

Uploaded to the VFC Website February 2014

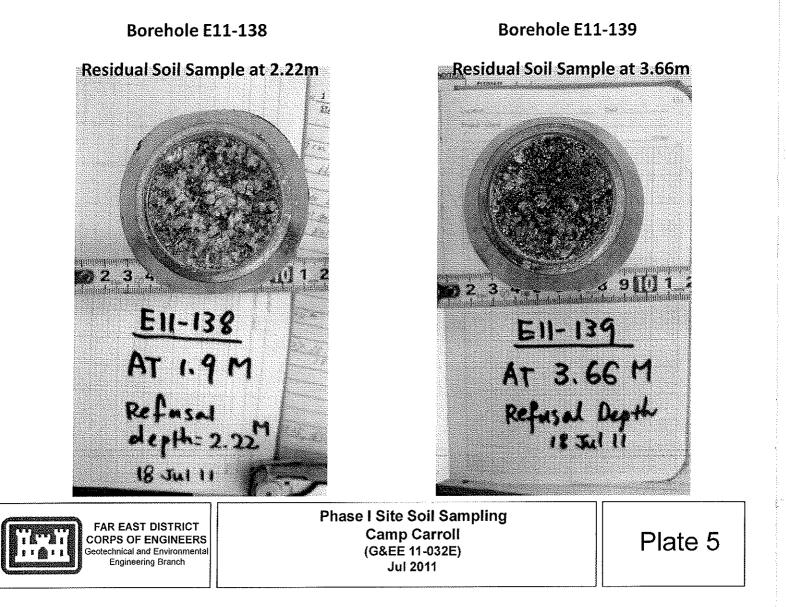
This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

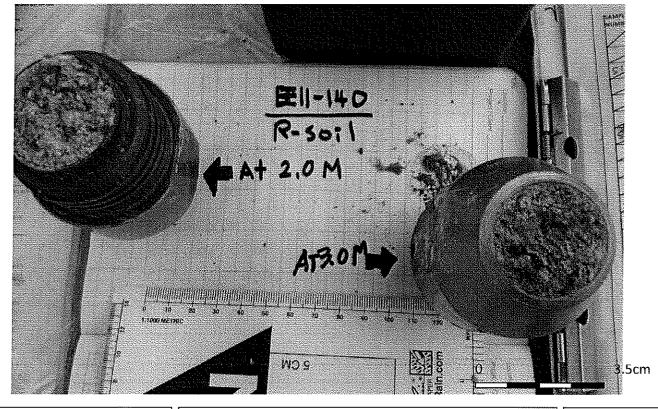
Veterans-For-Change

Veterans-For-Change is a A 501(c)(3) Non-Profit Organizaton Tax ID #27-3820181 CA Incorporation ID #3340400 CA Dept. of Charities ID #: CT-0190794


If Veterans don't help Veterans, who will?

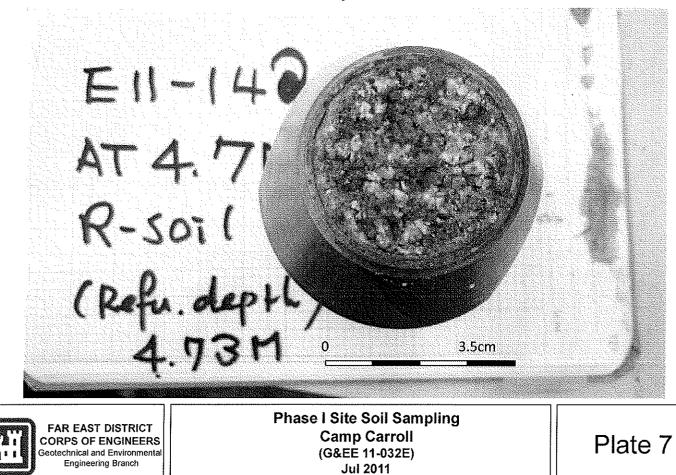
We appreciate all donations to continue to provide information and services to Veterans and their families.

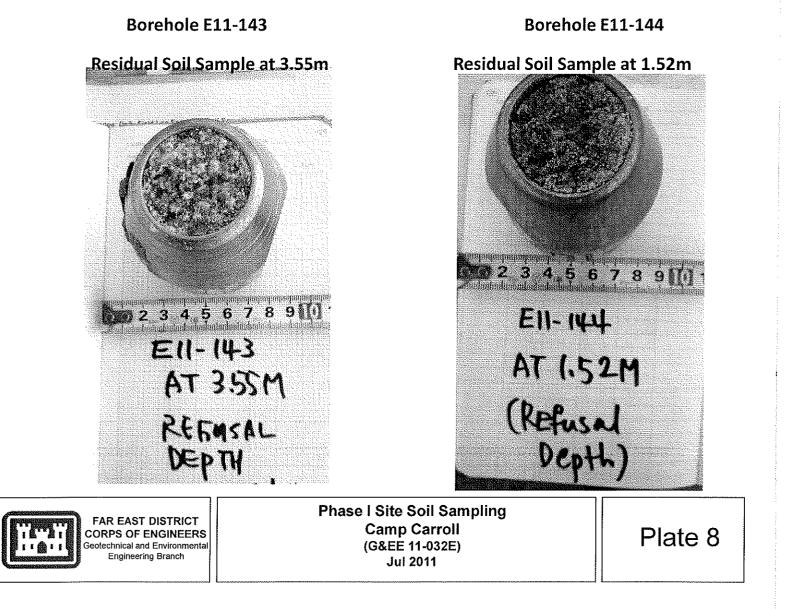
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=WGT2M5UTB9A78


Note: VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

Borehole E11-140

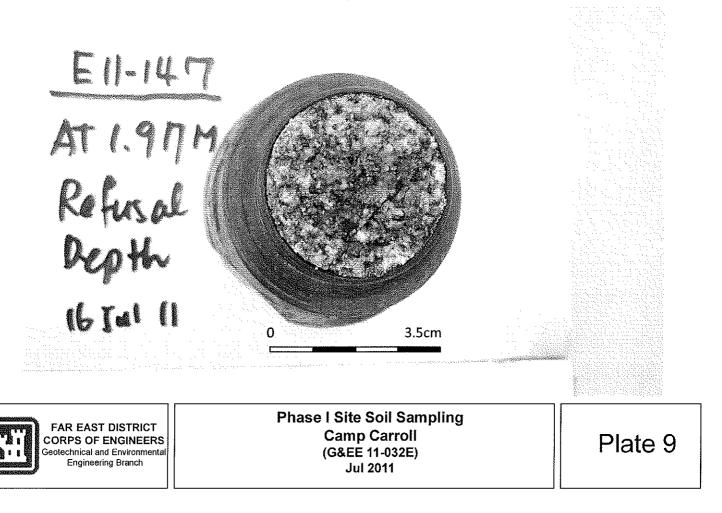
Residual Soil Samples at 2.0m and 3.0m




3202

Borehole E11-142

Residual Soil Sample at 4.7m

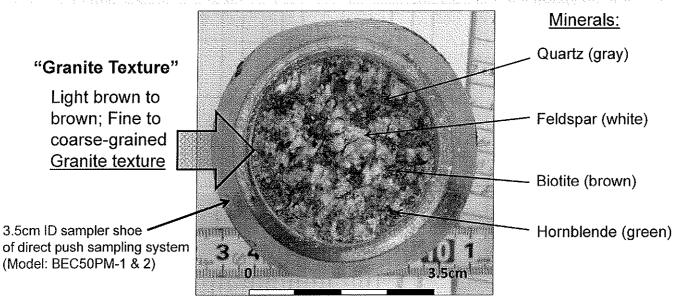


3203

Borehole E11-147

Residual Soil Sample at 1.97m

3205


Photographs of Phase II Site Soil Sampling Camp Carroll, G&EE 11-032E

RESIDUAL SOILS

Residual soils are defined as the deposits formed by in-place weathering of rock (Glossary of Geology, 4th Ed. Bates & Jackson, AGI).

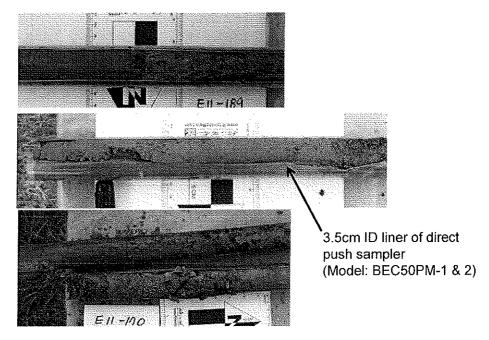
Residual soils are originated from underlying GRANITE bedrock by weathering process and show granite rock texture.

The collected residual soil samples consist of typical minerals of granite rock and its residual soils. The constituent minerals are quartz, feldspar, biotite, hornblende and clay minerals as weathering products.

3206

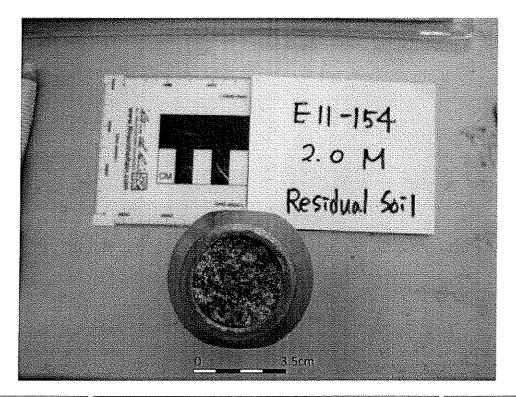
ALLUVIAL SOILS (ALLUVIUM)

Alluvial soil (Alluvium) is defined as a general term for clay, silt, sand, gravel, or similar unconsolidated detrital material, deposited during comparatively recent geologic time by a stream or other body of running water, as a sorted or semisorted sediment in the bed of the stream or on its flood plain or delta, as a cone of fan at the base of a mountain slope; especially such a deposit of fine-grained texture (silt or silty clay) deposited during time of flood. (Glossary of Geology, 4th Ed. Bates & Jackson, AGI).


The collected alluvial soil samples are classified as fat or lean clay with sand (CH/CL), clean sand (SP), silty sand (SM), and clayey sand (SC). The samples show laminated or stratified texture of alternating layers of varying material or color with layers.

"Alluvial soils"

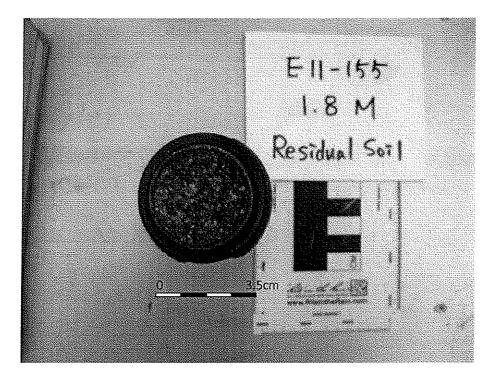
(1) Fat CLAY: dark brown; with about 10% fine to medium sand


(2) Silty SAND: grayish brown; wet; with about 20% fine to medium sands

(3) Clayey SAND: brown to reddish brown and graded to gray; with about 30% fine to coarse sands

3207

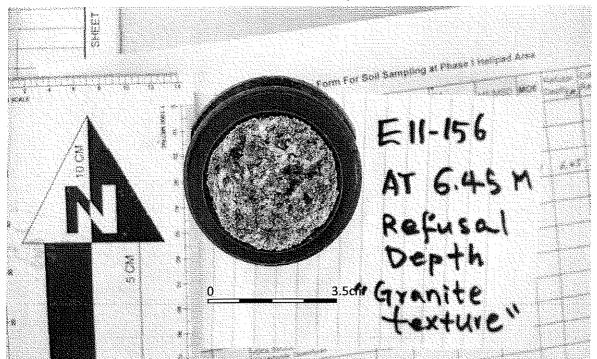
Borehole E11-154 Residual Soil Sample at 2.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3208

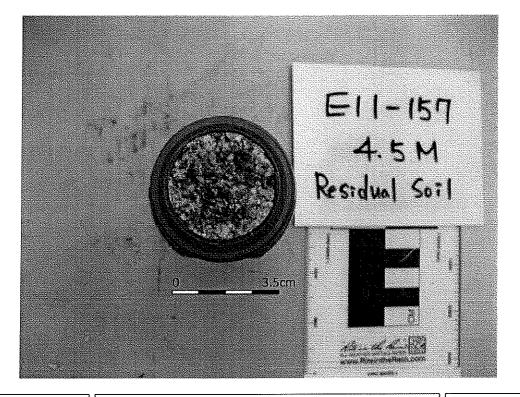
Borehole E11-155 Residual Soil Sample at 1.8m



FAR EAST DISTRICT CORPS OF ENGINEERS Geolechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3209

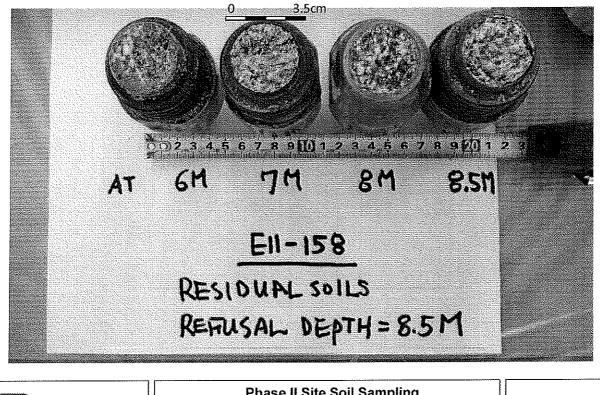
Borehole E11-156 Residual Soil Sample at 6.45m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3210

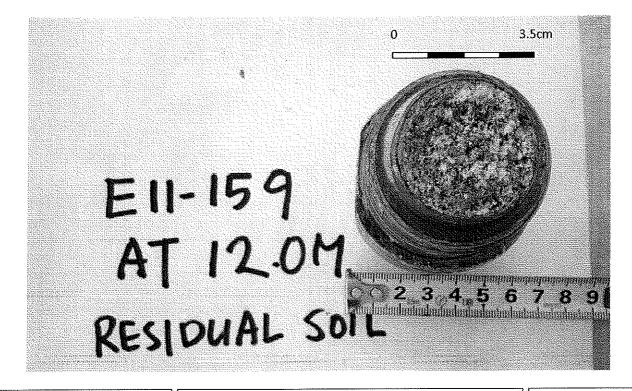
Borehole E11-157 Residual Soil Sample at 4.5m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3211

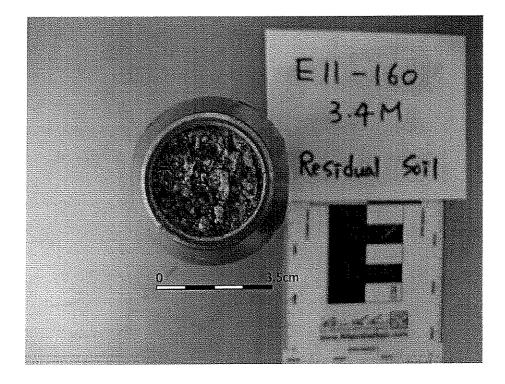
Borehole E11-158 Residual Soil Sample at 6.0m, 7.0m, 8.0m, & 8.5m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3212

