sampled every 24 hours for 39 consecutive days.  The geometric mean nickel 

concentrations were 8.0–34.0, 5.0–28.0, 10.0–27.0, and 5.0–13.0 ng/m3 for Camden, Elizabeth, Newark, 

and Ringwood, respectively. The nickel levels measured in the industrial urban areas may be compared 

to the arithmetic mean values reported in the National Air Surveillance survey (9.6–11.0 ng/m3) for 1977– 

1979 (Evans et al. 1984).  Summer and winter maxima in the three urban areas ranged from 24.0 to 39.0 

and from 81.0 to 112.0 ng/m3, respectively, and 22.0 and 32.0 ng/m3, respectively, for Ringwood. 

The first and second highest annual average nickel concentrations in the air in Texas between 1978 and 

1982, according to the Texas Air Control Board, were 49 and 34 ng/m3 at Port Arthur and Beaumont, 

respectively (Wiersema et al. 1984).  The statewide 1978–1982 average was 1 ng/m3. Mean nickel levels 

showed relatively little geographic variation in Ontario where concentrations in southern, central, and 

northern Ontario were 0.81, 0.91, and 0.58 ng/m3, respectively (Chan et al. 1986). 

Nickel concentrations in particulate matter PM10 was measured at three Midwestern sites, two urban sites 

with a large industrial component and one rural site, in samples collected from September 1985 to June 

1988 (Sweet et al. 1993). Nickel concentrations in the fine PM10 particles (<1–2.5 µm) taken from 

collection sites in East St. Louis and Southeast Chicago averaged 2.1±1.4 (1 SD) and 2.7±2.6 ng/m3, 

respectively, and were similar to those measured in the coarser PM10 particles (2.5–10 µm) of 1.8±1.5 and 

2.1±1.0 ng/m3, respectively.  The concentrations of nickel measured in both the fine and coarse particles 

collected at the East St. Louis and Southeast Chicago sites were higher than the average concentration of 
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nickel of 0.5±0.3 and 0.7±0.5 ng/m3 measured in fine and coarse particles, respectively, collected from a 

rural site (Bondville, Illinois).  The higher concentrations of nickel in the East St. Louis and Southeast 

Chicago sites are attributed to emissions from zinc smelters and steel mills/oil combustion, respectively. 

Nickel concentrations in indoor air are generally <10 ng/m3. In a study of 10 homes in the southeast 

Chicago area, indoor and outdoor air samples were regularly sampled between June 1994 and April 

1995 (van Winkle and Scheff 2001).  Of the 48 samples taken, 35 had nickel concentrations above the 

detection limit of the assay with a mean (±1 SD) concentration of 0.002±0.002 µg/m3 and a maximum 

value of 0.008 µg/m3. The median indoor nickel concentration of 0.003 µg/m3 was similar to the median 

outdoor nickel concentration of 0.0034 µg/m3. Indoor air samples taken from 394 homes in Suffolk and 

Onondaga Counties of New York State contained nickel concentrations that were similar to those found 

in the Chicago study (Koutrakis et al. 1992).  A mean indoor nickel concentration of 2 ng/m3 

(0.002 µg/m3) was derived from a sampling of 28 homes.  The New York study also examined nickel 

concentrations in indoor air as a function of combustion sources within the home (e.g., resident smoker, 

wood-burning stove, kerosene heater) and found no difference in the mean nickel concentrations between 

homes containing these combustion sources and homes without.  Graney et al. (2004) measured nickel 

levels in indoor air as part of a 1998 study of metal exposures for residents of a retirement home in 

Towson, Maryland.  The study participants had a mean age of 84, were all nonsmokers, and did not 

typically cook their own meals.  Median nickel concentrations of 1.02 and 1.71 ng/m3 in air were reported 

in particulate matter (PM2.5) samples collected from indoor air and personal exposure samplers, 

respectively. In a study of 46 high school students in New York City conducted in the winter and 

summer of 1999, the concentrations of nickel in collected particulates (PM2.5) to which these students 

were exposed was assessed using personal monitoring devices and stationary measurements of airborne 

nickel both within and outside the home (Kinney et al. 2002).  The mean (±1 SD) air concentrations of 

nickel obtained from the outdoor, indoor and personal monitors measured during the winter survey period 

were similar (32.3±22.4, 31.6±54.5, and 49.6±114 ng/m3, respectively).  Likewise, the mean nickel 

concentrations obtained from all three monitors during the summer survey period were also found to be 

similar (11.7±6.3, 12.6±8.4, and 17.3±24.7 ng/m3, respectively), although somewhat lower than the 

winter concentrations. These results suggest that ambient concentrations of nickel are the dominating 

force in determining both indoor and personal exposures to nickel.  
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6.4.2 Water 

Surface water contains low nickel levels.  Uncontaminated freshwater and seawater typically contain 

about 300 ng/L of nickel (Barceloux 1999).  The concentration in seawater ranges from 100 to 3,000 ng 

nickel/L. Higher levels are found in deeper waters than in surface water (Mart et al. 1984; Sunderman 

1986; van Geen et al. 1988; Yeats 1988).  Water from the surface of the Atlantic Ocean, deep within the 

Atlantic Ocean (400 m), and the Atlantic shelf contained 1.8 nM (106 ng/L), 2.7 nM (158 ng/L), and 

3.5 nM (205 ng/L) nickel, respectively (van Geen et al. 1988).  Nickel concentration in surface water was 

found to decrease by a factor of approximately 2 with increases in percent salinity from approximately 

30 to 36% and increased with increasing phosphorus concentration (Yeats 1988).  Nickel concentrations 

in South San Francisco Bay were about 3,000 ng/L, with one-third to one-half of the nickel complexed to 

a class of strong organic ligands (Donat et al. 1994). 

The nickel content of fresh surface water has been reported to average between 15 and 20 µg nickel/L 

(Grandjean 1984; NAS 1975).  The concentration of dissolved nickel in the lower Mississippi River 

ranged from 1.2 to 1.5 µg/L in seven samples taken at different flow conditions (Shiller and Boyle 1987).  

In a 1977–1979 study of representative groundwaters and surface waters throughout New Jersey, in which 

>1,000 wells and 600 surface waters were sampled, the median nickel levels in groundwater and surface 

water were both 3.0 µg/L (Page 1981). The respective 90 percentile and maximum levels were 11 and 

600 µg/L for groundwater and 10 and 45 µg/L for surface water.  The nature of the sites with elevated 

nickel levels was not indicated. However, groundwater polluted with nickel compounds from a nickel-

plating facility contained as high as 2,500 µg/L (IARC 1990).  Nickel concentrations were measured in 

30 groundwater samples taken from the South Platte River alluvial aquifer underlying Denver, Colorado 

(Bruce and McMahon 1996). The samples represented a variety of land-use activities, including 

commercial, industrial, residential, and agricultural. A median nickel concentration of 3 µg/L was 

determined, with maximum and minimum concentrations values of 20 and 1 µg/L, respectively. 

Nickel concentrations from five stations in Lake Huron in 1980 had median and maximum nickel 

concentrations of 0.54 and 3.8 µg/L, respectively (Dolan et al. 1986).  In a 1982 survey, nickel 

concentrations in Hamilton Harbor, Lake Ontario, ranged from <1 to 17 µg/L, with a median of 6 µg/L 

(Poulton 1987).  The median nickel concentration from an analogous 1980 survey was 4 µg/L.  

Suspended sediment in surface samples (0.2 m) at Hamilton Harbor, Lake Ontario, contained 17–23 ppm 

nickel; samples from a depth of 20 m contained 67–87 ppm, similar to the 66 ppm of nickel found in 

bottom sediment samples (Poulton 1987).  These findings suggest that resuspension of bottom sediment is 
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a major contributor to the suspended sediment at 20 m depth.  In a 1993 survey of heavy metal 

concentrations in the Great Lakes, average nickel concentrations of 872 and 752 ng/L were measured in 

Lakes Erie and Ontario, respectively (Nriagu et al. 1996).  Concentrations were highest in near-shore 

waters due to their proximity to urban centers and polluted river mouths.  A decrease in the average 

concentration of nickel measured in Lake Ontario, from 838 ng/L measured in May/June to a value of 

751 ng/L obtained in October, indicates that sedimentation of suspended particles results in a fast 

depletion of nickel during the summer stratification (Nriagu et al. 1996). 

Tap water that is used for drinking purposes generally contains nickel at concentrations ranging from 

0.55 to 25 µg/L in the United States (FDA 2000; O’Rourke et al. 1999; Thomas et al. 1999). Nickel 

concentrations in tap water measured in the Total Diet Study 1991–1999 ranged from 0 to 0.025 mg/kg 

(≈0–25 µg/L) with a mean value of 0.002 mg/kg (≈2 µg/L) (FDA 2000).  Analysis of data obtained during 

1995–1997 from the National Human Exposure Assessment Study (NHEXAS) yielded median 

concentrations of nickel in tap water (used as drinking water) of 4.3 µg/L (10.6 µg/L, 90% percentile) in 

the Arizona study and 4.0 µg/L (11 µg/L, 90% percentile) in the EPA Region 5 (Illinois, Indiana, 

Michigan, Minnesota, Ohio, and Wisconsin) study (O’Rourke et al. 1999; Thomas et al. 1999).  In a 

1969–1970 survey of 969 water supplies in the United States representing all water supplies in eight 

metropolitan areas and one state (2,503 samples), 21.7% of samples had concentrations <1 µg/L, 43.2% 

of the samples contained between 1 and 5 µg nickel/L, 25.6% of the samples contained between 6 and 

10 µg nickel/L, 8.5% of the samples contained between 11 and 20 µg nickel/L, and 1% had levels >20 µg 

nickel/L (NAS 1975).   

In a national survey of raw, treated, and distributed water from 71 municipalities across Canada, the 

median nickel concentration in both treated and distributed provincial drinking water were ≤0.6–1.3 µg/L 

for treated water and 1.8 µg/L for distributed water (Meranger et al. 1981).  The maximum value was 

72.4 µg/L from Sudbury, Ontario.  The similarity between median and maximum values for treated and 

distributed water suggests that nickel is not generally picked up in the distribution system.  An exception 

is in Quebec where the maximum nickel concentration increased from 8.3 to 22.0 µg/L between the 

treated and distributed water. The median nickel levels in the provincial raw water ranged from ≤0.6 to 

2.3 µg/L.  The maximum levels in tap waters from British Columbia, Prince Edward Island, the Yukon, 

and Northwest Territories were below the detection limit.  The similarity in values between raw and 

treated water indicates that treatment methods (mainly treatment with lime, alum, or soda ash) did not 

remove nickel effectively. 
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Elevated nickel levels may exist in drinking water as a result of the corrosion of nickel-containing alloys 

used as valves and other components in the water distribution system as well as from nickel-plated or 

chromium-nickel-plated faucets.  In a Seattle study, mean and maximum nickel levels in standing water 

were 7.0 and 43 µg/L, respectively, compared with 2.0 and 28 µg/L in running water (Ohanian 1986).  A 

similar result was observed in a comparison of the mean (±1 standard deviation) and 90th percentile 

concentrations of nickel measured during the NHEXAS EPA Region 5 study in standing tap water of 

(9.2 [±21] and 16 µg/L) and in tap water sampled after the water line had been flushed for 3 minutes 

(5.3 [±4.4] and 11 µg/L) (Thomas et al. 1999).  Even if an individual was to consume only first draw 

water (containing nickel at the maximum concentration [48 µg/L] obtained from the Seattle study) as their 

sole source of drinking water, their daily intake of 96 µg/day is still less than the lifetime daily limit of 

1,400 µg/day (see Table 8-1) set by EPA, assuming a drinking water equivalent level (DWEL) of 

700 µg/L and a consumption of 2 L/day (EPA 2000). Although leaching of metals from pipes generally 

increases with decreasing pH, none of the nickel studies reported the pH of the tap water.  First water 

drawn from hot water taps plated with nickel may contain concentrations as high as 1–1.3 mg/L 

(Barceloux 1999). 

Nickel concentrations were measured as part of a study of heavy metal content in streams and creeks, 

located in the Black Hills of South Dakota that are impacted by abandoned or active mining operations 

(May et al. 2001).  The concentrations of nickel in these surface waters generally ranged between 1.3 and 

7.6 µg/L and were typically highest near where they received drainage water from abandoned or active 

mining operations.  At one location, nickel concentrations as high as 20 µg/L were determined and were 

attributed to effluent and entrained streambed tailings from previous mining activities.  The 

concentrations of nickel in water did not correlate with the concentrations of nickel in the underlying 

sediments.  

Several investigators reported the presence of nickel concentrations in rain.  The annual mean nickel 

concentration in precipitation at Lewes, Delaware, was 0.79 µg/L (Barrie et al. 1987).  The mean 

concentration (± standard deviation) of nickel collected from rain showers in southern Ontario, Canada, in 

1982 was 0.56±0.07 µg/L (Chan et al. 1986).  The mean concentrations in northern and central Ontario 

were both 0.61 µg/L, indicating a lack of spatial variability.  Sudbury, the site of a large nickel smelter, is 

located in central Ontario. The nickel concentration in rainwater collected near a large municipal 

incinerator in Claremont, New Hampshire, was measured at a mean value of 0.69 µg/L (Feng et al. 2000). 

Nickel concentrations in rain collected between 1985 and 1990 from remote regions of the Atlantic Ocean 

ranged from 0.63 to 1.42 µg/L (Helmers and Schrems 1995).  The concentration of nickel in cloud water 
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sampled on the Olympic Peninsula of Washington State in May 1993 was measured at 0.5±0.4 µg/L; the 

air-equivalent concentration is 0.2 ng/m3 (Vong et al. 1997). 

Nickel in snow from Montreal, Canada, was highly enriched compared with ambient air, ranging from 

2 to 300 ppb (Landsberger et al. 1983). The nickel content of snow particulate matter was 100–500 ppb.  

Nickel concentrations were highly correlated with those of vanadium, suggesting that oil combustion was 

a source. The nickel concentration in snow collected near a large municipal incinerator in Claremont, 

New Hampshire, was measured at a mean value of 0.62 µg/L (Feng et al. 2000). Snow samples were 

collected several hundred kilometers from the nearest known nickel emission sources (e.g., smelters and 

ore processing facilities) in northwestern Russia, near the Finish and Norwegian borders.  Mean nickel 

concentrations of 0.0019 mg/L (1.9 µg/L) were measured in the snow melt or, based on the volume of 

accumulated snow, 0.26 mg/m3 (Kashulin et al. 1997). 

6.4.3 Sediment and Soil 

Sediment is an important sink for nickel in water.  Mean nickel levels in pristine sediment from five sites 

off the northern coast of Alaska ranged from 25 to 31 ppm (Sweeney and Naidu 1989).  Of this amount, 

≈10% was extractable. Nickel was most highly associated with silt and clay.  Background nickel 

concentrations in sediment cores from open water of Lake St. Clair ranged from 8.5 to 21.1 ppm, with 

mean concentrations of 13.6 and 17.6 ppm in sand and silty clay sediment, respectively (Rossmann 1988). 

The average nickel concentrations in surface sediment of four Rocky Mountain lakes ranged from 9.6 to 

18 ppm (dry weight).  The nickel concentrations of the five other lakes reported in the literature ranged 

from 6.4 to 38 ppm (Heit et al. 1984).  Nickel concentrations measured in the sediments taken in 1998 

from the Clark Fork-Pend Oreille and Spokane River Basins in the region adjoined by the states of 

Washington, Idaho, and Montana ranged from 12 to 27 µg/g, dry weight (USGS 2000a).   

The range and mean nickel levels in surface sediment of Penobscot Bay, Maine, were 8.22–35.0 and 

26.6 ppm (dry weight), respectively (Larsen et al. 1983).  This is higher than the levels found at cleaner 

sites in Casco Bay in the Gulf of Maine (17.6 ppm) and Eastern Long Island (7.6 ppm) (Larsen et al. 

1983). As part of the Long Island-New Jersey National Water-Quality Assessment (LINJ-NAWQA) 

Program, nickel concentrations were measured in bed-sediments taken from streams and rivers in New 

Jersey in the fall of 1997 (USGS 2000b).  A median nickel concentration of 30 µg/g (wet weight) was 

determined in bed-sediments, with values ranging from 18 to 43 µg/g.  In a similar NAWQA study of the 

Northern Rockies Intermontane Basins study area, a median nickel concentration in bed-sediments of 
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18 µg/g (wet weight) was determined, with a range of values of 12–24 µg/g (USGS 2000a). Rice (1999) 

gives a summary of trace metal concentrations in 541 bed-sediment samples taken from throughout the 

conterminous United States as part of the NAWQA study, reporting a median nickel concentration of 

27 µg/g, with a larger range of values 6–530 µg/g than found from the results of the separate NAWQA 

studies noted above.  Nickel is more highly associated with fine-grained sediment with a higher organic 

carbon content. Levels reflect anthropogenic input as well as mineralization of the regional bedrock. 

Nickel content in sediments is expected to be high near sources of nickel emissions.  For example, nickel 

carried into creeks and streams from drainage and runoff originating from active or abandoned mining 

operations in the Black Hills of South Dakota can lead to increased concentrations of this metal in 

sediments (May et al. 2001).  Nickel concentrations varied between 10 and 64 µg/g, dry weight, 

depending on proximity to nearby mines. 

