

Uploaded to the VFC Website May 2015

This Document has been provided to you courtesy of Veterans-For-Change!

Feel free to pass to any veteran who might be able to use this information!

For thousands more files like this and hundreds of links to useful information, and hundreds of "Frequently Asked Questions, please go to:

Veterans-For-Change

If Veterans don't help Veterans, who will?

Note:

VFC is not liable for source information in this document, it is merely provided as a courtesy to our members & subscribers.

Annex 1 Surveyed areas of on/off post Camp Carroll

 \bigcirc Surveyed locations of Helipad and Area D, on-post

<Surveyed areas for groundwater, 22 locations>

<Surveyed areas for soil, 83 locations>

\bigcirc Surveyed locations of Area 41

\bigcirc Off-post survey areas

① West Helipad (40 locations)

1. Herbicides

O Not detected at any locations

2. Dioxin

- Both sides found trace amounts: the ROK detected 0.002 0.416 pg-TEQ/g, and the US detected 0.005 1.156 pg-TEQ/g.
- Neither country detected 2,3,7,8-TCDD.

<Table 2-1-1> Dioxin/Furan concentration and standards (unit: pg-TEQ/g)

	Standarda					
Item	(US)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	Remarks
dioxin	1,000 pg/g (2,3,7,8-TCDD)	0.013 ~ 1.156	0.005 ~ 1.041	0.002 ~ 0.416	0.005 ~ 0.365	

^{*} The ROK used I-TEF and the US used WHO-TEF for calculating the above TEQ. The US calculation included J-flag (the value between the Limit of Detection and the Limit of Quantitation).

3. Organo-Chlorine Pesticides (OCPs)

- Eleven items including HCH, Lindane, Dieldrin, DDE, DDD, DDT were detected.
- Only 2 out of 40 sampling spots exceeded the US soil standards.
 - Lindane (2 spots), HCH (2 spots), DDD and DDT (1 spot) exceeded the US soil standards.
 - Other substances were detected at a level below the standards or undetected.

<table 2-1-2=""> OCPs</table>	concentration	and	standards
-------------------------------	---------------	-----	-----------

(unit: $\mu g/kg$)

	Standarda			Remarks		
Item	(US)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	(exceeding the standards)
a-HCH	77 μg/kg	ND	ND ~ 4,880	ND ~ 2.60	ND \sim 0.03	E11-118, 124 (2 spots)
β-HCH	270 µg/kg	ND	ND	ND \sim 4.38	ND \sim 0.02	
Lindane	520 µg/kg	ND ~ 13.5	ND ~ 163,000	ND ~ 1,130	ND \sim 728	E11-118, 124 (2 spots)
δ-ΗCΗ	_	ND	ND ~ 0.04 5,360	ND ~ 18.47	ND \sim 0.09	
Dieldrin	30 µg/kg	ND	ND	ND \sim 0.05	ND	
4,4'-DDE	1,400 µg/kg (sum)	ND	ND \sim 0.03	ND \sim 0.22	ND \sim 0.20	
2,4'-DDD	2,000, ug/kg	ND	ND	ND \sim 2.72	ND \sim 0.23	
4,4'-DDD	2,000 µg/kg (sum)	ND	ND ~ 0.04 10,700	ND ~ 8.49	ND \sim 1.16	E11-118
2,4'-DDT	1 700 ug/kg	ND	ND \sim 0.02	ND \sim 0.12	ND \sim 0.04	
4,4'-DDT	(sum)	ND \sim 450	ND ~ 1,110 2,990	ND ~ 0.29	ND ~ 0.16	E11-118
α-Endosulfan	370 mg/kg	ND	ND	ND \sim 0.03	ND \sim 0.04	

4. Organo-phosphorus Pesticides (OPPs)

O Not detected in any samples

5. Volatile Organic Compounds (VOCs)

- Sixteen items including PCE, TCE, Benzene and Toluene were detected.
- PCE exceeded the ROK Worrisome Level of Soil Contamination at 1 spot. Other items were below the standards.

<table 2-1-3=""> VOCs concentration and standards</table>	<table< th=""><th>2-1-3></th><th>VOCs</th><th>concentration</th><th>and</th><th>standards</th><th></th></table<>	2-1-3>	VOCs	concentration	and	standards	
---	---	--------	------	---------------	-----	-----------	--

(unit: µg/kg)

	Standarda		Concentratio	on by depth		Remarks		
Item	(ROK ¹⁾ /US ²⁾)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	(exceeding the Standards)		
PCE	4,000 µg/kg ¹⁾	ND ~ 6.9	ND ~ 18,000	ND ~ 52.8	ND ~ 8.68	E11-119		
TCE	8,000 µg/kg ¹⁾	ND	ND	ND	ND \sim 8.58			
Benzene	1,000 µg/kg ¹⁾	ND	ND	ND \sim 117	ND \sim 26.6			
Toluene	20,000 µg/kg ¹⁾	ND ~ 6.22	ND ~ 1,900	ND \sim 500	ND \sim 200			
m-, p-Xylene	15,000 μg/kg ¹⁾	ND	ND \sim 988	ND	ND			
o-Xylene	(sum)	ND	ND \sim 695	ND	ND			
cis-1,2-Dichloro ethene	160 mg/kg ²⁾	ND	ND	ND \sim 215	ND ~ 22.4			
Carbontetrachlor ide	610 µg/kg ²⁾	_	ND \sim 300	ND	ND			
2-Butanone	_	ND	ND \sim 49.8	ND ~ 22.8	ND			
Acetone	61,000 mg/kg ²⁾	ND \sim 250	ND ~ 191	ND \sim 118	ND \sim 104			
1,2,4-Trichlorob enzene	22 mg/kg ²⁾	ND	ND \sim 921	ND ~ 4.5	ND			
1,2,4-Trimethylb enzene	62 mg/kg ²⁾	ND	ND ~ 1,390	ND	ND			
1,3,5-Trimethylb enzene	780 mg/kg ²⁾	ND	ND	ND \sim 736	ND			
Chlorobenzene	290 mg/kg ²⁾	ND	ND	ND \sim 8.36	ND			
Naphthalene	_	ND	ND \sim 7,660	ND ~ 8.51	ND			

6. Semi-Volatile Organic Compounds (Semi-VOCs)

• Three items: 2-Methylnaphthalene, Dimethylphthalate and Pyrene were detected.

			Concentratio	on by depth		
Item	Standards	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	Remarks
2-Methylnap hthalene	_	ND	ND ~ 2,180	ND	ND	
Dimethylphth alate	-	ND	ND \sim 616	ND	ND	
Pyrene	_	ND	ND	ND - 8	ND	

<Table 2-1-4> SVOCs concentration and standards

7. Heavy metals

- Eleven items including arsenic (As), chromium (Cr), lead (Pb) and cadmium (Cd) were detected.
- Arsenic exceeded the ROK Worrisome Level of Soil Contamination at 2 spots. Other items were below the standards.

<table 2-1-5=""> +</table>	Heavy metals	concentration	and	standards	(unit: mg/kg)
----------------------------	--------------	---------------	-----	-----------	---------------

	Standarda		Concentratio	on by depth		Remarks
Item	$(\Box \cap (1)^{1})/(1 \cap 2^{2})$	S1	S2	S3	S4	(exceeding the
	(HUK /US)	(< 0.5 m)	(0.5~2m)	(2~5m)	(> 5m)	standards)
Aroopia (Ap)	$25 mg/kg^{1)}$					E-135, 150
AISEIIIC (AS)	25 mg/kg	ND ~ 39	ND ~ 29.2	ND ~ 5.55	ND ~ 5.05	(2 spots)
Barium (Ba)	mg/kg ²⁾	57.8 ~ 136	60.8 ~ 409	48.3 ~ 209	48.5 ~ 141	
Cadmium(Cd)	4 mg/kg ¹⁾	ND \sim 2.76	ND ~ 1.16	ND \sim 1.40	ND \sim 0.65	
Chromium		171			245 . 07	
(Cr)		1.71 ~ 10.7	ND ~ 0.73	ND ~ 10.3	3.45 ~ 9.7	
Lood (Db)	$200 mg/kg^{1)}$	5.04	100 - 272	4.78 ~	4.81 ~	
Leau (FD)	200 mg/kg	5.04 ~ 130	4.09 ~ 27.2	25.55	20.94	
Mercury (Hg)	4 mg/kg ¹⁾	ND	ND	ND \sim 0.01	ND \sim 0.01	
Selenium(Se)	390 mg/kg ²⁾	ND	ND \sim 0.18	ND \sim 0.28	ND \sim 0.29	
Silver (Ag)	390 mg/kg ²⁾	ND \sim 0.49	ND	ND	ND	
Zina (Zn)	$200 mg/kg^{1)}$		44.91 ~	34.70 ~	41.00	
	SUU THY/KY	_	69.39	62.39	41.55	
Copper (Cu)	150 mg/kg ¹⁾	_	2.06 ~ 5.91	0.54 ~ 7.06	6.55	
Nickel (Ni)	100 mg/kg ¹⁾	_	2.37 ~ 3.39	ND \sim 5.46	5.78	

(unit: µg/kg)

② Rest of helipad and Area D (36 spots)

1. Herbicides

O Not detected at any sampling spot

2. Dioxin

- Both the ROK and US analysis detected trace amounts. The ROK: 0.018 4.012 pg-TEQ/g, and the US: 0.001 10.087 pg-TEQ/g.
- The US detected 7.44 pg/g and 0.57 pg/g of 2,3,7,8-TCDD at 2 different sampling spots.
 - It is more than 100 times lower than the US EPA recommendation residential for areas (1.000)pg/g, 2,3,7,8-TCDD), so it would not affect human health.

<table 2-2-1=""></table>	Dioxin/furan	concentration	and	standards	
--------------------------	--------------	---------------	-----	-----------	--

(unit: pg-TEQ/g)

	Standarda		Remarks			
Item	Stanuarus	S1	S2	S3	S4	(exceeding the
	(08)	(< 0.5 m)	(0.5~2m)	(2~5m)	(> 6.5m)	standards)
Diavin	1.000 mm/m	0.006 ~	0.003 ~	0.001 ~	0.002 ~	
DIOXIT		4.192	4.855	10.087	0.358	
						E11-171,
2,3,7,8-TCDD	(2,3,7,8-1000)	0.57 pg/g		7.44 pg/g		181
						(2 spots)

* The ROK used I-TEF and the US used WHO-TEF for calculating the above TEQ. The US calculation included J-flag (the value between the Limit of Detection and the Limit of Quantitation).

3. Organo-Chlorine Pesticides (OCPs)

- Twenty items including HCH, Lindane, Dieldrin, DDE, DDD and DDT were detected.
- \mathbf{O} α -HCH, Lindane, Dieldrin, DDE, DDD and DDT exceeded the US soil standards at 14 spots.

<Table 2-2-2> OCPs concentration and standards

(unit: µg/kg)

	Standarda		Concentratio	on by depth		Remarks
Item	(US)	S1	S2	S3	S4	(exceeding the
		(< 0.5 m)	(0.5~2m)	(2~5m)	(> 5m)	Standards)
a-HCH	77 µg/kg	ND ~ 417	ND	ND ~ 7.23	ND	E11-174
β-ΗCΗ	270 µg/kg	ND \sim 112	ND \sim 24.3	ND \sim 9.11	ND	
Lindane	520 µg/kg	ND ~ 13,900	ND ~ 4,010	ND \sim 305	ND \sim 43.8	E11-167, 174 (2 spots)
δ-ΗCΗ	-	ND ~ 427	ND	ND ~ 84.7	ND \sim 1.58	
HCB	120 mg/kg	-	_	ND \sim 0.07	-	
Heptachlor Epoxide	53 µg/kg	ND ~ 11.1	ND	ND ~ 0.05	ND	
Aldrin	29 µg/kg	ND ~ 9.27	ND ~ 4.3	ND \sim 0.97	ND	
Dieldrin	30 µg/kg	ND ~ 127 336	ND ~ 74.3	ND ~ 27.54	ND	E11-167, 172, 173, 176, 178, 179, 185, 187, 188 (7 spots)
Endrin	18,000 µg/kg			ND \sim 0.04		
<i>trans</i> -Chlordane	1,600 µg/kg	ND ~ 35.7	ND \sim 93	ND ~ 2.03	ND	
<i>cis</i> -Chlordane	(sum)	ND ~ 33.4	ND ~ 78.7	ND \sim 1.44	ND	
<i>trans</i> -Nonachlor		_	_	ND \sim 0.45	_	
<i>cis</i> -Nonachlor	_	_	_	ND \sim 0.31	_	
2,4'-DDE	1 400	-	_	ND ~ 21.49	-	
4,4'-DDE	1,400 µg/kg (sum)	ND ~ 2,830	ND ~ 0.15 491	ND \sim 308	ND \sim 4.28	E11-170, 178, 179 (3 spots)
2,4'-DDD	2,000, ug/kg	-	_	ND ~ 777.47	_	
4,4'-DDD	2,000 µg/kg (sum)	ND ~ 13,500	ND ~ 1,880	ND ~ 4,180	ND ~ 129	E11-178, 179, 182, 188 (4 spots)
2,4'-DDT		-	ND \sim 0.09	ND ~ 507.57	_	
4,4'-DDT	1,700 μg/kg (sum)	ND ~ 70,200	ND ~ 11,200	ND ~ 7,470	ND	E11-167, 170, 171, 172, 174, 178, 179, 181, 182, 184, 187, 188 (12 spots)
α−Endosulfan	370 mg/kg	ND	ND	$ $ ND \sim 0.25	ND	

4. Organo-phosphorus Pesticides (OPPs)

 ${\bf O}$ Not detected in any samples

5. Volatile Organic Compounds (VOCs)

- Nineteen items including PCE, TCE, Benzene and Toluene were detected.
- PCE and Toluene exceeded the ROK Worrisome Level of Soil Contamination at two sampling spots.