Borehole E11-159 Residual Soil Sample at 12.0m

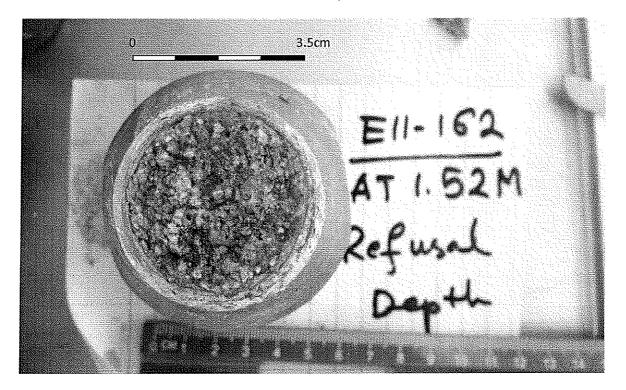


FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3213

Borehole E11-160 Residual Soil Sample at 3.4m

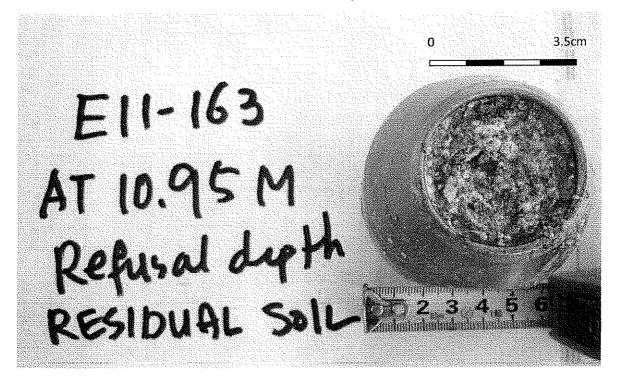
FAR EAST DISTRICT CORPS OF ENGINEERS Geolechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011


3214

Borehole E11-161 Residual Soil Sample at 7.9m

3215

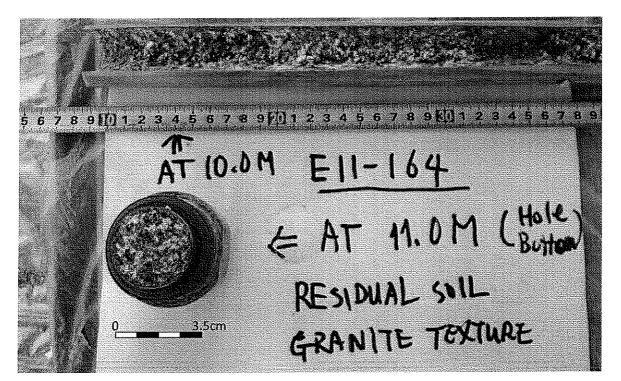
Borehole E11-162 Residual Soil Sample at 1.52m



FAR EAST DISTRICT CORPS OF ENGINEERS Geolechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3216

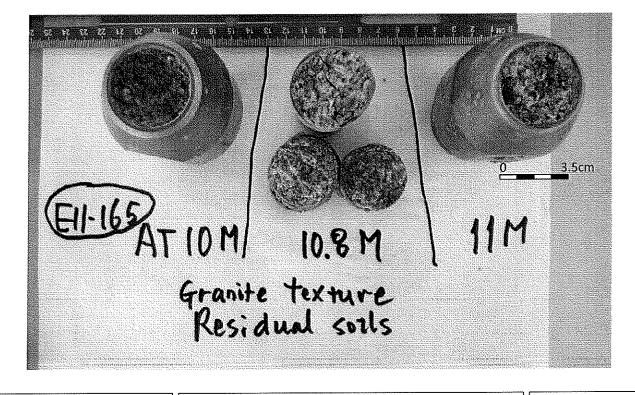
Borehole E11-163 Residual Soil Sample at 10.95m



Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3217

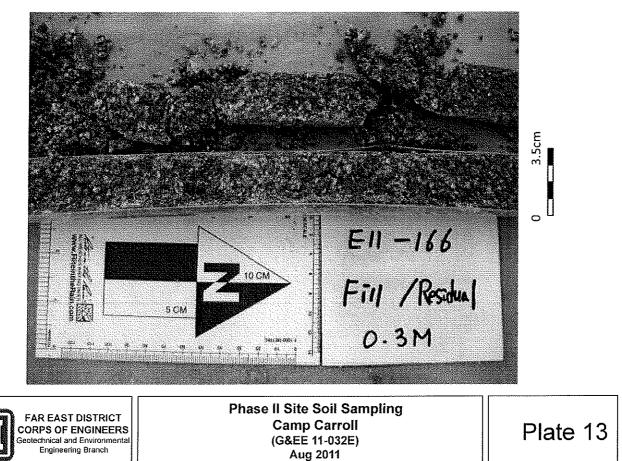
Borehole E11-164 Residual Soil Sample at 11.0m

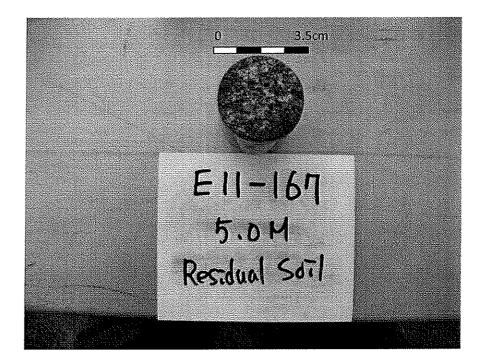


FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3218

Borehole E11-165 Residual Soil Sample at 10m, 10.8m, & 11.0m

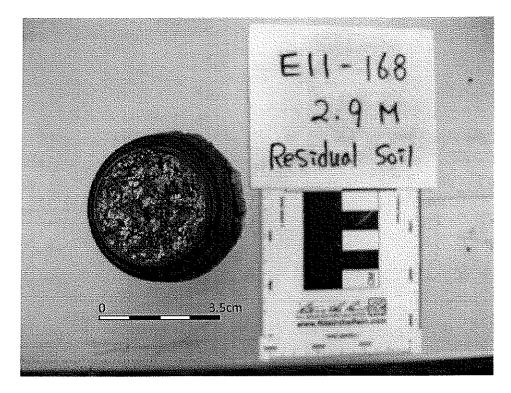



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3219

Borehole E11-166 Residual Soil Sample at 0.3m

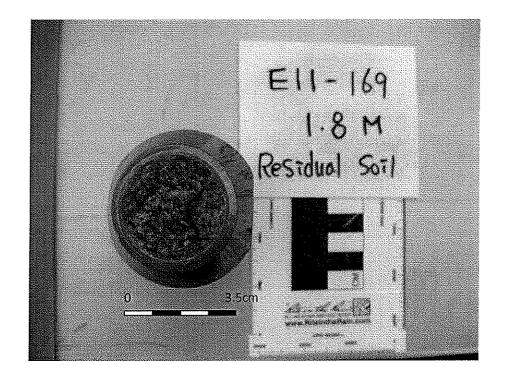
Borehole E11-167 Residual Soil Sample at 5.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3221

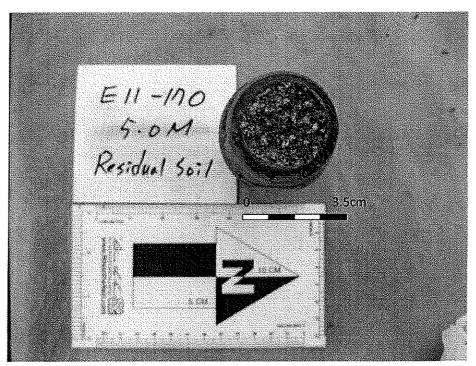
Borehole E11-168 Residual Soil Sample at 2.9m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3225

Borehole E11-169 Residual Soil Sample at 1.8m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3223

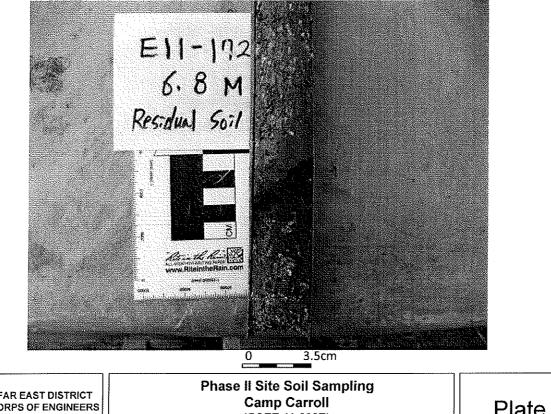
Borehole E11-170 Residual Soil Sample at 5.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3224

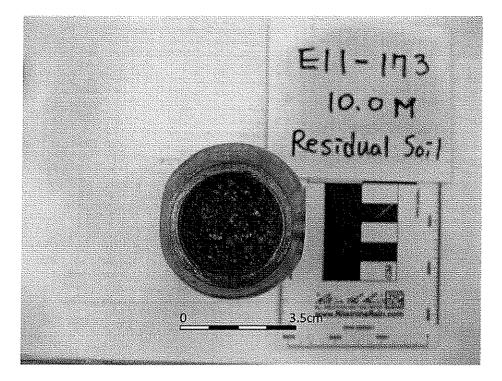
Borehole E11-171 Residual Soil Sample at 6.5m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3225

Borehole E11-172 **Residual Soil Sample at 6.8m**

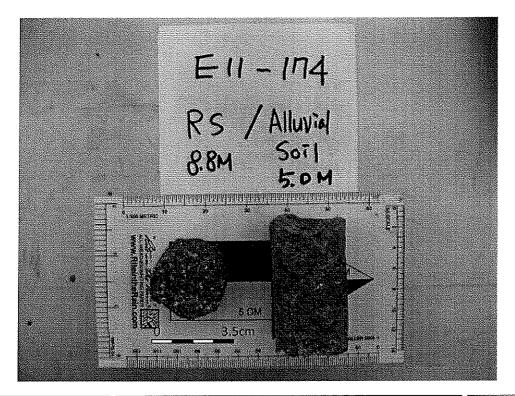


67

Camp Carroll (G&EE 11-032E) Aug 2011

3206

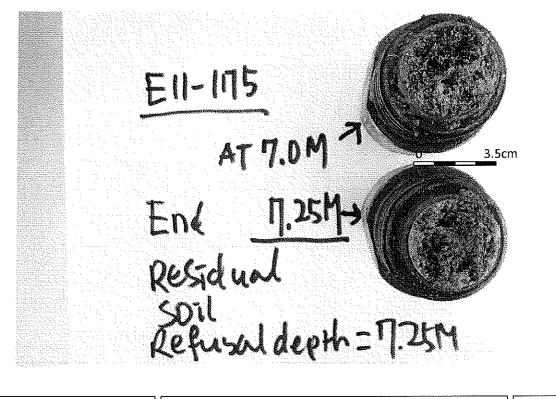
Borehole E11-173 Residual Soil Sample at 10.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3227

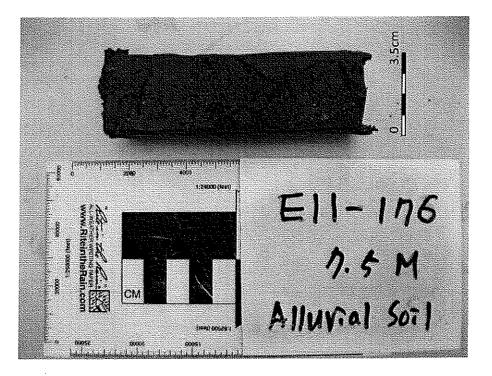
Borehole E11-174 Residual Soil Sample at 8.8m



FAR EAST DISTRICT CORPS OF ENGINEERS Geolechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3998

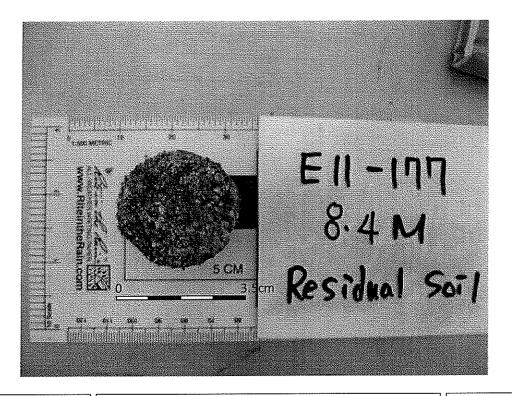
Borehole E11-175 Residual Soil Sample at 7.25m



FAR EAST DISTRICT CORPS OF ENGINEERS Geolechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3029

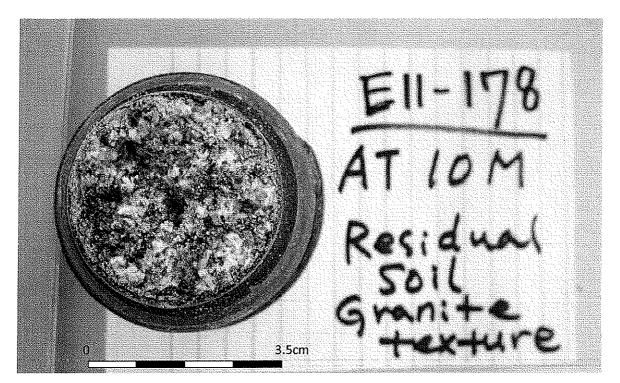
Borehole E11-176 Alluvial Soil Sample at 7.5m



FAR EAST DISTRICT CORPS OF ENGINEERS Geolechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3230

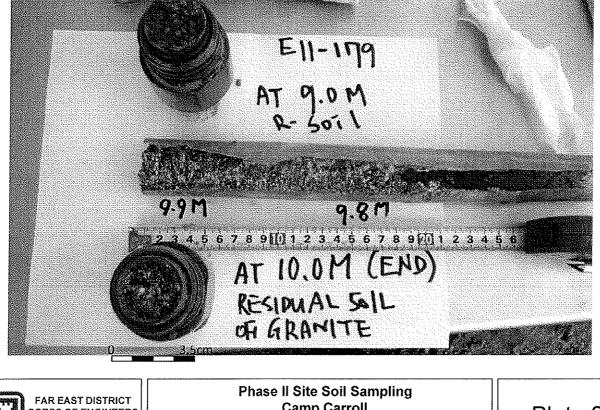
Borehole E11-177 Residual Soil Sample at 8.4m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3231

Borehole E11-178 Residual Soil Sample at 10.0m


FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

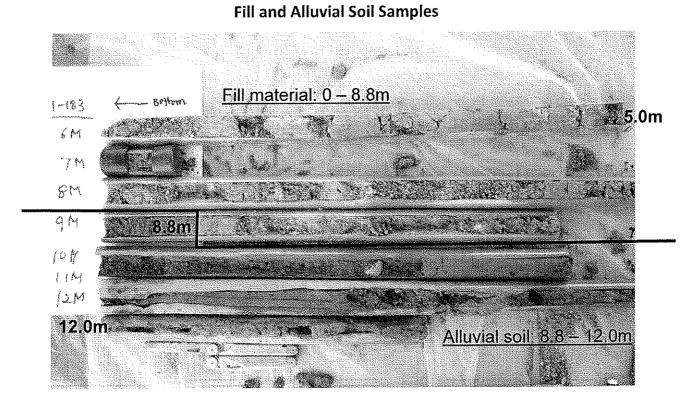
32332

Borehole E11-178 Granite Texture Showing Residual Soil Sample at 9.9m

Borehole E11-179 Residual Soil Sample at 9.0m & 10.0m

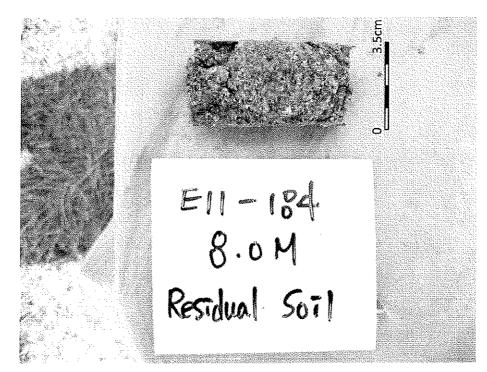
FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3234