Nickel occurs naturally in the Earth's crust with an average concentration of 0.0086% (86 ppm) (Duke 

1980a). The nickel content of soil may vary depending on local geology.  A nickel content of 0.5% 

(5,000 ppm) is common in podzol soil in southeastern United States, and nickel concentrations of 

>1,000 ppm are not unusual in glacial till in southern Quebec.  Both areas are underlaid with ultramafic 

rock, which is rich in nickel. Typical nickel levels reported in soil range from 4 to 80 ppm.  In a region 

north of Sydney, Australia, nickel concentrations as high as 2,030 ppm have been reported in ferrosol 

topsoils, which are naturally-enriched in nickel through the weathering of underlying haematite, 

magnetite, quartz, and kaolinite minerals (Lottermoser 2002).  A soil survey by the U.S. Geological 

Survey throughout the United States reported that nickel concentrations ranged from <5 to 700 ppm, with 

a geometric mean of 13±2.31 ppm, ranking 15th among the 50 elements surveyed (Shacklette and 

Boerngen 1984). In this survey, samples were taken at 20 cm from 1,318 sampling sites.  Cultivated soils 

contained 5–500 ppm of nickel, with a typical concentration of 50 ppm (Bennett 1984).  Nickel 

concentrations in Canadian soils were generally 5–50 ppm (Webber and Shamess 1987).  An extensive 

survey in England and Wales reported that nickel concentrations typically ranged from 4 to 80 ppm, with 

a median value of 26 ppm (Bennett 1984).  The average farm soil in the United States contained >30 ppm 

nickel (NAS 1975).  Mean nickel concentrations in the forest floor from samples collected from 78 sites 

in nine northeastern states averaged 11±0.8 ppm (Friedland et al. 1986). 

Nickel concentrations in contaminated soils within ≈8 km of the large nickel smelter at Sudbury, Ontario, 

ranged from 80 to 5,100 ppm (Duke 1980b).  A study of wetland soil-sediment in Sudbury found 

9,372 and 5,518 ppm of nickel at sites located 2.0 and 3.1 km from the smelter, respectively (Taylor and 
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Crowder 1983). Nickel concentrations declined logarithmically with increasing distance from the 

smelter.  This indicates that nickel accumulations result from atmospheric deposition and soil runoff 

(Taylor and Crowder 1983).  In a more recent survey of nickel content in soils in the Sudbury region, soil 

samples were taken within 5 km of each of the three smelters located in the area, Copper Cliff, Coniston, 

and Falconbridge (Adamo et al. 1996).  Mean total concentrations of nickel in soil (based on dry weight) 

of 580, 286, and 210 mg/kg were obtained for the three sites, respectively.  Concentration ranges were 

80–2149, 156–628, and 23–475 mg/kg for the Copper Cliff, Coniston and Falconbridge sites, 

respectively. 

The concentrations of nickel in soils near another smelting operation have been investigated.  At the 

Pechenganikel Smelter in northwestern Russia, near the border with Norway, deposition rates and soil 

concentrations of nickel were measured in sampling sites either near the facility or up to 41 km south or 

southeast of the facility (Koptsik et al. 2003).  Nickel deposition rates of >1.75, 0.7, 0.26, and 

0.05 mmoles nickel/m2/year (>103, 41, 15, and 3 mg/m2/year, respectively) were determined at distances 

of 1, 8, 16, and 41 km, respectively, from the smelter.  Consistent with the decrease in deposition rates, 

the concentrations of nickel in soils were also found to decrease from 30 mmoles/kg (1,760 mg/kg) within 

1 km of the facility to 9.6 mmoles/kg (560 mg/kg) at 8 km, 6.5 mmoles/kg (380 mg/kg) at 16 km, and 

1.0–1.2 mmoles/kg (59–7  mg/kg) at 41 km.  The nickel concentrations in soils taken from the farthest 

sampling site (41 km) are similar to the background concentrations of nickel in soils within the regions 

that are not influenced by the deposition of nickel from the smelter. 

Soils from the Idaho National Engineering Laboratory (INEL) and two background sites in southern 

Idaho had geometric mean nickel concentrations of 11.8–23.4 ppm dry weight; concentrations are 

significantly higher near INEL (Rope et al. 1988).  The coal-fired steam plant that was constructed at the 

laboratory in 1982–1983 may be responsible for the higher nickel concentrations. 

Nickel concentrations in 57 sludge-treated soils in an agricultural area of Ontario, Canada, ranged from 

6.2 to 34 ppm (dry weight), with a mean of 20 ppm (Webber and Shamess 1987).  For 252 untreated soils, 

the range and mean values were 4.0–48 and 16.2 ppm, respectively.  The mean for sludge-treated soil was 

significantly elevated. 
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6.4.4 Other Environmental Media 

There have been several studies regarding nickel content in an average diet.  Current information on the 

dietary intake of nickel in the United States is based on data gathered from the NHEXAS study.  Nickel 

concentrations were measured in duplicate diet samples which, in combination with study participant’s 

estimates of food and water intake, were used to determine both the overall concentration of nickel in 

combined solids and liquids in the total diet and the average nickel intake of study participants.  In the 

EPA Region 5 (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) study, the mean and median 

concentrations of nickel in combined dietary solids and liquids were 47 and 43 µg/kg, respectively 

(Thomas et al. 1999). 

In other studies of nickel in the diet, Myron et al. (1978) analyzed nine institutional diets consisting of 

three meals each.  Four of these meals were sampled from the student center at the University of North 

Dakota. The remaining five diets were special diets from a rehabilitation hospital.  The average nickel 

concentration and nickel content of the student meals ranged from 0.19 to 0.29 ppm and from 140 to 

221 µg, respectively.  For the hospital meals, the nickel concentration ranged from 0.21 ppm (107 µg) in 

the puree meals to 0.41 ppm (176 µg) in the low-calorie meal.  Breakfast had the lowest nickel content. 

The average daily dietary nickel intake for the nine diets was 168±11 µg.  The average nickel 

concentration in the food was 0.27 ppm (dry weight). These results are comparable with estimated daily 

intakes of nickel of 150 µg in Denmark, 73–142 µg in Switzerland, and 140–150 µg in the United 

Kingdom (IARC 1990; Nielsen and Flyvholm 1984).  A 1962 study that used the nickel content of 

individual foods to estimate average dietary nickel intake reported intakes of 300–600 µg, which are 

much higher than those reported above (Grandjean 1984). 

The foods with the highest mean nickel content were oatmeal, spinach, asparagus, and peas (IARC 1990).  

Nuts and cocoa may have nickel levels as high as 3 and 10 ppm, respectively.  In a market basket survey 

completed in the United States (Pennington and Jones 1987), the highest average levels of nickel in 

µg/100 g were found in nuts (128.2), legumes (55), sweeteners (31.6), grains and grain products (26.2), 

and mixed dishes and soups (25.3).  From data gathered in the FDA Total Diet Study 1991–1996, the 

mean and median nickel concentrations in the food items that were surveyed were 0.136 and 

0.057 mg/kg, respectively (Capar and Cunningham 2000).  The highest concentrations of nickel were 

found in mixed nuts (3.04 mg/kg), oat ring cereal (2.32 mg/kg), chocolate syrup (1.04 mg/kg), granola 

cereal (1.01 mg/kg), and peanuts (0.956 mg/kg).  Other products with notable nickel concentrations are 

legumes and nuts (0.368–3.04 mg/kg), cereals containing largely whole wheat, corn, oats, or rice (0.216– 

http:0.368�3.04
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2.32 mg/kg), chocolate products (0.19–1.04 mg/kg), and canned peaches and pineapple juice (0.408– 

0.668 mg/kg).  In an analysis of trace metals in tissue samples taken from livestock and poultry, mean 

nickel concentrations were 0.23–0.82 ppm in muscle, 0.23–0.29 ppm in liver, and 0.28–0.57 ppm in 

kidneys (Coleman et al. 1992). 

A Canadian survey of nickel in infant formulas gave a median value of 3.53 µg/L for evaporated milk 

(Dabeka 1989). Different types of milk-based formulas contained from 5.8 to 28.9 µg nickel/L (Dabeka 

1989).  All concentrations are on a ready-to-use basis.  Formulas fortified with iron had a higher nickel 

content. The median nickel content of soy-based formula ranged from 31.2 to 187 µg nickel/L.  The 

average daily dietary intake of nickel by infants between the ages of 0 and 12 months could vary from 

35.7 µg (4.5 µg/kg) (if evaporated milk was fed) to 74.7 µg (10.2 µg/kg) (if concentrated liquid soy-based 

formula was used).  Infant formula (base not stated) in the United States contained an average of 0.2 µg 

nickel/100 g (Pennington and Jones 1987). 

There is limited evidence that stainless steel pots and utensils may release nickel into acid solution (IARC 

1990). Six stainless steel pots of different origins were tested to see whether they would release nickel by 

boiling 350 mL of 5% acetic acid in them for 5 minutes (Kuligowski and Halperin 1992).  The resulting 

concentrations of nickel ranged from 0.01 to 0.21 ppm.  Cooking acidic fruits in new stainless steel pans 

resulted in an increase of nickel that was about one-fifth the average daily nickel intake (Flint and 

Packirisamy 1995).  Further use of the pans did not result in any release of nickel into the food.  The use 

of nickel-containing catalysts in the hydrogenation of food fats may contribute to elevated nickel levels in 

food (Mastromatteo 1986).  Grain milling may also lead to higher nickel levels (IARC 1990).  The results 

from a recent study that attempted to identify the influence of the container on the trace metal content of 

preserved pork products showed no clear evidence that the metal container contributed to the metal 

content of the food (Brito et al. 1990).  The nickel concentration was highest in products in china and 

glass containers, rather than those in metal and plastic containers. 

The nickel content of cigarettes is 1–3 µg; ≈10–20% of this nickel is released in mainstream smoke 

(Sunderman 1986).  This indicates that 2–12 µg of nickel are inhaled for each pack of cigarettes smoked.  

Torjussen et al. (2003) reported a mean nickel concentration of 0.03 µg/g in smoke condensate isolated 

from the control combustion of five packets of cigarettes representing five U.S. brands.  This compares to 

mean concentrations of nickel of 1.72 and 1.57 µg/g in the tobacco and ash, respectively.  Most of the 

nickel is in the gaseous phase, but the chemical form of the nickel is unknown (IARC 1990). 

http:0.28�0.57
http:0.23�0.29
http:0.23�0.82
http:0.19�1.04
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In a comprehensive survey of heavy metals in sewage sludge, 31 sludges from 23 American cities were 

analyzed by electrothermal atomic absorption spectroscopy (AAS) (Mumma et al. 1984).  The nickel 

concentration in the sludges ranged from 29.0 to 800 ppm (dry weight) and had a median value of 

195 ppm.  The highest concentration of nickel in sludge was in Detroit, Michigan.  For comparison, the 

concentration of nickel in cow manure was 28.0 ppm.  In another study of heavy metal in sludges 

generated at waste water treatment plants in 16 large U.S. cities, nickel concentrations (dry weight) were 

found to range from 18 to 186 ppm, with a median value of 66.8 ppm (Gutemann et al. 1994). 

Nickel was detected in a large number of the 283 point samples taken from leachate collected from 

48 codisposal, hazardous, or municipal solid waste (MSW) sites (Gibbons et al. 1999).  Codisposal sites 

were defined as those facilities accepting municipal wastes and relatively large volumes of industrial 

sludges, liquids, and solids.  Dissolved nickel was detected in 43 of 45 codisposal sites, all 48 old 

(accepting waste before 1986) hazardous waste sites, all 29 old (accepting waste before 1984) MSW sites, 

and 1 of 1 new (accepting waste after 1984) MSW site.  Solid nickel was detected in 105 of 

111 codisposal sites, 108 of 126 old (accepting waste before 1986) hazardous waste sites, 108 of 116 old 

(accepting waste before 1984) MSW sites, and 36 of 43 new (accepting waste after 1984) MSW sites. 

Mosses are used to monitor atmospheric deposition of metals.  The metals measured in mosses are 

obtained only from the passive uptake of metals that are deposited onto the organism from the air.  In a 

study of heavy metal concentrations measured mainly in Pleurozium schreberi taken from 16 regions in 

West Germany and the former German Democratic Republic (GDR), a decrease in the mean nickel 

concentration occurred in moss samples taken in 1990–1991 (2.3 µg/g) and 1995–1996 (1.63 µg/g) 

(Herpin et al. 2004).  This decrease follows a decrease in the total airborne emissions of nickel in 

Germany from 277 to 159 tons/year. 

6.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE  

Nickel occurs naturally in the Earth's crust, and the general population will be exposed to low levels of 

nickel in ambient air, water, and food.  Based on several dietary studies, the average daily dietary intake 

of nickel in food ranges between 69 and 162 µg/day (NAS 2002; O’Rourke et al. 1999; Pennington and 

Jones 1987; Thomas et al. 1999).  In a more recent total dietary study (NAS 2002), the mean daily dietary 

intake of nickel ranged from 101 to 162 µg/day for individuals >18 years of age with males ranging from 

136 to 140 µg/day and females ranging from 107 to 109 µg/day.  Pregnant females averaged a daily 

dietary intake of 121 µg/day, whereas lactating females averaged 162 µg/day.  Also, based on data 
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obtained from the National Health and Examination Survey III (NHANES III), it has been estimated that 

approximately 5 µg/day of the daily dietary intake of nickel comes from dietary supplements (NAS 2002).  

The daily intake from drinking water is ≈8 µg, assuming a median nickel concentration of ≈4 µg/L and a 

consumption rate of 2 L water/day.  For the highest municipal level in drinking water, which is 68 µg/L in 

Sudbury, Ontario, the average daily intake of nickel would be 140 µg.  Assuming that a person inhales 

20 m3 air/day and the average nickel concentration in ambient air in the United States is 2.22 ng/m3, the 

average nickel intake by inhalation would be 0.0444 µg/day.  Based on the highest ambient nickel levels 

reported for the Copper Cliff (6,100 ng/m3) and Sudbury basin region (732 ng/m3) in Ontario (CEPA 

1994), the daily inhalation intake for individual living in these areas could have been as high as 122 and 

15 µg/day, respectively.  However, based on the mean ambient nickel concentrations measured in 

Sudbury area of 21 ng/m3 (CEPA 1994) the daily nickel the average daily nickel intake is estimated to be 

0.42 µg/day.  The nickel intake via inhalation is, therefore, a minor source of nickel to the general, 

nonsmoking population. 

A market basket survey in England completed in 1984 estimated a dietary intake of 154–166 µg/day or 

2.2–2.4 µg/kg/day for a 70-kg person (Smart and Sherlock 1987).  Dietary intake of nickel in the United 

States has been estimated to range from 69 µg/day for 6–11-month-old infants to 162 µg/day for teenage 

boys, with a level of 146.2 µg/day or 2 µg/kg/day for a 25–30-year-old male weighing 70 kg (Pennington 

and Jones 1987).  More recent data on nickel intakes from the U.S. diet come from the results of the 

NHEXAS studies.  Mean and median dietary intakes of nickel for study participants in the EPA Region 5 

study were calculated to be 2.2 and 1.4 µg/kg body weight/day, respectively, or 154 and 98 µg/day for a 

70-kg adult, respectively (Thomas et al. 1999).  O’Rourke et al. (1999) have taken the dietary nickel data 

obtained from the Arizona study and determined the dietary nickel intake for various subpopulations 

(Table 6-3). The mean daily nickel intake for all subjects was 153 µg/day, with the highest mean intake 

for an adult male (163 µg/day) and lowest intake for children (125 µg/day).  Hispanic study participants 

were found to have a lower mean dietary intake (141 µg/day) than non-Hispanic participants 

(155 µg/day).  Total nickel intake for Canadians in the general population has been estimated to range 

from 4.4 to 22.1 µg/kg/day, with greater intake estimated for infants than for adults (CEPA 1994).  Food, 

from which nickel is poorly absorbed, accounted for most of the intake (4.4–22 µg/kg/day).  It was 

estimated that cigarette smoking may increase total daily intake by 0.12–0.15 µg/kg/day.  Living in the 

vicinity of Sudbury, Ontario, where large nickel deposits are found, water intake of nickel for individuals 

aged 12 years old or older ranged from 0.6–2.5 µg/kg/day.  However, the estimated water intake of nickel 

increased with decreasing age of the study group, for example 0.87–3.6 µg/kg/day for children ages 5– 

11 years old to 2.8–12 µg/kg/day for newborns and infants under the age of 0.5 years. 

http:0.12�0.15
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Table 6-3. Tota l Dietary Exposure Estimates of Study Participants to 

Nick el Based on the Dietary Information Obtained from the 


NH EXAS Arizona Studya
 

Number of participants Daily nickel intake (µg) 
Exposure population evaluated Mean intake Median intake Range 
All subjects 176 153 135 27–562 
Adult male (>18 years of age) 55 163 145 38–372 
Adult female (>18 years of age) 86 157 135 23–563 
Children (<18 years of age)b 35 125 107 31–343 
Hispanic 54 141 134 27–401 
Non-Hispanic 119 155 132 42–563 

aO’Rourke et al. 1999 
bEither gender 
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In another approach to determining daily nickel intake with in subpopulations in the United States, 

Moschandreas et al. (2002) used the Dietary Exposure Potential Model (DEPM) and data obtained from 

Combined National Residue Database (CNRD) to estimate dietary nickel intake based on food 

consumption patterns in subpopulations and nickel content in specific food items.  The food items used in 

the model are based on 11 food groups consisting of a ppro ximately 800 exposure core foods that 

represent 6,500 com mon food items.  The results of their model (Table 6-4) yielded an average dietary 

nickel intake in the U.S. population of 0.374 µg/kg body weight/day, or 26.2 µg/day for a 70-kg adult.  

Their results also indicate that children under the age of 7 have a nickel intake that is at least 1.8 times 

higher than the average for the overall population. However, the estimates obtained for dietary nickel 

intake from the DEP M model are lower th an the daily nickel intakes determined from the NHEXAS study 

(Table 6-3). Moschandreas et al. (2002) attribute these differences in intake values for nickel to 

differences in study populations, methods for assigning values to measurements that are below the level 

of detection, and potential errors in recording portion sizes in the NHEXAS study. 

The general population is also exposed to nickel in nickel alloys and nickel-plated materials including 

steel, coins, and jewelry (Barceloux 1999).  Jewelry and other items made of silver may either contain, or 

be coated with, nickel to reduce oxidation.  White gold contains 10–15% nickel and some gold-plated 

items may have a nickel undercoating.  Residual nickel may be present in soaps, fats, and oils 

hydrogenated with nickel catalysts (Sunderman 1986).  In U.S. coinage, the 5-cent coin is composed of a 

cupronickel alloy containing 25% nickel and 75% copper, whereas only the faces of the 10-cent, quarter-

dollar, half-dollar, and 1 dollar coins contain the cupronickel alloy (United States Treasury 2004).  