<Table 2-2-3> VOCs concentration and standards

(unit: µg/kg)

	Standarda		Concentratio	on by depth		Remarks
Item		S1	S2	S3	S4	(exceeding the
	(HUK /US)	(< 0.5 m)	(0.5~2m)	(2~5m)	(> 5m)	Standards)
PCE	4,000 µg/kg ¹⁾	ND ~ 32,300	ND \sim 86.8	ND \sim 684	ND \sim 489	E11-179
TCE	8,000 µg/kg ¹⁾	ND	ND \sim 7.97	ND ~ 55.1	ND \sim 587	
Benzene	1,000 µg/kg ¹⁾	ND	ND \sim 100	ND \sim 100	ND	
Toluene	20,000 μg/kg ¹⁾	ND	ND \sim 100	ND \sim 1,620	ND ~ 21,300	E11-180
cis-1,2-Dichloro ethene	160 mg/kg ²⁾	ND \sim 438	ND \sim 16	ND \sim 558	ND \sim 293	
Methyl iodide	_	ND \sim 7.92	ND \sim 6.32	ND	ND	
Carbon disulfide	820 mg/kg ²⁾	ND \sim 6.67	ND	ND	ND	
2-Butanone	_	ND \sim 28	ND	ND	ND	
Acetone	61,000 mg/kg ²⁾	ND \sim 98.8	ND \sim 76.5	ND ~ 80.7	ND ~ 75.9	
1,2,4-Trichlorob enzene	22,000 μg/kg ²⁾	ND ~ 295	ND	ND	ND	
1,4-Dichloroben zene	2400 μ g/kg ²⁾	ND \sim 339	ND	ND	ND	
trans-1,2-Dichlo roethene	150 mg/kg ²⁾	ND	ND	ND \sim 4.37	ND	
Vinyl chloride	60 µg/kg ²⁾	ND	ND	ND	ND \sim 56.1	
Chloroform	290 µg/kg ²⁾	ND	ND	ND	ND \sim 26.7	
2-Chlorotoluene	1,600 mg/kg ²⁾	ND	ND	ND	ND \sim 10.4	
4-Chlorotoluene	1,600 mg/kg ²⁾	ND	ND	ND	ND ~ 19.7	
Chlorobenzene	290 mg/kg ²⁾	ND \sim 278	ND	ND \sim 5.25	ND	
Chloroethane	_	ND	ND	ND \sim 10.7	ND	
Naphthalene	_	ND \sim 2,560	ND	ND	ND	

6. Semi-Volatile Organic Compounds (Semi-VOCs)

O Two items: 2-Methylnaphthalene and Bis(2-Ethylhexyl)phthalate were detected.

<table 2-2-4=""></table>	SVOCs	concentration	and	standards	
--------------------------	-------	---------------	-----	-----------	--

(unit: µg/kg)

Standards						
ltem S		S1	S2	S3	S4	Remarks
	(03)	(< 0.5 m)	(0.5~2m)	(2~5m)	(> 5m)	
2-Methylnap hthalene	_	ND ~ 1,450	ND \sim 878	ND	ND	
Bis(2–Ethylhe xyl)phthalate	35,000 µg/kg	ND \sim 602	ND	ND	ND	

7. Heavy Metals

- Eleven items including Arsenic (As), Chromium (Cr), Lead (Pb), Cadmium (Cd) were detected.
- Arsenic (As) exceeded the Worrisome Level of Soil Contamination at 3 out of 40 sampling spots. Other pollutants were detected at levels below the standards or undetected at all.

<table 2-2-5=""> Heavy metals concentration and standards</table>	3	
---	---	--

(unit: mg/kg)

	Standarda		Remarks				
Item	(ROK ¹⁾ /US ²⁾)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	(exceeding the standards)	
Arsenic (As)	25 mg/kg ¹⁾	2.54 ~ 308	2.85 ~ 40.1	1.82 ~ 56.2	ND ~ 24.6	E-155, 163, 188 (3 spots)	
Barium (Ba)	15,000 mg/kg ²⁾	32.9 ~ 112	54.7 ~ 171	45.9 ~ 822	61 ~ 128		
Cadmium(Cd)	4 mg/kg ¹⁾	ND ~ 1.65	ND ~ 1.72	ND \sim 1.54	ND \sim 0.81		
Chromium (Cr)	_	2.4 ~11.5	2.28 ~ 19.6	3.09 ~ 10.4	2.85 ~ 12.5		
Lead (Pb)	200 mg/kg ¹⁾	6 ~31.7	5.22 ~ 34.1	ND \sim 25.1	$4.35\ \sim\ 28.8$		
Mercury (Hg)	4 mg/kg ¹⁾	ND \sim 0.031	ND \sim 0.034	ND \sim 0.020	ND \sim 0.026		
Selenium(Se)	390 mg/kg ²⁾	ND	ND \sim 0.10	ND \sim 0.17	ND		
Silver (Ag)	390 mg/kg ²⁾	ND \sim 2.34	ND	ND	ND		
Zinc (Zn)	300 mg/kg ¹⁾	-	51.34	34.70 ~ 62.39	-		
Copper (Cu)	150 mg/kg ¹⁾	_	6.82	0.54 ~ 7.06	_		
Nickel(Ni)	100 mg/kg ¹⁾	-	2.23	ND \sim 5.46	-		

③ The Area Steve House Identified [7 spots]

1. Herbicides

O Not detected in any samples

2. Dioxin

- Both the ROK and US detected small amounts: the ROK detected 0.004 0.615 pg-TEQ/g, and the US detected 0.007 1.006 pg-TEQ/g.
- Neither country detected 2,3,7,8-TCDD.

<Table 2-3-1> Dioxin/Furan concentration and standards (unit: pg-TEQ/g)

ltem	Stondordo					
	Standards (EPA)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 6.5m)	Remarks
Dioxin	1,000 pg/g (2,3,7,8-TCDD)	0.005 ~ 0.308	0.010 ~ 0.138	0.004 ~ 1.006	0.038 ~ 0.543	

* The ROK used I-TEF and the US used WHO-TEF for calculating the above TEQ. The US calculation included J-flag (the value between the Limit of Detection and the Limit of Quantitation).

3. Organo-Chlorine Pesticides (OCPs)

- Thirteen items including HCH, Lindane, Dieldrin, DDE, DDD and DDT were detected.
- DDE and DDT exceeded the US soil standards at 1 spot, but other pollutants were detected at levels below the standards or not detected at all.

4. Organo-Phosphorus Pesticides (OPPs)

O Not detected in any samples

5. Volatile Organic Compounds (VOCs)

• Three items: Toluene, Benzene and Acetone were detected at levels below the standards.

concentration by depth

S3

(2~5m)

ND ~ 0.13

ND \sim 0.40

ND \sim 0.03

ND \sim 0.46

ND \sim 0.13

ND \sim 0.10

ND \sim 0.05

ND \sim 8

ND \sim 25.8

ND \sim 8.76

ND \sim 39.1

ND \sim 54.46

ND \sim

167.94

S2

 $(0.5 \sim 2m)$

ND

ND \sim 2.88

ND

ND

ND

ND

_

_

ND \sim 10.2

ND \sim 4.560

ND

ND \sim

20,000

<table 2-3-3=""> VOCs concentration and standards</table>

(unit:	11a/ka
\unnu-	µg/ng/

Item	Standarda		Remarks			
	(ROK)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	(exceeding the standards)
Benzene	1,000 µg/kg	ND	ND	ND \sim 100	ND	
Toluene	20,000 µg/kg	ND \sim 5.9	ND	ND	ND	
Acetone	61,000 mg/kg ²⁾	ND \sim 108	ND	ND	ND	

	<table< th=""><th>2-3-2></th><th>OCPs</th><th>concentration</th><th>and</th><th>standards</th></table<>	2-3-2>	OCPs	concentration	and	standards
--	--	--------	------	---------------	-----	-----------

S1

(< 0.5 m)

ND

ND

ND

ND

ND

ND

_

ND \sim 9.1

ND \sim 3.86

ND $\sim~21.1$

Standards

(US)

270 µg/kg

520 µg/kg

_

30 µg/kg

1,600 µg/kg

(sum)

_

1,400 µg/kg

(sum)

2,000 µg/kg (sum)

1,700 µg/kg

(sum)

Item

β-ΗCΗ

Lindane

δ-ΗCΗ

Dieldrin

trans-Chlordane

cis-Chlordane

trans-Nonachlor

2,4'-DDE

4.4'-DDE

2,4'-DDD

4,4'-DDD

2,4'-DDT

4,4'-DDT

(unit: $\mu g/kg$)

Remarks

(eccectra tre

standards)

E11-191

E11-191

S4

(> 5m)

ND

ND

ND

ND

ND

ND

_

_

ND \sim 8.51

ND \sim 207

ND \sim 1,220

6. Semi-Volatile Organic Compounds (Semi-VOCs)

• One item: Bis (2-Ethylhexyl) phthalate was detected, and the level was 50 times less than the US soil standards

<Table 4-4> SVOCs concentration and standards

(unit: μ g/kg)

Item Standards (US)						
	(US)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	Remarks
Bis(2–Ethylhe xyl)phthalate	35,000 µg/kg	ND \sim 708	ND	ND	ND	

7. Heavy Metals

• Nine items including arsenic (As), chromium (Cr), lead (Pb) and cadmium (Cd) were detected, but none of them exceeded the ROK Worrisome Level of Soil Contamination.

<table 2-3-5=""></table>	Heavy	metal	concentration	and	standards	
--------------------------	-------	-------	---------------	-----	-----------	--

(unit: mg/kg)

	Standarda			Remarks		
Item	(ROK ¹⁾ /US ²⁾)	S1 (< 0.5 m)	S2 (0.5~2m)	S3 (2~5m)	S4 (> 5m)	(exceeding the standards)
Arsenic (As)	25 mg/kg ¹⁾	1.28 ~ 9.71	1.76 ~ 11.6	1.25 ~ 15.35	ND ~ 2.55	
Barium (Ba)	15,000 mg/kg ²⁾	57 ~ 92	53.7 ~ 114	53.1 ~ 187	75.1 ~ 131	
Cadmium(Cd)	4 mg/kg ¹⁾	ND \sim 1.69	ND ~ 1.3	ND ~ 1.35	ND \sim 0.67	
Chromium (Cr)	_	2.76 ~4.11	3.07 ~ 6.81	2.28 ~ 15.4	2.08 ~ 9.08	
Lead (Pb)	200 mg/kg ¹⁾	6.8 ~15.3	3.19 ~ 14.1	ND \sim 34.7	4.17 ~ 9.08	
Selenium(Se)	390 mg/kg ²⁾	ND	ND	0.07 ~0.13	ND	
Zinc (Zn)	300 mg/kg ¹⁾	_	_	24.85 ~ 110.82	_	
Copper (Cu)	150 mg/kg ¹⁾	_	_	2.92 ~ 12.70	_	
Nickel (Ni)	100 mg/kg ¹⁾	_	_	2.03 ~ 5.74	_	

(4) Area 41 (3 locations)

1. Herbicides (2,4-D, 2,4,5-T)

- **O** Not detected in any samples
- * The following results are based on the 2010 Environmental Report ("Report for Environmental Site Investigation, Area 41", 13 locations),

2. Dioxin

- O Trace amounts, 0.001~1.332 pg-TEQ/g, were detected
- 2,3,7,8-TCDD was not detected at all.