Borehole E11-180 Residual Soil Sample at 9.8-9.9m

FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

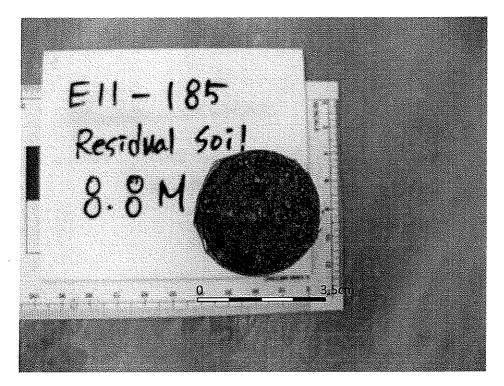
3835


Borehole E11-183

Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3236

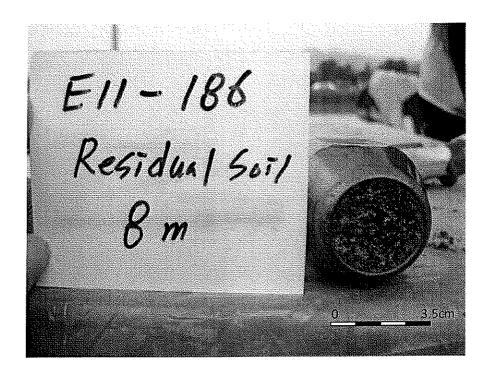
Borehole E11-184 Residual Soil Sample at 8.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3237

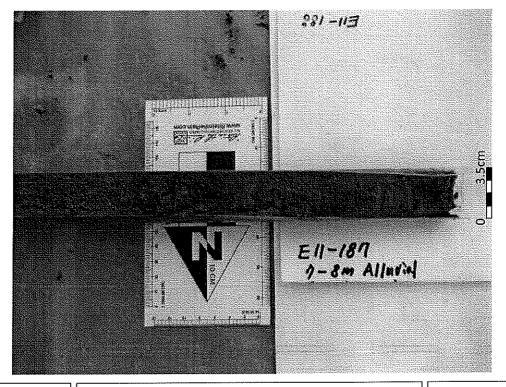
Borehole E11-185 Residual Soil Sample at 8.8m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3238

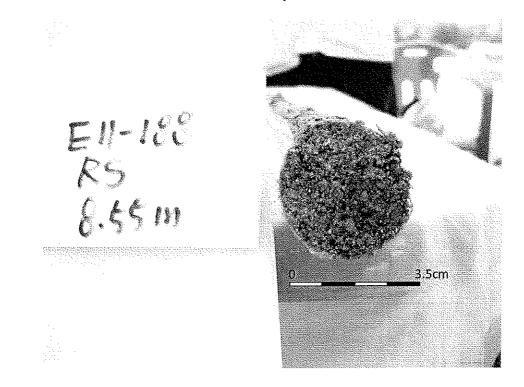
Borehole E11-186 Residual Soil Sample at 8.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3239

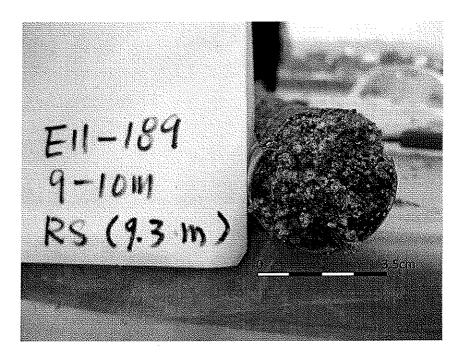
Borehole E11-187 Alluvial Soil Sample at 8.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3240

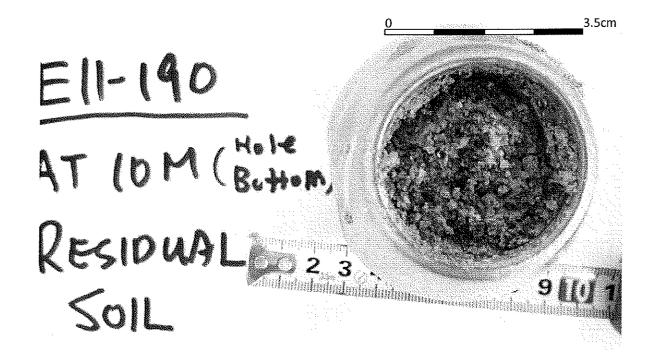
Borehole E11-188 Residual Soil Sample at 8.55m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3241

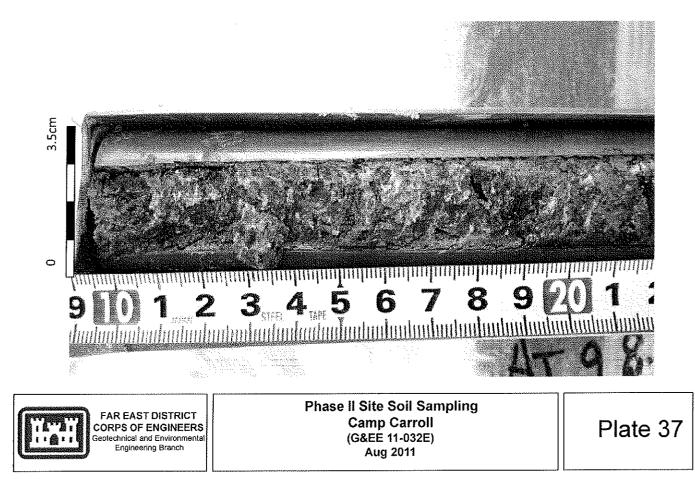
Borehole E11-189 Residual Soil Sample at 9.3m



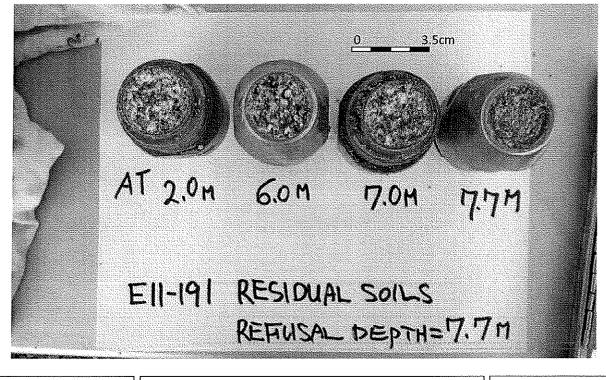
FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3242-

Borehole E11-190 Residual Soil Sample at 10.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011


3043

Borehole E11-190 Residual Soil Sample at 9.9m

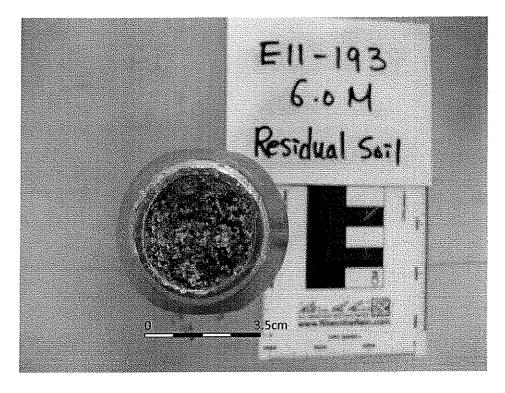
3844

Borehole E11-191 Residual Soil Sample at 2.0m, 6.0m, 7.0m, & 7.7m

FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3845

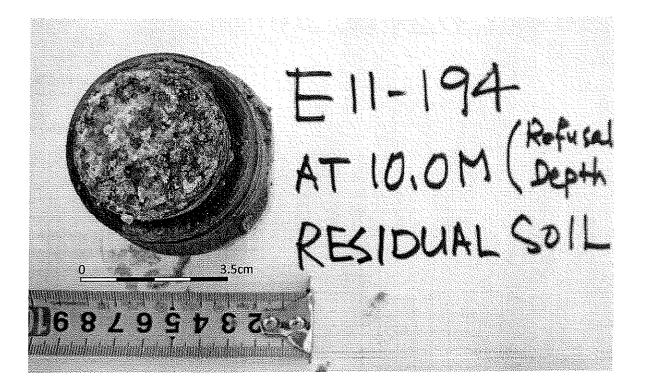
Borehole E11-192 Residual Soil Sample at 11.0m & 12.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3246

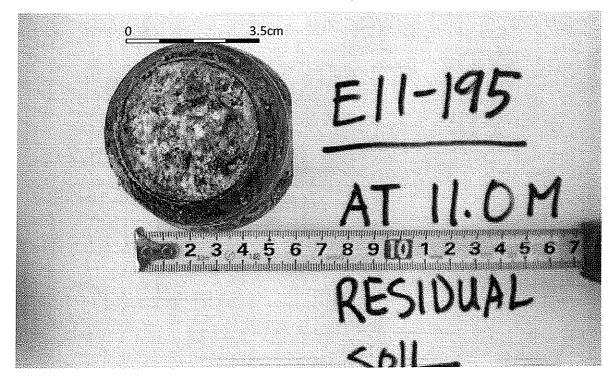
Borehole E11-193 Residual Soil Sample at 6.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3247

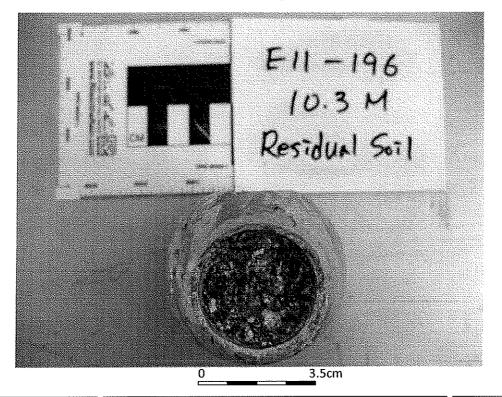
Borehole E11-194 Residual Soil Sample at 10.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3248

Borehole E11-195 Residual Soil Sample at 11.0m



FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

3249

Borehole E11-196 Residual Soil Sample at 10.3m

FAR EAST DISTRICT CORPS OF ENGINEERS Geotechnical and Environmental Engineering Branch Phase II Site Soil Sampling Camp Carroll (G&EE 11-032E) Aug 2011

APPENDIX VI. REPORT FOR PHASE 1 SOIL SAMPLE TEST RESULT

3051

. Zése

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, FAR EAST DISTRICT Unit #15546 APO AP 96205-5546

REPLY TO ATTENTION OF:

SEP 0 9 2011

CEPOF-ED-G

MEMORANDUM FOR USFK Assistant Chief of Staff, Engineers, ATTN: Colonel Joseph F. Birchmeier, UNIT #15237, APO AP 96205-5237

SUBJECT: Final Test Results of Phase I (Helipad) Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-59)

1. Enclosed are final test results for soil samples collected at Phase I (Helipad) Site, Cp Carroll. Soil sampling was conducted from 12 Jul to 18 Jul 2011 and a total of 118 samples were collected from 40 boreholes by the Geotechnical and Environmental Engineering Branch, US Army Corps of Engineers, Far East District (FED). The locations of boreholes are shown in Figure 1 and sample information, with sampling depth, is provided in Table 1.

2. The samples were tested by SGS North America located in Wilmington, NC, according to US EPA SW-846 Methods. The analytical parameters tested were dioxins and furans, chlorinated herbicides, organochlorine (OC) pesticides, organophosphorus (OP) pesticides, volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and RCRA (Resource Conservation and Recovery Act) metals. Three (3) samples were tested by the US Army Public Health Command as duplicate analyses for quality assurance purposes. A total of 205 analytes were tested for each soil sample. Table 2 provides test method information for each analytical parameter.

3. Laboratory Findings

Summaries of test results for each analytical parameter are provided in Tables 3 through 9. The highlighted numbers indicate detections of contaminants. The summary tables presented in this memorandum indicate those parameters which were detected above the reporting limit or, at least, estimated to be above its reporting limit. The full laboratory reports are provided on compact disk (CD).

a. **Dioxin and Furan**: The chemical compound, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), is one of the Agent Orange indicator compounds found in dioxin and furan congeners. The compound 2,3,7,8-TCDD was detected in 15 samples at the levels between 0.080 and 0.189 pg/g. The results for all 15 samples were less than reporting limit and EMPC-flagged (estimated maximum possible concentration). The EMPC flag means the results were calculated from a signal which did not meet the mass spectrum quality criteria, but was estimated as the maximum possible concentration under the assumption the signal is only originated from the analyte. None of the samples were detected for 2,3,7,8-TCDD at levels greater than reporting limits. Most of dioxin and furan congeners were found at levels between detection

3250-

CEPOF-ED-G SUBJECT: Final Test Results of Phase I (Helipad) Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-59)

limits and reporting limits and are identified with the flag "J". OCDD was the most common dioxin found during sampling and was detected in 116 out of 118 samples tested. The maximum concentration was 524 pg/g at E11-150-S1 (0-0.5m depth). The toxic equivalence factor (TEF) of OCDD for human health risk is relatively lower (TEF=0.0003) than other dioxin congeners. Calculated toxic equivalent (TEQ) values ranged from 0.005 to 1.156 pg/g based on 2005 World Health Organization (WHO) evaluation.

b. **Chlorinated Herbicide**: No chlorinated herbicides were detected in any of the collected samples. Agent Orange-related chemicals in chlorinated herbicides are 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). The reporting limits of Agent Orange constituents range from 0.016 to 0.019 mg/kg for both of 2,4-D and 2,4,5-T.

c. **OC-Pesticide**: Analytes such as 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, delta-BHC, gamma-BHC (Lindane) and gamma-Chlordane were detected in 62 samples. Gamma-BHC has the highest concentration among the analytes and it was found at the concentration of 163,000 μ g/kg in E11-118-S2 (0.5-2.0m depth).

d. **OP-Pesticide**: No OP-pesticides were detected in any of the collected samples.

e. **VOC**: A number of VOCs were detected in the collected samples. Tetrachloroethene (PCE) was detected in 25 samples out of a total of 118 samples tested and had the highest VOC concentration of 18,000 μ g/kg at E11-119-S2 (0.6-2.0m depth). Trichloroethene (TCE) was detected in 3 samples and had the highest concentration of 186 μ g/kg at the same borehole and depth. Benzene had the highest concentration of 117 μ g/kg at E11-118-S3 (2.0-5.0m depth). Total xylenes had the highest concentration of 1683 μ g/kg at E11-118-S2 (0.5-2.0m depth).

f. **SVOC**: A few SVOC analytes were detected at levels between detection limits and reporting limits.

g. Metal: Arscnic and lcad were detected in 117 and 118 samples respectively. E11-135-S1 (0-0.5m depth) was found to have the highest concentration for both analytes; 39 mg/kg of arscnic, 138 mg/kg of lead. Mercury was detected at levels between detection limits and reporting limits, the maximum concentration was 0.0147 mg/kg at E11-134-S1 (0-0.5m depth).

4. Quality Control and Quality Assurance

a. Data Validation

Chemical data validation was conducted by US Army Corps of Engineers, Honolulu District using Automated Data Review (ADR) Version 8.2. Results for dioxin/furan analyses were evaluated in accordance with guidance provided in the *National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins and Chlorinated Dibenzofurans*, OSWER 9240.1-51. Results

3253

CEPOF-ED-G SUBJECT: Final Test Results of Phase I (Helipad) Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-59)

for organic analyses and inorganic analyses were evaluated in accordance with *National Functional Guidelines for Superfund Organic Methods Data Review*, OSWER 9240.1-48 and *National Functional Guidelines for Inorganic Superfund Data Review*, OSWER 9240.1-51, respectively. Full data validation reports are included on compact disk (CD).

(1) Sample Preservation: All samples must be refrigerated at $4 \pm 2^{\circ}$ C from the time of receipt (time of collection when possible) until the time of extraction. All samples were received by the laboratory at temperatures between 1 °C and 6 °C. The temperature discrepancies are slight and should not affect the validity of the data.