Studies of European coins, especially the recently introduced Euro coinage, show the transfer of nickel 

from coins to hands (Fournier and Govers 2003).  For example, as part of a 58-coin counting exercise, it 

was determined that an average of 0.23 µg of nickel was transferred to three fingers during a 2–3-second 

manipulation of an unwashed Euro coin that had been in circulation for 2–5 months. 

A NOES survey conducted by NIOSH from 1981 to 1983 estimated that 727,240 workers are potentially 

exposed to nickel metal, alloys, dust, fumes, salts, or inorganic nickel compounds in the United States 

(NIOSH 1990). Seventy percent of these estimated exposures are to nickel of an unknown molecular 

formula.  The numbers of workers estimated to be exposed to nickel chloride, nickel oxide, and nickel 

sulfate are 48,717, 18,166, and 56,844, respectively. The estimate is provisional because all of the data 

for trade name products that may contain nickel have not been analyzed.  The NOES was based on field 

surveys of 4,490 businesses employing nearly 1.8 million workers and was designed as a nationwide 

survey based on a statistical sample of virtually all workplace environments in the United States where  
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Table 6-4. Dietary Exposure Estimates of U.S. Populations to Nickel Based on 
the Dietary Exposure Potential Model (DEPM)a 

Subpopulation Nickel intake (µg/kg body weight/day) 
U.S. population 0.374 
Age/gender
 Nonnursing infants 0.870b

 Children 1–6 0.669 
 Children 7–12 0.425 
 Females 13–19 0.281 
 Females 20+ 0.350 
 Females 55+ 0.368 
 Males 13–19 0.324 
 Males 20+ 0.342 
 Males 55+ 0.369 
Ethnicity 
 Hispanic 0.407 
 Non-Hispanic white 0.424b

 Non-Hispanic black 0.295 
 Non-Hispanic other 0.258 
Geographic regionc

 North central 0.238 
 Northeast 0.379 

Southern 0.359 
 Western 0.423b 

Family incomed

 Poverty 0–130% 0.420b

 Poverty 131%+ 0.362 

aMoschandreas et al. 2002 

bValues indicate the maximum exposure to nickel for each subpopulation group. 

cThe regional classification is as defined by the U.S. Department of Agriculture, and is based u pon U.S. Census 

Bureau regions. 

dAnnual household income as a percentage of the Poverty Index. 
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eight or more persons are employed in all standard industrial codes except mining or agriculture.  

Industries with especial ly large numbers of potentially exposed workers include the following:  plumbin g, 

heating, air conditioni ng, pressed and blown glass, steel, plating and polishing, aircraft, shipbuilding, 

railroad, control and measuring instruments, and repair services (NIOSH 1990). 

Occupational exposure to nickel will be highest for those involved in production, processing, and use of 

nickel. There are cu rrently no people in the United States employed in ni ckel mi nes, smelters, and 

refineries at the end of 2001. Prim ary nickel production in the United States ceased for several years in 

the late 1980s (Kirk 19 88a). The mining an d smelting operation in Riddle, Oregon, was reactivated in 

1989–1990, and was decommissioned in 2001 (Kuck 2002).  The concentration range of airborne nickel 

that workers were exp osed to in laterit e mining and smelting in Riddle, O regon, w as 4–420 µg nickel/m3 

(Warner 1984).  The ranges of airborne nickel concentrations reported for other i ndustries are as follows: 

stainless steel producti on, <1–189 µg /m3; high nickel alloy production, 1– 4.4 µg/ m3; foundry operations, 

from not detectable to 900 µg/m 3; ele ctroplating, <2–<16 µg/m3; nickel-cadmium  battery manufacture, 

20–1,910 µg/m3; nickel catalyst producti on from nickel sulfate, 1–1,240 µg/m 3; production of nickel salts 

from nickel or nickel oxide, 9–590 µg/m3; and production of wrought nickel and alloys from metal 

powder, 1–60,000 µg/m3 (Anttila et al. 1998;  Haber et al. 2000; Magari et al. 2002; Seilkop and Oller 

2003; Warner 1984).  The average nickel concentra tion for selected work areas or operations in these 

industries, other than producin g wrought nickel and alloys from metal powder, is <3–378 µg/m3; for 

wrought nickel and all oy produc tion from metal powder, the average concentration is 1,500 µg/m3. 

Operations that produc e the highest levels o f airborne nickel are those that involve grinding, welding, and 

handling powders. In a survey of 20 individ uals involved in the welding or grind ing of stainless steel 

components, nickel concentrations of 0.3 40–10.129 mg/m3 were measured in the workplace atmosphere 

(Borská et al. 2003). Not only do occ upational exposures vary widely am ong the se operations and 

industries, but also the form of nic kel that workers are exposed to varies a s is exe mplified in Table 6-5.  

In another example, B erge and Sk yberg (2003) determined the exposure factors and species of nickel for 

1,046 nickel refinery w orkers. Mean exposures factors (range of values) of 5.59 mg/m3/year (0– 
3101.38 mg/m3/year), 1.43 mg/m /yea r (0–24.27 mg/m3/year), 0.55 mg/m3/year (0–15.21 mg/m3/year), 
3 30.52 mg/m3/year (0–14.61 mg/m /year), and 3.09 mg/m3/year (0–72.99 mg /m /year) were determined for 

total nickel, soluble nickel, sulfidic nickel, metallic nickel and oxidic nickel, respectively.  Because sulfur 

has a deleterious effect on many  metals and alloys, nickel sulfate and sulfidic n ickel co mpounds are 

generally not found in metallurgical workplaces (Warner 1984).  Nickel subsulfide is known to exist in 

only one application in nickel-using industries, namely in certain spent catalysts.  Nickel oxide is used as 
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Table 6-5. Nick el Levels in Air and Distribution of Different Forms of Nickel as a 

Proportion (by Weight) of Total Nickel in Selected Departments and Time
 

Periods at a Nickel Refinery in Norwaya
 

Department and 
period (mg/m3) 

Total nickel in air nickel Proportion of total 
Soluble nickel Sulfidic nickel Metallic nickel Oxidic nickel 

Crushing and grinding 
1990–1994 0.7–1.4 0.12 0.72 0.11 0.04 
Smelter 
1910–1929 4.0 0.10 0.05 0.01 0.84 
1930–1950 4.0 0.10 0.05 0.08 0.77 
1951–1977 2.6–4.4 0.10 0.04 0.18 0.68 
Calcining, smelting 
1951–1977 1.5–3.4 0.10 0.05 0.01 0.84 
1978–1994 0.5 0.12 0.13 0.01 0.74 
Roasting  
1910–1977 1.9–5.3 0.10 0.15 0.03 0.72 
1978–1994 0.4 0.15 0.05 0.00 0.80 
Copper leaching 
1910–1994 0.1–1.5 0.49 0.01 0.01 0.49 
Copper electrolysis 
1910–1994 0.03–0.2 0.80 0.04 0.04 0.13 
Copper 
cementation 
1927–1977 0.6–1.2 0.45 0.05 0.45 0.05 
Electrolytic 
purification 
1927–1977 0.2–0.5 0.80 0.03 0.15 0.02 
1978–1994 0.03–0.2 0.98 0.01 0.00 0.01 
Nickel electrolysis 
1910–1977 0.1–0.2 0.87 0.05 0.01 0.08 
1978–1994 0.03–0.1 0.83 0.04 0.02 0.11 

aGrimsrud et al. 2002 
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a raw material in steel production, and oxide fumes and dust may occur in melting, casting, and we lding 

operations. There are probably more exposures to metallic nickel in nickel-using industries than in 

nickel-producing industries.  These occur during powder handling, grinding, and polishing operations and 

in casting operations. 

Nickel is an essential trace element for animals (Sunderman 1986), and a 70-kg reference man contains 

10 mg of nickel, giving an average body concentration of 0.1 ppm (Iyengar 1986).  The highest tissu e 

concentrations of nickel are found in the lungs of nickel smelting and refinery workers.  The highest 

nickel concentration reported in lung tissue of 39 nickel refinery workers autopsied in 1978–1984 was 

1,344 ppm (dry weight), compared to 1.7 ppm in unexposed persons (Andersen and Svenes 1989).  In 

another study of nickel content in the lungs of 15 former nickel refinery workers, the arithmetic mean 

(±1 SD) for nickel concentrations in workers was 50±150 µg/g, dry weight, in comparison to a value of 

0.74±0.44 µg/g in 10 individuals not connected to the refinery industry (Svenes and Anderson 1998).  In a 

multi-element analysis of lung tissue obtained from former nickel refinery workers who were retired for 

10–15 years, it was found that one form of nickel remained in the lung following 15–20 years of the 

occupational exposure (Andersen and Svenes 2003).  The remaining nickel is contained within an in haled 

mineral, trevorite, which is water-insoluble.  The concentration of nickel in the lung tissue within one 

donor varied from 3.0 to 64.1 µg/g dry weight, depending on the sampling site within the lung. 

Ten studies of nickel in human milk gave disparate results.  Six median values ranged from 5 to 16 µg /L, 

and 10 mean values ranged from 1.5 to 39 µg/L (Iyengar 1989).  Five of the six medians ranged from 

11 to 16 µg/L.  The lowest and highest mean values were from Finland and Germany GDR, respectively. 

Biego et al. (1998) were not able to detect nickel in breast milk above the detection limit of 2.9 µg/L of 

the assay.  However, mean (±1 SD) nickel concentrations were determined for formula (30±3 µg/L) and 

soya milk (450±220 µg/L).  Individual values ranged from not detectable to 130 µg nickel/L.  In one 

study from the United States, the nickel concentrations in human breast milk were measured between 

1 and 38 days postpartum (Casey and Neville 1987). The concentrations ranged from 0.52 to 2.04 ng/mL 

with a mean value of 1.16 ng/mL.  There was no significant change in the values as a function of time 

postpartum. 

Nickel concentrations in human serum taken from 30 individuals not occupationally exposed to nickel 

ranged from <0.05 to 1.05 µg/L with a mean value of 0.34 µg/L (Barceloux 1999).  In another examp le, 

nickel concentrations in serum obtained from individuals without occupational exposures to nickel range d 

from 0.18 to 0.54 µg/L with an average of 0.36 µg/L (Christensen 1995).  Serum nickel levels in hospital 

http:0.74�0.44
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workers averaged 0.6±0.3 µg/L in Sudbury, Ontario, versus 0.2±0.2 µg/L in Hartford, Connecticut 

(Hopfer et al. 1989). Measurements of nickel content of tap water in these communities were reported as 

109±46 and 0.4±0.2 µ g/L, respectively (Hopfer et al. 1989).  A mean nickel concentration of 

4.80±2.69 µg/L was m easured in urine samples collected for the NHEXAS Arizona study (EPA 2003t). 

Concentrations of nickel in the blood and urine of workers at a rolling mill in Poland were 18.5±4.0 and 

25.7±5.1 µg/L, respectively (Baranowska-Dutkiewicz et al. 1992).  Mean concentrations of nickel in urine 

of individuals not occupationally exposed to nickel are generally <2 µg/L and can range as high as 9– 

10 µg/L (95% upper confidence limit) in healthy adults (Barceloux 1999).  Workers at a galvanizing plant 

in Brazil exposed to airborne nickel sulfate at concentrations of 2.8–116.7 µg/m3 had nickel 

concentrations in their urine ranging between 2.1 and 58.7 µg/g creatinine (2.3–54.9 µg Ni/L) with mean 

values of 8.7±7.8 and 14.7±13.5 µg/g creatinine (10.5±7.5 and 20.6±18.1 µg Ni/L) in preshift and 

postshift samples, respectively (Oliveira et al. 2000).  Mean concentrations of nickel in the urine of the 

control group (workers in a zinc plating plant) were 3.7±2.5 µg/g creatinine or 4.9±2.2 µg/L.  Danadevi 

et al. (2003) reported a high mean nickel concentration in the urine obtained from 57 welders of 

131.0 µg/L (standard deviation of ±52.6 µg/L) compared to a mean concentration of 17.4 µg/L (standard 

deviation of ±8.9 µg/L) in urine taken from control individuals who were not occupationally exposed to 

nickel. However, airborne concentrations of nickel were not reported in this study.  Nickel concentrations 

in the urine of preschool children in Poland were 10.6±4.1 and 9.4±4.7 µg/L for children from an 

industrial region and a health resort, respectively (Baranowska-Dutkiewicz et al. 1992).  After reviewing 

studies of nickel concentrations in humans, Templeton et al. (1994) indicated that the most reliable 

reference values were 0.2 µg/L for nickel in serum of healthy adults and 1–3 µg/L for nickel in urine.  

These values are dependent on food and fluid intake and environmental factors.  Fewer studies of nickel 

in whole blood were identified, and a reference value was not suggested. 

Fingernail samples f rom 71 A mericans contained 0.57 ppm of nickel; samples from residents of Japan, 

India, Canada, and Poland had nickel concentrations that ranged from 1.1 to 3.9 ppm (Takagi et al. 1988). 

Nickel levels are higher in males than in females.  Higher levels occur in younger people and decrease 

with age. The mean concentration of nickel in hair samples from 55 men and women from Scranton, 

Pennsylvania, was 1.01 ppm; populations from cities in Japan, India, Canada, and Poland had mean 

nickel levels between 0.26 and 2.70 ppm (Takagi et al. 1986).  A more recent National Health and 

Nutritional Examination Survey II of hair from a random sample of 271 adults, ages 20–71, from three 

communities had geometric mean and median nickel levels of 0.39 and 0.45 ppm, respectively.  Ten 

percent of the group had nickel levels >1.50 ppm (DiPietro et al. 1989). 

http:4.80�2.69
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The nickel content of most natural vegetation is 0.05–5 ppm on a dry weight basis (NAS 1975).  Near 

source areas, nickel on plants may be elevated because of direct foliar deposition.  Some species of plants 

have the ability to hyperaccumulate nickel (Brooks 1980).  The concentration in the leaves of Alyssum 

bertolonii contained 120 ppm nickel.  These plants are thought to produce organic ligands that complex 

with nickel. 

The modal concentration of nickel in 159 species of edible fin fish from the U.S. National Marine 

Fisheries Survey was 0.2–0.3 ppm (wet weight) (Heit et al. 1989).  Jenkins (1980) has compiled literature 

concentrations of nickel levels in aquatic species.  The ranges of nickel concentrations in freshwater fish, 

marine fish, and mollusks from areas thought to be uncontaminated are from <0.2 to 2.0, from not 

detectable to 4.0, and from 0.4 to 2.0 ppm (wet weight), respectively.  The highest levels found near 

sources of pollution, especially near nickel smelters, were 51.6 ppm for freshwater fish and 191.0 ppm for 

mollusks.  The nickel content of muscle tissue of several fish species collected from metal-contaminated 

lakes near Sudbury, Ontario, was below the detection limit (2.0 ppm dry weight), except for two of four 

yellow perch, which had levels of 2.8 and 3.4 ppm (Bradley and Morris 1986).  A more recent survey of 

metals in stocked lake trout in five lakes near Sudbury, Ontario, reported that concentrations of metal in 

trout muscle were not significantly different from those in the hatchery (0.34–0.83 ppm wet weight versus 

0.49 ppm) (Bowlby et al. 1988).  Nickel concentrations in the lower Savannah River and Savannah 

National Wildlife Refuge in Georgia were higher than those reported above for uncontaminated areas.  

These levels were consistently higher in gar (2.35–6.67 ppm wet weight) than in catfish (0.371.41 ppm) 

(Winger et al. 1990).  Nickel could not be measured above the detection limit (0.5 µg/g, dry weight) in 

livers taken from lesser scaup collected along the Mississippi Flyway between Manitoba and Louisiana 

(Custer et al. 2003).  As part of the National Status and Trends Program for Marine Environmental 

Quality, the concentration of nickel in oysters and mussels was investigated (NOAA 1987).  The nickel 

concentration in bivalve tissue collected in 1986 ranged from 0.55 to 12.57 ppm (dry weight). The 

highest tissue concentration was found in Matagorda Bay, Texas, and the second highest concentration, 

6.57 ppm, was found in both Tomales Bay, California, and Chesapeake Bay, Maryland.  Oysters around 

three coastal marinas in South Carolina with sediment nickel levels of 25.8–40.8 ppm (dry weight) had 

levels of 0.35.2 ppm (Marcus and Thompson 1986). Mean nickel levels in oysters at four sites in the 

Mississippi Sound varied from <0.5 to 4.7 ppm (wet weight) (Lytle and Lytle 1990). 

http:0.371.41
http:2.35�6.67
http:0.34�0.83


  
 

 
 

 

  

 

 

  

 

 

 

 
 
 
 
 

NICKEL 253 

6. POTENTIAL FOR HUMAN EXPOSURE 

6.6 EXPOSURES OF CHILDREN  

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways. 

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults.  

The developing human’s source of nutrition changes with age:  from placental nourishment to breast milk 

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s 

behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their mouths, 

sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children 

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993). 

Exposures of children to airborne nickel are expected to be similar to those found for adults.  However, 

differences in the exposure to nickel contained in deposited particulates (e.g., household dust) are 

expected to be higher in children, due to greater contact of children with floors and other surfaces, in 

addition to greater oral and dermal contact with these deposited particulates through the mouthing of toys, 

hands, feet, etc. Concentrations of nickel in dust collected from homes in Ottawa, Ontario, averaged 

62.9 mg/kg with values as high as 116.4 mg/kg (Butte and Heinzow 2002).  However, it is not known 

how much nickel a child absorbs through oral or dermal contact with household dust.   

Nickel that is dissolved in water is expected to be a minor exposure route for children, due to the 

generally low concentrations of nickel in drinking water and groundwater (Sections 6.4.2 and 6.5).  

However, in areas near nickel smelters and refineries where source water used to produce drinking water 

is contaminated with nickel, intake of nickel through drinking water for individuals in the affected area 

will be elevated above that for individuals in the surrounding region whose drinking water is unaffected 

by these sources of nickel contamination, but is expected to be less than nickel intake through food. 