<table 2-4-1=""> Dioxin/Furan concentration and standa</table>	ards (unit: pg-TEQ/g)
--	-----------------------

	Standarda	Concentr			
Item	Item (EPA)		S2 (2~4m)	S3 (4~6m)	Remarks
Dioxin	1,000 pg/g (2,3,7,8-TCDD)	0.003 ~ 1.332	0.001 ~ 0.175	0.002 ~ 0.122	

3. Organo-Chlorine Pesticides (OCPs)

- Eight items including HCH, Lindane, Dieldrin, DDE, DDD, DDT were detected.
- DDE, DDD and DDT exceeded the US soil standards at 4 locations, but other items were at levels below the standards or not detected at all.

<Table 2-4-2> OCPs concentration and standards

(unit: $\mu g/kg$)

	Standarda	cond	concentration by depth							
Items	Items (US) S1 (< 2 r			S3 (4~6m)	(exceeding the standards)					
β-НСН	270 μg/kg	ND	ND \sim 25	ND \sim 19						
Lindane	520 µg/kg	ND	ND \sim 36	ND \sim 38						
δ-ΗCΗ	_	ND	ND \sim 5	ND \sim 4						
Dieldrin	30 µg/kg	ND \sim 13	ND	ND						
trans-Chlordane	1,600 µg/kg	ND \sim 430	ND	ND						
4,4'-DDE	1,400 µg/kg	ND ~ 3,900	ND \sim 12	ND \sim 5	B09-185					
4,4'-DDD	2,000 µg/kg	ND \sim 18,000	ND \sim 9	ND \sim 31	B09-185					
4,4'-DDT	1,700 µg/kg	ND ~ 43,000	ND ~ 150	ND ~ 66	B09-185, B09-186, B09-187, B09-190					

4. Volatile Organic Compounds (VOCs)

- Five items such as Tetrachloroehthylene and Xylene were detected.
- Tetrachloroehthylene was above the standards at 1 location, but other items were at levels below the standards or not detected at all.

<table 2-4-3=""> VOCs co</table>	oncentration and	standards
----------------------------------	------------------	-----------

(unit: $\mu g/kg$)

	Standarda	Con	Remarks		
Items (ROK ¹⁾ /US ²⁾)		S1 (< 2 m)	S2 (2~4 m)	S3 (4~6 m)	(exceeding the standards)
Ethylbenzene	50,000 µg/kg	ND	ND	ND \sim 70	
Xylene	15,000 µg/kg	ND	ND	ND \sim 380	
Tetrachloroethylene	4,000 µg/kg	ND \sim 31,000	ND ~ 8,800	ND ~ 4,800	B09-185
Acetone	61,000 mg/kg ²⁾	ND \sim 1,300	ND ~ 2,300	ND ~ 2,100	
Methylene chloride		ND \sim 130	ND \sim 130	ND ~ 150	

5. Semi-Volatile Organic Compounds (Semi-VOCs)

O Four items including Naphthalene and Pyrene were detected.

(unit: µg/kg)

	Standarda	Con	Remarks				
Items	(US)	S1 (< 2 m)	S2 (2~4 m)	S3 (4~6 m)	(exceeding the standards)		
Fluorene		ND \sim 490	ND	ND			
2–Methylnaphth alene		ND ~ 5,400	ND ~ 1,200	ND			
Naphthalene		ND ~ 1,100	ND	ND			
Pyrene		ND \sim 900	ND	ND			

<Table 2-4-4> SVOCs concentration and standards

6. Heavy metals

• Four items such as arsenic (As) and lead (Pb) were detected, but none of them exceeded the standards for soil.

<table 2-4-5=""></table>	· Heavy metal	concentration	and	standards	(unit: mg/kg)
--------------------------	---------------	---------------	-----	-----------	---------------

Items	Standards (ROK ¹⁾ /US ²⁾)	Concentration by depth S1 (< 2 m)	Remarks (exceeding the standards)
Arsenic (As)	25 mg/kg ¹⁾	2.4 ~ 5.3	
Barium (Ba)	15,000 mg/kg ²⁾	40 ~ 140	
Chromium (Cr)	_	3.4 ~ 17.9	
Lead (Pb)	200 mg/kg ¹⁾	5.9 ~ 54.9	

① Helipad and Area D (22 locations, released on 5 Aug)

- 1. Herbicides (2,4-D, 2,4,5-T), PAHs (15 kinds), TPH
- **O** Not detected in any samples
 - * PAHs : Polycyclic Aromatic Hydrocarbons
 - * TPH : Total Petroleum Hydrocarbons

2. Dioxin (17 kinds)

- Not detected at any supply well, and trace amounts were detected at 3 monitoring wells
- **O** The dioxin at monitoring wells was not 2,3,7,8-TCDD.
- The dioxin concentration level was about 1/30,000 of the EPA drinking water standards, and around 1/70 of the average Chilgok county's rivers (0.070 pg-TEQ/L).

<Table 3-1-1> Dioxin/Furan concentration and LOQ of 0n-post groundwater/monitoring wells

	I	Limit of					
Standard [*]	Helipad Area	Vicinity of	Vicinity of Area D				
	No. 3 (B09-178MW)	No. 5 (B03-463MW)	No. 8 (B07-220MW)	(LOQ)			
30 pg/L (2,3,7,8-TCDD)	0.001 (pg-TEQ/L)	0.001 (pg-TEQ/L)	0.001 (pg-TEQ/L)	0.5 pg/L			

* EPA drinking water standards

3. Organo-Chlorine Pesticides (OCPs, 25 items)

□ Groundwater supply wells (6 locations)

- Eight items such as HCH and Dieldrin were detected in groundwater supply wells
- The concentration level of Lindane and Dieldrin respectively were ranged between 1/100 4/10,000 and 4/100 2/100 of WHO drinking water standards.

<Table 3-1-2> OCPs concentration and LOQ of on-post groundwater (unit: μ g/L)

	WHO		groundwater (μg/L)								
Items	drinking water guideline	No.1 (20-575)	No.2 (14-283)	No.3 (16-289)	No.4 (15-286)	No.5 (12-247)	No.6 (13-279)	LOQ			
a-HCH	_	ND	0.0049	ND	0.0021	0.0023	ND				
<i>β</i> -НСН	_	ND	0.0116	ND	0.0075	0.0059	ND				
y-HCH(Lindane)	2	0.0009	0.0213	0.0005	0.0046	0.0102	0.0009				
<i>&</i> -НСН	_	ND	0.0105	ND	0.0048	0.0054	ND				
Heptachlor Epoxide	_	ND	0.0006	ND	0.0006	ND	ND	0.0005			
Dieldrin	0.03 (Aldrin+ Dieldrin)	ND	0.0013	ND	0.0012	0.0007	ND				
2,4′-DDD	1	ND	0.0007	ND	ND	ND	ND				
β-Endosulfan		ND	ND	ND	ND	ND	0.0006				

□ Groundwater monitoring well (16 locations)

- Nineteen items such as HCH, Dieldrin and DDT were detected at groundwater monitoring wells
- Lindane and Dieldrin exceeded the WHO drinking water guideline at 2 wells and 6 wells respectively. Other items did not exceeded the WHO drinking water guidelines.

								Monite	oring	well (µg/L)							
T4	drinking	Hel	ipad a	area					I	/icinity	y of A	rea D)					100
items	water standards	No.1 (B09-1 76MW)	No.2 (B09-1 77MW)	No.3 (B09-17 8MW)	No.4 (B09-2 21MW)	No.5 (B03-46 3MW)	No.6 (B07-2 19MW)	No.7 (B07-2 21MW)	No.8 (B07-2 20MW)	No.9 (B07-2 17MW)	No.10 (B07-2 18MW)	No.11 (B09-1 93MW)	No.12 (B03-4 66MW)	No.13 (B03-4 67MW)	No.14 (B03-4 64MW)	No.15 (B03-4 68MW)	No.16 (B03-4 65MW)	LUQ
a-HCH	_	0.0014	0.0006	0.0698	ND	0.3739	0.0270	0.0317	0.0121	0.0435	0.0010	0.0224	0.0344	0.0085	0.0006	ND	0.0032	
<i>β</i> -НСН	_	ND	0.0014	0.0008	ND	0.6278	0.1861	0.0080	0.1810	0.0005	0.0185	0.2448	0.7498	0.0647	0.0027	0.0018	0.0274	
y-HCH(Lindane)	2	0.0312	0.0011	2.7260	0.0202	3.6488	0.0834	0.0208	0.1004	0.0463	0.0069	0.1200	0.2791	0.0017	0.0065	0.0028	0.0103	
<i>б</i> -НСН	_	ND	ND	0.2900	ND	1.1484	0.0358	0.0393	0.0121	0.0041	0.0009	0.0485	0.2117	0.3414	0.0023	0.0011	0.0074	
Heptachlor Epoxide	_	0.0014	ND	ND	ND	0.0010	0.0012	ND	0.0043	ND	0.0090	0.0084	0.0100	0.0064	ND	0.0006	0.0026	
Dieldrin	0.03 (Aldrin+ Dieldrin)	0.0032	0.0010	0.0034	ND	0.0054	0.2110	0.0309	0.0422	0.0241	0.0305	0.0577	0.0798	0.0007	ND	ND	0.0076	
Endrin	0.6	0.0012	0.0022	ND	ND	ND	0.0034	ND	0.0006	ND	ND	ND	0.0005	ND	ND	ND	ND	
<i>trans-</i> Chlordane	0.2	ND	0.0032	ND	ND	ND	ND	ND	ND									
<i>cis-</i> Chlordane	(t+c-Chlor dane)	ND	ND	ND	ND	0.0008	0.0009	ND	0.0006	ND	0.0041	0.0017	0.0010	ND	ND	ND	0.0006	0.0005
<i>trans-</i> Nonachlor	_	ND	0.0008	ND	ND	ND	ND	ND	ND	0.0005								
2,4'-DDE		ND	0.0008	ND	ND	ND	ND	ND	ND									
4,4'-DDE		ND	0.0043	ND	0.0089	0.0007	ND	ND	0.0006	ND	ND							
2,4′-DDD	1	ND	ND	ND	ND	ND	0.0006	ND	0.0015	ND	0.0210	ND	0.0097	ND	ND	ND	ND	
4,4'-DDD	1	ND	ND	ND	ND	ND	0.0005	0.0011	0.0027	ND	0.0499	ND	ND	ND	ND	ND	0.0007	
2,4'-DDT		ND	ND	ND	ND	ND	0.0005	ND	0.0043	ND	0.0044	ND	ND	ND	ND	ND	ND	
4,4'-DDT		ND	ND	ND	ND	ND	0.0011	0.0012	0.0425	ND	0.0197	0.0010	ND	ND	0.0014	0.0023	ND	
Pentachlorobenzene		ND	0.0033	ND	ND	0.0019	0.0017	ND	ND	ND	ND							
<i>a</i> -Endosulfan		0.0019	ND	ND	ND	ND	ND	0.0006	0.0012	ND	0.0082	0.0033	ND	0.0022	0.0006	ND	ND	
eta-Endosulfan		0.0035	0.0019	ND	0.0007	ND	0.0013	0.0010	0.0006	ND								

<Table 3-1-3> OCPs concentration and LOQ of on-post groundwater monitoring well (unit: μ g/L)

4. Volatile Organic Compounds (VOCs, 18 items)

□ Groundwater supply wells (6 locations)

- Seven items such as TCE and PCE were detected at groundwater supply wells
- TCE and PCE exceeded the EPA drinking water standards at 5 wells and 2 wells respectively. Other items were below the standards.