(2) Holding Times: The maximum allowable holding time between sample collection and sample preparation or sample preparation and sample analysis depends on the analyte. All samples were prepared and analyzed within the allowable holding times specified by the appropriate method. There was no holding time discrepancy.

(3) Quality Control Samples: The Validation report summarized the evaluation of the performance of QC samples such as blanks, surrogate spikes, laboratory control samples, and matrix spike/matrix spike duplicates. The validation report includes identification of reported results which need to be qualified (flagged) due to quality control issues, and the reasons for the flags. For example, methylene chloride in VOC was detected in some laboratory blanks at concentration levels above reporting limits. Methylene chloride results of field samples were determined "not detected" depending on level of detection for this sample group. Hexachlrocyclopentadiene results in SVOC were unacceptably high at laboratory control samples in some sample groups. The hexachlrocyclopentadiene results were identified with the flag "R".

(4) Summary: Laboratory data packages were reviewed for preservation, holding times, blanks, surrogate spikes, laboratory control samples, and matrix spike/matrix spike duplicates. The evaluation for these parameters is considered to be a "Level 2b" Data Validation. The overall data validation showed that the data is generally of acceptable quality with some results for specific analytes being rejected or qualified as estimated/not detected.

b. Duplicate Sample Results

Field samples were collected as duplicates and used for performance evaluation and QA purposes. Duplicate sample results were evaluated based on EM 200-1-6 titled Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste Projects. The document identifies the criteria for comparing field QC and QA sample data. Based on those criteria, the concentration ratio between primary and duplicate samples should be within designated limits to be evaluated as "agreement" with each other. The acceptance criteria are as follows.

3254

CEPOF-ED-G SUBJECT: Final Test Results of Phase I (Helipad) Soil Samples, Cp Carroll, Korea (G&E 11-032E/E2011-59)

> $0.33 \le \text{Ratio} \le 3.00$ when one result is less than reporting limit $0.50 \le \text{Ratio} \le 2.00$ for metal $0.20 \le \text{Ratio} \le 5.00$ for VOC $0.25 \le \text{Ratio} \le 4.00$ for Dioxin, Herbicide, Pesticide, and SVOC

(1) Duplicate Samples in Primary Laboratory: Eleven (11) sets of duplicate samples were provided to the primary laboratory for blind duplicate analyses (primary and primary dup). Table 10 shows the results of samples to be compared and evaluated outcome determining whether the ratio is within "agreement" criteria or not. The table lists the analytes having at least one quantified (detected) result. Other analytes which are not included in the table had results "not detected" at both of the primary and primary dup samples, and they are considered as in "agreement" each other. Out of 11 sets of samples and 2255 analytes (205 analytes/sample), only 5 analytes showed "disagreement" between duplicate samples analyzed in the primary laboratory.

(2) Duplicate Samples between Primary and QA laboratories: Three (3) sets of duplicate samples were analyzed and compared between primary and QA laboratories. Comparison of the results and performance evaluation are provided in Table 11. The analytes that were not detected in both samples were omitted in this table. Out of 3 sets of samples and 615 analytes, 2 analytes showed "disagreement" as a result of the comparison of data between two different laboratories.

(3) The possible reason for the duplicate disagreement is considered to be due to nonhomogeneity of the soil samples. Soil samples are homogenized when they are collected in two different containers at the site and also the laboratories homogenize soil samples prior to analyses. But there can be "hot spots" in a container that go into the sample aliquot and cause disparity between the results. The bis(2-ethylhexyl)phthalate disagreement could have come from a small piece of plastic present in one sample container and not the other or some other source of plastic. The data comparison showed pretty good performance and assured the quality of analyses.

5. The POC for this matter is Ms.¹

60 60

Encl

6

Chief, Geotechnical and Environmental Engineering Branch

72853

- Final Test Results of Phase I Soil Samples, Cp Carroll -

- Table 1.Soil Sample Information for Phase I (Helipad) SiteTable 2.Soil Test Methods
- Table 3.
 Summary of Dioxin/Furan Results for Phase I Soil Samples
- Table 4.
 Summary of Chlorinated Herbicide Results for Phase I Soil Samples
- Table 5.
 Summary of Organochlorine Pesticide Results for Phase I Soil Samples
- Table 6.
 Summary of Organophosphorus Pesticide Results for Phase I Soil Samples
- Table 7.
 Summary of Volatile Organic Compound Results for Phase I Soil Samples
- Table 8.Summary of Semivolatile Organic Compound Results for Phase I Soil
Samples
- Table 9.
 Summary of Metal Results for Phase I Soil Samples
- Table 10.
 Comparison of Duplicate Sample Results in Primary Laboratory
- Table 11.Comparison of Duplicate Sample Results between Primary and QALaboratories

3256

Figure 1. Phase I (Helipad) Site Borehole Locations

Borehole	Sample ID	Depth (m)
E11-114	S1	0-0.5
E11-114	S2	0.5-2.0
E11-114	S3	2.0-5.0
E11-114	S4	5.0-8.4
E11-115	S1	0-0.5
E11-115	S2	0.5-2.0
E11~115	S3	2.0-5.0
E11-115	S4	5.0-9.4
E11-116	S1	0-0.5
E11-116	S2	0.5 - 2.0
E11-116	S3	2.0-5.0
E11-116	S4	5.0-9.7
E11-117	S1	0-0.5
E11-117	S2	0.5-2.0
E11-117	S3	2.0-5.0
E11-11/	<u>5</u> 4	5.0-10.0
E11-118	S1	0-0.5
E11-118	S2	0.5-2.0
E11-118	S3	2.0-5.0
E11-118	S4	5.0-8.9
E11-119	S1	0.1-0.6
E11~119	S2	0.6-2.0
E11-119	S3	2.0-5.0
E11-119	S4	5.0-7.9
E11-120	S1	0-0.5
E11-120	S2	0.5-2.0
E11-120	S3	2.0~3.3
E11-121	S1	0-0.5
E11-121	S2	0.5-2.7
E11-122	S1	0-0.5

Table 1. Soil Sample Information for Phase I (Helipad) Site

Phase I (H	lelipad) Sit	e
Borehole	Sample ID	Depth (m)
E11-122	S2	0.5-2.0
E11-122	S3	2.0-5.0
E11-122	S4	5.0-9.3
E11-123	S1	0-0.5
E11-123	S2	0.5-2.0
E11-123	S3	2.0-5.0
E11-123	S4	5.0-7.7
E11-124	S1	0-0.5
E11-124	S2	0.5-2.0
E11-124	S3	2.0-5.0
E11-124	S4	5.0-7.35
E11-125	S1	0-0.5
E11-125	S2	0.5-1.56
E11-126	S1	0-0.5
E11-126	\$2	0.5-1.83
E11-127	S1	0-0.5
E11-127	S2	0.5-2.32
E11-128	S1	0-0.5
E11-128	S2	0.5-3.2
E11-129	S1	0-0.76
E11-130	S1	0-1.22
E11-131	S1	0.12-0.5
E11-131	S2	0.5-1.7
E11-132	S1	0.1-0.6
E11-132	S2	0.6-3.0
E11-133	S1	0.15-0.65
E11-133	S2	0.65-2.46
E11-134	\$1	0-0.5
E11-134	S2	0.5-1.51
E11-135	S1	0-0.5

Borehole	Sample ID	Depth (m)				
E11-135	S2	0.5-2.0				
E11-135	S3	2.0-5.0				
E11-135	S4	5.0-7.65				
E11-136	S1	0-0.5				
E11-136	S2	0.5-3.2				
E11-137	S1	0-0.5				
E11-137	S2	0.5-2.0				
E11-137	S3	2.0-5.0				
E11-137	S4	5.0-6.75				
E11-138	S1	0.4-0.9				
E11-138	S2	0.9 - 2.22				
E11-139	S1	0-0.5				
E11-139	\$2	0.5-2.0				
E11-139	S3	2.0-3.66				
E11-140	S1	0-0.5				
E11-140	S2	0.5-2.0				
E11-140	\$3	2.0-3.0				
E11-141	S1	0.3-0.8				
E11-141	\$2	0.8-2.3				
E11-141	S3	2.3-5.3				
E11-141	S4	5.3-7.2				
E11-142	S1	0-0.5				
E11-142	\$2	0.5-2.0				
E11-142	S3	2.0-4.73				
E11-143	\$1	0-0.5				
E11-143	S2	0.5-2.0				
E11-143	S3	2.0-3.55				
E11-144	S1	0-0.5				
E11-144	\$2	0.5-1.52				
E11-145	S1	0-0.5				

Borehole	Sample ID	Depth (m)
E11-145	S2	0.5-2.0
E11-145	S3	2.0-5.0
E11-146	\$1	0-0.5
E11-146	S2	0.5-2.0
E11-146	S3	2.0-4.85
E11-147	S1	0-0.5
E11-147	S2	0.5-1.97
E11-148	S1	0.3-0.8
E11-148	S2	0.8-2.3
E11-148	S3	2.3-5.8
E11-149	S1	0-0.5
E11-149	S2	0.5-2.0
E11-149	S3	2.0-3.6
E11-150	S1	0-0.5
E11-150	S2	0.5-2.0
E11-150	S3	2.0-5.0
E11-150	S4	5.0-7.0
E11-151	S1	0-0.5
E11-151	S2	0.5-2.0
E11-151	S3	2.0-5.0
E11-151	S4	5.0-7.85
E11-152	S1	0-0.5
E11-152	\$2	0.5-2.0
E11-152	S3	2.0-5.0
E11-153	S1	0.3-0.8
E11-153	S2	0.8-2.3
E11-153	\$3	2.3 5.3
E11-153	S4	5.3-10.0

3257

Table 2. Soil Test Methods

Parameter	Number of Analytes	Method: Preparation	Description
		Analysis	
		3540C	Soxhlet Extraction
Dioxins and furans	17	8290A	High-resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)
Chlorinated		3541	Automated Soxhlet Extraction
herbicides	5	8151A	GC-MS Using Methylation Derivatization
00	22	3541	Automated Soxhlet Extraction
OC pesticides	~~~	8081B	GC-Electron Capture Detector
	27	3546	Microwave Extraction
OP pesticides	21	8141B	GC-Flame Photometric Detector
Voc.	67	5035	Closed System Purge and Trap
VOCs	67	8260B	GC/MS
cuoc-	50	3541	Automated Soxhlet Extraction
SVOCs	59	8270D	GC/MS
		3050B	Acid Digestion
RCRA Metals (total)	8	6010C	Inductively Coupled Plasma-Atomic Emission Spectrometry
		7471B mercury	Cold Vapor Technique

30.58

		Borehole 🔿	٤11-114	E11-114	E11-114	E11-114	E11-115	E11-115	E11-115	E11-115	E11-116	E11-116
No		Sample ID →	S1	S2	S3	S4	S1	S2	S3	54	S1	S2
	Analyte↓	Depth, m ->	0~0.5	~2.0	~5.0	~8.4	0~0.5	~2.0	~5.0	~9.4	0~0.5	~2.0
1	2,3,7,8-TCDD	pg/g	ND	ND	0.099 J EMPC	0.174 J EMPC	ND	NÐ	ND	ND	ND	NÐ
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	NĎ	ND	ND	ND	ND	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	0.187 J	ND	ND	ND	NÐ	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	1.05 J	2.44	2.25 J	0.534 JEMPC	0.381 JEMPC	0.748 J	0.63 J	0.262 J EMPC	0.43 J	1.72 J
7	OCDD	pg/g	25	33.1	76.4	8.67	13.1	26.3	20.1	7.65 EMPC	9.74	37.8
8	2,3,7,8-TCDF	pg/g	NÐ	NÐ	0.798 N	0.806 N	0.639 N	0.563 N	0.348 J	0.972 N	0.753 N	0.708 N
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	ND	ND	ND	0.038 JEMPC	ND	NÐ	NÐ	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	ND	0.103 J	0.085 J EMPC	NÐ	0.06 J EMPC	ND	NÐ	NÐ	ND
11	1,2,3,4,7,8-HxCDF	pg/g	0.338 J	0.317 J EMPC	ND	ND	NÐ	ND	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	0.264 J	0:264 JEMPC	0.105 J	ND	ND	ND	NÐ	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	0.151 J	NÐ	NÐ	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	0,292 J EMPC	0.133 JEMPC	ND	ND	ND	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.507 J	1.14 J	0.239 J EMPC	ND	ND	0,195 J EMPC	ND	ND	ND	0.475 J
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	1.07 J	0,437 J	ND	ND	NÐ	ND	ND	ND	1.32 J
	WHO-2005 TEQ (ND≈0), pg/g	0.08327	0.13335	0.31514	0.28798	0.07164	0.09286	0.04713	0.10212	0.08252	0.10449

Table 3. Summary of Dioxin/Furan Results for Phase I Soil Samples

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3259

	· · · · · · · · · · · · · · · · · · ·	Borehole ->	E11-116	£11-116	E11-117	E11-117	E11-117	E11-117	E11-118	E11-118	E11-118	E11-118
No		Sample ID →	53	S4	S1	S2.	S3	<u>\$4</u>	S1	S2	S3	S4
	Analyte↓	Depth, m →	~5.0	~9.7	0~0.5	~2.0	~5.0	~10.0	0~0.5	~2.0	~5.0	~8.9
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	ND	ND	NĎ	ND	ND	ND	NÐ
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	NÐ	ND							
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	NÐ	0.231 J	ND						
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.548 J	ND	0.77 J	1.27 J	0.451 JEMPC	ND	0.645 J	0.976 J	0.86 J	0,476 J EMPC
7	OCDD	pg/g	14.8	7.94	16.1	72.5	11.4	8.17	10,3	10,3	27.2	3.42 J EMP(
8	2,3,7,8-TCDF	pg/g	0.693	0.932	0.457 J EMPC	0.309 J EMPC	ND	0.221 J EMPC	1.4	0.303 J EMPC	ND	1,26
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	0.223 J EMPC	ND	ND	ND	0.975 J	0.811 J EMPC	0.237 J EMPC	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	ND	NÐ	ND	ND	ND	1.11 JEMPC	1.04 J EMPC	0.31 J EMPC	0.184 J EMPC
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	NÔ	ND	ND	ND	2,22 J	2.3 J EMPC	0.592 J	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	0.119 J EMPC	ND	ND	ND	1,84 J	1.59 J	0,569 J	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	0.221 J EMPC	ND	ND	ND	0.718 J EMPC	0.952 J EMPC	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	0.162 J EMPC	ND	ND	ND	1,12 J	1.14 J	0.937 J	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	0.455 J EMPC	0.166 J EMPC	0.143 J EMPC	ND	4.12	5.04	1.2 J EMPC	0.583 J
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	1,24 J	1.24 JEMPC	ND	ND
17	OCDF	PB/B	ND	ND	1.48 J	ND	ND	ND	1.92 J EMPC	3.36 J	0.89 J EMPC	1.4 J
											,	,
	WHO-2005 TEQ (ND=0), pg/g	0.07922	0.09558	0.14321	0.06701	0.00936	0.02455	1.15577	1.04149	0.27894	0.19324

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

N: Tentative detection (qualitative uncertainty)

3260

ý.