Exposure to nickel through consumption of human breast milk is expected to be comparable to or lower 

than milk-based and soy-based formulas, based on the similar concentration ranges of nickel in these 

fluids (Biego et al. 1998; Dabeka 1989; FDA 2000; Iyengar 1989).  Based on the data from Casey and 

Neville (1987), the intake of nickel through consumption of breast milk averages 0.8 µg/day between the 

ages of 4 and 38 days postpartum.  For 3-month-old children, it is estimated that daily intake of nickel 

through the consumption of breast, bottled, dried, and evaporated milk is below 2 µg/day (Biego et al. 
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1998).  However, daily intake could be higher when consuming some formulas and soya milk, with 

estimates as high as 21 and 315 µg/day, respectively, being reported (Biego et al. 1998). 

Another source of nickel exposure in children is through soil.  Children generally receive higher exposure 

to soil contaminants per unit body weight than adults (Lottermoser 2002).  Small children have large 

surface-to-mass ratios, which provide a greater potential to transdermally absorbed compounds, especially 

for children crawling in dirt.  Also, the skin of newborns and children is more permeable than adult skin. 

Nickel in an ionized form, such has nickel salts, penetrates intact skin at a slow rate and can also be 

absorbed at sites of injury to skin (Barceloux 1999).  However, nickel exposure through dermal exposure 

is minimal compared to exposures to nickel through ingestion of soil.  The population at greatest risk are 

children between the ages of 2 and 3 years old as a result of hand-to-mouth activities and those with soil-

eating disorders (Lottermoser 2002).  A child’s intake of nickel through ingestion of soil could be 

especially important in areas where soils that are naturally enriched with nickel (for example, some soils 

in the southeastern United States, southern Ontario, or eastern Australia) or have been contaminated with 

nickel (for example in the Sudbury, Ontario, region) (Section 6.4.3).  However, due to the limited 

bioavailability of nickel in some soils, the amount of nickel that a child actually absorbs from ingested 

soils could be rather limited.  For example, ingestion of 100 mg of ferrosol soil containing 149 mg nickel 

per kg of soil is calculated to contribute an intake of 0.000149 mg nickel/day, assuming a relative 

bioavailability for nickel of 1% (Lottermoser 2002). 

The primary route of nickel exposure in children is expected to be through the diet.  Measurements of 

nickel in duplicate diet samples obtained from the EPA Region 5 studies indicates that average nickel 

concentration in combined solids and liquids of 47 µg/kg, which is higher than the average nickel 

concentration in drinking water of approximately 5 µg/kg (5.3 µg/L) (Thomas et al. 1999).  Using the 

portion size information recorded by study participants in the NHEXAS Arizona study, daily dietary 

intakes of nickel for children (<18 years of age) have been calculated to range from 31 to 343 µg, with a 

mean value of 125 µg (O’Rourke et al. 1999). These intake levels were lower than the average dietary 

nickel intake of 153 µg/day calculated for the overall study population (Table 6-3).  Likewise, in another 

total dietary study taken between 1991 and 1997 the mean daily dietary intake of nickel in food of 9– 

99 µg/day for children under the age of 9 years was also found to be lower than the mean intake derived 

for the total study population of 114 µg/day (NAS 2002).  Mean daily nickel intakes of 9, 39, 82, and 

99 µg/day were determined for children aged 0–6 months, 7–12 months, 1–3 years, and 4–8 years, 

respectively. Nevertheless, the ranges in the mean daily dietary intakes of nickel in children aged 9– 

18 years (128–137 µg/day in males and 101–109 µg/day for females) are similar to the mean intakes 
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determined in adults (>18 years of age) (see Section 6.5).  Information on dietary nickel intake for non-

nursing children and children ages 1–6 (Table 6-4) obtained from DEPM model (Moschandreas et al. 

2002) indicates that these children have a higher intake of nickel than the average intake for the U.S. 

population.  Even so, the daily intake of nickel in these children is estimated (4–13 µg/day based on 6– 

20 kg total body weight) to be much lower than the average dietary nickel intake (125 µg/day) obtained 

from the NHEXAS study.  Also, results from a study of dietary nickel in 2-year-old children in the United 

Kingdom, where an average daily intake of 81 µg/day (range of 14–260 µg/day) was estimated from the 

weekly nickel intake of 0.57 mg of nickel (range of 0.1–1.8 mg) given in the reference (Smart et al. 

1987), would suggest a higher daily nickel intake in young children than is indicated based on the results 

of the DEPM model. 

For infants who are exclusively breastfed, the daily intake of nickel is estimated to be approximately 

1 µg/day (NAS 2002).  This estimate is based on a concentration of mean nickel concentration of 

1.2 ng/mL in breast milk and an average secretion of 0.78 L/day. 

6.7 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES  

In discussing nickel exposure, it is important to consider what form of nickel a person is exposed to and 

its bioavailability.  Such information is not often available.  Although high concentrations of nickel may 

be found in contaminated soil and sediment, it may be embedded in a crystalline matrix or bound to 

hydrated iron, aluminum, and manganese oxides and, therefore, not bioavailable. 

Nickel-containing alloys are used in patients in joint prostheses, sutures, clips, and screws for fractured 

bones. Corrosion of these implants may lead to elevated nickel levels in the surrounding tissue and to the 

release of nickel into extracellular fluid (IARC 1990; Ries et al. 2003; Sunderman 1989a; Sunderman et 

al. 1986, Sunderman et al. 1989c).  For example, elevation of nickel blood concentrations (up to 3 times 

higher than before implantation) has been observed in patients receiving the Amplatzer occluder to repair 

atrial septal defects up to 1 month following implantation (Ries et al. 2003).  However, the nickel 

concentrations return to preimplantation levels within 12 months.  Short-term elevations in nickel 

concentrations measured in blood and urine of up to a factor of 5 and 10 above preimplant levels, 

respectively, were seen in patients receiving knee and hip protheses within 1–2 days of implant 

(Sunderman et al. 1989c).  The rapid rise is attributed to the leaching of nickel from nickel-bearing 

particles from drills, cutting jigs, and drilling jigs.  These nickel concentrations were found to decrease to 

near preimplant concentrations within 2 weeks of implant.  Serum albumin solutions used for intravenous 
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infusion fluids have been reported to contain as much as 222 µg nickel/L, but are very rarely encountered. 

Dialysis fluid has been reported to contain as much as 0.82 µg nickel/L.  Studies of nickel in serum pre- 

and post-dialysis show between 0 and 33% increases in nickel concentrations in patients (IARC 1990).   

People who live near or work at facilities in the United States that produce stainless steel and other nickel-

containing alloys, oil-fired power plants, coal-fired power plants, refuse incinerators, or waste sites that 

receive nickel-producing or using industries have the potential to be exposed to levels of nickel in 

airborne dust, soil, and vegetation that are greater than those for the general population by virtue of their 

proximity to these sites.  Nickel uptake is expected to result from one or more (simultaneous) exposure 

pathways, such as inhalation, dermal contact, or ingestion of contaminated soil or vegetation.  Inhalation 

and ingestion of particulate matter are likely the main routes of occupational exposures.  In the Unites 

States, these exposures are minimized through the limiting of allowable concentrations of nickel in air in 

the workplace (see Chapter 8) and the recommended use of protective clothing and equipment (HSDB 

2005).  For residents living near NPL sites and other facilities that produce, use, handle, or store nickel or 

nickel-containing material, many of the nickel concentrations measured in air (0.4912–4,000 ng/m3), 

surface water (2–20,000 ppb), groundwater (4.2–11,400 ppb), and soils (2–10,522 ppb) offsite from NPL 

sites (HazDat 2005; Newhook et al. 2003) exceed the average concentrations of nickel in air (6– 

20 ng/m3), surface water (15–20 ppb), groundwater (3 ppb), and soils (<5,000–700,000 ppb) measured in 

the United States (ATSDR 2003; Barceloux 1999; Grandjean 1984; NAS 1975; Page 1981; Shacklette 

and Boerngen 1984). It is likely that the greatest exposures to nickel from these facilities are expected to 

be through inhalation of particulate matter containing nickel or through ingestion of drinking water 

obtained from private wells.  The relationship between these increased nickel concentrations measured in 

media offsite of these facilities and exposure of nearby residents to nickel will vary between facilities and 

depend mainly on the location of a resident to the facility. 

6.8 ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of nickel is available.  Where adequate information is not 

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of research 

designed to determine the health effects (and techniques for developing methods to determine such health 

effects) of nickel.  



  
 

 
 

 

 

 

 

 

 

 

 

     

     

 

 
 
 
 
 

NICKEL 257 

6. POTENTIAL FOR HUMAN EXPOSURE 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed.  

6.8.1 Identification of Data Needs 

Physical and Chemical Properties.    Except for differences between black and green nickel oxide, 

the physical and chemical properties of nickel and its compounds reported in Table 4-2 (HSDB 2004) 

have been adequately characterized. 

Production, Import/Export, Use, Release, and Disposal.    According to the Emergency 

Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required 

to submit substance release and off-site transfer information to the EPA.  The TRI, which contains this 

information for 2002, became available in May of 2004.  This database is updated yearly and should 

provide a list of industrial production facilities and emissions. 

Information on the production, import, export, and use of nickel metal, nickel alloys, and nickel 

compounds is readily available (ABMS 1994, 2002; Chamberlain 1985; Kirk 1988a, 1988b; Kuck 2002, 

2002; NTD 1996; Tien and Howson 1981; USGS 2003).  Except for recycling of metal scrap, little 

information is available regarding the disposal of nickel and its compounds. 

Releases according to the TRI database are reported in Tables 6-1 and 6-2 (TRI02 2004).  The TRI data 

should be used with caution because only certain types of facilities are required to report.  This is not an 

exhaustive list. Much of the nickel released to the environment is transferred off-site for disposal and 

probably landfilled. Nickel wastes from former mining and smelting operations may have been discarded 

in large tailing piles. Acid conditions are often created in tailing piles from sulfidic ores that increase the 

potential for leaching (Wood 1987).  This is not the case with lateritic deposits such as those found in 

Riddle, Oregon. Information regarding nickel leaching from slag heaps is important in assessing releases 

to the environment.  More detailed information regarding disposal methods and the form of nickel 

disposed of is necessary to assess potential nickel exposure. 
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Environmental Fate. Nickel is an element and therefore, is not destroyed in the environment.  In 

assessing human exposure, one must consider the form of nickel and its bioavailability. This inform ation 

is site specific.  Data regarding the forms of nickel in air, soil, and sediment are fragmentary and 

inadequate (Galbreath et al. 2003; Sadiq and Enfield 1984a; Schroeder et al. 1987).  Also lacking is 

adequate information on the transformations that may occur, the transformation rates, and the conditions 

that facilitate these transformations.  Information relating to the adsorption of nickel by soil and sedimen t 

is not adequate. In some situations, adsorption appears to be irreversible.  In other situations, however, 

adsorption is reversible.  More data would be helpful in detailing those situations where adsorbed nick el 

may be released and those where release is unlikely. 

Bioavailability from Environmental Media.    The absorption and distribution of nickel as a resul t of 

inhalation, ingestion, and dermal exposure are discussed in Sections 3.4.1 and 3.4.2.  Quantitative data 

relating the physical/chemical properties of nickel (e.g., particle size, chemical forms of nickel) with its 

bioavailability are available for inhaled nickel.  In aqueous media, nickel is in the form of the hexahydrat e 

ion, which is poorly absorbed by most living organisms (Sunderman and Oskarsson 1991), although 

uptake of nickel into rye and oats has been reported (Smith 1994; Weng et al. 2004).  Additional studies 

that examine the absorption of nickel from soil would be useful. 

Food Chain Bioaccumulation.    Data are available on the bioconcentration of nickel in fish and 

aquatic organisms (Birge and Black 1980; EPA 1979; McGeer et al. 2003; Suedel et al. 1994; Zaroogian 

and Johnson 1984).  Higher levels of nickel have been found in gar compared with catfish from the sam e 

environment (Winger et al. 1990).  More data on different species of fish at different sites would be useful 

in explaining these results.  Data are limited on the nickel levels in wild birds and mammals (Alberici et 

al. 1989; Dressler et al. 1986; Jenkins 1980).  A larger database including information on both 

herbivorous and carnivorous species living in both polluted and unpolluted environments is desirable in

establishing whether nickel biomagnification in the food chain occurs under some circumstances. 

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of nickel in 

contaminated  media at hazardous waste sites are needed so that the information obtained on levels of 

nickel in the environment can be used in combination with the known body burden of nickel to assess the 

potential risk of adverse health effects in populations living in the vicinity of hazardous waste sites. 

Representative and recent monitoring data for nickel in air, water, and foods are essential for estimating 

the extent of exposure from each of these sources.  Nickel levels in environmental media are often below 
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the detection limit of the analytical method employed.  When a substantial fraction of determination s of 

nickel levels in environmental samples are below the detection limit, an arithmetic mean may not 

adequately represent the data.  Data on the levels of nickel in ambient and indoor air are availa ble 

(Claiborne et al. 2002; EPA 1986a; Evans et al. 1984; Graney et al. 2004; Kinney et al. 2002; Koutrakis e t 

al. 1992; Kowalczyk et al. 1982; Lioy et al. 1987; Galbreath et al. 2003; Salztman et al. 1985; Sweet et al . 

1993; van Winkle and Scheff 2001; Wiersema et al. 1984).  Data provided by EPA’s National Human 

Exposure Assessment Study (NHEXAS) have contributed to the assessment of current levels of expos ure 

to nickel by the U.S. population via inhalation, drinking water and food.  Analyses of data obtained from 

the Arizona and EPA Region 5 NHEXAS studies (O’Rourke et al. 1999; Thomas et al. 1999) and another 

total dietary study (NAS 2002) have provided information on daily dietary nickel intake for these study 

populations.  These data have provided the first update of nickel content within the U.S. diet since the last 

comprehensive survey of nickel in U.S. drinking water in 1969–1970 (NAS 1975) and the information o n 

dietary nickel that had been limited to one study from North Dakota (Myron et al. 1978).  While these 

recent results are in agreement with ones from Europe (Alberti-Fidanza et al. 2003; IARC 1990), they do 

differ from the estimated dietary nickel intakes obtained by Moschandreas et al. (2002).  Therefore, 

additional data on nickel content within the U.S. diet, especially information covering a larger geographi c 

area in the United States, is desirable.  Also, few data are available regarding nickel levels at 

contaminated or hazardous waste sites (Agency for Toxic Substances and Disease Registry 2003; B radley 

and Morris 1986; Duke 1980b; Taylor and Crowder 1983).  This information is necessary for exposure 

assessment analysis at these sites.  This should include monitoring of air and drinking water 

concentrations of nickel surrounding these sites.  Since nickel is found in all soil, studies should focus o n 

waste sites where nickel levels are substantially above those found in ordinary soil. 

Exposure Levels in Humans. Nickel levels in body fluids, tissue, hair, nails, and breast milk are 

available (Andersen and Svenes 2003; DiPietro et al. 1989; Hopfer et al. 1989; IARC 1990; Iyengar 198 9; 

Takagi et al. 1986, 1988).  Serum and urine levels in some exposed workers have also been published 

(Angerer and Lehnert 1990; Barceloux 1999; Bencko et al. 1986; Bernacki et al. 1978; Danadevi et al. 

2003; Elias et al. 1989; Ghezzi et al. 1989; Hassler et al. 1983; Morgan and Rouge 1984; Oliveira et al . 

2000; Torjussen and Andersen 1979).  These data do not refer to populations living around hazardous 

waste sites that contain elevated levels of nickel.  It is recommended that additional studies be cond ucted 

that examine biomarkers of exposure or markers of early biological effects, such as changes in gene 

expression measured by microarrays.  These studies could be piloted with in vitro cell lines to determine 

nickel-specific markers, followed by in vivo screening of people living n ear sites that contain levels of 

nickel that are elevated above background concentrations or who have occupational exposures to nickel. 
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This information is necessary for assessing the need to conduct health studies on these populations. 

Exposures of Children. This information is necessary for assessing the need to conduct health 

studies on children.  Some data on daily intake of nickel is available for children under the age of 18 year s 

(Thomas et a l. 1999), including data for various age ranges of children (Moschandreas et al. 2002; NAS 

2002; O’Rourke et al. 1999).  The nickel levels in urine are available (Baranowska-Dutkiewicz et al. 

1992), but information on levels in other body fluids, tissue, hair, and nails is not available. These data 

do not refer to populations living around the hazardous waste sites that contain elevated levels of nickel.  

Additional studies that examine nickel levels in body fluids and tissues from children living near 

hazardous waste sites that contain elevated levels of nickel would be useful. 

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data 

Needs: Children’s Susceptibility. 

Exposure Registries. Although there is no U.S. exposure registry for nickel, a Finnish exposure 

registry for occupational carcinogens exists, and this registry contains information on nickel and inorgani c 

nickel compounds (Grandjean 1984). 

This substance is not currently one of the compounds for which a sub-registry has been established in th e 

National Exposure Registry. The substance will be considered in the future when chemical selection is 

made for sub-registries to be established.  The information that is amassed in the National Exposure 

Registry facilitates the epidemiological research needed to assess adverse health outcomes that may be 

related to exposure to this substance. 