<Table 3-1-4> VOCs concentration and LOQ of on-post groundwater (unit: mg/L)

			Groundwater							
Items	standard	No.1 (20-575)	No.2 (14-283)	No.3 (16-289)	No.4 (15-286)	No.5 (12-247)	No.6 (13-279)	LOQ		
1,1-Dichloroethene	0.03	ND	0.001	0.012	0.001	0.008	0.002	0.001		
Chloroform	0.08	0.001	ND	ND	ND	ND	ND	0.001		
1,1,1-Trichloroethane	0.1	ND	ND	0.003	ND	0.002	ND	0.001		
Trichloroethene	0.03	0.090	0.038	0.038	0.025	0.071	0.042	0.001		
Tetrachloroethene	0.01	0.002	0.002	0.046	0.007	0.030	0.004	0.001		
trans-1,2-Dichloroethene	0.1	ND	ND	ND	ND	0.001	ND	0.0005		
cis-1,2-Dichloroethene	0.07*	0.008	0.006	0.048	0.010	0.046	0.007	0.0005		

* EPA drinking water standards

□ Groundwater monitoring well (16 locations)

- Eleven items such as TCE, PCE and *cis*-1,2-DCE were detected in groundwater monitoring wells.
- TCE exceeded the EPA standards in 7 wells, PCE 12 wells and *cis*-1,2-DCE 7 wells. Other items were below the standards.

			Monitoring wells											_				
Itoma	Ctandard	Hel	ipad a	area		1	1	1	V	Vicinit	y of A	Area I)					100
items	Standard	No.1 (B09-1 76MW)	No.2 (B09-1 77MW)	No.3 (B09-1 78MW)	No.4 (B09-2 21MW)	No.5 (B03-4 63MW)	No.6 (B07-2 19MW)	No.7 (B07-2 21MW)	No.8 (B07-2 20MW)	No.9 (B07-2 17MW)	No.10 (B07-2 18MW)	No.11 (B09-1 93MW)	No.12 (B03-4 66MW)	No.13 (B03-4 67MW)	No.14 (B03-4 64MW)	No.15 (B03-4 68MW)	No.16 (B03-4 65MW)	LUQ
1,1-Dichloroethene	0.03	ND	ND	ND	ND	ND	ND	0.007	0.001									
Methylene chloride	0.02	ND	ND	ND	ND	ND	ND	0.001	0.002									
Chloroform	0.08	ND	ND	ND	ND	0.001	ND	0.006	0.002	0.005	ND	0.002	0.002	ND	ND	ND	ND	0.001
Benzene	0.01	ND	ND	ND	0.008	ND	ND	0.005	0.001									
Trichloroethene	0.03	0.001	ND	ND	ND	0.077	0.102	0.201	0.238	0.743	0.004	0.427	0.021	ND	0.016	ND	0.132	0.001
Tetrachloroethene	0.01	0.002	ND	0.211	ND	0.241	0.415	0.198	0.125	0.497	0.033	0.063	0.227	ND	0.031	0.034	0.025	0.001
<i>o</i> -Xylene	0.5	ND	ND	ND	0.002	ND	ND	ND	0.001									
<i>m</i> -Xylene	(o+m+p	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	0.001	ND	ND	0.001	0.001
<i>p</i> -Xylene	-xylene)	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	0.002	ND	ND	0.001	0.001
trans-1,2-Dichloroethene	0.1	ND	ND	ND	ND	ND	0.003	0.001	0.001	0.005	ND	0.001	ND	ND	ND	ND	0.042	0.0005
cis-1,2-Dichloroethene	0.07*	ND	ND	ND	0.001	0.129	0.076	0.099	0.089	0.280	0.031	0.099	0.041	ND	ND	ND	1.346	0.0005

<table 3-1-5=""></table>	> VOCs	concentration	and	LOQ	of on-post	groundwater	monitoring	wells	(unit:	mg/l	L)
--------------------------	--------	---------------	-----	-----	------------	-------------	------------	-------	--------	------	----

* EPA drinking water standards

5. Heavy metal (13 items)

□ Groundwater supply wells (6 locations)

- Seven items such as Fe, Se and Zn were detected at groundwater supply wells.
- Trace metals: lead, arsenic, mercury, cadmium or chromium 6 were not detected.

<Table 3-1-6> Heavy metal concentration and LOQ of on-post groundwater (unit: mg/L)

Items	Standard	No.1 (20-575)	No.2 (14-283)	No.3 (16-289)	No.4 (15-286)	No.5 (12-247)	No.6 (13-279)	LOQ
Al	0.2	ND	0.02	ND	ND	ND	ND	0.02
Fe	0.3	0.06	1.54	0.10	2.24	2.35	1.45	0.05
Mn	0.05	ND	0.018	ND	0.067	0.04	0.016	0.005
Zn	3	ND	0.604	ND	3.879	2.960	0.305	0.002
Se	0.01	ND	0.010	ND	0.063	0.047	0.006	0.005
В	1	0.07	0.13	0.03	0.06	0.06	0.14	0.01
Ba	2	0.04	0.02	0.04	0.02	0.03	0.02	0.002

Groundwater monitoring wells (16 locations)

- **O** Six items such as Al and Mn were found in monitoring wells.
- Trace metals: lead, arsenic, mercury, cadmium or chromium 6 were not detected.

<Table 3-1-7> Heavy metal concentration and LOQ of on-post groundwater monitoring wells (unit: mg/L)

			Monitoring wells															
Itom	Stan	Heli	pad a	area					V	icinity	y of A	Area	D					100
liem	dard	No.1 (B09- 176M W)	No.2 (B09- 177M W)	No.3 (B09- 178M W)	No.4 (B09- 221M W)	No.5 (B03- 463M W)	No.6 (B07- 219M W)	No.7 (B07- 221M W)	No.8 (B07- 220M W)	No.9 (B07- 217M W)	No.10 (B07- 218M W)	No.11 (B09- 193M W)	No.12 (B03- 466M W)	No.13 (B03- 467M W)	No.14 (B03- 464M W)	No.15 (B03- 468M W)	No.16 (B03- 465M W)	LUQ
Al	0.2	0.18	ND	0.10	0.07	ND	0.08	0.03	0.07	N.D	0.99	0.06	N.D	N.D	0.24	0.52	0.03	0.02
Fe	0.3	0.05	0.05	0.25	0.12	0.07	0.06	0.07	0.08	0.06	0.07	0.08	N.D	N.D	0.11	N.D	N.D	0.05
Mn	0.05	0.021	ND	ND	0.005	0.016	ND	0.024	0.032	0.015	0.113	0.101	0.601	6.457	0.008	0.007	0.299	0.005
Zn	3	0.015	0.011	0.117	0.007	0.008	ND	0.006	ND	0.007	0.009	0.011	0.004	0.003	0.014	N.D	0.005	0.002
В	1	ND	ND	ND	ND	0.01	0.04	0.02	0.04	N.D	N.D	N.D	0.03	0.10	0.01	0.01	0.01	0.01
Ва	2	0.06	0.05	0.03	0.04	0.05	0.04	0.13	0.11	0.06	0.08	0.06	0.07	0.08	0.12	0.01	0.19	0.002

② Area 41 (5 locations, announced on 9 Sept)

1. Herbicides (2,4-D, 2,4,5-T / US tested for 5 items)

[Initial test result]

- The ROK detected a trace amount of 2,4,5-T at 1 location out of 5 (The US did not detected it at all).
- **O** Other items were not detected at any locations.

<Table 3-2-1> Herbicides concentration and standards (unit: µg/L)

Items	Concentration (5 monitoring wells)	Standards (WHO)	Remarks (exceeding the standards)
2,4-D	ND	30 ug/L	-
2,4,5-T	ND ~ 0.161	9 ug/L	-

[Re-test result, conducted after the announcement on 9 Sept]

O Not detected by either side

- 2. Dioxin (17 kinds)
- **O** Trace amounts were detected at 4 locations out of 5.
- O 2,3,7,8-TCDD was not detected at any locations.

<Table 3-2-2> Dioxin/Furan concentration and standards (unit: pg-TEQ/L)

Unit	Concentration (5 monitoring wells)	Standards (EPA)	Remarks (exceeding the standards)
pg-TEQ/L	ND ~0.013	30 pg/L (2,3,7,8-TCDD)	-

3. Organo-Chlorine Pesticides (OCPs, 25 items/US 22 items)

- **Ο** Fourteen items such as α-HCH, β-HCH and Dieldrin were detected at 5 locations.
 - Only Dieldrin exceeded the WHO drinking water guideline at 2 locations. No other items exceeded it at any locations.
- **O** The other 11 items were not detected at any locations.

Items	Concentration (5 monitoring wells)	Standards	Remarks (exceeding the
		(WHO)	standards)
a-HCH	ND ~ 646.8		_
β-НСН	ND ~ 898.5		_
y-HCH(Lindane)	0.9 ~ 202.9	2000	_
δ-ΗCΗ	ND ~ 516.4		_
Heptachlor Epoxide	ND ~ 31.9		_
Dioldrin	ND ~ 685.5	30	2 walls
	ND - 085.5	(Aldrin+Dieldrin)	2 wens
Endrin	ND ~ 3.2	600	_
2,4'-DDE	ND \sim 1.7	1000	_
4,4′-DDE	ND ~ 9.9	1000	_
2,4′-DDD	0.8 ~ 76.5	1000	_
4,4'-DDD	1.4 ~ 211	1000	_
2,4′-DDT	ND ~ 38.1	1000	_
4,4'-DDT	$1.5 \sim 244$	1000	_
Pentachlorobenzene	ND ~ 1.3		_

<Table 3-2-3> OCPs concentration and standards

(unit: ng/L)

4. Organo-phosphorus Pesticides (OPPs, US 27 items)

O Not detected in any samples

5. Volatile Organic Compounds (VOCs, 18 items / 67 items)

- Ten items including Methylene chloride, TCE and PCE were detected at 5 locations.
 - TCE exceeded the drinking water standards at 3 locations and PCE at 5 locations. Other items met the standards.

O The other 57 items were not detected at any locations.

(unit: mg/L)

		Standards	Remarks
Items	concentration (5 monitoring wells)	(drinking water	(exceeding the
		standards)	standards)
Methylene chloride	ND ~ 0.002	0.02	-
Chloroform	ND ~ 0.029	0.08	_
Carbon tetrachloride	ND ~ 0.017	0.02	
Benzene	ND ~ 0.002	0.01	_
Trichloroethene	0.002 ~ 2.744	0.03	3 wells
Toluene	ND ~ 0.009	0.7	_
Dibromochloromethane	ND ~ 0.001	0.1	_
Tetrachloroethene	$0.114 \sim 9.592$	0.01	5 wells
trans-1,2-Dichloroethene	ND~ 0.0016	0.1	_
<i>cis</i> -1,2-Dichloroethene	$0.0011 \sim 0.0700$	0.07 (EPA)	1 well

6. Semi-Volatile Organic Compounds (Semi-VOCs, 15 items/US 62 items)

- Bis(2-Ethylhexyl)phthalate was detected at 3 locations.
- **O** The other 61 items were not detected at any locations.

<table 3-2-5=""> VOCs</table>	concentration	and	standards	
-------------------------------	---------------	-----	-----------	--

(unit: ug/L)

Item	Concentration (5 monitoring wells)	Standards (EPA)	Remarks (exceeding the standards)
Bis(2-Ethylhexyl)phthalate	$5.23 \sim 6.28$	6	1 well

7. TPHs

- **O** Not detected in any samples
- * TPHs : Total Petroleum Hydrocarbons

8. Heavy metals (13 items/US 8 items)

- **O** Six items such as Al and Fe were detected at 5 locations.
- O Trace metals such as lead, arsenic, mercury and cadmium were not detected.

Items	Concentration (5 monitoring wells)	Standards (drinking water standards)	Remarks (exceeding the standards)
Al	$0.02~\sim~0.58$	0.2	1 well
Fe	$0.43~\sim~2.51$	0.3	5 wells
Mn	ND ~ 0.031	0.3	_
Zn	$0.004~\sim~0.028$	3	_
В	ND ~ 0.03	1	_
Ва	0.007 ~ 0.417	2 (EPA)	_

<Table 3-2-6> Heavy metals concentration and standards (unit: mg/L)

① Soil survey (22 location, announced on 5 Aug)

1. Herbicides (2,4-D, 2,4,5-T)

O Not detected in any samples

2. Dioxin (17 items)

- Seventy-three samples were taken from 22 locations. Among them, 68 samples showed 0.001 1.152 pg TEQ/g of dioxin, and 5 samples had no dioxin
 - 2,3,7,8-TCDD was not detected.
 - No sample exceeded either the US residential guideline (1,000 pg/g, 2,3,7,8-TCDD) or Japanese guideline (1,000 pg TEQ/g).