		Borehole ->	E11-119	E11-119	E11-119	E11-119	E11-120	E11-120	E11-120	E11-121	E11-121	E11-122
No		Sample ID →	S1	S2	\$3	S4	S1	S2	S3	S1	S2	S1
	Analyte↓	Depth, m ->	0.1~0.6	~2.0	~5.0	~7.9	0~0.5	~2.0	~3.3	0~0.5	~2.7	0~0.5
1	2,3,7,8-TCDD	pg/g	ND	0.148 J EMPC	ND	ND	ND	NÐ	ND	ND	ND	NÐ
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	NÐ	0.107 J EMPC	ND	NÐ	ND	NÐ
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	NÐ	NÐ	ND	ND	ND	NÐ
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	0,261 /						
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	NÐ						
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.613 J EMPC	2:5 J	0.52 JEMPC	0.659 J EMPC	0.372 J EMPC	0.315 JEMPC	ND	1.74 J	0.287 J	11.9
7	OCDD	pg/g	11.3	79	18.6	16,5	4,03 J	5.14	6.27	37.4	15,9	116
8	2,3,7,8-TCDF	pg/g	ND	ND	ND	ND	0.357 J EMPC	0.336 J	0.225 J EMPC	0.316 J	0.246 J EMPC	0.454 J
9	1,2,3,7,8-PeCDF	PE/g	NÐ	ND	ND	ND	ND	0.136 J	ND	ND	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	NÐ	NÐ	ND	ND	0.088 J	ND	0.185 J EMPC	NÐ	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	0.193 J EMPC	0.156 J	NÐ	0,104 J	ND	ND	ND	0.22 J
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	D.189 J	0,15 JEMPC	ND	0.107 J EMPC	ND	ND	ND	0.208 J
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND	NÐ	0.182 J	ND	ND	NÐ	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.358 J	0.593 J	0.339 1	0.218 J	ND	0.27 JEMPC	ND	0.925 J	NÐ	1.25 J
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND						
17	OCDF	pg/g	NÐ	ND	ND	ND	ND	0.784 1	ND	1.5 J	ND	2.95 J
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	
	WHO-2005 TEQ (ND=0), pg/g	0.01310	0.20263	0.05237	0.04435	0.04063	0.21807	0.02438	0.12542	0.03224	0.28149

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3261

		Borehole →	E11-122	E11-122	E11-122	E11-123	E11-123	E11-123	E11-123	E11-124	E11-124	E11-124
No		Sample ID →	S2	S3	S4	\$1	\$2	S3	S4	S1	S2	S3
	Analyte↓	Depth, m →	~2.0	~5.0	~9.3	0~0.5	~2.0	~5.0	~7.7	0~0.5	~2.0	~5.0
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	ND	ND	0.11 J EMPC	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	NÐ	ND	ND	ND	NĎ	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	ND	NÐ	0.273 J EMPC	2.69	ND	ND	ND	1.24 J	0.395 J EMPC	0.439 JEMP
7	OCDD	pg/g	1.99 J EMPC	1,18 J	9.64	21.2	3.76 J	3.14 J	0,855 J	23.1	4.74 J	10
8	2,3,7,8-TCDF	pg/g	0.334 J	0.202 J	0.253 J EMPC	0.251 J EMPC	0.299 J EMPC	0.381 J EMPC	0.253 J EMPC	ND	ND	ND
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	NÐ	0.09 J EMPC	ND	ND	ND	ND	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	ND	ND	0.09 J	ND	ND	0.078 J EMPC	ND	ND	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	NĎ	NÐ	ND	ND	ND	ND	0.161 J EMPC	ND
12	1,2,3,6,7,8-HxCDF	pg/g	NÐ	ND	ND	NÐ	ND	ND	ND	ND	0,118 J EMPC	ND
13	1,2,3,7,8,9-HxCDF	pg/g	NÐ	ND	ND	NÐ	NĎ	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	Pg/g	NÐ	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	0.172 J EMPC	L 858.0	ND	ND	0.269 J	0.484 J	0.291 J EMPC	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	0.941 J EMPC	ND	ND	ND	ND	ND	ND
	,											
	WHO-2005 TEQ (ND=0), pg/g	0.03400	0.02055	0.03264	0.09676	0.03103	0.14904	0.05156	0.02417	0.03618	0.00739

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

N: Tentative detection (qualitative uncertainty)

3262

Ĺ

		Borehole →	£11-124	E11-125	E11-125	E11-126	E11-126	E11-127	E11-127	E11-128	E11-128	E11-129
No		Sample ID →	S4	S1	\$2	S1	S2	S1	S2	S1	S2	S1
	Analyte↓	Depth, m →	~7.35	0~0.5	~1.56	0~0.5	~1.83	0~0.5	~2.32	0~0.5	~3.2	0~0.76
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	0,189 J EMPC	NÐ	ND	ND	ND	ND	0.15 J EM
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	0.173 JEMPC	NĎ	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	NÐ	ND	ND	0,253 J.EMPC	ND	ND	NÐ	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	NÐ	0.212 J EMPC	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.353 J EMPC	ND	0.346 J EMPC	8.68	ND	0.437 J	0.224 J EMPC	2,19 /	ND	0.389 J EM
7	OCDD	pg/g	3.44 J	2,24 J	11.8	82.9	2.29 J	6,71	8.32	22.6	2 J	17.9
8	2,3,7,8-TCDF	pg/g	ND	0.286 J EMPC	0.29 J	0,35 J	0.414 J	0.288 J	0.426 J EMPC	0.304 JEMPC	0.253 J EMPC	0.442 J
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	2,3,4,7,8-PeCDF	pe/e	ND	ND	0.07 J EMPC	ND	ND	ND	ND	ND	ND	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	0.203 J	ND	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND	0.19 JEMPC	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	0.13 JEMPC	ND	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	ND	2.31 J	0.237 J EMPC	ND	ND	0,56 J	ND	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	5.87	1.04 J	ND	ND	ND	ND	ND
										,	•••••••••••••••••••••••••	
,,	WHO-2005 TEQ (ND=0	, pg/g	0.00456	0.02927	0.05700	0.40703	0.27007	0.03518	0.04734	0.06468	0.02590	0.20346

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

N: Tentative detection (qualitative uncertainty)

3263

ŧ

		Borehole →	E11-130	E11-131	E11-131	E11-132	E11-132	E11-133	E11-133	E11-134	£11-134	E11-135
No		Sample ID →	S1	\$1	S2	S1	\$2	S1	\$2	\$1	S2	\$1
	Analyte↓	Depth, $m \rightarrow$	0~1.22	0.12~0.5	~1.7	0.1~0.6	~3.0	0.15~0.65	~2.46	0~0.5	~1.51	0~0.5
1	2,3,7,8-TCDD	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	0.164 J EMPC	ND	ND	ND	ND	ND	ND	0.189 J EMPC	ND	NÐ
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	NÐ
4	1,2,3,6,7,8-HxCDD	pg/g	0.169 J EMPC	NÐ	ND	ND	ND	NÐ	ND	0.916 J	NÐ	ND
5	1,2,3,7,8,9-HxCDD	pg/g	0.221 JEMPC	NÐ	ND	ND	NÐ	NÐ	ND	ND	ND	NÐ
6	1,2,3,4,6,7,8-HpCDD	pg/g	2.96	ND	0.706 3	0.513 J	0.977 J EMPC	1.61 J	0.305 J EMPC	- 21,2	0.734 J	1,73 J
7	OCDD	pg/g	32.8	6,76	11,5	18	11.8	24.8	19.7	254	25	45.1
8	2,3,7,8-TCDF	pg/g	0.262 J EMPC	0,448 J	0.348 J	0.304 J	0.377 J	0.347 J	0.28 J EMPC	0.297 J EMPC	0.257 J	0,32 J
9	1,2,3,7,8-PeCDF	pg/g	0.141 J EMPC	ND	ND	ND	ND	ND	ND	0.233 J	0.188 J	ND
10	2,3,4,7,8-PeCDF	pg/g	0.121 J EMPC	ND	ND	ND	ND	0.09 J EMPC	ND	0.257 J EMPC	0.098 J	ND
11	1,2,3,4,7,8-HxCDF	pg/g	0.125 J EMPC	ND	ND	NÐ	ND	ND	ND	0.295 J	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	0.147 J EMPC	ND	ND	ND	ND	NĎ	ND	0,293 J	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	0.127 J	ND	ND	ND	ND	ND	ND	0.289 J EMPC	NÐ	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	1,22 J	ND	ND	ND	0.259 J EMPC	0.394 J	ND	5.99	ND	0.395 J EMP
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	NÐ
	OCDF	pg/g	3.28 J	NÐ	ND	ND	ND	0.879 J EMPC	ND	25.1	NÐ	0.541 J
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	WHO-2005 TEQ (ND=0),	pa/a	0.35625	0.04683	0.04531	0.04093	0.05360	0.08932	0.03696	0.83772	0.07546	0.06694

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3264

		Borehole →	£11-135	E11-135	E11-135	E11-136	E11-136	E11-137	E11-137	E11-137	E11-137	E11-138
No		Sample ID →	S2	S3	S4	S1	S2	\$1	S2	\$3	S4	S1
	Analyte↓	Depth, m →	~2.0	~5.0	~7.65	0~0.5	~3.2	0~0.5	~2.0	~5.0	~6.75	0.4~0.9
1	2,3,7,8-TCDD	pg/g	NĎ	ND	0.149) EMPC	NÐ	ND	ND	ND	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	0.044 JEMP
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	NÐ	NĎ	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	3.89	5,93	0.3 J	0.473 J EMPC	NÐ	0.608 J	0.994 J	0.469 J	ND	0.205 J
7	OCDD	pg/g	224	269	2.42 J	11,3	2.4 J	22.7	37	19	ND	3.71 J
8	2,3,7,8-TCDF	pg/g	ND	0.31 JEMPC	0,309 J EMPC	0.323 J	0.2 JEMPC	0.223 J	0.245 J	0.333 J	0.255 J	0.257 J
9	1,2,3,7,8-PeCDF	pg/g	ND	NÐ	ND	ND	NÐ	ND	0.05 J EMPC	NÐ	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	0.072 JEMPC	0.088 J	0,15 J	0.064 J EMPC	NÐ	0.078 J EMPC	NÐ	ND	0.08 J
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	0.07 JEMPC	NÐ	NÐ	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	NÐ	ND	ND	ND	ND	ND	ND	ND	NÐ	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	ND	0.186 3 EMPC	ND	0.302 J	ND	0.11 J EMPC	NÐ	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	NÐ	NÐ	ND
	**************************************									/		
	WHO-2005 TEQ (ND=0), pg/g	0.10610	0.19263	0.21000	0.08728	0.03995	0.03821	0.07752	0.04479	0.02550	0.09715

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

N: Tentative detection (qualitative uncertainty)

3265

•

	ľ	Borehole →	E11-138	E11-139	£11-139	E11-139	E11-140	E11-140	E11-140	E11-141	E11-141	E11-141
No		Sample ID →	S2	\$1	S2	S3	S1	S2	S3	S1	S2	S3
	Analyte↓	Depth, m→	~2.22	0~0.5	~2.0	~3.66	0~0.5	~2.0	~3.0	0.3~0.8	~2.3	~5.3
1	2,3,7,8-TCDD	pg/g	ND	0.109 J EMPC	ND	0.094 J EMPC	ND	ND	ND	ND	0.088 J EMPC	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	NÐ	NÔ	ND	ND	ND	ND	ND	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	ND	NÐ	ND	ND	NÐ	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	NĎ	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.094 J	1.61 J	0.59 J EMPC	0.414 J	1.03 J	0,793 J	0,402 J EMPC	0.522 J	1.77 J	0,942]
7	OCDD	pg/g	1.71 J	35.1	18.2	12.2	50,9	17.8	24.4	17.6	48.5	35.4
8	2,3,7,8-TCDF	pg/g	0.222 J EMPC	0,215 J	0.549	0.221 J	0.322 J EMPC	0,338 J EMPC	0.302 J EMPC	0.3 J	0.357 J EMPC	0.336 J
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	ND	0.032 J	ND	ND	ND	ND	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	ND	0.062 J	0.096 J EMPC	0.105 JEMPC	ND	ND	ND	ND	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND							
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND							
13	1,2,3,7,8,9-HxCDF	pg/g	ND	NÐ	ND	ND	ND	ND	ND	0.056 J	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	0.515 J	0.204 J EMPC	ND	0,25 J EMPC	0.497 J	ND	ND	0.444 J EMPC	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	0.841 J	ND	ND	ND	1.35 J	ND	ND	ND	ND
					~~~~					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	WHO-2005 TEQ (ND=0)	, pg/g	0.02365	0.16253	0.08687	0.15320	0.09177	0.05185	0.04154	0.04614	0.16069	0.05364

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3266

		Borehole →	E11-141	£11-142	E11-142	E11-142	E11-143	E11-143	E11-143	E11-144	E11-144	E11-145
No		Sample ID →	S4	\$1	S2	S3	\$1	S2	S3	<b>S1</b>	S2	S1
	Analyte↓	Depth, m →	~7.2	0~0.5	~2.0	~4.73	0~0.5	~2.0	~3.55	0~0.5	~1.52	0~0.5
1	2,3,7,8-TCDD	pg/g	ND	ND	ND	ND	NĎ	ND	ND	ND	0.08 J EMPC	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	NÐ	ND	NÐ	0.068 J EMPC	ND	ND	0.061 J EMPC	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	NÐ	ND	NÐ	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	Pg/g	ND	ND	NÖ	ND	NÐ	NĎ	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	ND	0.628 J	0.56 JEMPC	ND	0.292 J EMPC	0.45 J	0.317 J EMPC	0.739 J	0.522 J	0.61 )
7	OCDD	pg/g	4,87 J	33.9	18.9	5,56	11	22.5 EMPC	7,03	21.5	21.8	20.8
8	2,3,7,8-TCDF	pg/g	0.332 J EMPC	0.306 JEMPC	0.246 J EMPC	0.245 J	0.17 j	0,18 J	0.213 J	0.189 J EMPC	0.264 J	0.352 J
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	NĎ	0.057.)	ND	0.049 J EMPC	ND	0.04 J EMPC	0.086 J EMPC	ND
10	2,3,4,7,8-PeCDF	pg/g	0.08 J EMPC	ND	ND	ND	ND	0.084 J.EMPC	0.053 J	0.042 J	0.082 J EMPC	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	0.033 J EMPC	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	0,059 J	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	NÐ	ND	ND	NĎ	ND	ND	ND	0.096 J	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	NÐ	ND	ND	ND	ND	ND	ND	0.05 J	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	NÐ	ND	ND	NĎ	ND	NÐ	ND	0,203 J	0.131 J
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND
17	OCDF	pg/g	ND	ND	ND	ND	ND	ND	NÐ	ND	0.598 J	0.73 J EMP
					,,,				,	,		
	WHO-2005 TEQ (ND=0	), pg/g	0.05851	0.04705	0.03587	0.02789	0.02322	0.12408	0.04254	0.04647	0.23282	0.04907

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3267

		Borehole 🔶	E11-145	E11-145	E11-146	E11-146	E11-146	E11-147	E11-147	E11-148	E11-148	E11-148
No		Sample ID →	S2	S3	S1	S2	S3	S1	S2	\$1	S2	S3
	Analyte↓	Depth, m →	~2.0	~5.0	0~0.5	~2.0	~4.85	0~0.5	~1.97	0.3~0.8	~2.3	~5.8
1	2,3,7,8-TCDD	pg/g	ND	ND	0.093 ) EMPC	ND	ND	ND	NÐ	ND	NÐ	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	NÐ	ND	ND	ND	NÐ	ND	0.085 3 EMPC	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	NÐ	ND	0.058 J	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	0.622 J	0.99 J	0.894 J	1.98 J	ND	0.754 J EMPC	NÖ	0.749 J	0.875 J	NÐ
7	OCDD	pg/g	25.6	50.8	28,4	31.6	ND	22,6	4.37 J	30.8	43.1	32.8
8	2,3,7,8-TCDF	pg/g	0.29 J EMPC	0.319 3	0.258 J	0.281 J EMPC	0.223 J EMPC	0,322 J	0,211 J	0.284 J EMPC	0.317 J	0.316 J
9	1,2,3,7,8-PeCDF	pg/g	ND	ND	NÐ	ND	ND	ND	NÐ	0.091 J EMPC	0.168 J	0,149 J
10	2,3,4,7,8-PeCDF	pg/g	ND	NÐ	ND	ND	ND	ND	ND	0.085 J EMPC	0,129 J	0.2 J EMPO
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	NÐ	ND	0.121 J EMPC	ND	NÐ	NÐ	0.127 J EMPC
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.115 JEMPC
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	NÐ	ND	ND	ND	NÐ	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	NÐ	NÐ	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	ND	ND	0.296 J	0.784 1	ND	0.309 J	ND	0.158 J EMPC	0.218 J EMPC	NÐ
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	1.34 J	ND	ND	ND	ND	ND	ND
	WHO-2005 TEQ (ND=0)	, pg/g	0.04290	0.05704	0.13892	0.06562	0.02230	0.06171	0.02241	0.16572	0.09930	0.13011