6.8.2 Ongoing Studies 

A number of ongoing studies concerning the fate/transport of nickel and human exposures to nickel were 

identified in the FEDRIP (2004) database.  These studies are summarized in Table 6-6. 
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6. POTENTIAL FOR HUMAN EXPOSURE 

Table 6-6. Ongoing Studies on Environmental Fate and the Potential for Human 

Exposure to Nickela
 

Investigator Affiliation Research description 	 Sponsor 
Angle, JS 	 University of Maryland 

Baligar, VC; Clark, Virgina Polytechnical 
RB; Zelazny, LC; Institute and State 
Persaud, N; University 
Ritchey, KD; 
Martens, DC 
Baker, JC 	 Virgina Polytechnic 

Institute 

Identify indigenous microorganisms that 
affect both metal solubility in soil and 
uptake into plants  
Evaluate the mineralogy and chemistry of 
trace elements in soil treated with coal-fired 
power plant byproducts 

Determine chemical, physical, and soil 
water status in 1,200 Virgina soil horizons, 
including quantifying trace metal 
concentrations 

Bleam, WF University of Wisconsin Characterizing trace metal complexes with 
humic acids containing thiols or amines 

Bleam, WF; University of Wisconsin Improve understanding of how humic 
Helmke, PA at Madison substances in soil bind trace metals by 

elucidating specific binding sites and their 
affinities for trace metals 

Chaney, RL Beltsville Agricultural 
Research Center 

Characterize trace element absorbants in 
municipal, industrial, and agricultural 
byproduct-amended soils 

Franklin, RE; 
Mylavarapu, R 

Clemson University Establish baselines for metal 
concentrations in soils in South Carolina 
and vicinity; measure metal concentrations 
in plants grown in soils amended with 
waste waters and solid wastes 

kins, DG Hop North Dakota State 
University 

Evaluate the total and bioavailable trace 
metals in North Dakota Drift Prairie 

Koenig, RT Utah State University Assess concentrations of metals, 
phosphorous, and nitrogen in soils 
amended with biosolids 

Lave, LB Carnegie-Mellon 
University 

Development of input-output models for 
assessing heavy metal flows throughout 
some 500 economic sectors in the United 
States 

Martinez, CE Pennsylvania State 
University 

Characterize the distribution and elemental 
associations of nickel, copper, and zinc in 
field-collected soils and evaluate the long-
term partitioning and redistribution of these 
elements using computer modeling 

Odom, JW Auburn University Determine the normal occurrence of both 
total and extractable trace metals in 
selected Alabama soil profiles  

Hatch 


USDA 


Hatch 


Hatch 


USDA 


USDA 


Hatch 


Hatch 


Hatch 


NSF 


USDA 


Hatch 
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Table 6-6. Ongoing Studies on Environmental Fate and the Potential for Hum an
 
Exposure to Nickela
 

Investigator Affiliation Research description Sponsor 
Parker, DR University of California Determine binding constants between USDA 

mugineic acids and trace metals; evaluate 
competition between iron and other trace 
metals in soils in binding reactions with 
mugineic acids; elucidate mechanisms 
through which mugineic acids contribute to 
the uptake of trace metals into plants 

Ross, DS University of Vermont Characterize the reactive sites on soil Hatch 
manganese oxides and elucidating the 
oxidation of trace metals at these sites 

Sparks, DL University of Delaware Determine the effects of reaction conditions USDA 
and residence time on the sorption/release 
of important metals/metalloids on soil 
components and Delaware soils  

Sparks, DL; Ford, University of Delaware Examine nickel and zinc sorption- USDA 
RG desorption kinetic behavior on model and 

natural soil components, characterize 
structure of the sorption complex, and 
investigate effect of competition of soil 
components with metal-aluminum 
precipitates 

Sparks, DL; University of Delaware Determine the effects of residence time on USDA 
Scheidegger, AM; the mechanisms of nickel sorption/release 
Lamble, GM on soils an d soils components; develop 

predict ions about long-term fate of nickel in 
soils 

Thompson, ML; Iowa State University Identify and quantify the fundamental USDA 
Horton, R; processes that determine the fate and 
Tabatabai, MA transport of metals and pesticides once 

they are applied to the soil or where they 
occur in contaminated soils 

Tu, S Eastern Regional Elucidate the kinetics and mechanisms of USDA 
Research Center, heavy metal retention/release by soil 
Wyndmoor, mineral colloids as affected by inorganic 
Pennsylvania anions 

Volk, VV; Oregon State University Assess potential of plants to remove trace USDA 
Roseberg, RJ; metals from soils and determine impact of 
Baham, J trace metals on plant health 

aFEDRIP 2004 

NSF = National Science Foundation; USDA = U.S. Department of Agriculture 



  
 

 
 

    

 

 
 
 
 
 

NICKEL 263 

6. POTENTIAL FOR HUMAN EXPOSURE 

As part of the Third National Health and Nutrition Evaluation Survey (NHANES III), the Environment 

Health Laboratory Sciences Division of the National Center for Environment Health, Centers for Disea se 

Control and Prevention, will be analyzing human urine samples for nickel.  These data will give an 

indication of the frequency of occurrence and background levels of these compounds in the general 

population. 
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7. ANALYTICAL METHODS 

The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring nickel, its metabolites, and other biomarkers of exposure and effect to 

nickel. The intent is not to provide an exhaustive list of analytical methods.  Rather, the intention is to 

identify well-established methods that are used as the standard methods of analysis.  Many of the 

analytical methods used for environmental samples are the methods approved by federal agencies and 

organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  Other 

methods presented in this chapter are those that are approved by groups such as the Association of 

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA).  

Additionally, analytical methods are included that modify previously used methods to obtain lower 

detection limits and/or to improve accuracy and precision. 

7.1 BIOLOGICAL MATERIALS  

Analytical methods that determine nickel in biological materials are the same as those used for 

environmental samples.  The most common methods determine the total nickel content of the sample 

instead of the particular nickel compound that may be present.  Methodological differences are a function 

of the nickel level in the sample, digestion procedure required to solubilize the sample, and the level of 

potentially interfering substances that may be present.  Either wet ashing with sulfuric acid or dry ashing 

through dissolution of the ash with dilute sulfuric or hydrochloric acid is generally a satisfactory method 

to detect nickel in tissue or food (Boyer and Horowitz 1986; Coleman et al. 1992).  Another 

methodological approach utilizes digestion of biological samples with nitric acid (Custer et al. 2003; 

Odland et al. 2003) that can also be followed by treatment with hydrogen peroxide to remove residual 

biological material (USGS 2000).  Digestion procedures for biological and environmental samples with 

particular reference to nickel determinations have been reviewed (Stoeppler 1980; Sunderman 1993; 

Versieck 1985). As the digestion procedures require the use of strong acids and substances with 

explosion hazards (e.g., perchloric acid), all safety procedures should be carefully reviewed before the 

analyses are completed. 

Nickel is normally present at very low levels in biological samples.  To determine trace nickel levels in 

these samples accurately, sensitive and selective methods are required.  Atomic absorption spectrometry 

(AAS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), with or without 
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7. ANALYTICAL METHODS 

preconcentration or separation steps, are the most common methods.  These methods have been adopted 

in standard procedures by EPA, NIOSH, IARC, and the International Union of Pure and Applied 

Chemistry (Brown et al. 1981).  Direct aspiration into a flame and atomization in an electrically heated 

graphite furnace or carbon rod are the two variants of atomic absorption.  The latter is sometimes referred 

to as electrothermal AAS (ETAAS).  Typical detection limits for ETAAS are <0.4 µg/L, while the limit 

for flame AAS and ICP-AES is 3.0 µg/L (Stoeppler 1984; Sunderman 1993; Todorovska et al. 2002).  

The precision of analytical techniques for elemental determinations in blood, muscles, and various 

biological materials has been investigated (Iyengar 1989).  Good precision was obtained with flame AAS 

after preconcentration and separation, electrothermal AAS, and ICP-AES.  Inductively coupled plasma-

mass spectrometry (ICP-MS) techniques have been used to quantify nickel in urine with detection 

sensitivities down to approximately 1 µg/L (Sunderman 1993).  The quantification of nickel in biological 

materials is hampered by the presence of calcium, sodium, and potassium and requires the use of isotope 

dilution techniques to validate the measurements of nickel in samples.   

Voltammetric techniques are becoming increasingly important for nickel determinations since such 

techniques have extraordinary sensitivity as well as good precision and accuracy.  Direct measurement of 

nickel in urine in the presence of other trace metals (e.g., cadmium, cobalt, and lead) was demonstrated 

using adsorption differential pulse cathodic stripping voltammetry at a detection limit of 0.027 µg/L 

(Horng et al. 2003).  The addition of dimethylglyoxime, a chelating agent, to the electrolyte significantly 

enhances the method's sensitivity (IARC 1990; Stoeppler 1984).  Detection limits of <0.001 µg/L have 

been achieved with differential pulse anodic stripping voltammetry (DPASV) using dimethylglyoxime 

chelation (Sunderman 1993). 

Analytical methods and detection limits for nickel in biological materials are reported in Table 7-1.  The 

presence of nickel in other biological materials such as hair and nails can be determined by the same 

analytical techniques used for blood and tissue after suitable procedures for dissolving the sample have 

been utilized (Stoeppler 1980; Takagi et al. 1986, 1988).  It should be noted that assays of metals in hair 

are difficult to interpret because of the likelihood of external contamination on the hair shaft, and due 

caution is advised. 

Detailed reviews regarding the methodology used to determine nickel in environmental and biological 

samples are available (Stoeppler 1980, 1984; Sunderman 1993). 
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Table 7-1. Analytical Methods for Determining Nickel in Biological Materials 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Blood fluid, Acid digestion in mixture of 
tissue, and nitric, sulfuric, and perchloric 
excretaa acid 
Urine Polydithiocarbamate resin 

extraction; ash filter and resins 
in a low temperature oxygen 
plasma asher or digest with 
HNO3:HClO4 

Urine Diluted 1:1 in water 

Blood or 
tissue 

Acid digestion in 3:1:1 (v/v/v) 
HNO3:HClO4:H2SO4 

Serum or 
urine 

Sample (10 µL) injected into 
graphite furnace with equal 
volume of 30% hydrogen 
peroxide; pyrolyzed at 
1,200 °C; atomized at 2,100– 
2,200 °C 

Lung 
tissue 

Acid digestion in 4:2:1 (v/v/v) 
HNO3:HClO4:H2SO4 

Electrothermal 
AAS 

ICP-AES; 
NIOSH 8310 

STPGFAA 

ICP-AES; 
NIOSH 8005 

ETAAS 

Electrothermal 
AAS 

0.2 µg Ni/L 
fluid; 0.49 µg 
Ni/kg of tissue 
0.1 µg/sample 

0.56 µg/L 

1 µg/100 g 
blood; 0.2 µg/g 
tissue 
0.2 µg/L 

5 ng/g 

98% at 5 µg IARC 1986 
Ni/L; 97% at (Method 11) 
8 µg Ni/L 
80% 	 NIOSH 1994b 

100.7% 	 Oliveira et al. 
2000 

86% in NIOSH 1994b 
blood 

95–97% at Todorovska et 
1–20 µg/L al. 2002 

No data 	 Svenes and 
Andersen 
1998 

aIf substantial quantities of iron are present (e.g., whole blood, tissues), hydrochloric acid is added, and the resulting 
ferric chloride is extracted with methyl isobutyl ketone. 

AAS = atomic absorption spectrometry; ETAAS = electrothermal atomic absorption spectrometry; HClO4 = perchloric 
acid; HNO3 = nitric acid; H2SO4 = sulfuric acid; ICP-AES = inductively coupled plasma-atomic emission 
spectroscopy; Ni = nickel; NIOSH = National Institute for Occupational Safety and Health; STPGFAA = stabilized 
temperature graphite furnace atomic absorption; v = volume 



  
 

 
 

 

 

 

 

 

 

 

  

 
 
 
 

 

NICKEL 268 
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7.2 ENVIRONMENTAL SAMPLES 

Analytical methods that detect nickel in environmental samples generally determine the total nickel 

content of the sample; determining specific nickel compounds is difficult.  Filtering a water sample 

through a 0.45-µm membrane filter can distinguish between total and dissolved nickel (Martin et al. 

1992).  The most common methods used to detect nickel in environmental samples are AAS, either flame 

or graphite furnace, ICP-AES, or ICP-MS.  Nickel in water and waste water samples can be analyzed 

using ASTM Test Methods D1976 (ICP-AES) (ASTM 2000) and D5673 (ICP-MS) (ASTM 2000) or 

EPA Test Methods 249.1 (atomic absorption, direct aspiration) (EPA 1983), 249.2 (atomic absorption, 

furnace technique) (EPA 1983), 200.7 (ICP-AES) (EPA 1983), 200.8 (ICP-MS) (EPA 1994), 1638 (ICP

MS) (EPA 1996e), and 200.12 (atomic absorption, graphite furnace technique) (EPA 1997b), or a direct 

current plasma atomic emission spectrophotometric method (EPA 1990b).  Nickel can also be analyzed in 

ambient and marine water using stabilized temperature graphite furnace atomic absorption (STGFAA) 

detection techniques as described in EPA methods 1639 (EPA 1996d) and 200.12 (EPA 1997b), 

respectively, which give limits of detection for nickel concentrations ranging between 0.65 and 1.8 µg/L 

and recoveries of >92%.   

Although these methods are suitable for groundwater and surface water samples and domestic and 

industrial effluents, the nickel concentration in some groundwater, surface water, marine water, and 

drinking water is often below the method detection limits.  Therefore, the sample must be preconcentrated 

or other test methods must be used.  One EPA standardized test method, 1640, uses a chelation 

preconcentration step to increase the detection sensitivity of the ICP-MS based assay (EPA 1996c).  Two 

other EPA standard test methods, 200.10 and 200.13, also use preconcentration techniques in conjunction 

with ICP-MS (EPA 1997c) or graphite furnace AAS (EPA 1997d) detection techniques, respectively, for 

analysis of nickel in marine water.  One method uses activated charcoal to preconcentrate nickel in 

natural waters, followed by elution with 20% nitric acid and analysis by inductively coupled 

plasma-optical emission spectrometry (ICP-OES) (Yunes et al. 2003).  This method achieved a detection 

limit of 82 ng/L.  Measurement of trace metals, including nickel, in waste water, surface runoff, and 

seawater can be completed using an in-line system with stripping voltammetry or chronopotentiometry 

(Sedlak et al. 1997; van den Berg and Achterberg 1994).  These methods provide rapid analysis (1– 

15 minutes) with little sample preparation.  The detection limit of these methods for nickel was not stated.  

Recommended EPA methods for soil sediment, sludge, and solid waste are Methods 7520 (AAS) and 

6010B (ICP-AES).  Before the widespread use of AAS, colorimetric methods were employed, and a 

number of colorimetric reagents have been used (Stoeppler 1980). 
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With analytical methods such as x-ray fluorescence (XRF), proton-induced x-ray emission (PIXE), and 

instrumental neutron activation analysis (INAA), many metals can be simultaneously analyzed without 

destroying the sample matrix.  Of these, XRF and PIXE have good sensitivity and are frequently used to 

analyze nickel in environmental samples containing low levels of nickel such as air, rain, snow, and soil 

(Adamo et al. 1996; EPA 1999; Hansson et al. 1988; Landsberger et al. 1983; Nygren 2002; Schroeder 

et al. 1987; Sweet et al. 1993; Wiersema et al. 1984). The Texas Air Control Board, which uses XRF in 

its network of air monitors, reported a mean minimum detectable value of 6 ng nickel/m3 (Wiersema et al. 

1984).  In the EPA method IO-3.3, detection limits of 0.18 and 1.89 ng/m3 are reported in the analysis of 

nickel contained in fine (ca. 2.5 µm) and coarse (>10 µm) particulate matter (PM), respectively, collected 

on Teflon filters (EPA 1999).  A detection limit of 30 ng/L was obtained using PIXE with a nonselective 

preconcentration step (Hansson et al. 1988).  Lower detection limits of 2.37 ng/m3 are reported for the 

EPA method IO-3.6 based on dichotomous sampling for 24 hours using a Teflon filter at a sampling rate 

of 0.9 m3/hour (EPA 1999).  Energy dispersive x-ray analysis, in conjunction with a four-step metal 

extraction technique, has been used to measure the speciation of nickel in soils (Adamo et al. 1996).  In 

these techniques, the sample (e.g., air particulates collected on a filter) is irradiated with a source of x-ray 

photons or protons.  The excited atoms emit their own characteristic energy spectrum, which is detected 

with an x-ray detector and multichannel analyzer.  INAA and neutron activation analysis (NAA) with 

prior nickel separation and concentration have poor sensitivity and are rarely used (Schroeder et al. 1987; 

Stoeppler 1984). 

There are other standardized analytical methods for quantifying airborne nickel. These techniques utilize 

an extraction procedure to isolate nickel and other trace metals from PMs collected on air sampler filters.  