Unit											Loca	ation											100
Unit	CCOS 01	CCOS 02	CCOS 03	CCOS 04	CCOS 05	CCOS 06	CCOS 07	CCOS 08	CCOS 09	CCOS 10	CCOS 11	CCOS 12	CCOS 13	CCOS 14	CCOS 15	CCOS 16	CCOS 17	CCOS 18	CCOS 19	CCOS 20	CCOS 21	CCOS 22	LUQ
pg-TEQ/g	0.026~ 0.197	0.129~ 0.312	0.009~ 0.059	0.005~ 0.017	0.010~ 0.047	0.001~ 0.147	0.011~ 0.126	0.012~ 0.060	0.035~ 0.055	0.037~ 0.546	0.018~ 0.033	0.060~ 0.251	0.011~ 0.034	0.144~ 0.426	ND~ 0.509	0.023~ 0.157	0.025~ 1.152	ND~ 0.006	0.001~ 0.109	0.002~ 0.350	0.001~ 0.586	ND~ 0.485	MDL 0.1 pg/g (for each)

<Table 4-1-1> Dioxin concentration of off-post soil samples at each location

※ US residential guideline (1998) : 1,000 pg/g (2,3,7,8-TCDD), Japanese guideline (1999) : 1,000 pg TEQ/g

* Nationwide dioxin concentration in soil

(unit: pg-TEQ/g)

		'05	'06	'08	'09	Average
nation	min.	0.009	0.009	0.039	0.041	0.020
nation	max.	80.934	69.203	10.814	16.149	35.420
wide	avg.	4.548	3.902	1.903	2.280	2.527
Wae	gwan	0.126	0.077	_	_	0.102

※ Source: '05~'06: Report of Nationwide Monitoring of Endocrine Disruptors (NIER) '08~'09: Report of Nationwide Monitoring of Persistent Organic Pollutants (MOE)

3. Organo-Chlorine Pesticides (OCPs, 22 items)

- Seventeen items such as DDT were detected (0.020 ~ 6.578 μ g/kg)
 - HCH, DDT and Chlordane congeners contributed the most.
- Detected level was lower than the maximum value of nationwide POPs monitoring result.

<Table 4-1-2> Number of locations and range of concentration of OCPs detection

Item	Off-post survey	POPs me	onitoring
Item	(2011)	2008	2009
a-HCH	ND~0.026	-	-
β-ΗСΗ	ND~0.835	-	-
y-HCH(Lindane)	ND~0.076	-	-
δ-ΗCΗ	ND~0.108	-	-
НСВ	ND~0.600	ND~2.362	ND~4.898
Heptachlor	ND	ND~0.530	ND
Heptachlor epoxide	ND~0.063	ND~1.305	ND
Aldrin	ND	ND~0.659	ND
Dieldrin	ND~0.292	ND~1.010	ND
Endrin	ND	ND	ND
Oxychlordane	ND~0.024	ND~10.729	
trans-Chlordane (ɣ)	ND~0.052	ND~6.402	
cis-Chlordane (ɑ)	ND~0.035	ND~1.067	ND~9.660
<i>trans</i> -Nonachlor	ND~0.065	ND	
<i>cis</i> -Nonachlor	ND	ND~0.618	
2,4'-DDE	ND~0.319	ND~0.772	
4,4'-DDE	ND~6.578	ND~40.741	
2,4′-DDD	ND~0.742	ND~1.373	
4,4'-DDD	ND~0.890	ND~6.492	ND** 79.237
2,4'-DDT	ND~0.898	ND~2.881	
4,4'-DDT	ND~4.714	ND~23.723	
Mirex	ND	ND~0.915	ND

*The measurement of '09 added DDT and Chlordane and put the sum of them.

<Table 4-1-3> OCPs concentration range of each off-post soil sampling location

(unit: μ g/kg)

										Sam	pling	loca	tion										
Item	CCOS 01	CCOS 02	CCOS 03	CCOS 04	CCOS 05	CCOS 06	CCOS 07	CCOS 08	CCOS 09	CCOS 10	CCOS 11	CCOS 12	CCOS 13	CCOS 14	CCOS 15	CCOS 16	CCOS 17	CCOS 18	CCOS 19	CCOS 20	CCOS 21	CCOS 22	LOQ
a-HCH	ND	ND	ND	ND	ND	ND~ 0.026	ND	ND	ND	ND	ND	0.02											
<i>β</i> -НСН	ND	ND	ND	ND	ND	ND~ 0.049	0.029~ 0.056	0.093~ 0.214	0.029~ 0.032	0.027~ 0.031	0.029~ 0.033	0.029~ 0.050	ND	0.029~ 0.035	ND~ 0.103	ND~ 0.074	ND~ 0.050	ND	ND	ND~ 0.835	ND~ 0.057	0.021~ 0.033	0.02
y-HCH (Lindane)	ND	ND	ND	ND	ND	ND	ND~ 0.024	0.023~ 0.076	ND~ 0.031	ND	ND	ND~ 0.024	ND	ND~ 0.044	ND~ 0.022	ND	ND	ND	ND	ND	ND	ND	0.02
<i>&</i> -НСН	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.108	ND	ND	0.02
НСВ	ND	ND~ 0.032	ND~ 0.036	ND~ 0.036	ND~ 0.027	ND~ 0.026	0.095~ 0.101	0.088~ 0.112	0.096~ 0.107	0.108~ 0.600	0.088~ 0.093	0.084~ 0.173	0.065~ 0.079	0.084~ 0.157	0.033~ 0.054	0.023~ 0.040	0.036~ 0.101	0.023~ 0.041	ND~ 0.045	ND~ 0.030	ND~ 0.114	0.052~ 0.069	0.02
Heptachlor Epoxide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.063	ND	ND	ND	ND	ND	ND	ND	0.02
Dieldrin	ND	ND	ND	ND	ND	ND	ND~ 0.046	0.046~ 0.292	ND	ND	ND~ 0.035	ND	ND	ND	ND	ND	ND	ND~ 0.022	ND	ND	ND	ND	0.02
Oxychlordane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.024	ND	ND	ND	ND	ND	0.02						
<i>trans</i> -Chlordane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.029	ND	ND~ 0.034	ND~ 0.052	ND	ND	ND	ND	ND	ND	ND	0.02
<i>cis</i> -Chlordane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.029	ND	ND~ 0.035	ND	ND	ND	ND	ND	ND	ND	ND	0.02
<i>trans</i> -Nonachlor	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.022	ND	ND~ 0.065	ND~ 0.047	ND	ND~ 0.027	ND~ 0.022	ND	ND	ND	ND	ND	ND	ND	0.02
2,4'-DDE	ND	ND~ 0.037	ND~ 0.123	ND~ 0.133	ND	ND~ 0.171	ND	ND~ 0.026	ND~ 0.093	ND	ND~ 0.040	ND~ 0.050	ND	0.021~ 0.319	ND~ 0.074	ND	ND~ 0.060	ND	ND	ND	ND	ND	0.02
4,4'-DDE	ND~ 0.047	ND~ 1.547	0.029~ 3.670	ND~ 3.486	ND~ 0.679	ND~ 2.574	ND~ 0.084	ND~ 0.499	0.490~ 3.484	0.291~ 1.389	ND~ 6.467	0.050~ 1.371	0.082~ 0.390	0.909~ 1.642	ND~ 6.578	ND~ 0.117	ND~ 2.942	ND~ 0.683	ND~ 0.024	ND	ND~ 0.136	ND~ 0.042	0.02
2,4'-DDD	ND	ND~ 0.174	ND	ND	ND~ 0.093	ND	ND	ND~ 0.020	ND~ 0.323	ND	ND~ 0.091	ND~ 0.176	ND~ 0.020	ND~ 0.181	ND~ 0.174	ND	ND~ 0.742	ND	ND	ND	ND	ND	0.02
4,4'-DDD	ND	ND~ 0.394	ND	ND	ND~ 0.351	ND~ 0.025	ND	ND~ 0.022	ND~ 0.087	ND~ 0.028	ND	0.021~ 0.481	0.060~ 0.067	ND	ND~ 0.890	ND~ 0.032	ND	ND	ND	ND	ND~ 0.074	ND	0.02
2,4'-DDT	ND	ND~ 0.218	ND~ 0.396	ND~ 0.466	ND~ 0.033	ND	ND~ 0.023	ND~ 0.108	ND	ND	ND	ND~ 0.111	ND~ 0.034	ND	ND~ 0.898	ND	ND	ND	ND	ND	ND~ 0.021	ND	0.02
4,4'-DDT	ND	ND~ 1.611	ND~ 2.015	ND	ND~ 0.242	ND~ 0.035	ND~ 0.196	ND~ 0.295	ND	ND	ND	0.128~ 3.425	ND~ 0.269	ND~ 0.231	ND~ 4.714	ND	ND	ND	ND~ 0.227	ND	ND~ 0.142	ND~ 0.051	0.02

* The results were sorted based on the MDL because the official test method does not set LOQ for OCPs

4. Volatile Organic Compounds (VOCs, 20 items)

O Not detected in any samples

5. PAHs (15 kinds)

O Detected at 5 locations out of 22.

										Sam	pling	, loca	tion										
ltem	CCOS 01	CCOS 02	CCOS 03	CCOS 04	CCOS 05	CCOS 06	CCOS 07	CCOS 08	CCOS 09	CCOS 10	CCOS 11	CCOS 12	CCOS 13	CCOS 14	CCOS 15	CCOS 16	CCOS 17	CCOS 18	CCOS 19	CCOS 20	CCOS 21	CCOS 22	LOQ
Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.005	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Anthracene	ND	ND	ND	ND	ND	ND~ 0.006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND~ 0.005	ND	ND	ND	0.005
Fluoranthene	ND	ND	ND~ 0.005	ND	ND	ND~ 0.014	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND~ 0.005	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Pyrene	ND	ND	ND	ND	ND	ND~ 0.018	ND	ND	ND	ND	ND	ND	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzo(a)anthra cene	ND	ND	ND	ND	ND	ND~ 0.012	ND	ND~ 0.005	ND	ND	ND	ND	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Chrysene	ND	ND	ND	ND	ND	ND~ 0.013	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzo(b)fluora nthene	ND	ND	ND	ND	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND	ND	ND~ 0.006	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzo(k)fluora nthene	ND	ND	ND	ND	ND	ND~ 0.006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Ideno(1,2,3)pyr ene	ND	ND	ND	ND	ND	ND~ 0.007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005
Benzo(g,h,i)per ylene	ND	ND	ND	ND	ND	ND~ 0.006	ND	ND	ND	ND	ND	ND	ND	ND~ 0.005	ND	ND	ND	ND	ND	ND	ND	ND	0.005
PAHs	ND	ND	ND~ 0.005	ND	ND	ND~ 0.088	ND	ND~ 0.019	ND	ND	ND	ND	ND	ND~ 0.043	ND	ND	ND	ND	ND~ 0.005	ND	ND	ND	

<table 4-1-4=""></table>	PAHs	concentration	range	and	LOQ	of	each	off-post	soil	sampling	location

(unit: mg/kg)

* Benzo(a)pyrene Worrisome Level of Soil Contamination (Category 1): 0.7mg/kg

6. Heavy metal (9 items)

• Out of 135 samples from 22 locations, zinc (Zn) exceeded the ROK Worrisome Level of Soil contamination in 1 sample (residential area standard, 300 mg/kg).

<Table 4-1-5> Concentration and LOQ of zinc where it exceeded the standard (unit: mg/kg)

Item	Standard Worrisome Level of Soil Contamination (Category 1)	Sampling location	Depth (m)	Concen tration	LOQ
Zn (zinc)	300	CCOS09	1	1039.86	0.07

• The Trace metals: cadmium, lead, arsenic, mercury and Chromium 6 did not exceed the ROK Worrisome Level of Soil Contamination at any sampling location.