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

30 68

		Borehole →	E11-149	E11-149	E11-149	E11-150	E11-150	E11-150	£11-150	E11-151	E11-151	E11-151
No		Sample ID →	S1	S2	S3	\$1	S2	S3	<u>54</u>	S1	S2	S3
	Analyte↓	Depth, m →	0~0.5	~2.0	~3.6	0~0.5	~2.0	~5.0	~7.0	0~0.5	~2.0	~5.0
1	2,3,7,8-TCDD	pg/g	NÐ	ND	ND	ND	0.158 J EMPC	ND	NÐ	ND	ND	ND
2	1,2,3,7,8-PeCDD	pg/g	0.041 J EMPC	NÐ	ND	ND	ND	ND	NÐ	0,199 J EMPC	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	NÐ	ND							
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	1.08 J	0,384 J	0.456 J EMPC	0.753 J EMPC	1.07 JEMPC	1.22 J	17.8	0.812 J EMPC	0.416 JEMPC	1.32 J
7	OCDD	pg/g	24,8	8.36	3.88 J EMPC	24.4	37.5	50.9	524	16.2	18.4	35,7
8	2,3,7,8-TCDF	pg/g	0.39 J	0.311 JEMPC	0.417 J	0.229 J EMPC	0.345 J	0.454 J EMPC	0.294 J EMPC	0.402 JEMPC	0.344 J EMPC	0.269 1
9	1,2,3,7,8-PeCDF	pg/g	ND	0.068 J EMPC	0.226 J EMPC	ND	ND	ND	ND	0.201 J	ND	ND
10	2,3,4,7,8-PeCDF	pg/g	0,066 J	0.072 JEMPC	0.17 JEMPC	ND						
11	1,2,3,4,7,8-HxCDF	pg/g	ND	0,05 J	ND	ND	NÐ	ND	ND	0.196 J EMPC	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	0.072 J	ND	0.084 J	ND	ND	ND	0.157 J	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	NÐ	ND							
14	2,3,4,6,7,8-HxCDF	pg/g	ND	0.037 J	ND	ND	NÐ	ND	ND	0.142 J	ND	ND
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.193 J	0.102 J EMPC	NÐ	0.318 J	ND	ND	ND	0.415 J	ND	0.494 J EMPC
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	NÐ	ND							
17	OCDF	pg/g	0.618 J	ND	0.725 J	ND	ND	ND	ND	ND	ND	0.986 J
											,	
	WHO-2005 TEQ (ND=0	), pg/g	0.12017	0.07779	0.10542	0.04936	0.21445	0.07287	0.36460	0.31186	0.04408	0.05605

#### NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

3269

		Borehole →	E11-151	E11-152	E11-152	E11-152	E11-153	E11-153	E11-153	E11-153
No		Sample ID →	S4	\$1	S2	S3	S1	S2	S3	S4
	Analyte↓	Depth, m →	~7.85	0~0.5	~2.0	~5.0	0.3~0.8	~2.3	~5.3	~10.0
1	2,3,7,8-TCDD	pg/g	ND	0.094 J EMPC	0.113 JEMPC	ND	ND	ND	NĎ	ND
2	1,2,3,7,8-PeCDD	pg/g	ND	ND	NÐ	ND	ND	0.071	ND	ND
3	1,2,3,4,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND
4	1,2,3,6,7,8-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND
5	1,2,3,7,8,9-HxCDD	pg/g	ND	ND	ND	ND	ND	ND	ND	ND
6	1,2,3,4,6,7,8-HpCDD	pg/g	ND	1.65 J	2.71	1.13 J	1.73 J	0.92 J	0.758 J	2.62 J
7	OCDD	pg/g	4,31 J	57	130	41	42.3	38,4	25.3	135
8	2,3,7,8-TCDF	pg/g	0.316 J EMPC	0,339 J	0.473 J	0.333 J	0.451 J	0.291 J EMPC	0,325 J EMPC	0.333 J EMP
9	1,2,3,7,8-PeCDF	pg/g	ND	NÐ	ND	ND	ND	0,081 J EMPC	0.045 JEMPC	ND
10	2,3,4,7,8-PeCDF	pg/g	ND	NÐ	0.047	ND	ND	0.083	ND	ND
11	1,2,3,4,7,8-HxCDF	pg/g	ND	ND	ND	ND	ND	0.063 J EMPC	ND	ND
12	1,2,3,6,7,8-HxCDF	pg/g	ND	ND	ND	NÐ	NÐ	0.067 J	ND	ND
13	1,2,3,7,8,9-HxCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND
14	2,3,4,6,7,8-HxCDF	pg/g	ND	ND	ND	NĎ	ND	ND	ND	NĎ
15	1,2,3,4,6,7,8-HpCDF	pg/g	0.32 J	ND	0.102 J EMPC	ND	0.208 J EMPC	ND	NĎ	ND
16	1,2,3,4,7,8,9-HpCDF	pg/g	ND	ND	ND	ND	ND	ND	ND	ND
17	OCDF	pg/g	ND	ND	ND	ND	0.286 J	ND	ND	ND
	······									
****	WHO-2005 TEQ (ND≈0	), po/a	0.03609	0.16160	0.24149	0.05690	0.07726	0.16087	0.04901	0.10000

3270

NOTES:

J: Estimated amount detected between detection limit and reporting limit

EMPC: Estimated maximum possible concentration due to ion raio failure

		Borehole →	E11-114	E11-114	E11-114	E11-114	E11-115	E11-115	E11-115	£11-115	E11-116	E11-116
No		Sample ID →	S1	S2	S3	S4	S1	S2	53	S4	\$1	\$2
	Analyte	Depth, m →	0~0.5	~2.0	~5.0	~8.4	0~0.5	~2.0	~5.0	~9.4	0~0.5	~2.0
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4'-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND	ND	NÐ	ND						

## Table 4. Summary of Chlorinated Herbicide Results for Phase I Soil Samples

NOTE:

ND: Not detected

.

		Borehole →	E11-116	E11-116	E11-117	E11-117	E11-117	E11-117	E11-118	E11-118	E11-118	E11-118
No		Sample ID ->	S3	S4	S1	S2	S3	S4	\$1	S2	S3	S4
	Analyte↓	Depth, m →	~5.0	~9.7	0~0.5	~2.0	~5.0	~10.0	0~0.5	~2.0	~5.0	~8.9
1	2,4,5-T	mg/kg	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4'-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
5	Dicamba	mg/kg	ND									

NOTE:

3872

		Borehole →	E11-119	E11-119	E11-119	E11-119	E11-120	E11-120	E11-120	E11-121	E11-121	E11-122
No		Sample ID →	S1	S2	S3	S4	\$1	52	S3	\$1	S2	\$1
	Analyte↓	Depth, m →	0.1~0.6	~2.0	~5.0	~7.9	0~0.5	~2.0	~3.3	0~0.5	~2.7	0~0.5
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4'-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

.

~

NOTE:

3073

	1	Borehole →	E11-122	E11-122	E11-122	E11-123	E11-123	E11-123	E11-123	£11-124	E11-124	E11-124
No		Sample ID →	S2	\$3	S4	\$1	S2	\$3	S4	S1	S2	\$3
	Analyte↓	Depth, m →	~2.0	~5.0	~9.3	0~0.5	~2.0	~5.0	~7.7	0~0.5	~2.0	~5.0
1	2,4,5-T	mg/kg	ND	ND	ND	NÐ	ND	NÐ	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND									
	2,4 -D	mg/kg	ND	NÐ	ND							
	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

NOTE:

ND: Not detected

30.74

.

·		Borehole →	E11-124	E11-125	E11-125	E11-126	E11-126	E11-127	E11-127	E11-128	E11-128	E11-129
No	·····	Sample ID →	S4	\$1	S2	S1	\$2	S1	S2	\$1	S2	S1
	Analyte J	Depth, m →	~7.35	0~0.5	~1.56	0~0.5	~1.83	0~0.5	~2.32	0~0.5	~3.2	0~0.76
1	2,4,5-T	mg/kg	ND	NÐ	NÐ							
2	2,4,5-TP (Silvex)	mg/kg	ND	NÐ								
3	2,4'-D	mg/kg	NÐ	ND	NĎ							
4	2,4-DB	mg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
5	Dicamba	mg/kg	ND	ND	NĎ	ND	ND	ND	ND	ND	ND	NÐ

NOTE:

3275

		Borehole →	E11-130	£11-131	E11-131	£11-132	£11-132	E11-133	E11-133	E11-134	E11-134	E11-135
No		Sample ID →	\$1	S1	S2	S1.	\$2	\$1	\$2	\$1	S2	S1
	Analyte J	Depth, $m \rightarrow$	0~1.22	0.12~0.5	~1.7	0.1~0.6	~3.0	0.15~0.65	~2.46	0~0.5	~1.51	0~0.5
1	2,4,5-T	mg/kg	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	2,4'-D	mg/kg	ND	ND	ND	ND	ND	ND	ND	NÐ	NĎ	ND
4	2,4-DB	mg/kg	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
5	Dicamba	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTE:



	1	Borehole →	E11-135	E11-135	E11-135	E11-136	E11-136	E11-137	E11-137	E11-137	E11-137	E11-138
No		Sample ID →	\$2	S3	S4	\$1	\$2	S1	S2	S3	\$4	S1
	Analyte↓	Depth, m →	~2.0	~5.0	~7.65	0~0.5	~3.2	0~0.5	~2.0	~5.0	~6.75	0.4~0.9
1	2,4,5-T	mg/kg	NÐ	ND	ND	. ND	ND	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	NÐ	ND	ND	ND	NÐ	ND	ND	ND
3	2,4'-D	mg/kg	ND	NÐ								
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

.

NOTE:

3827

		Borehole →	E11-138	E11-139	E11-139	E11-139	E11-140	E11-140	E11-140	E11-141	E11-141	E11-141
No		Sample ID →	S2	S1	S2	S3	S1	S2	S3	S1	S2	S3
	Analyte	Depth, m →	~2.22	0~0.5	~2.0	~3.66	0~0.5	~2.0	~3.0	0.3~0.8	~2.3	~5.3
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND	NÐ	ND							
3	2,4'-D	mg/kg	ND									
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

ころう ぞうし

NOTE:

[		Borehole →	E11-141	E11-142	E11-142	E11-142	E11-143	E11-143	E11-143	E11-144	E11-144	E11-145
No		Sample ID →	S4	S1	S2	53	\$1	52	\$3	S1	S2	S1
	Analyte↓	Depth, m →	~7.2	0~0.5	~2.0	~4.73	0~0.5	~2.0	~3.55	0~0.5	~1.52	0~0.5
1	2,4,5-T	mg/kg	NÐ	ND								
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4'-D	mg/kg	ND	NÐ	ND	ND						
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

•

~

-630 j

NOTE:

3279

		Borehole →	E11-145	E11-145	E11-146	E11-146	E11-146	E11-147	E11-147	E11-148	E11-148	E11-148
No		Sample ID →	S2	S3	S1	S2	S3	\$1	\$2	S1	S2	S3
	Analyte	Depth, m →	~2.0	~5.0	0~0.5	~2.0	~4.85	0~0.5	~1.97	0.3~0.8	~2.3	~5.8
1	2,4,5-T	mg/kg	ND									
2	2,4,5-TP (Silvex)	mg/kg	ND									
3	2,4'-D	mg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

NOTE:

3280

		Borehole →	E11-149	E11-149	E11-149	E11-150	E11-150	E11-150	E11-150	E11-151	E11-151	E11-151
No		Sample ID →	\$1	S2	S3	\$1	S2	S3	S4	S1	S2	\$3
	Analyte↓	Depth, m →	0~0.5	~2.0	~3.6	0~0.5	~2.0	~5.0	~7.0	0~0.5	~2.0	~5.0
1	2,4,5-T	mg/kg	ND	NÐ								
2	2,4,5-TP (Silvex)	mg/kg	ND	NÐ	ND	NĎ	ND	ND	ND	ND	ND	NÐ
3	2,4'-D	mg/kg	ND	NÐ	ND							
4	2,4-DB	mg/kg	ND									
5	Dicamba	mg/kg	ND									

NOTE:

Table 4. Continu	ued
------------------	-----

	1	Borehole →	E11-151	E11-152	E11-152	E11-152	E11-153	E11-153	E11-153	E11-153
No		Sample ID →	S4	\$1	S2	\$3	\$1	<b>\$</b> 2	\$3	S4
	Analyte↓	Depth, m →	~7.85	0~0.5	~2.0	~5.0	0.3~0.8	~2.3	~5.3	~10.0
1	2,4,5-T	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND
2	2,4,5-TP (Silvex)	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND
3	2,4'-D	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND
4	2,4-DB	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND
5	Dicamba	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND

NOTE:

ND: Not detected

328\$

75

		Borehole →	E11-114	E11-114	E11-114	E11-114	E11-115	E11-115	E11-115	E11-115	E11-116	E11-116
No		Sample ID →	S1	S2	S3	S4	S1	S2	S3	S4	S1	52
	Analyte↓	Depth, m →	0~0.5	~2.0	~5.0	~8.4	0~0.5	~2.0	~5.0	~9,4	0~0.5	~2.0
1	4,4'-DDD	µg/kg	ND	0.483 J	ND	1.37 J	ND	1.9 J	ND	ND	ND	4.99 J
2	4,4'-DDE	µg/kg	ND	1.95 J	ND	ND	ND	3.19 J	ND	ND	1.73 J	4.43 J
3	4,4'-DDT	µg/kg	1.79 J	6.74 J	ND	ND	ND	ND	ND	NÐ	ND	ND
4	Aldrin	μg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
6	alpha-Chiordane	µg/kg	ND R	NDR	ND							
7	beta-BHC	µg/kg	ND									
8	Chiordane	µg/kg	ND									
9	delta-BHC	µg/kg	ND									
10	Dieldrin	µg/kg	ND									
11	Endosulfan I	µg/kg	ND									
12	Endosulfan II	µg/kg	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND
13	Endosuifan suifate	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
14	Endrin	µg/kg	ND	NÐ	ND	NÐ	ND	ND	ND	ND	ND	ND
15	Endrin aldehyde	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
16	Endrin ketone	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
17	gamma-BHC (Lindane)	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
18	gamma-Chlordane	µg/kg	ND									
19	Heptachlor	µg/kg	ND									
20	Heptachlor epoxide	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
21	Methoxychlor	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
22	Toxaphene	µg/kg	ND									

## Table 5. Summary of Organochlorine Pesticide Results for Phase I Soil Samples

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

R: Rejected



. •

		Borehole →	E11-116	E11-116	E11-117	E11-117	E11-117	E11-117	E11-118	E11-118	E11-118	E11-118
No		Sample ID →	S3	S4	S1	S2	S3	S4	\$1	S2	S3	S4
	Analyte 🕹	Depth, $m \rightarrow$	~5.0	~9.7	0~0.5	~2.0	~5.0	~10.0	0~0.5	~2.0	~5.0	~8.9
1	4,4'-DDD	µg/kg	ND	10700 J	147 J	1.84 3						
2	4,4'-DDE	µg/kg	ND	ND	ND	0.787 J	ND	ND	1.14 J	ND	ND	ND
3	4,4'-DDT	µg/kg	ND	ND	NÐ	ND	ND	ND	2,19 J	2990 J	64.3 J	1,45 J
4	Aldrin	µg/kg	ND									
5	alpha-BHC	µg/kg	ND	4880 J	52,1 J	ND						
6	alpha-Chlordane	µg/kg	ND	ND	ND	ND	ND	ND	NDR	ND R	ND R	ND R
7	beta-BHC	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
8	Chlordane	μg/kg	ND									
9	delta-BHC	µg/kg	ND	5360 J	59.2 J	0.933 J						
10	Dieldrín	µg/kg	ND	NÐ	ND							
11	Endosulfan l	µg/kg	ND	NÐ								
12	Endosulfan II	μg/kg	ND	ND	ND	ND	ND	NĎ	ND	ND	ND	ND
13	Endosulfan sulfate	µg/kg	ND									
14	Endrin	µg/kg	ND									
15	Endrin aldehyde	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
16	Endrin ketone	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
17	gamma-BHC (Lindane)	µg/kg	ND	ND	ND	ND	ND	ND	0.571 J	163000	935	4,26 J
18	gamma-Chlordane	µg/kg	ND	ND	ND	NU	ND	ND	U.858 J	ND	ND	ND
19	Heptachlor	µg/kg	ND									
20	Heptachlor epoxide	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
21	Methoxychior	µg/kg	ND									
22	Toxaphene	µg/kg	ND									

,

¢.