The extraction methods typically involve the use of hot nitric acid or microwave digestion techniques, for 

example as described in EPA Method IO-3.1 (EPA 1999).  The extracted metals are commonly analyzed 

using instrumental techniques as described in EPA test methods IO-3.2 (atomic absorption, furnace 

technique), IO-3.4 (ICP-AES), and IO-3.5 (ICP-MS) (EPA 1999), providing limits of detection for 

concentrations of nickel in air ranging between 0.02 and 0.10 ng/m3 (Table 7-2; Vousta and Samara 

2002). Use of trace-metal-free acids and sample extraction methods that are designed to exclude 

contamination of samples from adventitious metals can yield detection limits for determining airborne 

nickel concentrations down to 0.013–0.02 ng/m3 when using ICP-MS techniques (EPA 1999; Magari et  

al. 2002). 

http:0.013�0.02
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Table 7-2. Analytical Methods for Determining Nickel in Environmental Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Air, airborne 
particulates 

Air, airborne 
particulates 

Air, airborne 
particulates 

Air, airborne 
particulates 

Air, airborne 
particulates 

Air, airborne 
particulates 

Air, airborne 
Ni(CO)4 

Water 

Water 

Drinking, 
domestic, 
surface 
water; 
industrial 
waste water 
Drinking 
water, 
surface 
water, 
groundwater 

Collection on cellulose acetate 
filter; digestion with 
concentrated nitrated and 
perchloric acids 
Collection on glass or quartz 
fiber filter; microwave or hot 
acid digestion Method IO-3.1 
Collection on Teflon (fine PM) 
and Nucleopore (coarse PM) 
membrane filter 
Collection on glass or quartz 
fiber filter; microwave or hot 
acid digestion Method IO-3.1 
Collection on glass or quartz 
fiber filter; microwave or hot 
acid digestion Method IO-3.1 

Collection on PCTE or Teflon 
filters, or Kapton impaction 
surface 
Collection on low-Ni charcoal 
sorbent tube; ultrasonic 
digestion with nitric acid 
Acid digestion in mixture of 
nitric, sulfuric, and perchloric 
acids 

Preconcentrated on activated 
charcoal; eluted with 20% 
nitric acid 
Filter and acidify sample 

Filter and acidify sample 

ICP-AES; 

NIOSH 7300
 

AAS, graphite 

furnace; 

Method IO-3.2 

XRF; 

Method IO-3.3 


ICP-AES; 

Method IO-3.4 


ICP-MS; 

Method IO-3.5 


PIXE; 

Method IO-3.6 


Graphite 

furnace AAS; 

NIOSH 6007
 

Electro
thermal AAS; 

Method 11 


ICP-OES
 

ICP-AES; 

Method D1976 


ICP-MS; 

Method D5673 


1 µg/sample 

0.10 ng/m3 

0.18 ng/m3 (fine 
PM); 1.89 ng/m3 

(coarse PM) 
3.1 ng/m3 

0.02 ng/m3 

2.37 ng/m3 

0.01 µg/sample 

0.2 µg Ni/L 
fluids 

82 ng/L 

15 µg/L 

4 µg/L 

105% at 
2.5 µg; 
97% at 
1 mg 
No data 

No data 

96.4% 

101.7% at 
20 µg/L; 
102.3% at 
100 µg/L 
No data 

93% at 
5 to 
121 µg/m3 

98% at 
5 µg Ni/L; 
97% at 
8 µg Ni/L 
96.0% at 
2.0 µg/L 

92% 

104% 

NIOSH 1994b 

EPA 1999 

EPA 1999 

EPA 1999 

EPA 1999 

EPA 1999 

NIOSH 1994b 

IARC 1986 

Yunes et al. 
2003 

ASTM 2000 

ASTM 2000 
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Table 7-2. Analytical Methods for Determining Nickel in Environmental Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Water, 
waste water 

Water, 
waste water 

Water, 
waste water 

Water, 
waste water 

Marine 
water 

Snow 

Soil, 
sediment, 
sludge, solid 
waste 
Soil, 
sediment, 
sludge, solid 
waste 

Acid digestion 

Acid digestion; sample 
solutions should contain 
0.5% HNO3 

Filter and acidify sample 
(dissolved Ni); digest in nitric 
acid (total recoverable Ni) 

Filter and acidify sample 
(dissolved Ni); digest in nitric 
acid (total recoverable Ni) 
Acid digestion 

Digestion with nitric and 
hydrochloric acids 

Acidified with nitric acid, 
undissolved material removed 

Samples acidified with nitric 
acid 
Digestion with nitric and 
hydrochloric acids; 
Method 3050 

Digestion with nitric and 
hydrochloric acids; 
Method 3050 

AAS, direct 
aspiration; 
Method 249.1 

AAS, direct 
aspiration; 
Method 249.2 
ICP-AES; 
Method 200.7

ICP-MS; 
Method 200.8 

AAS, graphite 
furnace; 
Method 7521 
ICP-AES; 
Method 6010C 

STPGFAA; 
Method 200.12 

ICP-MS 

ICP-AES; 
Method 6010B 

AAS, direct 
aspiration; 
Method 7520 

0.04 mg/L 

1 µg/L 

5 µg/L 

0.5 µg/L 

1 µg/L 

10 µg/L 

1.8 µg/L 

0.7 pg/L 

10 µg/L 

0.04 mg/L 

100% at 
0.20 mg 
Ni/L; 97% 
at 1.0 mg 
Ni/L; 93% 
at 5.0 mg 
Ni/L 
100% 

Accuracy: 
6.7% at 
30 µg/L; 
8.3% at 
60 g/L; 
2.0% at 
120 g/L 
100.1% at 
100 µg/L 

No data 

98% at 
250 µg/L; 
92% at 
60 µg/L; 
93% at 
30 µg/L 
92% at 
15 µg/L; 
93% at 
37.5 µg/L 
95% 

98% at 
250 µg/L; 
93% at 
50 µg/L 
100% at 
0.2 mg/L; 
97% at 
1.0 mg/L; 
93% at 
5.0 mg/L 

EPA 1983 

EPA 1983 

EPA 1983, 
1994; Martin et 
al. 1992 

EPA 1994 

EPA 2002 

EPA 2002 

EPA 1997b 

Barbante et al. 
2002 
EPA 1986b; 
EPA 2002 

EPA 1986b 
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Table 7-2. Analytical Methods for Determining Nickel in Environmental Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Soil (total 
nickel) 

Soil (DPTA 
extractable) 
Soil (acid 
extractable) 

Soil and 
sediment 

Food 

Edible 
tissues 

Digest with nitric acid; oxidize 
with hydrogen peroxide at 
450 EC to destroy organic 
matter; digest with sulfuric and 
hydrofluoric acids, followed by 
digestion with nitric, sulfuric, 
and perchloric acids 
Shake soil with 0.005 M DPTA 
extraction solution for 2 hours 
Shake soil with 0.1 N hydro
chloric acid for 5 minutes; 
complete 3 times 
Sample is heated to 110 °C in 
a mixture of hydrochloric, 
nitric, perchloric, and hydro
fluoric acids and evaporated 
to dryness, and then treated 
with aqua regia 
Sample is heated to 110 °C in 
a mixture of hydrochloric, 
nitric, perchloric, and hydro
fluoric acids and evaporated 
to dryness, and then treated 
with aqua regia 
Wet oxidation with sulfuric 
acid, complexation with 
ammonium tetramethylenedi
thiocarbamate followed by 
extraction with methyl butyl 
ketonea 

Samples were homogenized, 
mixed with magnesium nitrate 
solution (6.67%), lyophilized, 
dry ashed twice, and 
dissolved in hydrochloric acid 

AAS 0.1 µg Ni/g soil 

AAS No data 

AAS No data 

ICP-AES 3 ppm 

ICP-MS 0.16 ppm 

AAS; 20 µg/kg 
Method 17 

AAS 0.15 ppm 

No data 	 Baker and 
Amacher 1982 

No data Baker and 
Amacher 1982 

No data Baker and 
Amacher 1982 

92–114% 	 USGS 2002 

91–104% 	 USGS 2002 

No data 	 IARC 1986 

101% 	 Coleman et al. 
1992 
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Table 7-2. Analytical Methods for Determining Nickel in Environmental Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Food Samples were homogenized ICP-MS 7.0 ng/g 52–96%b Melnyk et al. 

then solubilized using 2003 
atmospheric pressure 
microwave digestion in nitric 
acid 

aThe digestion procedure is not satisfactory for fats and oils.  For these substances, sulfuric acid and 50% hydrogen
 
peroxide should be used. 

bPercent recoveries of nickel in food samples spiked at 2 times the limit of detection (LOD) of nickel were given as: 

rice cereal, 94%; fatty food, 95%; beverage, 93%; duplicate diet 1, 52%; and duplicate diet 2, 90%.  In food samples 

spiked with nickel at 5 times the LOD, the percent recoveries were given as: fatty food, 96%; beverage, 94%; 

duplicate diet 1, 81%; and duplicate diet 2, 81%. 


AAS = atomic absorption spectrometry; DPTA = diethylenetriamine pentaacetic acid; HNO3 = nitric acid; ICP
AES = inductively coupled plasma-atomic emission spectroscopy; ICP-OES = inductively coupled plasma-optical 

emission spectrometry; Ni = nickel; Ni(CO)4 = nickel carbonyl; NIOSH = National Institute for Occupational Safety
 
and Health; PCTE = polycarbonate track etched; PIXE = proton induced x-ray emission spectroscopy; 

PM = particulate matter; STPGFAA = stabilized temperature graphite furnace atomic absorption; XRF = x-ray 

fluorescence 
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Contamination and loss are the main concerns when determining trace metals (Christensen 1995).  

Nickel-containing knives and needles should be avoided when collecting specimens.  A study that 

compared the effects of using different dissecting tools on trace metal analysis did not report significant 

differences in the nickel content of fish or mussel samples dissected with stainless steel, lexan, titanium, 

or Teflon-coated instruments (Iyengar 1986).  Contamination can result from impurities in reagents or 

laboratory apparatus and laboratory dust.  Losses may also occur when the analyte adsorbs onto container 

walls. When collecting air samples on filters, one should be aware that filter material can contain high 

and variable trace metal concentrations.  Glass fiber filters may contain <80 ng/cm2 of nickel. Silver 

membrane, cellulose, and polystyrene filters may contain ≈100 ng/cm2 of nickel (Schroeder et al. 1987). 

Trace metals in blanks of different filter types and in different filters of the same type may vary from 5 to 

20% (Brzezinska-Paudyn et al. 1986). 

Some investigators have characterized the forms of nickel in an environmental sample by using 

successively stronger solvents.  Each fraction solubilized is subsequently analyzed for nickel by atomic 

absorption or other procedures.  In air, where the speciation of nickel is less complex, a method of 

sequential selective leaching has been developed to determine the amount of nickel in four phase 

categories of a dust sample, namely, soluble nickel, sulfidic nickel, metallic nickel, and refractory nickel 

oxides (Zatka et al. 1992).  Soluble nickel salts, mostly nickel sulfates, are leached at pH 4; sulfidic nickel 

is next solubilized with a peroxide-citrate solution; and metallic nickel is oxidized with bromine.  The 

residue consists of refractory nickel oxides.  Wong and Wu (1991) used an adsorptive stripping 

voltammetry method to determine different forms of nickel in air at a nickel manufacturing facility.  The 

method distinguished between metallic nickel ions and nickel oxides.  The results showed that speciation 

of nickel from several samples taken at the same location were highly variable.  Although it is important 

to characterize the nickel contained in an environmental sample, methods that determine nickel speciation 

are difficult and not in widespread use. 

Analytical methods and detection limits for standard methods of determining nickel in environmental 

media are reported in Table 7-2.  If the determination of dissolved nickel is required, samples should be 

filtered with a 0.45-µm membrane filter. 

7.3 ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 
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adequate information on the health effects of nickel is available.  Where adequate information is not 

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the 

initiation of a program of research designed to determine the health effects (and techniques for developing 

methods to determine such health effects) of nickel.  

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed.  

7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect.     

Exposure. Nickel concentrations in hair, nails, blood, or urine are elevated in exposed individuals.  A 

correlation has been established between nickel levels in urine, plasma, and feces in occupationally 

exposed workers and nickel levels in air (Angerer and Lehnert 1990; Bernacki et al. 1978; Hassler et al. 

1983).  If the identity of the nickel compounds to which workers are exposed is known, nickel levels in 

urine and plasma can be used as a biomarker for nickel exposure (Sunderman 1993).  Available analytical 

methods can determine the nickel levels in these media in both unexposed and occupationally exposed 

persons. Also, reference values for nickel measured in urine and blood in individuals exposed to low 

levels of nickel are needed to establish norms for the general population (Christensen 1995).  

Methods for determining exposure of individuals through the assessment of plasma or urine levels of 

nickel are adequate, but further method development is needed to determine nickel speciation in 

biological media.  Also, development of assays that make use of biological markers, such as changes in 

gene expression in blood cells or protein levels in serum, as measured with gene or protein arrays would 

be useful not only in providing an alternative method for assessing nickel exposure in occupational and 

public populations, but also in providing information on biological effects to nickel exposures. 

Effect. There are no unique biomarkers of effect for nickel. 
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Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media.    Methods for determining total nickel in environmental media are well developed and adequate.  

Standardized methods are available from several sources including EPA (EPA 1983, 1986b, 1999, 2002). 

Most analytical methods measure total nickel content.  Sequential extraction techniques are sometimes 

used to determine the nature of nickel in particles, e.g., they are exchangeable, adsorbed, easily reducible, 

or organically bound (Adamo et al. 1995; Lottermoser 2002; Rudd et al. 1988; Rybicka 1989).  There is a 

need for more development in this area and the adoption of standard methods for determining nickel 

species or forms of nickel in various media. 

7.3.2 Ongoing Studies 

Information on ongoing research studies involving sample collection and the characterization and 

quantification of nickel was derived from a search of Federal Research in Progress (FEDRIP 2004) and 

are summarized in Table 7-3.   
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Table 7-3. Ongo ing Studies Involving Sample Collection and the Characterization 
and Quantification of Nickela 

Investigator Affiliation Research description Sponsor 
Barker, A University of Validate commonly used analytical hHatc 

Massachusetts methods for measuring trace elements in a 
variety of soils, water, and plants  

Odom, JW Auburn University Develop analytical techniques for Hatch 
determining total and extractable heavy 
metals in Alabama soils and plant materials 
and assess the normal occurrence of 
metals in select soil profiles 

aFEDRIP 2004 
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ATSDR has derived an intermediate-duration inhalation minimal risk level (MRL) of 0.0002 mg Ni/m3 

for nickel. This MRL is based on a NOAEL of 0.06 mg Ni/m3 and a LOAEL of 0.11 mg Ni/m3 for 

chronic active lung inflammation in rats exposed to nickel sulfate 6 hours/day, 5 days/week for 13 weeks 

(NTP 1996c). The MRL was derived by dividing the NOAELHEC of 0.0052 mg Ni/m3 by an uncertainty 

factor of 30 (3 for animal to human extrapolation with dosimetric adjustments and 10 for human 

variability).  

ATSDR has derived a chronic-duration inhalation MRL of 9x10-5 mg Ni/m3 for nickel. This MRL is 

based on a NOAEL of 0.03 mg Ni/m3 and a LOAEL of 0.06 mg Ni/m3 for chronic active lung 

inflammation and bronchialization in rats exposed to nickel sulfate 6 hours/day, 5 days/week for 2 years 

(NTP 1996c). The MRL was derived by dividing the NOAELHEC of 0.0027 mg Ni/m3 by an uncertainty 

factor of 30 (3 for animal to human extrapolation with dosimetric adjustments and 10 for human 

variability).  

EPA (IRIS 2005) derived an oral reference dose (RfD) of 0.02 mg/kg/day for nickel soluble salts.  The 

RfD was based on a NOAEL of 5 mg/kg/day and a LOAEL of 50 mg/kg/day for decreased body weight 

and organ weight in rats exposed to dietary nickel for 2 years (Ambrose et al. 1976).  The NOAEL was 

divided by an uncertainty factor of 300 (10 for animal to human extrapolation, 10 to protect sensitive 

individuals, and 3 for inadequacies in the reproductive toxicity studies).   

The Department of Health and Human Services (NTP 2002) has determined that metallic nickel may 

reasonably be anticipated to be a carcinogen and that nickel compounds are known to be human 

carcinogens. Similarly, IARC classified metallic nickel in group 2B (possibly carcinogenic to humans) 

and nickel compounds in group 1 (carcinogenic to humans).  EPA has classified nickel refinery dust and 

nickel subsulfide in Group A (human carcinogen) (IRIS 2005).  Other nickel compounds have not been 

classified by the EPA.  Based on the occupational data, inhalation unit risk levels of 2.4x10-4 (µg/m3)-1 and 

4.8x10-4 (µg/m3)-1 were derived for nickel refinery dust and nickel subsulfide, respectively (IRIS 2005). 

In an attempt to reduce the prevalence of nickel sensitivity, the European Union has passed a directive to 

restrict the use of nickel beginning in February 1996 (Delescluse and Dinet 1994).  The directive forbids 

the use of nickel in objects introduced into pierced ears and other parts of the human body during 
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epithelialization of the wound.  It forbids the use of nickel in products placed in direct and prolonged 

contact with the skin (e.g., earrings, watches, clothing accessories).  The use of nickel is also forbidden in 

accessories that are plated with another metal, except if the plating is strong enough to restrict liberation 

of nickel to <0.5 µg/cm2/week during a normal use of 2 years. 