	Standard										San	pling	loca	tion										
Item	(worrisom e level of soil contaminat ion, Category 1)	CCOS 01	CCOS 02	CCOS 03	CCOS 04	CCOS 05	CCOS 06	CCOS 07	CCOS 08	CCOS 09	CCOS 10	CCOS 11	CCOS 12	CCOS 13	CCOS 14	CCOS 15	CCOS 16	CCOS 17	CCOS 18	CCOS 19	CCOS 20	CCOS 21	CCOS 22	LOQ
7n(zinc)	300	42.81~	23.75~	29.78~	8.10~	22.14~	41.01~	56.24~	62.91~	90.74~	74.71~	59.91~	34.42~	40.55~	26.55~	19.46~	23.97~	21.21~	38.87~	34.41~	34.82~	23.43~	20.59~	0.07
		65.51	106.26	71.60	73.30	72.33	60.01	68.91	133.51	1039.86	224.90	114.97	227.36	113.29	112.72	91.27	43.64	103.87	124.07	46.81	54.46	127.02	55.06	0.07
Cd(cadmiu	4	0.75~	0.72~	0.40~	0.09~	0.18~	0.49~	0.79~	0.87~	1.38~	1.55~	0.76~	0.62~	0.72~	0.65~	0.59~	0.59~	0.99~	0.44~	0.40~	0.68~	0.65~	0.44~	0.02
)	-	0.95	1.15	1.14	1.05	1.07	1.06	1.09	1.96	2.72	3.41	1.67	2.68	1.32	1.28	2.73	1.24	2.31	1.77	0.62	0.89	2.46	2.06	
Cu(coppe	150	2.85~	6.08~	3.50~	3.38~	2.10~	3.20~	7.75~	7.87~	9.50~	10.37~	5.60~	3.41~	4.16~	8.67~	2.53~	ND~	1.81~	2.27~	2.07~	2.19~	1.12~	0.64~	0.03
r) –	100	9.05	22.64	8.93	9.19	12.60	10.04	11.67	15.35	15.78	13.31	24.77	20.85	16.39	12.18	30.61	7.11	14.99	11.70	4.74	4.96	10.02	2.28	0.00
Ph(lead)	200	6.16~	9.42~	6.60~	5.67~	2.47~	8.90~	11.58~	19.59~	14.58~	16.08~	20.40~	8.85~	14.22~	14.86~	5.04~	6.13~	5.66~	4.76~	7.88~	8.81~	13.86~	5.89~	0.20
	200	15.48	17.13	19.98	19.04	19.74	18.89	30.87	32.41	38.15	37.78	68.68	25.07	35.35	33.05	30.03	18.41	14.54	22.75	17.53	39.90	23.93	15.66	0.20
As(arseni	25	0.84~	2.72~	0.57~	ND~	ND~	0.38~	2.81~	3.03~	4.84~	4.36~	3.84~	1.76~	3.02~	3.66~	ND~	2.29~	0.84~	ND~	ND~	ND~	1.05~	0.55~	0.25
) `c)	23	3.74	5.48	4.07	2.79	3.68	5.41	4.73	10.35	9.61	8.23	9.95	5.52	5.08	6.69	7.63	7.15	6.26	0.63	1.00	2.72	4.34	1.96	0.25
Hg(merc	4	ND~	0.02~	0.01~	0.02~	0.01~			ND~	ND~	ND~	0.02~	ND~	ND~	ND~	ND~	0.01	ND~	0.01	ND~	ND~	NID	ND~	0.01
ury)	4	0.04	0.04	0.06	0.05	0.17	ND	ND	0.04	0.02	0.06	0.05	0.03	0.01	0.02	0.06	0.09	0.05	0.06	0.02	0.03	ND	0.01	0.01
Ba(bariu		83.38~	80.18~	66.28~	23.62~	38.68~	68.88~	60.68~	72.21~	92.68~	80.01~	78.41~	77.09~	86.86~	91.39~	68.12~	49.18~	44.95~	79.65~	63.95~	65.27~	71.84~	65.12~	
m)	-	111.18	131.38	106.38	139.71	117.91	123.42	102.35	115.58	225.66	349.63	115.05	113.02	130.96	114.82	191.70	87.39	213.30	339.96	91.55	107.54	216.63	129.81	-
Ni(nickel	100	4.63~	4.73~	3.45~	1.09~	2.32~	1.85~	2.91~	3.07~	3.26~	4.00~	3.13~	3.17~	3.53~	4.67~	3.94~	1.99~	5.00~	2.74~	2.61~	1.89~	1.98~	1.22~	
)	100	6.46	7.57	7.50	8.52	7.80	6.43	3.58	4.20	4.55	4.65	5.36	4.56	6.35	5.82	42.64	9.42	10.06	28.92	3.49	3.46	4.02	3.30	0.35

<Table 4-1-6> Heavy metal concentration range and LOQ of each off-post soil sampling location

(unit: mg/kg)

7. TPHs

• Not detected in any samples * TPHs : Total Petroleum Hydrocarbons

8. Other items

- Organo-phosphorus compounds, PCB or cyan were not detected in any samples.
- Fluorine exceeded the ROK Worrisome Level of Soil Contamination (residential area standard, 400 mg/kg) at 13 samples taken from 7 different locations.

	Standa										San	pling	loca	tion										
Item	rd worriso me level of soil contami nation (Categor y 1)	CCOS 01	CCOS 02	CCOS 03	CCOS 04	CCOS 05	CCOS 06	CCOS 07	CCOS 08	CCOS 09	CCOS 10	CCOS 11	CCOS 12	CCOS 13	CCOS 14	CCOS 15	CCOS 16	CCOS 17	CCOS 18	CCOS 19	CCOS 20	CCOS 21	CCOS 22	LOQ
F(fluorine)	400	409~ 575	176~ 466	244~ 398	17~ 358	159~ 310	41~ 224	214~ 320	259~ 419	358~ 519	360~ 459	298~ 525	148~ 196	146~ 239	108~ 190	82~ 216	40~ 415	ND~ 100	ND~ 45	ND~ 108	49~ 161	ND~ 190	ND~ 129	10

<Table 4-1-7> Fluorine concentration range of each off-post soil sampling location

(unit: mg/kg)

② Additional Soil survey (11 location)

* The ROK conducted additional soil survey.

1. Herbicides (2,4-D, 2,4,5-T)

O Not found in any samples

2. Dioxin (17 kinds)

- Out of 22 samples taken from 11 locations, 12 samples showed 0.003-0.385 pg TEQ/g of dioxin. The other 10 samples did not contain dioxin.
 - 2,3,7,8-TCDD was not detected
 - None of them exceeded the US residential guideline (1,000 pg/g, 2,3,7,8-TCDD) or Japanese guideline (1,000 pg TEQ/g).

Theit					Samp	oling lo	ocation	1				100
Unit	CCOS 23	CCOS 24	CCOS 25	CCOS 26	CCOS 27	CCOS 28	CCOS 29	CCOS 30	CCOS 31	CCOS 32	CCOS 33	LUQ
pg-TEQ/g	ND	ND~ 0.011	0.013~ 0.029	ND~ 0.385	ND	ND~ 0.005	0.008~ 0.011	0.059~ 0.197	ND	0.034	ND	MDL 0.1 pg/g (for each)

<Table 4-2-1> Dioxin concentration range of each soil sampling location

W US residential guideline (1998) : 1,000 pg/g (2,3,7,8-TCDD), Japanese guideline (1999) : 1,000 pg TEQ/g)

3. Volatile Organic Compounds VOCs, 20 items)

O Not found in any samples (51 samples from 11 locations)

4. Heavy metal (8 items)

- Out of 51 samples taken from 11 different locations, lead (Pb) exceeded the ROK Worrisome Level of Soil Contamination in 1 sample (residential area standard, 200 mg/kg).
- * As military facilities fall into Category 3 (industrial area) under the current law, this area does not violate the standard applied to it.

<Table 4-2-2> Heavy metal concentration range and LOQ of each sampling location (unit: mg/kg)

	Standard					Sampl	ing lo	catior	ı				
Item	(worrisom e level of soil contaminat ion, Category 1)	CCOS 23	CCOS 24	CCOS 25	CCOS 26	CCOS 27	CCOS 28	CCOS 29	CCOS 30	CCOS 31	CCOS 32	CCOS 33	LOQ
7n(7inc)	300	44.50~	38.87~	27.05~	98.13~	31.44~	36.90~	32.95~	63.50~	33.07~	60.17~	78.00~	0.07
	500	68.23	50.97	81.50	116.37	87.60	73.77	96.53	103.20	90.40	89.13	88.00	0.07
Cd(Cadmi	4	0.78~	0.66~	0.54~	1.07~	0.53~	0.65~	0.66~	0.92~	0.65~	0.86~	0.92~	0.02
ium)	4	1.21	0.90	1.12	1.33	0.86	1.06	1.09	0.99	1.00	1.13	1.07	0.02
Cu(Copp	150	26.40~	21.43~	7.54~	11.32~	9.10~	7.13~	5.53~	10.76~	7.85~	6.57~	8.66~	0.02
er)	150	76.77	28.82	20.73	31.90	23.93	34.37	12.29	60.67	12.63	13.51	26.45	0.05
	200	9.57~	13.93~	12.47~	15.19~	11.22~	13.15~	11.22~	30.87~	12.66~	13.12~	7.61~	0.20
PD(Lead)	200	12.56	20.84	19.73	25.25	14.27	25.39	33.07	378.67	16.09	26.38	13.48	0.20
As(Arsen		4.06~	4.91~	3.15~	5.83~	3.71~	5.22~	5.22~	4.99~	4.66~	4.54~	4.49~	0.07
ic)	25	6.52	8.11	5.75	6.65	6.06	7.51	7.42	8.36	7.46	7.93	4.70	0.25
Hg(Merc		ND~	ND~		ND~	ND~	0.01~	0.01~	ND~	0.01~	ND~	ND~	0.01
ury)	4	0.02	0.01	ND	0.02	0.02	0.02	0.13	0.07	0.02	0.05	0.03	0.01
Ni/Nicke	100	6.34~	6.54~	2.49~	5.98~	4.55~	5.05~	4.47~	6.15~	4.66~	4.44~	5.51~	0.07
1)	100	6.60	10.71	6.85	6.88	6.93	14.14	6.47	7.66	7.33	5.93	5.84	0.35
Cr ⁶⁺													
(Chromiu m 6)	5	ND	0.5										

5. TPHs

- Out of 51 samples taken from 11 locations, 3 samples taken from 2 different locations showed TPHs, but they met the standard.
 - * TPHs : Total Petroleum Hydrocarbons

<Table 4-2-3> TPH concentration range of each soil sampling location

	Sampling location										100	
Unit	CCOS 23	CCOS 24	CCOS 25	CCOS 26	CCOS 27	CCOS 28	CCOS 29	CCOS 30	CCOS 31	CCOS 32	CCOS 33	LOQ
mg/kg	ND	ND	ND	ND	ND	ND	ND~ 43	ND	ND	ND~ 146	ND	10

6. PCB

O Not found in any samples

③ Sediment of River (5 locations, announced on 5 Aug)

- 1. Herbicides (2,4-D and 2,4,5-T)
- **O** Not found in any samples

2. Dioxin (17 kinds)

- 2,3,7,8-TCDD was not detected.
- Other dioxin was found in the upper stream of Dongjung-cheon at the level of 0.004 pg TEQ/g, and at 0.880 pg TEQ/g in the lower stream; however, they are around 3/100,000 6/1000 of Japanese guideline and lower than the average of nationwide sediments.

<Table 4-3-1> Dioxin/Furan concentration and LOQ of river sediments

		Sample r	number (Sample number (pg TEQ/g)						
Standard	upper Nakdong -1	lower Nakdong -1	upper Donjung -1	lower Dongjun g -1	Carroll stream	LOQ				
-	0.002	0.003	0.004	0.880	0.008	0.1 pg/g				

* Japanese Guideline (1999) : 150 pg TEQ/g

※ Nationwide dioxin concentration in sediment

(unit: pg-TEQ/g)

		'05	'06	'08	'09	Average
Nation	min.	0.006	0.005	0.006	0.001	0.004
wide	max.	53.624	32.434	12.627	3.828	20.503
wide -	avg.	7.328	5.786	1.293	0.860	3.053

Source: '05~'06 : Report of Nationwide Monitoring of Endocrine Disruptors (NIER)
 '08~'09 : Report of Nationwide Monitoring of Persistent Organic Pollutant (MOE)

3. Organo-Chlorine Pesticides (OCPs, 22 items)

- Four items were detected in the range between 0.022 and 0.912 μ g/kg.
- The concentration level is lower than the maximum value of nationwide POPs monitoring result (see Table 3-2).