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

3284

<b></b>		Borehole →	£11-119	E11-119	E11-119	E11-119	E11-120	E11-120	E11-120	E11-121	E11-121	E11-122
No		Sample ID →	\$1	\$2	S3	S4	S1	S2	\$3	S1	<b>S</b> 2	S1
	Analyte↓	Depth, $m \rightarrow$	0.1~0.6	~2.0	~5.0	~7.9	0~0.5	~2.0	~3.3	0~0.5	~2.7	0~0.5
1	4,4'-DDD	µg/kg	ND	32.3	0.809 J	ND	ND	ND	ND	34.9 J	ND	ND
2	4,4'-DDE	µg/kg	0.755 J	5.23 J	ND	ND	ND	ND	ND	39 J	ND	ND
3	4,4'-DDT	µg/kg	3.17 J	11.4	ND	0.581 J	ND	ND	ND	450	ND	ND
4	Aldrin	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
5	alpha-BHC	µg/kg	ND	ND								
6	alpha-Chlordane	µg/kg	ND R	ND R	ND R	ND R	ND	ND	ND	ND	ND	ND
7	beta-BHC	µg/kg	ND	ND								
8	Chlordane	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
9	delta-BHC	μg/kg	ND	ND								
10	Dieldrin	µg/kg	ND	ND								
11	Endosulfan I	μg/kg	NÐ	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
12	Endosulfan li	µg/kg	ND	ND								
13	Endosulfan sulfate	µg/kg	ND	ND	ND	NÐ	NÐ	ND	ND	ND	ND	ND
14	Endrin	µg/kg	ND	ND								
15	Endrin aldehyde	µg/kg	ND	ND								
16	Endrin ketone	µg/kg	ND	ND								
17	gamma-BHC (Lindane)	μg/kg	ND	1.65 J	1.1 J	0.636 J	ND	ND	ND	NÐ	2.2 J	ND
18	gamma-Chlordane	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
19	Heptachlor	µg/kg	ND	ND								
20	Heptachlor epoxide	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
21	Methoxychlor	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
22	Toxaphene	µg/kg	ND	ND								

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

R: Rejected



J

.

		Borehole 🄿	E11-122	E11-122	E11-122	E11-123	E11-123	E11-123	E11-123	E11-124	E11-124	E11-124
No		Sample ID →	S2	53	54	\$1	\$2	S3	\$4	S1	<b>S</b> 2	\$3
	Analyte↓	Depth, m →	~2.0	~5.0	~9.3	0~0.5	~2.0	~5.0	~7.7	0~0.5	~2.0	~5.0
1	4,4'-DDD	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	3.81 J	ND	ND
2	4,4'-DDE	µg/kg	ND	8.76 J	NÐ	ND						
3	4,4'-DDT	µg/kg	ND	36.4	ND	ND						
4	Aldrin	µg/kg	ND	ND								
5	alpha-BHC	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	0.743 J	2730 J	53.5 J
6	alpha-Chlordane	µg/kg	ND	ND R	ND R	ND R						
7	beta-BHC	µg/kg	NÐ	ND	ND							
8	Chlordane	µg/kg	ND	ND								
9	delta-BHC	μg/kg	ND	ND	ND	NÐ	ND	ND	ND	0.63 J	3530 J	61,3 J
10	Dieldrin	µg/kg	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND
11	Endosulfan I	µg/kg	ND	ND								
12	Endosulfan II	μg/kg	NÐ	ND	ND							
13	Endosulfan sulfate	μg/kg	ND	NÐ	ND	ND						
14	Endrin	µg/kg	ND	ND								
15	Endrin aldehyde	µg/kg	ND	NĎ	ND	ND	ND	ND	NÐ	ND	ND	ND
16	Endrin ketone	μg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
17	gamma-BHC (Lindane)	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	13.5	46100	1130
18	gamma Chiordane	µg/kg	ND	ND								
19	Heptachlor	µg/kg	ND	NÐ	ND	ND						
20	Heptachlor epoxide	µg/kg	ND	ND								
21	Methoxychior	µg/kg	ND	ND								
22	Toxaphene	μg/kg	ND	NÐ	NÐ	ND	ND	ND	NÐ	ND	ND	ND

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

3986

		Borehole →	E11-124	E11-125	E11-125	E11-126	E11-126	E11-127	E11-127	E11-128	E11-128	E11-129
No		Sample ID $\rightarrow$	S4	S1	S2	S1	\$2	S1	S2	S1	S2	S1
	Analyte 🗸	Depth, m →	~7.35	0~0.5	~1.56	0~0.5	~1.83	0~0.5	~2.32	0~0.5	~3.2	0~0.76
1	4,4'-DDD	µg/kg	NÐ	ND	ND	2.11 J	ND	ND	ND	ND	ND	ND
2	4,4'-DDE	μg/kg	ND	ND	ND	3,4 J	NÐ	ND	ND	3,42 J	ND	ND
3	4,4'-DDT	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
4	Aldrin	µg/kg	ND									
5	alpha-BHC	µg/kg	22.5 J	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
6	alpha-Chlordane	µg/kg	ND R	ND								
7	beta-BHC	µg/kg	ND	NÐ	ND							
8	Chlordane	µg/kg	ND	ND	ND	NÐ	ND	ND .	ND	ND	ND	ND
9	delta-BHC	μg/kg	43,3 J	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
10	Dieldrín	µg/kg	ND	NÐ	ND							
11	Endosulfan l	µg/kg	ND	ND _	ND							
12	Endosulfan II	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
13	Endosulfan sulfate	µg/kg	ND									
14	Endrin	µg/kg	ND									
15	Endrin aldehyde	µg/kg	ND	NÐ								
16	Endrin ketone	µg/kg	ND									
17	gamma-BHC (Lindane)	µg/kg	728	ND								
18	gamma-Chlordane	µg/kg	NÐ	ND	NU	NÜ	ND	NŨ	ND	ND	ND	ND
19	Heptachlor	µg/kg	ND									
20	Heptachlor epoxide	µg/kg	ND									
21	Methoxychlor	µg/kg	ND									
22	Toxaphene	µg/kg	ND	NĎ	ND	ND						

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

3287

		Borehole →	E11-130	E11-131	E11-131	E11-132	E11-132	E11-133	E11-133	E11-134	E11-134	E11-135
No		Sample ID →	S1	\$1	S2	S1	S2	51	\$2	S1	S2	S1
	Analyte↓	Depth, m →	0~1.22	0.12~0.5	~1.7	0.1~0.6	~3.0	0.15~0.65	~2.46	0~0.5	~1.51	0~0.5
1	4,4'-DDD	μg/kg	ND	21.8 N	9.32 1	1.73 J	440	ND	ND	ND	NÐ	ND
2	4,4'-DDE	µg/kg	ND	28.7 J	5,87 J	19,7	ND	6.01 J	ND	ND	ND	ND
3	4,4'-DDT	µg/kg	ND	325	41.1	30,4	229	7.17 J	ND	4.04 J	6.01 J	ND
4	Aldrin	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	alpha-BHC	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	alpha-Chlordane	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	beta-BHC	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	Chlordane	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	delta-BHC	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	Dieldrin	µg/kg	ND	ND	ND	ND	ND	0.918 J	ND	ND	ND	ND
11	Endosulfan I	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	Endosulfan II	µg/kg	NÐ	NÐ	ND	NÐ	ND	ND	ND	ND	ND	ND
13	Endosulfan sulfate	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Endrín	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Endrin aldehyde	μg/kg	ND	ND	ND	0.712 J	ND	ND	ND	ND	NÐ	ND
16	Endrin ketone	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	gamma-BHC (Lindane)	μg/kg	ND	ND	ND	ND	237	ND	ND	ND	ND	NÐ
18	gamma-Chlordane	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NÐ
19	Heptachlor	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	Heptachlor epoxide	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Methoxychlor	µg/kg	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
22	Тохарһепе	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

.

,#

NOTES:

 $\mathbf{J}_{1}^{*}$  Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

3988

		Borehoie →	E11-135	E11-135	E11-135	E11-136	E11-136	E11-137	E11-137	E11-137	E11-137	E11-138
No		Sample ID →	S2	S3	S4	\$1	S2	S1	S2	S3	S4	\$1
	Analyte↓	Depth, m →	~2.0	~5.0	~7.65	0~0.5	~3.2	0~0.5	~2.0	~5.0	~6.75	0.4~0.9
1	4,4'-DDD	µg/kg	ND									
2	4,4'-DDE	µg/kg	ND	ND	ND	NÐ	ND	ND	NÐ	ND	ND	ND
3	4,4'-DDT	µg/kg	ND	ND	ND	ND	ND	ND	2.35 J	2.56 J	1.69 J	ND
4	Aldrin	µg/kg	ND									
5	alpha-BHC	µg/kg	ND									
6	alpha-Chiordane	µg/kg	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND
7	beta-BHC	µg/kg	ND									
8	Chlordane	μg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	NÐ
9	delta-BHC	µg/kg	ND									
10	Dieldrin	µg/kg	ND									
11	Endosulfan I	μg/kg	ND									
12	Endosulfan II	µg/kg	NÐ	ND								
13	Endosulfan sulfate	μg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
14	Endrin	µg/kg	ND									
15	Endrin aldehyde	μg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
16	Endrin ketone	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	NĎ	ND	ND
17	gamma-BHC (Lindane)	μg/kg	ND									
18	gamma-Chlordane	µg/kg	ND	ND	ND	ND	ND	NU	NU	NŨ	ND	ND
19	Heptachlor	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
20	Heptachlor epoxide	μg/kg	ND									
21	Methoxychlor	µg/kg	ND									
22	Toxaphene	µg/kg	NÐ	ND	NÐ	ND	NĎ	ND	ND	ND	ND	ND

### NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

		Borehole →	E11-138	E11-139	E11-139	E11-139	E11-140	E11-140	E11-140	E11-141	E11-141	E11-141
No		Sample ID →	S2	S1	S2	S3	S1	S2	S3	S1	S2	S3
	Analyte↓	Depth, m ->	~2.22	0~0.5	~2.0	~3.66	0~0.5	~2.0	~3.0	0.3~0.8	~2.3	~5.3
1	4,4'-DDD	µg/kg	NÐ	ND	ND	ND	ND	1.92 J	ND	2.22 J	2.15 J	ND
2	4,4'-DDE	μg/kg	ND	ND	ND	ND	6.38 J	2.76 J	ND	ND	7.98 J	ND
3	4,4'-DDT	µg/kg	ND	ND	ND	ND	25.3	ND	ND	20.6	18	1.89 J
4	Aldrín	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
5	alpha-BHC	µg/kg	ND	ND	ND	NÐ	ND	ND	NÐ	ND	ND	ND
6	alpha-Chlordane	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
7	beta-BHC	µg/kg	ND									
8	Chlordane	µg/kg	ND	NĎ	ND							
9	delta-BHC	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
10	Dieldrin	μg/kg	ND									
11	Endosulfan I	µg/kg	ND									
12	Endosulfan II	µg/kg	ND									
13	Endosulfan sulfate	µg/kg	ND									
14	Endrin	μg/kg	ND									
15	Endrin aldehyde	µg/kg	NÐ	ND								
16	Endrin ketone	μg/kg	NÐ	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
17	gamma-BHC (Lindane)	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	NÐ
18	gamma-Chiordane	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
19	Heptachlor	µg/kg	ND									
20	Heptachlor epoxide	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
21	Methoxychlor	µg/kg	ND									
22	Toxaphene	µg/kg	NÐ	ND	ND	ND	ND	NÐ	ND	ND	ND	ND

.....

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

R: Rejected

3290

		Borehole $\rightarrow$	E11-141	E11-142	E11-142	E11-142	E11-143	E11-143	E11-143	E11-144	E11-144	E11-145
No		Sample ID →	S4	S1	S2	S3	\$1	S2	S3	S1	\$2	\$1
	Analyte 🗸	Depth, m →	~7.2	0~0.5	~2.0	~4.73	0~0.5	~2.0	~3.55	0~0.5	~1.52	0~0.5
1	4,4'-DDD	µg/kg	ND	1.82 J	ND	10.4 N						
2	4,4'-DDE	µg/kg	ND	2.09 J	ND	ND	ND	ND	ND	1.53 J	ND	21 J
3	4,4'-DDT	µg/kg	1.49 J	ND	ND	ND	ND	ND	ND	4.61 J	ND	137
4	Aldrin	µg/kg	ND									
5	alpha-BHC	µg/kg	NÐ	ND	NĎ							
6	alpha-Chlordane	µg/kg	ND									
7	beta-BHC	µg/kg	ND	NÐ	ND							
8	Chlordane	µg/kg	ND									
9	delta-BHC	µg/kg	ND									
10	Dieldrin	µg/kg	NÐ	ND								
11	Endosulfan I	µg/kg	ND									
12	Endosulfan II	µg/kg	ND									
13	Endosulfan sulfate	µg/kg	ND									
14	Endrin	µg/kg	ND									
15	Endrin aldehyde	µg/kg	ND	ND	ND	ND	ND	NÐ	NĎ	ND	ND	ND
16	Endrin ketone	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
17	gamma-BHC (Lindane)	µg/kg	ND	ND	NÐ	ND						
18	gamma Chlordane	µg/kg	ND									
19	Heptachlor	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
20	Heptachlor epoxide	µg/kg	ND									
21	Methoxychior	µg/kg	ND									
22	Toxaphene	µg/kg	ND									