International, national, and state guidelines and regulations regarding exposure to nickel and its 

compounds are summarized in Table 8-1. 
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Table 8-1. Regulations and Guidelines Applicable to Nickel and 
Nickel Compounds 

Agency Description 
INTERNATIONAL 
Guidelines: 

Information Reference 

 IARC 

WHO 

ATIONAL N 

Carcinogenicity classification 
 Nickel compounds 
 Nickel, metallic 

ne 

Air quality guideline 
Nickel unit risk 

Drinking water guideli
 Nickel 

Regulations and Gu idelines: 
a. Air: 

Group 1a 

.8x10  (µg/m3)-1 

L 

Group 2Bb 

-53 

0.02 mg/ 

WHO 2000 

WHO 1998 

IARC 1990 

ACGIH A) 
Nickel, elemental (as Ni) 

anic 

TLV (8-hour TW 

Nickel, soluble inorg
.5 mg/m3 

.1 mg/m3 
1 
0 

ACGIH 2003 

 compounds 
Nickel, insoluble inorganic 0.2 mg/m3 

 compounds 
Nickel subsulfide (as Ni) 
Nickel carbonyl (as Ni) 

.1 mg/m30 
0.05 ppm 

3a, NIOSH REL (10-hour TWA) 
c Nickel

 IDLH 
 Nickel carbonylc 

IDLH ppm 

0.015 mg/m3 

10 mg/m3 

0.001 ppm 
2 

NIOSH 200
2003b 

OSHA r TWA) for general indu
tal and insoluble 

PEL (8-hou 
Nickel, me

stry 
1.0 mg/m3 

Table Z-1 

OSHA 20 
29 CFR 191 

OSHA 

pounds (as 
bonyl 

 compounds (as Ni) 
Nickel, soluble com

 Nickel car 
PEL (8-hour TWA) for construction 

Ni) 
/m3

1.0 mg/m3 

0.007 mg 
OSHA 2003e 

industry 
Nickel, metal and insoluble 1.0 mg/m3 

29 CFR 19 

compounds (as Ni)  
Nickel, soluble compounds (as 

 Nickel carbonyl 
Ni) 1.0 mg/m3 

0.007 mg/m3 

(8-hour TWA) for shipyard ind
luble 

PEL 
Nickel, metal and inso 

ustry 
1.0 mg/m3 

OSHA 2003d 

compounds (as Ni)  
Nickel, soluble compounds (as 

 Nickel carbonyl 
Highly hazardous chemicals, toxics, 
and reactives 

Ni) 1.0 mg/m3 

0.007 mg/m3 

 Nickel carbonyl 
Threshold quantity 150 pounds Appendix A 

03a 
0.1000, 

26.55 

29 CFR 1915.1000 

OSHA 2003b, 2003f 
29 CFR 1926.64, 
29 CFR 1910.119, 



  
 

 
 

 
    

     

 

  

  

  
 

 

 

 

 
 

 
  
  
  

 

   

 

   

  

 

 
  

 
 

 
 

 
  

  

   
  

 

 
 

 

  

 

 
 

 
 

 
   

 

 

 
  

 

 
 
 

 

 
 
 
 

 

NICKEL	 282 

8. REGULATIONS AND ADVISORIES 

Table 8-1. Regulations and Guidelines Applicable to Nickel and 

Nickel Compounds 


Agency Description	 Information Reference 
NATIONAL (cont.) 
b. 	Water 

EPA 

c. 	Food 
FDA 

d. 	Other 
 ACGIH 

EPA 

EPA 

NTP 

STATE 
a. Air 
b. 	Water 

Arizona 

Drinking water health advisories 
 1-day (10-kg child) 

10-day (10-kg child)
 DWELg 

Life timeh 

Bottled drinking water 
 Nickel 
Generally recognized as safe as a 
direct human food ingredient with no 
limitation other than current good 
manufacturing practices 
Indirect food additives; components of 
paper and paperboard 

Carcinogenicity classification 
 Nickel subsulfide 
Carcinogenicity classification 
 Nickel 

Nickel refinery dust 
 Nickel carbonyl 

Nickel subsulfide 
RfC 

Nickel 
Nickel refinery dust 

 Nickel carbonyl 
 Nickel subsulfide 
RfD
 Nickel 

Nickel refinery dust 
 Nickel ca rbonyl 

Nickel subsulfide 
Carcinogenicity 
 Nickel, me tallic 

Carcinogenicity 
 Nickel compounds 

No data 

Drinking water guideline 
 Nickel, elemental 

1.0 mg/L 
1.0 mg/L 
0.7 mg/L 
0.1 mg/L 

0.1 mg/L 
Nickel 

Nickel 

A1i 

Not evaluated 
Aj 

B2k 

jA 

No data 
No data 
No data 
No data 

0.02 mg/kg/ day 
No data 
No data 
No data 
Reasonably 
anticipated t o be a 
human carc inogen 
Known h uman 
carcinogens 

150 µg/L 

EPA 2002a 

FDA 2003a 
21 CFR 16 5.110 
FDA 2003b 
21 CFR 184.1537 

FDA 2003c 
21 CFR 
176.180(b)(2) 

ACGIH 200 3

IRIS 2005 

IRIS 2005 

IRIS 2005 

NTP 2002 

NTP 2002 

HSDB 2003 
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Table 8-1. Regulations and Guidelines Applicable to Nickel and 

Nickel Compounds 


Agency Description Information Reference 
STATE (cont.) 

Massachusetts Drinking water guideline  HSDB 2003 
Nickel and nickel compounds 100 µg/L 

Maine Drinking water guideline  HSDB 2003 
Nickel and nickel compounds 150 µg/L 

Minnesota Drinking wate r guideline  HSDB 2003 
Nickel and nickel compo unds 100 µg/L 

c. Food No data 
d. Other No data 

aGroup 1: carcinogeni c to humans 
bGroup 2B: possibly c arcinogenic to humans 
cCarcinogen 
dClass D: refers to the retention (clearance half-tim es of <10 days) for all compo unds except those given for W. 
eThe ALIs and DACs f or inhalation are given for an a erosol with an activity medi an aerodynamic diameter (AMAD) of 
1 µm and for class D a nd W of radioactive material, which refers to their retentio n (clearance half-times of <10 days 
and 10–100 days, res pectivel y) in the pulmonary region of the lung. 
fClass W: refers to the retention (clea rance half-times of 10–100 da ys) for sulfides, oxides , hydro xides, halides, 
nitrates, and stannic phos phate. 
gDWEL:  a lifetime expos ure concentration protection of adverse, no n-cancer he alth effects, that assumes all of the 
exposure to a contaminant is from drinking water. 
hLifetime: the concent ration of a chemical in drinking water that is n ot expected to cause any adverse 
noncarcinogenic effec ts for a lifetime of exposure.  The Lifetime hea lth advisory is b ased on exposure of a 70-kg 
adult consu ming 2 L w ater/day.  
iA1: confirmed human carcinogen 
jA: human carcinogen 
kB2: probable human carcinogen 
ldesignated as a hazar dous substances purs uant to Section 307(a) of the Clean Water A ct. 
mdesignated as a haza rdous substances pursuant to S ection 3001 o f RCRA. 
ndesignated as a haza rdous substances pursuant to S ection 112 of the Clean Air Act. 

ACGIH = A merican Confere nce of Governme ntal Industrial Hygienists; ALI = annual limits on intake; CFR = Code of 
Federal R egulations; D AC = derived air co ncentration; DWEL = drinking water equivalent leve l; 
EPA = Enviro nmental Protection Agency; FDA = Food and Drug Ad ministration; HSDB = Haza rdous Su bstances 
Data Bank; IA RC = International Agency for Research on Cancer; IDLH = immediately danger ou s to life or health; 
IRIS = Integrate d Risk Information System; LLI = lower la rge intestine; NIOSH = National Insti tute for Occupation al 
Safety and Health; NT P = National Toxicology Progr am; OSHA = O ccupational S afety and Health Adm inistration; 
PEL = permissible exposure limit; RCRA = Resource  Conservation and Recovery  Act; REL = recommended 
exposure limit; RfC =  inhalation reference concentration; RfD = oral reference dose; TCLP = toxicity characteristic 
leachate procedure; T LV = threshold limit values; TSD = tre atment, storage, and disposal; TW A = time-weighted 
average; USNRC = N uclear Regulatory Commission; WH O = World Health Organiz ation 
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10.  GLOSSARY 


Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Activity Median Aerodynamic Diameter (AMAD)—The median of the distribution of radiolabelled 
particles with varying activities and aerodynamic diameters.  The aerodynamic diameter takes into 
account both the density of the particle and the aerodynamic drag. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible. 

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study—A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without outcome. 
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Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 

Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure. These may suggest potential topics for scientific research, but are not actual research studies. 

Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human 
health assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.   

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 
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Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a 
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or 
irreversible health effects. 

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 

Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of individuals in a population who develop a specified condition to the total 
number of individuals in that population who could have developed that condition in a specified time 
period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(Lo) (LCLo)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(Lo) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Mass Median Aerodynamic Diameter (MMAD)—The median of the distribution of particles with 
varying mass concentrations and aerodynamic diameters.  The aerodynamic diameter takes into account 
both the density of the particle and the aerodynamic drag. 
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Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 

Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA. Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
chemical. 

No-Observed-Adverse-Effect Level (NOAEL)—The exposure level of a chemical at which there were 
no statistically or biologically significant increases in frequency or severity of adverse effects seen 
between the exposed population and its appropriate control.  Effects may be produced at this dose, but 
they are not considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor). An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests. 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 
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Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points. These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 

Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows.  These models require a 
variety of physiological information:  tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time.  

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually µg/L for water, mg/kg/day for food, and 
µg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime.  
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical.  The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
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either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a chemical.  The toxicity may be directed to the reproductive organs and/or the related 
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, 
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of 
this system. 

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken. Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 

Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical. 

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or 
inherited characteristic that is associated with an increased occurrence of disease or other health-related 
event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors. A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial 
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 minutes 
continually. No more than four excursions are allowed per day, and there must be at least 60 minutes 
between exposure periods. The daily Threshold Limit Value-Time Weighted Average (TLV-TWA) may 
not be exceeded. 

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect.  
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit 
(STEL), or as a ceiling limit (CL). 

Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour 
workday or 40-hour workweek. 

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 
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Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any chemical that is foreign to the biological system. 
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APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration 

of exposure. MRLs are based on noncancer health effects only and are not based on a consideration of 

cancer effects.  These substance-specific estimates, which are intended to serve as screening levels, are 

used by ATSDR health assessors to identify contaminants and potential health effects that may be of 

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or 

action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach. They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects.  MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure. MRLs are generally based on the most sensitive chemical-induced end 

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the 

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 
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MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 

are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention. Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking.  In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive.  Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology, expert panel peer reviews, and agency-wide MRL Workgroup reviews, with 

participation from other federal agencies and comments from the public.  They are subject to change as 

new information becomes available concomitant with updating the toxicological profiles.  Thus, MRLs in 

the most recent toxicological profiles supersede previously published levels.  For additional information 

regarding MRLs, please contact the Division of Toxicology, Agency for Toxic Substances and Disease 

Registry, 1600 Clifton Road NE, Mailstop F-32, Atlanta, Georgia 30333. 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 


Chemical Name: Nickel 
CAS Number: 7440-02-0 
Date: May 13, 2005 
Profile Status: Final Post-Public Comment Draft 
Route: [x] Inhalation [ ] Oral 
Duration: [ ] Acute   [x] Intermediate  [ ] Chronic 
Graph Key: 38 
Species: F344 Rats 

Minimal Risk Level: 0.0002   [ ] mg/kg/day  [x] mg/m3 

Reference: NTP 1996c.  Toxicology and carcinogenesis of nickel sulfate hexahydrate (CAS No. 10101
97-0) in F344/N rats and B6C3F1 mice (inhalation studies).  U.S. Department of Health and Human 
Services, Public Health Service, National Institutes of Health, National Toxicology Program, Research 
Triangle Park, NC. 

Experimental design: Groups of 10 male and 10 female F344/N rats were exposed to 0.12, 0.25, 0.5, 1.0, 
or 2.0 mg/m3 nickel sulfate hexahydrate (0.03, 0.06, 0.11, 0.22, or 0.44 mg Ni/m3, as calculated by study 
authors) for 6 hours/day, 5 days/week for 13 weeks.  The mass median aerodynamic diameter (MMAD) 
(and sigma g) values reported in Table K1 of the paper were 2.31 (2.1), 2.11 (2.7), 3.08 (2.9), 1.81 (2.2), 
and 2.01 (2.0) for the 0.03, 0.06, 0.11, 0.22, and 0.44 mg Ni/m3 concentrations, respectively. End points 
examined included body weight gain, clinical observations, hematology, and organ weights, and 
microscopic examinations of the following organs were completed: adrenal gland, bone, brain, clitoral 
gland, epididymis, oviduct, esophagus, heart, large intestine, small intestine, kidneys, larynx, liver, lung, 
lymph nodes, mammary gland, nose, ovary, pancreas, parathyroid gland, pituitary, preputial gland, 
prostate, salivary gland, seminal vesicle, skin, spleen, stomach, testis, thymus, thyroid gland, trachea, 
bladder, and uterus. 

Effects noted in study and corresponding doses: No exposure related deaths, alterations in body weight 
gain, or clinical signs were observed.  A number of hematological alterations were observed in female 
rats—increased hematocrit, hemoglobin, and erythrocyte concentrations at 0.22 mg Ni/m3 and higher; 
increased reticulocytes at 0.03 mg Ni/m3 and higher; increased leukocyte levels at 0.11 mg Ni/m3 and 
higher; increased segmented neutrophils at 0.06 mg Ni/m3 and higher; and increased lymphocytes at 
0.22 mg Ni/m3 and higher—the study authors noted that these alterations are consistent with chronic 
inflammation, hyperplasia of lymph nodes, and mild dehydration.  Significant alterations in lung weights 
were observed at 0.06 mg Ni/m3 and higher.  Lung lesions consisted of minimal alveolar macrophage 
hyperplasia at 0.03–0.11 mg Ni/m3, mild to moderate macrophage hyperplasia at 0.22 and 0.44 mg Ni/m3, 
interstitial infiltrates at 0.22 mg Ni/m3 and higher in males and 0.11 mg Ni/m3 and higher in females, and 
chronic active inflammation characterized by slight thickening of alveolar septae due to an increase in 
monnuclear inflammatory cells, and few neutrophils and fibroblasts in the intersitium.  Hyperplasia of 
bronchial and mediastinal lymph nodes was observed at 0.22 mg Ni/m3 and higher and atrophy of the 
olfactory epithelium was observed at 0.22 and 0.44 mg Ni/m3. 

The minimal alveolar macrophage hyperplasia observed at 0.03–0.11 mg Ni/m3 was not considered an 
adverse health effect because the slight changes in the number of macrophages were considered to be part 
of the normal physiologic response to inhaled particles and it is not believed to compromise the lung’s 
ability to clear foreign matter.  

http:0.03�0.11
http:0.03�0.11
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Dose and end point used for MRL derivation: 

[x] NOAEL   [ ] LOAEL 

The NOAEL of 0.06 mg/m3 for chronic active inflammation in rats is the basis of the intermediate-
duration inhalation MRL for nickel.  

Uncertainty Factors used in MRL derivation: 

[ ]  10 for use of a LOAEL 
[x]  3 for extrapolation from animals to humans with dosimetric adjustment 
[x]  10 for human variability 

Was a conversion used from ppm in food or water to a mg/body weight dose? No. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
The exposure concentration was adjusted for intermittent exposure (6 hours/24 hours, 5 days/7 days).  A 
regional deposited dose ratio (RDDR) of 0.474 for the pulmonary region was used to extrapolate from 
particle deposition in rats to deposition in humans.  The RDDR was calculated using EPA’s software for 
calculating RDDRs. The following parameters were used:  particle size (MMAD) of 2.11 µm and 
geometric standard deviation (sigma g) of 2.7; default human body weight (70 kg), minute volume (13 L) 
and pulmonary surface area (54 m2); default female F344 rat body weight (0.124 kg), minute volume 
(101.3 mL), and pulmonary surface area (0.34 m2). 

NOAELADJ= 0.06 mg Ni/m3 x 6 hours/24 hours x 5 days/7 days = 0.011 mg Ni/m3 

NOAELHEC = NOAELADJ x RDDR = 0.011 mg Ni/m3 x 0.474 = 0.0052 mg Ni/m3 

Other additional studies or pertinent information which lend support to this MRL: The identification of 
the lung as the most sensitive target of nickel toxicity is supported by a number of acute-, intermediate-, 
and chronic-duration studies of nickel sulfate, nickel subsulfide, and nickel oxide in rats and mice 
(Benson et al. 1995a, 1995b; Horie et al. 1985; NTP 1996a, 1996b, 1996c; Ottolenghi et al. 1990; Tanaka 
et al. 1988). In these studies, respiratory effects, in particular chronic lung inflammation, was observed at 
the lowest LOAEL values. Three other inhalation studies have examined the toxicity of nickel sulfate.  
Benson et al. (1995a) observed mild alveolitis in rats exposed to 0.11 mg Ni/m3 6 hours/day, 5 days/week 
for 6 months; 4 months after exposure termination, alveolitis was still present in the nickel-exposed rats.  
Minimal alveolar macrophage hyperplasia was observed at 0.03 mg Ni/m3; this was not observed 
4 months after exposure termination.  In mice exposed to nickel sulfate (6 hours/day, 5 days/week for 
13 weeks), chronic lung inflammation and fibrosis were observed at 0.44 mg Ni/m3; minimal alveolar 
hyperplasia was observed at 0.11 mg Ni/m3 and higher (NTP 1996c).  Similarly, Benson et al. (1995a) 
reported minimal alveolar macrophage hyperplasia and interstitial pneumonia in mice exposed to 0.22 mg 
Ni/m3. 

Similar studies in which rats and mice were exposed to nickel subsulfide (NTP 1996b) or nickel oxide 
(1996a) confirm that the lungs are the principal target of nickel toxicity following inhalation exposure.  
Comparison of the NOAEL and LOAEL values identified in the NTP studies of nickel sulfate (NTP 
1996c), nickel subsulfide (NTP 1996b), and nickel oxide (NTP 1996a) demonstrate that nickel sulfate is 
more toxic than nickel subsulfide and nickel oxide.  In rats, the NOAEL and LOAEL values for chronic 
lung inflammation were 0.06 and 0.11 mg Ni/m3 for nickel sulfate (NTP 1996c), 0.11 and 0.22 mg Ni/m3 

for nickel subsulfide (NTP 1996b), and 2.0 and 3.9 mg Ni/m3 for nickel oxide (NTP 1996a).  Atrophy of 
the nasal olfactory epithelium was observed at 0.22 and 0.44 mg Ni/m3 as nickel sulfate (NTP 1996c) and 
nickel subsulfide (NTP 1996b), respectively.  Similar effects were observed in mice.  For nickel sulfate 
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and nickel subsulfide, the LOAEL values in mice were higher than the LOAELs identified in rats; the 
LOAEL for chronic inflammation following exposure to nickel oxide was the same in rats and mice.   

No intermediate-duration human inhalation exposure studies were identified; a number of chronic 
exposure studies have examined the potential of nickel and nickel compounds to induce respiratory 
effects in workers.  Most of these studies are cohort mortality studies that did not find significant 
increases in the number of deaths from nonmalignant respiratory system disease (Arena et al. 1998; Cox 
et al. 1981; Cragle et al. 1984; Egedahl et al. 2001; Enterline and Marsh 1982; Redmond 1984; Roberts et 
al. 1989b; Shannon et al. 1984b, 1991).  A few studies have examined workers for possible nonlethal 
respiratory effects.  Two studies examined chest x-rays of workers: one found an increased risk of 
moderate pulmonary fibrosis (Berge and Skyberg 2003) and the other did not find any significant 
alterations (Muir et al. 1993).  Although most of occupational exposure studies did not report exposure 
levels, workers were typically exposed to nickel levels that far exceed levels found in ambient air.  