	-		Sam	ple nun	nber		
Item	Standard	upper Nakdon g-1	lower Nakdon g-1	upper Dongju ng-1	lower Donjun g-1	Carroll stream	MDL
<i>β</i> -НСН	-	ND	ND	ND	ND	0.145	
НСВ		ND	ND	ND	0.022	ND	002
2,4'-DDE		ND	ND	ND	ND	0.027	0.02
4,4'-DDE		ND	ND	0.034	0.244	0.912	

<Table 4-3-2> OCPs concentration and MDL of river sediment

4. Volatile Organic Compounds (VOCs, 20 items)

O Not found in any samples

5. PAHs (16 kinds)

- O 0.02 mg/kg of PAHs was found in Carroll stream
- Benzo(a)pyrene is 100 times lower than the standard

<Table 4-3-3> PAHs concentration and LOQ of river sediment (unit: mg/kg)

			Sam	ple nun	nber		
Item	Standard	upper Nakdon g-1	lower Nakdon g-1	upper Dongju ng-1	lower Dongju ng-1	Carroll Stream	LOQ
Pyrene	_	ND	ND	ND	ND	0.005	
Fluoranthene	_	ND	ND	ND	ND	0.005	0.005
Benzo(a)pyrene	0.7	ND	ND	ND	ND	0.01	
PAHs	-	ND	ND	ND	ND	0.02	

6. Heavy metal (9 items)

• All items were below the ROK Worrisome Level of Soil Contamination (residential area standard).

	Standard		Sai	mple num	ber		
Item	(worrisome level of soil contamination, Category 1)	upper Nakdong -1	lower Nakdong -1	upper Dongjun g-1	lower Dongjun g-1	Carroll Stream	LOQ
Zn (Zinc)	300	34.59	46.49	27.60	58.39	116.75	0.07
Cd (Cadmium)	4	0.51	0.71	0.41	0.75	1.37	0.02
Cu (Copper)	150	6.59	5.73	3.85	6.74	19.67	0.03
Pb (Lead)	200	8.26	7.89	7.86	11.16	16.10	0.20
As (Arsenic)	25	4.19	2.53	6.94	6.55	2.28	0.25
Hg(Mercury)	4	ND	0.03	ND	0.02	0.02	0.01
Ba (Barium)	-	44.00	53.40	41.40	47.80	45.70	_
Ni (Nickel)	100	7.70	9.16	8.06	7.99	5.06	0.35

<Table 4-3-4> Heavy metal concentration and LOQ of sediment (unit: mg/kg)

7. TPHs

O Not found in any samples

* TPHs : Total Petroleum Hydrocarbons

8. Other items

- Organo-phosphorus compounds, PCB or cyan were not found in any samples.
- Fluorine was below the ROK Worrisome Level of Soil Contamination (residential area standard).

<Table 4-3-5> Fluorine concentration and LOQ of sediment (unit: mg/kg)

	Standard		Sample number					
	(worrisome		1		lower			
Item	level of soil	Nakdon	Nakdon	Dongiu	Dongiu	Carroll	LOQ	
	contamination,	2-1	2-1	ng-1	ng-1	Stream		
	Category 1)	0	0	0	0			
F (Fluorine)	400	288	319	145	172	205	10	

① Groundwater (10 locations) and Stream water (6 locations) (announced on 16 June)

1. Herbicides (2,4-D, 2,4,5-T)

○ Not found in any samples of groundwater or stream water

2. Dioxin

- (groundwater) Not found in any samples
- (stream water) Trace amounts were found at 3 locations
 (Carroll Stram, Waegwan Station, lower Dongjung-cheon)

5-1-1	>
	5-1-1

(concentration: pg-TEQ/L)

item	Carroll Stream	Waegwan Stat.	lower Dongjung	EPA drinking water standard
Dioxin	0.001	0.010	0.001	30 (2,3,7,8-TCDD)

- ⇒ It is 3,000 30,000 times lower than EPA drinking water standard, and 7 70 times lower than the average of the recent Waegwan monitoring level (0.070 pg-TEQ/L)
 - Dioxin concentration of the part of Nakdong River located in Waegwan (unit: pg-TEQ/L)

	'05	'06	'08	'09	Average
Spring	0.098	0.005	0.435	0.000	0.135
Fall	0.003	0.011	0.003	0.003	0.005
Average	0.050	0.008	0.219	0.002	0.070

% Source: '05~'06: Report of Nationwide Monitoring of Endocrine Disruptors (NIER)

'08~'09: 2009 Report of Nationwide Monitoring of Persistent Organic Pollutants (MOE)

3. Organo-Chlorine Pesticides (OCPs)

• OCPs were detected at 2 groundwater wells and 1 stream water sample, but none of them violated the WHO drinking water guideline.

<Table 5-1-2>

(unit: ng/L)

	Groundw	ater well	Stream	
Item	No.1 (residential-dri nking)	ntial-dri (residential-dri Carro ng) nking)		WHO Drinking water guideline
Dieldrin	1.134	_	_	30
α-HCH	-	5.519	_	-
β-HCH	-	36.384	0.700	-
γ−HCH	-	14.183	_	2,000
δ-ΗCΗ	-	6.931	_	-
Endrin	_	11.742	_	600

4. Volatile Organic Compounds

• Four kinds of VOCs were detected at 4 groundwater wells and 2 stream water samples. Groundwater well No. 4, which is currently under construction for building water supply system, exceeded the domestic drinking water standard for Tetrachloroethene.

<Table 5-1-3>

(unit: mg/L)

		Groundw	ater well		Stre	am		
Item Location	No.1 (residential –drinking)	No.2 (residentia I -not for drinking)	No.3 (residentia I -not for drinking)	No.4 (residential –drinking)	Carroll Stream	Waeg wan station	Drinking water standard	
Chloroform	_	0.001	0.001	0.001	-	0.001	0.08	
Trichloroethene	0.012	-	-	0.023	-	_	0.03	
Tetrachloroethene	0.006	-	-	0.026	0.001	-	0.01	
cis-1,2-Dichloroethene	0.017	-	_	0.005	_	_	0.07	

5. 1,4-Dioxane

• Three groundwater wells contained 1,4-Dioxane but did not exceed the ROK drinking water standard.

<Table 5-1-4>

(unit: mg/L)

location		Groundwater well		Drinking water
Item	No.2 (residential -not for drinking)	No.3 (residential -not for drinking)	No.4 (residential -drinking)	standard
1,4-Dioxane	0.002	0.003	0.002	0.05

6. PAHs, TPH, OCPs, Carbaryl, Chlorination byproducts, Haloacetic acids

 \bigcirc Not found in any samples.

7. General Items

- Three groundwater wells: No.1, No.9 and No.10 had 7 items exceeding the ROK drinking water standards; however, hydro ion, iron, manganese and turbidity affect the esthetic aspect only. They are not directly related to health.
 - Well No.1 had Total colony count and total coliforms exceeding the standards.
 - As the well No.9 is used for agriculture, there is no standards for it in terms of total colony count, iron, manganese and turbidity. Thus the well meets the standards.
 - Well No. 10 is used for residential purposes, so its hydro ion exceeds the standards.

* Well No.10 was dug during the apartment construction, and now it is used for various purposes like cleaning.

<Table 5-1-5>

(unit: mg/L)

		Groundwater wel	1	
Item	No.1No.9No.10(Residential-dr inking)(Agriculture-not for drinking)(Residential -not for drinking)			Drinking water standard
Ammoniacal nitrogen	-	-	0.98	0.5
Hydro ion	-	-	9.5	$5.8 \sim 8.5$
Iron	-	1.430	-	0.3
Manganese	-	2.011	-	0.3
Turbidity (NTU)	-	5.53	-	1
Total colony count(CFU/ml)	8,300	1,610	160	100
Total coliforms	Detected	_	-	ND

 As for stream water, the main stream of Nakdong River had COD, SS and total phosphate equivalents to II - IV of the conforming standard of the ROK government, which means it is okay to use after proper treatment.

2nd groundwater test (16 wells, announced on 9 Sept)[10 supply wells]

1. Herbicides (2,4-D, 2,4,5-T)

• Trace amounts of 2,4-D and 2,4,5-T were detected by the first survey, and subsequent survey was conducted for four wells. 2,4-D and 2,4,5-T were not detected in the re-test.

<Table 5-2-1> Concentration and LOQ of herbicides

	EPA				9	Sampl	e nun	nber				
Item	n $\frac{1}{3}$ water $\frac{1}{1}$ $\frac{1}{1$	CCOG -16	CCOG -17	CCOG -18	CCOG -19	CCOG -20	LOQ					
24-D	70 µg/L ⁽¹⁾	ND	ND	ND	ND	ND	ND	1st::0.00088	ND	ND	ND	0.000569
2,4 D	$30 \ \mu g/L^{(2)}$	$\mu g/L^{(2)}$ ND ND ND ND ND ND 2nd:ND				µg/L						
945 T	$0 (1)^{(2)}$						ND	1st::0.00178		ND	ND	0.001163
2,4,5-1	9 μg/L ^{-/}		IND	IND	ND	ND		2nd:ND			IND	µg/L

* ⁽¹⁾ EPA Drinking water standard

* ⁽²⁾ WHO Drinking water guideline

2. Dioxin (17 kinds)

- Four out of 10 wells (CCOG-17, 18, 19, 20) were samples and analyzed.
- **O** Nothing was detected in any samples.

<Table 5-2-2> Dioxin/Furan concentration and LOQ

(unit: pg-TEQ/L)

(unit: $\mu g/L$)

	EPA Sample number											
Unit	Drinking water standard	CCOG -11	CCOG -12	CCOG -13	CCOG -14	CCOG -15	CCOG -16	CCOG -17	CCOG -18	CCOG -19	CCOG -20	LOQ
pg-TEQ/L	30 pg/L (2,3,7,8-TC DD)		not sampled						ND	ND	ND	0.5 pg/L (for each item)

3. Organo-Chlorine Pesticides (OCPs, 22 kinds)

- Six items including a-HCH, y-HCH(Lindane) and Dieldrin were detected at 4 out of 10 locations (0.7 ~ 8.4 ng/L).
 - Currently WHO has a drinking water guideline for Lindane and Dieldrin. The detected levels were respectively about 4/10,000 and 4/100 of the WHO guideline.
- **O** The other 16 items were not found in any samples.

<Table 5-2-3> OCPs concentration and LOQ

(unit:	ng/L)
--------	-------

	WHD				Sa	mple	numb	er		-		
Item	Drinking water guideline	CCOG -11	CCOG -12	CCOG -13	CCOG -14	CCOG -15	CCOG -16	CCOG -17	CCOG -18	CCOG -19	CCOG -20	LOQ
a-HCH	-	ND	ND	4.4	ND							
β-НСН	-	ND	ND	8.4	ND	Method						
y-HCH (Lindane)	2000	ND	ND	0.7	ND	Detection Limit						
<i>S</i> -HCH	-	ND	ND	5.8	ND	0.5						
Heptachlor Epoxide	-	3.6	ND	ND	ND	ND	ND	0.9	ND	ND	ND	(for each item)
Dieldrin	30 (Aldrin+ Dieldrin)	ND	ND	1.3	ND	ND	1.3	ND	ND	ND	ND	icity

4. Volatile Organic Compounds (VOCs, 55 kinds)

- Five items such as TCE and PCE were detected in 4 out of 10 wells.
- TCE (0.130 mg/L) and PCE (0.040 mg/L) exceeded the drinking water standard at 1 well. Other items were below the standards.
- **O** The other 50 items were not detected in any wells.

<Table 5-2-4> VOCs concentration and LOQ

	Cland				Sa	mple	numb	er				
Item	ard	CCOG -11	CCOG -12	CCOG -13	CCOG -14	CCOG -15	CCOG -16	CCOG -17	CCOG -18	CCOG -19	CCOG -20	LOQ
Chloroform	0.08 ⁽¹⁾	ND	0.011	ND	ND	ND	0.001	ND	ND	ND	ND	0.001
Trichloroethene	0.03 ⁽¹⁾	ND	ND	0.010	ND	ND	0.006	0.130	ND	ND	ND	0.001
Tetrachloroethene	0.01 ⁽¹⁾	ND	ND	0.040	ND	ND	0.009	ND	ND	ND	ND	0.001
trans-1,2-Dichloroethene	0.1 ⁽¹⁾	ND	ND	ND	ND	ND	ND	0.0026	ND	ND	ND	0.0003
cis-1,2-Dichloroethene	0.07 ⁽²⁾	ND	ND	ND	ND	ND	0.0015	0.0322	ND	ND	ND	0.0002

1) ROK Drinking water standard

2) EPA Drinking water standard

5. PAHs (15 kinds)

O Only Anthracene was detected in 1 location out of 10.