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

R: Rejected

3291

٠

		Borehole →	E11-145	E11-145	E11-146	E11-146	E11-146	E11-147	E11-147	E11-148	E11-148	E11-148
No	4	Sample ID ->	\$2	S3	<b>S1</b>	\$2	\$3	S1	S2	\$1	S2	S3
	Analyte↓	Depth, m →	~2.0	~5.0	0~0.5	~2.0	~4.85	0~0.5	~1.97	0.3~0.8	~2.3	~5.8
1	4,4'-DDD	µg/kg	96 N	4.56 J	7.36 J	ND	ND	ND	ND	3.27 J	30,9 1	ND
2	4,4'-DDE	µg/kg	68.9 J	3.85 J	ND	4.78 J	ND	1.55 J	ND	ND	15,4 J	ND
3	4,4'-DDT	µg/kg	1110	31	107	14.7	ND	ND	ND	4.92 J	134	3.43 J
4	Aldrin	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
5	alpha-BHC	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
6	alpha-Chlordane	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	beta-BHC	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	Chlordane	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	delta-BHC	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	Dieldrin	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	NÐ	ND
11	Endosulfan I	µg/kg	ND	ND	ND	NÐ	NÐ	ND	ND	ND	ND	ND
12	Endosulfan li	µg/kg	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	NÐ
13	Endosulfan sulfate	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	Endrin	μg/kg	NÐ	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
15	Endrin aldehyde	µg/kg	ND	NÐ	ND	ND	ND	1.57 J	ND	ND	ND	NÐ
16	Endrin ketone	µg/kg	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND
17	gamma-BHC (Lindane)	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	gamma-Chlordane	µg/kg	ND	ND	ND	ND	ND	NÜ	ND	ND	ND	ND
19	Heptachlor	µg/kg	NÐ	NÐ	ND	ND	ND	ND	ND	NÐ	ND	ND
20	Heptachlor epoxide	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	Methoxychlor	µg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22	Toxaphene	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

3092

		Borehole →	E11-149	E11-149	E11-149	E11-150	E11-150	E11-150	E11-150	E11-151	E11-151	E11-151
No		Sample ID →	S1	S2	S3	S1	S2	S3	S4	\$1	S2	S3
	Analyte↓	Depth, m ->	0~0.5	~2.0	~3.6	0~0.5	~2.0	~5.0	~7.0	0~0.5	~2.0	~5.0
1	4,4'-DDD	µg/kg	12.8 J	ND	ND	ND	ND	1.23 J	ND	1.21 J	ND	20.3
2	4,4'-DDE	µg/kg	23.4 J	2,86 J	ND	ND	1.3 ]	ND	ND	3,51 J	ND	10 J
3	4,4'-DDT	µg/kg	114	19.2	5.43 J	1,87 J	4.18 J	NÐ	ND	10.5	9.53 J	35.4
4	Aldrin	µg/kg	ND									
5	alpha-BHC	μg/kg	ND									
6	alpha-Chlordane	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
7	beta-BHC	µg/kg	ND									
8	Chlordane	µg/kg	ND	NÐ	ND	NÐ						
9	delta-BHC	μg/kg	ND									
10	Dieldrin	µg/kg	NÐ	ND								
11	Endosulfan I	μg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
12	Endosulfan II	µg/kg	ND									
13	Endosulfan sulfate	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
14	Endrin	μg/kg	ND									
15	Endrin aldehyde	µg/kg	ND	NÐ	ND	ND						
16	Endrin ketone	µg/kg	ND	NÐ	ND							
17	gamma-BHC (Lindane)	µg/kg	ND									
18	gamma Chlordane	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
19	Heptachlor	µg/kg	ND	NÐ								
<b>Z</b> 0	Heptachlor epoxide	µg/kg	ND									
21	Methoxychlor	µg/kg	ND									
22	Toxaphene	μg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	NÐ	ND

20

ile:

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

R: Rejected

3023

.

		Borehole →	E11-151	E11-152	E11-152	E11-152	E11-153	E11-153	E11-153	E11-153
No		Sample ID $\rightarrow$	S4	\$1	S2	\$3	S1	S2	\$3	S4
	Analyte↓	Depth, m ->	~7.85	0~0.5	~2.0	~5.0	0.3~0.8	~2.3	~5.3	~10.0
1	4,4'-DDD	µg/kg	ND	ND	NÐ	ND	14.1 J	ND	ND	ND
2	4,4'-DDE	µg/kg	ND	10,5	ND	ND	23.6 J	ND	1.42 J	ND
3	4,4'-DDT	µg/kg	ND	58.8	ND	ND	62.7 N	ND	ND	ND
4	Aldrin	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND
5	alpha-BHC	µg/kg	ND							
6	alpha-Chlordane	µg/kg	ND	ND	NÐ	ND	ND	ND	ND	ND
7	beta-BHC	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND
8	Chlordane	μg/kg	ND							
9	delta-BHC	µg/kg	ND							
10	Dieldrin	μg/kg	ND	NÐ	ND	ND	ND	ND	ND	ND
11	Endosulfan I	µg/kg	ND							
12	Endosulfan II	μg/kg	ND							
13	Endosulfan sulfate	μg/kg	ND							
14	Endrin	μg/kg	ND							
15	Endrin aldehyde	μg/kg	ND							
16	Endrin ketone	µg/kg	ND							
17	gamma-BHC (Lindane)	µg/kg	ND	ND	ND	ND	7.68 J	ND	ND	ND
18	gamma-Chlordane	µg/kg	ND							
19	Heptachlor	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND
20	Heptachlor epoxide	μg/kg	ND	ND	NĎ	ND	ND	ND	ND	ND
21	Methoxychlor	μg/kg	ND							
22	Toxaphene	µg/kg	ND							

•

ά.

۰.

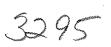
Č.

NOTES:

J: Estimated amount between the detection limit and reporting limit

N: Tentative detection (qualitative uncertainty)

3294


		Borehole →	E11-114	E11-114	E11-114	E11-114	E11-115	E11-115	E11-115	E11-115	E11-116	E11-116
No		Sample ID →	S1	S2	S3	S4	S1	S2	S3	S4	S1	\$2
	Analyte↓	Depth, m →	0~0.5	~2.0	~5.0	~8.4	0~0.5	~2.0	~5.0	~9.4	0~0.5	~2.0
1	Bolstar	μg/kg	ND									
2	Chlorpyrifos	µg/kg	ND									
3	Coumaphos	µg/kg	ND	NÐ	ND	ND						
4	Demeton	µg/kg	ND									
5	Diazinon	µg/kg	ND	ND	NÐ	ND	ND	ND	NÐ	ND	ND	NÐ
6	Dichlorvos	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
7	Dimethoate	µg/kg	ND	NÐ								
8	Disulfoton	µg/kg	ND									
9	EPN	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND
10	Ethoprop	µg/kg	ND									
11	Ethyl Parathion	µg/kg	ND	ND	NÐ	ND						
12	Fensulfothion	μg/kg	ND									
13	Fenthion	µg/kg	ND	NÐ	ND	ND						
14	Malathion	μg/kg	ND									
15	Methyl Azinphos(Guthion)	μg/kg	ND	ND	ND	NÐ	ND	ND	ND	NÐ	ND	ND
16	Methyl Parathion	µg/kg	ND	ND	ND	NÐ	ND	ND	ND	NÐ	ND	ND
17	Merphos	µg/kg	ND									
18	Mevinphos	μg/kg	ND	NĎ	NÐ	ND	ND	ND	ND	ND	ND	NÐ
19	Monocrotophos	µg/kg	ND									
20	Naled	µg/kg	ND	NÐ	ND							
21	Phorate	µg/kg	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND
22	Ronnel	μg/kg	ND	ND	NÐ	ND						
Z3	Sulfotep	μg/kg	ND	ND	NÐ	ND						
24	Stirophos	µg/kg	ND	ND	NÐ	ND						
25	ТЕРР	µg/kg	ND	NU	ND	ND						
26	Tokuthion	μg/kg	ND									
27	Trichloronate	µg/kg	ND	ND	ND	ND	ND	NĎ	ND	ND	ND	NÐ

F

.

# Table 6. Summary of Organophosphorus Pesticide Results for Phase I Soil Samples

NOTE:



		Borehole →	E11-116	E11-116	E11-117	E11-117	E11-117	E11-117	E11-118	E11-118	E11-118	E11-118
No		Sample ID $\rightarrow$	S3	54	S1	\$2	S3	\$4	S1	S2	S3	\$ <b>4</b>
	Analyte 🗸	Depth, m →	~5.0	~9.7	0~0.5	~2.0	~5.0	~10.0	0~0.5	~2.0	~5.0	~8.9
1	Boistar	μg/kg	ND	ND	NÐ	ND						
2	Chlorpyrifos	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	NÐ	ND	ND
3	Coumaphos	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
4	Demeton	μg/kg	ND	ND	NÐ	ND						
5	Diazinon	μg/kg	ND	NÐ	ND							
6	Dichlorvos	µg/kg	ND	NĎ	ND							
	Dimethoate	µg/kg	ND									
-	Disulfoton	µg/kg	ND									
	EPN	µg/kg	ND	NÐ								
	Ethoprop	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	NÐ	ND	ND
******	Ethyl Parathion	µg/kg	ND									
	Fensulfothion	µg/kg	ND									
	Fenthion	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
	Malathion	μg/kg	ND									
	Methyl Azinphos(Guthion)	µg/kg	ND									
	Methyl Parathion	µg/kg	ND									
	Merphos	µg/kg	ND									
18	Mevinphos	µg/kg	ND									
	Monocrotophos	μg/kg	ND									
	Naled	μg/kg	ND									
	Phorate	µg/kg	ND	NÐ	ND	ND						
	Ronnel	µg/kg	ND	NÐ	ND							
	Sulfotep	µg/kg	ND									
	Stirophos	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
	TEPP	µg/kg	ND									
_	Tokuthion	µg/kg	ND									
27	Irichloronate	µg/kg	ND									

### NOTE:

		Borehole →	E11-119	E11-119	E11-119	E11-119	E11-120	E11-120	E11-120	E11-121	E11-121	E11-122
No		Sample ID →	S1	S2	S3	S4	S1	\$2	\$3	S1	<b>S</b> 2	S1
	Analyte↓	Depth, m $\rightarrow$	0.1~0.6	~2.0	~5.0	~7.9	0~0.5	~2.0	~3.3	0~0.5	~2.7	0~0.5
1	Bolstar	µg/kg	ND	ND								
2	Chlorpyrifos	μg/kg	ND	ND								
3	Coumaphos	µg/kg	ND	ND	ND	NÐ	ND	ND	NÐ	ND	ND	ND
4	Demeton	µg/kg	ND	ND								
5	Diazinon	μg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	NÐ
6	Dichlorvos	μg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	NÐ
7	Dimethoate	µg/kg	ND	ND								
	Disulfoton	μg/kg	ND	ND								
9	EPN	μg/kg	ND	ND								
10	Ethoprop	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
11	Ethyl Parathion	µg/kg	ND	NÐ								
12	Fensulfothion	µg/kg	ND	ND								
	Fenthion	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	NÐ	NÐ	ND
	Malathion	µg/kg	ND	ND	NÐ	ND	ND	NÐ	ND	ND	ND	ND
15	Methyl Azinphos(Guthion)	µg/kg	ND	ND								
16	Methyl Parathion	µg/kg	ND	ND	ND	ND	ND	ND	NĎ	ND	ND	ND
	Merphos	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	NÐ
	Mevinphos	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	NÐ	ND	ND
	Monocrotophos	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
20	Naled	μg/kg	NÐ	ND	NÐ							
21	Phorate	µg/kg	ND	ND								
22	Ronnel	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	NÐ	ND
23	Sulfotep	µg/kg	ND	ND								
24	Stirophos	µg/kg	ND	NÐ								
	ТЕРР	µg/kg	ND	ND								
26	Tokuthion	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	NÐ	ND	ND
27	Trichloronate	µg/kg	ND	ND								

### NOTE:

ND: Not detected

3297

Ę

	]	Borehole →	E11-122	E11-122	E11-122	E11-123	E11-123	E11-123	E11-123	E11-124	E11-124	E11-124
No		Sample ID →	S2	\$3	\$4	\$1	\$2	S3	S4	S1	\$2	S3
	Analyte↓	Depth, m →	~2.0	~5.0	~9.3	0~0.5	~2.0	~5.0	~7.7	0~0.5	~2.0	~5.0
1	Bolstar	µg/kg	ND	ND	ND	ND	NÐ	NÐ	ND	ND	ND	ND
2	Chlorpyrifos	μg/kg	ND	ND	NÐ	NÐ	NÐ	ND	ND	ND	ND	ND
3	Coumaphos	µg/kg	ND									
4	Demeton	µg/kg	ND									
5	Diazinon	µg/kg	ND									
6	Dichlorvos	μg/kg	ND									
7	Dimethoate	μg/kg	ND									
8	Disulfoton	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
9	EPN	μg/kg	ND									
10	Ethoprop	µg/kg	ND									
11	Ethyl Parathion	μg/kg	ND	ND	ND	ND	ND .	ND	ND	ND	ND	NÐ
12	Fensulfothion	μg/kg	ND									
13	Fenthion	µg/kg	ND									
14	Malathion	µg/kg	ND	NĎ	ND							
15	Methyl Azinphos(Guthion)	µg/kg	ND	ND	NÐ	NÐ	NÐ	ND	ND	ND	NÐ	ND
16	Methyl Parathion	µg/kg	ND									
17	Merphos	µg/kg	ND	ND	ND	ND	NÐ	NÐ	ND	ND	NÐ	ND
18	Mevinphos	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	NÐ	ND
19	Monocrotophos	µg/kg	ND									
20	Naled	µg/kg	ND	NÐ								
21	Phorate	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND
	Ronnel	µg/kg	ND	NÐ	ND							
23	Sulfotep	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	ND	ND	ND
	Stirophos	µg/kg	ND									
25	ТЕРР	μg/kg	ND									
26	Tokuthion	µg/kg	ND	ND	ND	ND	NÐ	ND	ND	NÐ	ND	ND
27	Trichloronate	µg/kg	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND

### NOTE:

3298

		Borehole $\rightarrow$	E11-124	E11-125	E11-125	E11-126	£11-126	E11-127	E11-127	E11-128	E11-128	E11-129
No		Sample ID →	54	S1	S2	S1	S2	S1	S2	\$1	\$2	\$1
	Analyte↓	Depth, m →	~7.35	0~0.5	~1.56	0~0.5	~1.83	0~0.5	~2.32	0~0.5	~3.2	0~0.76
1	Bolstar	µg/kg	ND									
2	Chlorpyrifos	µg/kg	ND	ND	ND	ND	ND	NÐ	ND	NÐ	ND	ND
3	Coumaphos	µg/kg	ND									
4	Demeton	µg/kg	ND									
5	Diazinon	µg/kg	ND	NÐ	ND							
6	Dichlorvos	µg/kg	ND									
7	Dimethoate	µg/kg	ND									
8	Disulfoton	μg/kg	ND	NÐ	ND	ND						
9	EPN	µg/kg	ND									
10	Ethoprop	μg/kg	ND	NÐ								
	Ethyl Parathion	µg/kg	ND									
	Fensulfothion	µg/kg	ND									
13	Fenthion	µg/kg	ND									
	Malathion	µg/kg	ND									
15	Methyl Azinphos(Guthion)	µg/kg	NÐ	ND								
16	Methyl Parathion	µg/kg	ND	NÐ	ND							
17	Merphos	µg/kg	ND									
18	Mevinphos	µg/kg	ND	NÐ	ND	ND						
19	Monocrotophos	µg/kg	ND									
20	Naled	µg/kg	ND									
21	Phorate	µg/kg	ND	NÐ	ND	ND						
22	Ronnel	µg/kg	ND	NĎ	ND	ND	ND	ND	ND	NÐ	ND	ND
23	Sulfotep	µg/kg	ND									
	Stirophos	µg/kg	ND									
	ТЕРР	µg/kg	ND	ND	NÐ	ND						
	Tokuthion	μg/kg	NÐ	ND								
27	Trichloronate	μg/kg	ND									

NOTE:

3299