Agency Contact (Chemical Managers): Mike Fay, Sharon Wilbur, and Henry Abadin 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 


Chemical Name: Nickel 
CAS Number: 7440-02-0 
Date: May 13, 2005 
Profile Status: Final Post-Public Comment Draft 
Route: [x] Inhalation [ ] Oral 
Duration: [ ] Acute   [ ] Intermediate   [x] Chronic 
Graph Key: 77 
Species: F344 Rats 

Minimal Risk Level: 9x10-5    [ ] mg/kg/day  [x] mg/m3 

Reference: NTP 1996c.  Toxicology and carcinogenesis of nickel sulfate hexahydrate (CAS No. 10101
97-0) in F344/N rats and B6C3F1 mice (inhalation studies).  Research Triangle Park, NC:  U.S. 
Department of Health and Human Services, Public Health Service, National Institutes of Health, National 
Toxicology Program. 

Experimental design: Groups of male and female F344 rats were exposed to 0.12, 0.25, or 
0.5 mg/m3 nickel sulfate hexahydrate (0, 0.03, 0.06, or 0.11 mg Ni/m3 as calculated by study authors) 
6 hours/day, 5 days/week for 2 years.  The mean mass median aerodynamic diameter (MMAD) and sigma 
g values (reported in Table K2 of the paper) were 2.50 (sigma g of 2.38), 2.24 (2.21), and 2.25 (2.08) for 
the 0.03, 0.06, and 0.11 mg Ni/m3 concentrations, respectively. End points examined included body 
weight gain, clinical observations, hematology, and organ weights.  Microscopic examinations of the 
following organs were completed: adrenal gland, bone, brain, clitoral gland, epididymis, oviduct, 
esophagus, heart, large intestine, small intestine, kidneys, larynx, liver, lung, lymph nodes, mammary 
gland, nose, ovary, pancreas, parathyroid gland, pituitary, preputial gland, prostate, salivary gland, 
seminal vesicle, skin, spleen, stomach, testis, thymus, thyroid gland, trachea, bladder, and uterus. 

Effects noted in study and corresponding doses: No significant alterations in survival, body weight, or 
the occurrence of clinical signs were observed. The only treatment-related changes noted were in the 
respiratory tract.  Lung lesions consisted of chronic active inflammation, hyperplasia of alveolar 
macrophages, alveolar proteinosis, and fibrosis at 0.06 and 0.11 mg Ni/m3. The combined incidences of 
chronic active inflammation in the male and female rats were 28/106, 24/106, 91/106, and 98/107 in the 
0, 0.03, 0.06, and 0.11 mg Ni/m3 groups, respectively.  The chronic inflammation consisted of multifocal, 
minimal to mild accumulation of macrophages, neutrophils, and cellular debris within the alveolar spaces.  
No significant alterations in the malignant tumors were observed in the lungs.  Significant increases in the 
incidence of lymphoid hyperplasia of the bronchial lymph nodes and atrophy of the olfactory epithelium 
were observed at 0.11 mg Ni/m3. 

Dose and end point used for MRL derivation: 

[x] NOAEL   [ ] LOAEL 

The NOAEL of 0.03 mg/m3 for chronic active inflammation and lung fibrosis in rats is the basis of the 
chronic inhalation MRL for nickel.  



  
 

 
 

 
 
 
 
 

 
  
  
  
 

 

 

 

 
 

 

 
 

 

 
  

 

 
  

 

NICKEL A-7 


APPENDIX A 


Uncertainty Factors used in MRL derivation: 

[ ]  10 for use of a LOAEL 
[x]  3 for extrapolation from animals to humans with dosimetric adjustment 
[x]  10 for human variability 

Was a conversion used from ppm in food or water to a mg/body weight dose? No. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
The exposure concentration was adjusted for intermittent exposure (6 hours/24 hours, 5 days/7 days).  A 
regional deposited dose ratio (RDDR) of 0.506 for the pulmonary region was used to extrapolate from a 
deposited dose in rats to a deposited dose in humans.  The RDDR was calculated using EPA’s software 
for calculating RDDRs. The following parameters were used:  particle size (MMAD) of 2.5 µm and 
geometric standard deviation (sigma g) of 2.38; default human body weight (70 kg), minute volume 
(13 L) and pulmonary surface area (54 m2); default female F344 rat body weight (0.229 kg), minute 
volume (167.3 mL), and pulmonary surface area (0.34 m2). 

NOAELADJ= 0.03 mg Ni/m3 x 6 hours/24 hours x 5 days/7 days = 0.0054 mg Ni/m3 

NOAELHEC = NOAELADJ x RDDR = 0.0054 mg Ni/m3 x 0.506 = 0.0027 mg Ni/m3 

Other additional studies or pertinent information which lend support to this MRL: The identification of 
the lung as the most sensitive target of nickel toxicity is supported by a number of acute-, intermediate-, 
and chronic-duration studies of nickel sulfate, nickel subsulfide, and nickel oxide in rats and mice 
(Benson et al. 1995a, 1995b; Horie et al. 1985; NTP 1996a, 1996b, 1996c; Ottolenghi et al. 1990; Tanaka 
et al. 1988). In these studies, respiratory effects, in particular chronic lung inflammation, was observed at 
the lowest LOAEL values. One other inhalation study has examined the toxicity of nickel sulfate.  
Chronic active lung inflammation was observed in mice exposed to 0.11 or 0.22 mg Ni/m3 6 hours/day, 
5 days/week for 2 years (NTP 1996c); no respiratory tract effects were observed at 0.06 mg Ni/m3. 
Chronic-duration studies (all studies involved 6 hour/day, 5 day/week exposures) with different nickel 
compounds have also found inflammatory lung effects at in rats exposed to 0.11 mg Ni/m3 as nickel 
subsulfide for 2 years (NTP 1996b), rats exposed to 0.7 mg Ni/m3 as nickel subsulfide for 78 weeks 
(Ottolenghi et al. 1990), mice exposed to 0.44 mg Ni/m3 as nickel subsulfide for 2 years (NTP 1996b), 
rats exposed to 0.2 mg Ni/m3 as nickel oxide for 2 years (NTP 1996a), and mice exposed to 1 mg Ni/m3 

as nickel oxide for 2 years (NTP 1996a). 

The potential of nickel to induce nonmalignant respiratory tract effects has been examined in a number of 
cohort mortality studies.  In general, these studies did not find significant increases in the risk of dying 
from nonmalignant respiratory system disease (Arena et al. 1998; Cox et al. 1981; Cragle et al. 1984; 
Egedahl et al. 2001; Enterline and Marsh 1982; Redmond 1984; Roberts et al. 1989b; Shannon et al. 
1984b, 1991).  Mixed results have been found in the few studies examining nonlethal respiratory tract 
effects. Two studies examined chest x-rays of nickel workers: one found an increased risk of moderate 
pulmonary fibrosis (Berge and Skyberg 2003) and the other did not find any significant alterations (Muir 
et al. 1993). Although most of occupational exposure studies did not report exposure levels, workers 
were typically exposed to nickel levels that far exceed levels found in ambient air.  

Agency Contact (Chemical Managers): Mike Fay, Sharon Wilbur, and Henry Abadin 
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Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language.  Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern.  The 
topics are written in a question and answer format.  The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight
of-evidence discussions for human health end points by addressing the following questions: 

1.	 What effects are known to occur in humans? 

2. 	 What effects observed in animals are likely to be of concern to humans? 

3. 	 What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect.  Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments.  Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic).  These MRLs are not 
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meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 

MRLs should help physicians and public health officials determine the safety of a community living near 
a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water.  
MRLs are based largely on toxicological studies in animals and on reports of human occupational 
exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.   

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects.  These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000. Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario.  The LSE tables and figures should always be used in 
conjunction with the text.  All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1) 	 Route of Exposure. One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure.  Typically 
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not, therefore, have all five of the tables and figures. 

(2) 	Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 
364 days), and chronic (365 days or more)—are presented within each relevant route of exposure.  
In this example, an inhalation study of intermediate exposure duration is reported.  For quick 
reference to health effects occurring from a known length of exposure, locate the applicable 
exposure period within the LSE table and figure. 

(3) 	Health Effect. The major categories of health effects included in LSE tables and figures are 
death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer.  
Systemic effects are further defined in the "System" column of the LSE table (see key number 
18). 

(4) 	 Key to Figure. Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the two "18r" data points in sample Figure 3-1). 

(5) 	Species. The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 

(6) 	Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure 
regimens are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies. In this case (key number 18), rats were exposed to “Chemical x” via inhalation 
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete review of the dosing regimen, 
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 
1981). 

(7) 	System. This column further defines the systemic effects.  These systems include respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular.  "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, one systemic effect (respiratory) was 
investigated. 

(8) 	NOAEL. A NOAEL is the highest exposure level at which no harmful effects were seen in the 
organ system studied.  Key number 18 reports a NOAEL of 3 ppm for the respiratory system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see 
footnote "b"). 
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(9) 	LOAEL. A LOAEL is the lowest dose used in the study that caused a harmful health effect. 
LOAELs have been classified into "Less Serious" and "Serious" effects.  These distinctions help 
readers identify the levels of exposure at which adverse health effects first appear and the 
gradation of effects with increasing dose.  A brief description of the specific end point used to 
quantify the adverse effect accompanies the LOAEL.  The respiratory effect reported in key 
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm.  MRLs are not derived from 
Serious LOAELs. 

(10)	 Reference. The complete reference citation is given in Chapter 9 of the profile. 

(11)	 CEL. A CEL is the lowest exposure level associated with the onset of carcinogenesis in 
experimental or epidemiologic studies.  CELs are always considered serious effects.  The LSE 
tables and figures do not contain NOAELs for cancer, but the text may report doses not causing 
measurable cancer increases. 

(12)	 Footnotes. Explanations of abbreviations or reference notes for data in the LSE tables are found 
in the footnotes.  Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to 
derive an MRL of 0.005 ppm. 

LEGEND 
See Sample Figure 3-1 (page B-7) 

LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the 
reader quickly compare health effects according to exposure concentrations for particular exposure 
periods. 

(13)	 Exposure Period. The same exposure periods appear as in the LSE table.  In this example, health 
effects observed within the acute and intermediate exposure periods are illustrated. 

(14) 	Health Effect. These are the categories of health effects for which reliable quantitative data 
exists. The same health effects appear in the LSE table. 

(15)	 Levels of Exposure. Concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 

(16) 	NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 

(17)	 CEL. Key number 38m is one of three studies for which CELs were derived.  The diamond 
symbol refers to a CEL for the test species-mouse.  The number 38 corresponds to the entry in the 
LSE table. 
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(18)	 Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 

(19)	 Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure. 
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SAMPLE 

→	 Table 3-1. Levels of Significant Exposure to [Chemical x] – Inhalation 

LOAEL (effect) Exposure 
Key to 	 frequency/ NOAEL Less serious Serious (ppm) 
figurea Species duration System (ppm) (ppm) 	 Reference 

2 → INTERMEDIATE EXPOSURE 

5 6 

3 → Systemic ↓	 ↓ 

18 Rat 13 wk 
4 →	 5 d/wk 

6 hr/d 
CHRONIC EXPOSURE 

Cancer 

3

3

4

7 8 9 

↓ ↓ ↓ 

3bResp 	 10 (hyperplasia) 

11 

 multiple 
s) 

 lung tumors, 
tumors) 

 lung tumors, 
ngiosarcomas) 

10 

↓ 

Nitschke et al. 1981 

Wong et al. 1982 

NTP 1982 

NTP 1982 

12 →	 
a

b ted for intermittent exposure and divided 
b ility). 

N
IC

K
E

L 
B

-6

A
P

P
E

N
D

IX
 B

 


 

 

 

 

 

 

 

 

 

 

 

  

  

8 Rat 	 18 mo 
5 d/wk 
7 hr/d 

9 Rat 	 89–104 wk 
5 d/wk 
6 hr/d 

0 Mouse 	 79–103 wk 
5 d/wk 
6 hr/d 

↓ 

20 	 (CEL,
organ

10 	 (CEL,
nasal 

10 	 (CEL,
hema

 The number corresponds to entries in Figure 3-1. 
 Used to derive an intermediate inhalation Minimal Risk Level (MRL) of  5x10-3 ppm; dose adjus
y an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variab
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APPENDIX C.  ACRONYMS, ABBREVIATIONS, AND SYMBOLS 


ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD benchmark dose 
BMR benchmark response 
BSC Board of Scientific Counselors 
BUN Blood urea nitrogen 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CL ceiling limit value 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
DOT Department of Transportation 
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DOT/UN/ Department of Transportation/United Nations/ 
NA/IMCO     North America/International Maritime Dangerous Goods Code 

DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank  
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
MCL maximum contaminant level 
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MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
MMAD Mass median aerodynamic diameter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
NAAQS National Ambient Air Quality Standard 
NAG N-Acetyl-β-D-glucosaminidase 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
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OTS Office of Toxic Substances 
OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic  
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
RfC reference concentration 
RfD reference dose 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase 
SGPT serum glutamic pyruvic transaminase 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
WHO World Health Organization 
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> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
µm micrometer 
µg microgram 
q1

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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absorbed dose.................................................................................................................................... 161, 181 

active transport.......................................................................................................................................... 153 

adenocarcinomas................................................................................................................................... 80, 86 

adrenal gland....................................................................................................................... 72, 112, 134, 138 

adrenals ..................................................................................................................................................... 138 

adsorbed .................................................................................... 212, 215, 220, 223, 224, 225, 229, 258, 276 

adsorption.................................................................................. 213, 220, 223, 224, 225, 226, 231, 258, 266 

aerobic............................................................................................................................................... 212, 230 

ambient air ........................................................................................ 11, 20, 22, 25, 205, 211, 231, 238, 243 

anaerobic ........................................................................................................................................... 213, 230 

bioaccumulation........................................................................................................................................ 228 

bioavailability ................................................................... 136, 167, 181, 213, 226, 227, 228, 254, 255, 258 

bioconcentration factor ............................................................................................................................. 227 

biomarker .................................................................................................................................. 161, 164, 275 

biomarkers ........................................................................................ 160, 161, 162, 164, 180, 259, 265, 275 

body weight effects ....................................................................................................................... 18, 73, 115 

breast milk................................................................................................................. 3, 8, 250, 253, 255, 259 

cancer ...................................... 5, 6, 7, 14, 16, 26, 27, 79, 80, 81, 86, 87, 123, 130, 138, 157, 159, 175, 283 

carcinogen ................................................................................................................. 7, 16, 87, 279, 282, 283 

carcinogenic .............................................. 7, 13, 16, 17, 25, 26, 79, 80, 81, 86, 87, 155, 157, 175, 279, 283 

carcinogenicity.............................................................................. 15, 81, 153, 155, 156, 169, 175, 179, 183
 
carcinoma.............................................................................................................................................. 87, 88 

carcinomas ............................................................................................................................................ 80, 86 

cardiovascular ............................................................................................................................... 69, 78, 123 

cardiovascular effects.......................................................................................................................... 69, 109 

chromosomal aberrations .................................................................................................................. 155, 176 
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contact dermatitis .............................. 12, 13, 14, 72, 127, 129, 166, 169, 172, 173, 175, 177, 178, 179, 183 

death...................................................................................... 13, 15, 25, 26, 27, 28, 65, 86, 90, 91, 123, 170 

dermal effects.............................................................................................................................. 72, 113, 127 

DNA.......................................................................... 130, 132, 133, 134, 155, 156, 161, 164, 169, 176, 180 

elimination half-time................................................................................................................................. 143 

endocrine............................................................................................................. 72, 112, 126, 154, 157, 158
 
endocrine effects ................................................................................................................. 72, 112, 126, 158 

erythema.................................................................................................................................................... 113 

fetus............................................................................................................................... 8, 120, 158, 160, 182 

fractional absorption ................................................................................................................................. 148 

gastrointestinal effects ................................................................................................................ 69, 109, 110 

general population.......................................... 4, 11, 12, 13, 14, 80, 113, 127, 138, 160, 161, 162, 178, 179, 


205, 211, 243, 244, 246, 256, 263, 275 

genotoxic................................................................................................................................... 133, 155, 176 

genotoxicity............................................................................................................................... 130, 156, 176 
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half-life................................................................................................................ 25, 135, 141, 161, 163, 220
 
hematological effects .................................................................................................................. 70, 110, 123 

hepatic effects ............................................................................................................................. 70, 111, 126 
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hydroxyl radical ........................................................................................................................................ 213 

immune system ........................................................................................................................... 7, 12, 73, 75 

immunological .................................................................................. 25, 73, 74, 76, 116, 117, 172, 177, 178
 
immunological effects............................................................................................................... 117, 172, 178 

Kow ............................................................................................................................................ 191, 192, 193 

LD50............................................................................................................................................... 90, 91, 173 

lung cancer .......................................................................................................................... 13, 16, 80, 86, 87 

lymphatic .................................................................................................................................................... 76 

lymphoreticular ............................................................................................................................. 74, 76, 174 

metabolic effects ................................................................................................................................. 74, 115 

milk ............................................................. 3, 8, 91, 134, 136, 142, 154, 155, 160, 167, 177, 242, 250, 253 

mucociliary ............................................................................................................................... 143, 163, 167 

musculoskeletal effects ....................................................................................................................... 70, 110 

neonatal ............................................................................................................................... 23, 160, 174, 179 

neurobehavioral................................................................................................................................. 158, 179 

neurochemical ............................................................................................................................................. 77 

neurodevelopmental .................................................................................................................................. 120 

ocular effects....................................................................................................................................... 28, 123 

pharmacodynamic ..................................................................................................................................... 144 

pharmacokinetic................................................................................................ 115, 144, 145, 146, 159, 165
 
placenta ........................................................................................................................... 8, 79, 134, 140, 160 

pulmonary fibrosis .................................................................................................................... 15, 20, 22, 65 

rate constant ...................................................................................................................................... 147, 148 

renal effects................................................................................................................................. 71, 111, 112 

retention .................................................................................................... 139, 140, 223, 224, 226, 262, 283 

salivation ..................................................................................................................................................... 90 

sarcoma ............................................................................................................................................. 130, 132 

solubility ................................................................................. 15, 25, 68, 134, 137, 143, 169, 213, 226, 261 

spermatogonia ........................................................................................................................................... 118 

thyroid......................................................................................................................................... 72, 112, 138 

toxicokinetic........................................................................................................ 25, 147, 157, 160, 181, 182
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