O The other 14 items were not detected in any locations.

<table 5<="" th=""><th>-2-5> V(</th><th>DCs cc</th><th>ncentration</th><th>and</th><th>LOQ</th></table>	-2-5> V(DCs cc	ncentration	and	LOQ

(unit: ng/L)

	Cland		Sample number									
Item	ard	CCOG -11	CCOG -12	CCOG -13	CCOG -14	CCOG -15	CCOG -16	CCOG <i>-</i> 17	CCOG -18	CCOG -19	CCOG -20	LOQ
Anthracene	-	0.553	1.861	ND	0.643	2.002	ND	1.275	0.765	ND	ND	0.407
Total-PAHs	-	0.553	1.861	ND	0.643	2.002	ND	1.275	0.765	ND	ND	-

* Drinking water standards, EPA drinking water standards and WHO drinking water guideline do not have standard for these items.

* Among PAHs, only Benzo(a)pyrene is regulated by the EPA and WHO. The standards are 200 ng/L and 700 ng/L respectively.

(unit: mg/L)

6. Heavy metal (13 items)

- Seven items such as As, B and Zn were detected in 10 locations, but they are all below the ROK drinking water standards.
- **O** Trace metal such as As, Hg and Pb, Cd were not detected.

<table 5-2-6=""> Heavy metal</table>	concentration and LOQ
--------------------------------------	-----------------------

(unit: mg/L)

	Chandan				S	ample	numb	er				
Item	d	CCOG -11	CCOG -12	CCOG -13	CCOG -14	CCOG -15	CCOG -16	CCOG -17	CCOG -18	CCOG -19	CCOG -20	LOQ
As	0.01 ⁽¹⁾	ND	0.005	0.005								
В	$1.0^{(1)}$	ND	ND	ND	ND	ND	0.01	ND	ND	0.03	ND	0.01
Zn	3.0 ⁽¹⁾	0.039	0.031	0.024	0.039	ND	ND	ND	0.002	0.002	ND	0.002
Fe	0.3 ⁽¹⁾	ND	ND	0.09	ND	0.05						
Mn	0.3 ⁽¹⁾	0.016	0.014	ND	0.005							
Al	0.2 ⁽¹⁾	ND	ND	ND	ND	0.08	ND	ND	ND	ND	ND	0.02
Ba [*]	2 ⁽²⁾	0.084	0.082	0.015	0.184	0.112	0.026	0.023	0.028	0.042	0.011	0.002

1) ROK Drinking water standard

2) EPA Drinking water standard

- **O** Not found in any samples.
- * OCPs (3 kinds): Diazinon, Parathion, Fenitrothion
- Chlorination byproducts (4 kinds): Chloralhydrate, Dibromoacetonitrile, Dichloroacetonitrile, Trichloroacetonitrile
- Haloacetic acids (3 kinds) : Dichloroaceticacid, Trichloroaceticacid,
 Dibromoaceticacid

^{7.} TPHs, OCPs (3 kinds), Carbaryl, Chlorination byproducts (4 kinds), Haloacetic acids (3 kinds), 1,4-Dioxane

8. Other items (3 microbial, 17 general items)

- Ammoniacal nitrogen, Phenol, residual chlorine, cyan were not detected.
- Out of the 10 locations, total colony counts exceeded the drinking water standards in 5 locations, total colony forms in 7 locations, Fecal Streptococcus in 4 locations, nitrate nitrogen in 3 locations and turbidity in 2 locations.

<Table 5-2-7>Other items (3 microbial, 17 general items) concentration and LOQ

					Sa	mple	numl	per				
Items	Standard	CCCCG -11	CCCCG -12	CCCCG -13	CCCCG -14	CCCCG -15	CCCCG -16	CCCCG -17	CCCCG -18	CCCCG -19	CCCCG -20	LOQ
Total colony count - replica plating	100(CFU)/mL	140	180	4	3700	60	160	16	33	11	200	-
Total coliforms - enzyme substrate	ND/100mL	ND	Dete cted	ND	Dete cted	Dete cted	Dete cted	Dete cted	Dete cted	ND	Dete cted	-
Fecal Streptococcus - tube	ND/100mL	ND	ND	ND	Dete cted	ND	ND	Dete cted	Dete cted	ND	Dete cted	-
Fluorine	1.5 mg/L	ND	ND	ND	ND	ND	0.17	0.15	ND	ND	0.16	0.15 mg/L
Ammoniacal Nitrogen	0.5 mg/L	ND	0.01 mg/L									
Nitrate nitrogen	10.0 mg/L	6.3	3.9	3.4	18.2	11.7	3.3	12.5	5.8	4.2	3.5	0.1 mg/L
Phenol	0.005 mg/L	ND	0.005 mg/L									
Hardness	300 mg/L	47	79	66	110	138	62	180	157	184	129	1 mg/L
potassium permanganate consumed	10.0 mg/L	0.6	1.3	0.9	1.4	1.0	1.3	1.2	2.3	0.9	1.5	0.3 mg/L
chromaticity	5 grade	ND	1	ND	1	ND	ND	ND	ND	ND	ND	1 grade
Surfactant	0.5 mg/L	ND	0.1 mg/L									
Hydro ion	5.8~8.5	6.0	6.3	6.3	6.2	6.2	6.4	6.7	6.9	7.0	7.4	-
Chlorite ion	250 mg/L	12	22	24	32	44	8	39	16	19	4	0.4 mg/L
Non-Volatile Residues	500 mg/L	178	214	184	326	343	155	384	269	283	217	5 mg/L
Turbidity	1 NTU	0.18	1.88	0.14	1.31	0.15	0.14	0.15	0.50	0.22	0.37	0.02 NTU
Sulfate ion	200 mg/L	5	27	3	11	31	4	25	41	21	9	2 mg/L
Residual chlorine	4.0 mg/L	ND	0.05 mg/L									
Cyan	0.01 mg/L	ND	0.01 mg/L									
Taste	No	No	No	No	No	No	No	No	No	No	No	-
Odor	No	No	No	No	No	No	No	No	No	No	No	-

[6 Monitoring Wells]

1. Herbicides (2,4-D, 2,4,5-T), Dioxin (17 kind), TPHs

O Not detected in any samples.

2. Organo-Chlorine Pesticides (OCPs, 22 items)

• Three items: β-HCH, y-HCH(Lindane) and Dieldrin were found in 5 out of 6 locations (0.7 ~ 21.9 ng/L)

<Table 5-2-8> OCPs concentration and LOQ (unit: ng/L)

The second	Sample number					100	
Items	CCOMW1	CCOMW2	CCOMW3	CCOMW4	CCOMW5	CCOMW6	LOQ
<i>β</i> -НСН	ND	1.6	0.7	21.9	0.9	ND	MDL
y-HCH(Lindane)	ND	7.2	ND	2.2	ND	6.0	0.5
Dieldrin	ND	2.4	1.2	1.0	2.4	ND	(tor each items)

3. Volatile Organic Compounds(VOCs, 55 kinds)

• 10 items such as TCE and PCE were detected at 5 out of 6 locations (0.0006 ~ 0.2221 mg/L).

<Table 5-2-9> VOCs concentration and LOQ

(unit:	mg/L)
\unit•	шу/с/

Itom	Sample number						100
Item	CCOMW1	CCOMW2	CCOMW3	CCOMW4	CCOMW5	CCOMW6	LOQ
1,1-Dichloroethene	ND	0.002	ND	ND	ND	ND	0.001
Chloroform	ND	0.001	ND	ND	ND	ND	0.001
Trichloroethene	0.032	0.151	0.005	0.001	0.007	ND	0.001
Tetrachloroethene	0.001	0.049	0.004	0.001	0.015	ND	0.001
trans-1,2-Dichloroethene	ND	0.0024	ND	ND	ND	ND	0.0003
cis-1,2-Dichloroethene	0.0055	0.2221	0.0108	ND	ND	ND	0.0002
1,1-Dichloroethane	0.0015	0.0032	ND	ND	ND	ND	0.0001
1,2-Dichloropropane	ND	0.0006	ND	ND	ND	ND	0.0001
1,1,2,2-Tetrachloroethane	0.0084	ND	ND	ND	ND	ND	0.0006
Vinyl chloride	ND	0.0011	0.0043	ND	ND	ND	0.0001

4. PAHs (15 kinds)

• Two items: Fluoranthene and Anthracene were detected in 4 out of 6 locations (0.806 - 1.871 ng/L)

<Table 5-2-10> PAHs concentration and LOQ

(unit:	$n\alpha/L$)	
\unne	пg/с/	

T	Sample number						TOO
Item	CCOMW1	CCOMW2	CCOMW3	CCOMW4	CCOMW5	CCOMW6	LOQ
Fluoranthene	ND	ND	ND	1.065	ND	0.886	0.504
Anthracene	ND	ND	1.454	0.806	0.913	N.D.	0.407
Total-PAHs	ND	ND	1.454	1.871	0.913	0.886	-

5. Heavy metal (13 items)

• Seven items including Mn and Ba were found in 6 locations.

O Trace metals such as As, Hg and Cd were not detected.

	,					x -	- U, /
Item		100					
	CCOMW1	CCOMW2	CCOMW3	CCOMW4	CCOMW5	CCOMW6	LOQ
Pb	ND	ND	ND	ND	0.005	ND	0.005
В	0.01	ND	ND	0.03	0.02	ND	0.01
Zn	0.015	0.014	0.011	0.007	0.017	0.020	0.002
Fe	ND	ND	0.48	ND	ND	ND	0.05
Mn	0.064	ND	1.467	0.299	0.261	0.148	0.005
Al	0.07	0.07	0.09	0.01	0.07	0.05	0.02
Ba	0.089	0.133	0.179	0.069	0.121	0.091	0.002

<Table 5-2-11> Heavy metal concentration and LOQ

(unit: mg/L)

③ Additional Groundwater survey (17 locations)

- * The ROK conducted additional test.
 - 1. Herbicides (2,4-D, 2,4,5-T)
 - Not detected in any locations (8 supply wells, 9 monitoring wells)
 - 2. Dioxin (17 kinds)
 - Not found in supply wells, but 2 monitoring wells had trace amounts.
 - 2,3,7,8-TCDD was not one of the 17 kinds of dioxin found in the analysis.

<Table 5-3-1> Dioxin/Furan concentration and LOQ (I

(unit: pg-TEQ/L)

Unit	concentration	Standards (EPA)	Remarks (exceeding the standard)
pg-TEQ/L	ND ~ 0.062	30 pg/L (2,3,7,8-TCDD)	-

3. Volatile Organic Compounds (VOCs, 54 items)

\Box Groundwater supply wells (8)

- Four items such as TCE and *cis*-1,2-DCE were detected in 6 supply wells.
 - TCE exceeded the EPA drinking water standards at 4 wells and *cis*-1,2-DCE at 3 wells (These wells are overlapped with where TCE

<Table 5-3-2> VOCs concentration and standards

(unit: mg/L)

τ.		Standards	Remarks
ltem	Concentration (8 supply wells)	(Drinking water	(exceeding the
		standards)	standards)
Chloroform	ND ~ 0.004	0.08	-
Trichloroethene	ND ~ 0.098	0.03	4 wells
trans-1,2-Dichloroethene	ND~ 0.0117	0.1	_
cis-1,2-Dichloroethene	ND or 0.1881	0.07	2 mollo
	ND ~ 0.1881	(EPA)	5 wells

\Box Groundwater monitoring wells (9)

• Three items such as TCE and *cis*-1,2-DCE were detected in 4 monitoring wells, but they are within the standards.

<Table 5-3-3> VOCs concentration and standards

(unit: mg/L)

Item	Concentration (8 supply wells)	Standards (Drinking water standards)	Remarks (exceeding the standards)
Chloroform	ND ~ 0.002	0.08	_
Trichloroethene	ND ~ 0.010	0.03	_
<i>cis</i> -1,2-Dichloroethene	ND ~ 0.0042	0.07 (EPA)	_

4. Other organic pollutants (10 items)

• Not found in any samples (8 supply wells and 9 monitoring wells)